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ABSTRACT

Deep neural networks obtained by standard training have been constantly plagued
by adversarial examples. Although adversarial training demonstrates its capability
to defend against adversarial examples, unfortunately, it leads to an inevitable
drop in the natural generalization. To address the issue, we decouple the natural
generalization and the robust generalization from joint training and formulate
different training strategies for each one. Specifically, instead of minimizing a
global loss on the expectation over these two generalization errors, we propose a
bi-expert framework called Zipper where we simultaneously train base learners
with task-aware strategies so that they can specialize in their own fields. The
parameters of base learners are collected and combined to form a global learner
at intervals during the training process, which is then distributed to base learners
as initialized parameters for continued training. Theoretically, we show that the
risks of Zipper will get lower once the base learners are well trained. Extensive
experiments verify the applicability of Zipper to achieve high clean accuracy in the
natural setting while keeping considerably robust to the adversarial setting.

1 INTRODUCTION

Modern deep learning techniques have achieved remarkable success in many fields, including
computer vision (Krizhevsky et al., 2012; He et al., 2016), natural language processing (Vaswani
et al., 2017; Devlin et al., 2019), and speech recognition (Sak et al., 2015). Yet, deep neural networks
(DNNs) suffer a catastrophic performance degradation by adversarial perturbations where wrong
predictions are made with extremely high confidence (Szegedy et al., 2014; Goodfellow et al., 2015).
The vulnerability of DNNs has led to the proposal of various defense approaches (Xu et al., 2018;
Liao et al., 2018; Qin et al., 2020; Papernot et al., 2016; Ross & Doshi-Velez, 2018) for protecting
DNNs from adversarial attacks. One of those representative techniques is adversarial training (AT)
(Madry et al., 2018), which dynamically injects perturbed examples that deceive the current model
but preserve the right label into the training set. Adversarial training has been demonstrated to be the
most effective method to improve adversarially robust generalization (Athalye et al., 2018).

Despite these successes, such attempts of adversarial training have found a tradeoff between natural
and robust accuracy, i.e., there exists an undesirable increase in the error on unperturbed images when
the error on the worst-case perturbed images decreases. Prior works (Fawzi et al., 2018; Tsipras
et al., 2019; Zhang et al., 2019) even argue that natural and robust accuracy are fundamentally at
odds, which indicates that a robust classifier can be achieved only when compromising the natural
generalization. However, the following works found that the tradeoff may be settled in a roundabout
way, such as incorporating additional labeled/unlabeled data (Alayrac et al., 2019; Najafi et al., 2019;
Carmon et al., 2019; Raghunathan et al., 2019; 2020) or relaxing the magnitude of perturbations to
generate suitable adversarial examples for better optimization (Lamb et al., 2019; Zhang et al., 2020;
Lee et al., 2020). These works all focus on the data used for training while we propose to tackle the
tradeoff problem from the perspective of the training paradigm in this paper.

Inspired by the spirit of the divide-and-conquer method, we decouple the objective function of adver-
sarial training into two sub-tasks: one is used for natural example classification while the other one is
used for adversarial example classification. Specifically, for each sub-task, we train a base learner
on natural or adversarial datasets with the task specific configuration while sharing the same model
architecture. The parameters of base learners are collected and combined to form a global learner
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Figure 1: A pipeline for the proposed Zipper.

at intervals during the training process, which
is then distributed to base learners as initialized
parameters for continued training. We name the
framework as Zipper and its proof-of-concept
pipeline is shown in Figure 1. Different from the
traditional joint training framework for natural
and robust generalization, our proposed Zipper
fully leverages task-specific information to in-
dividually train the base learners, which makes
each sub-task be solved better. Theoretically, we
show that if the base learners are well trained,
the final global learner is guaranteed to have a
lower risk. The proposed Zipper is the first to
mitigate the tradeoff issue by task-aware training
strategies to achieve high clean accuracy in the
natural setting, while also being considerably
robust to the adversarial setting. In summary, the main contributions are as follows:

• For the tradeoff between natural and robust generalization, previous methods are hard to
find a sweet point to meet both goals in the joint training framework. Here, we propose a
novel Zipper paradigm, which constructs multiple task-aware base learners to respectively
achieve the generalization goal on natural and adversarial datasets.

• For each task, rather than being constricted in a stiff manner, every detail of training strategies
(e.g., optimization scheme) can be totally customized, thus each base learner can better
explore the optimal trajectory in its field and the global learner can fully leverage the merits
of all base learners.

• We conduct comprehensive experiments in common settings against extensive adversarial
attacks to verify the applicability of our approach. Results demonstrate that both clean and
robust accuracy have been greatly improved on benchmark datasets compared to relevant
techniques.

2 PRELIMINARIES AND RELATED WORK

In this section, we briefly introduce some relevant background knowledge and terminology about
adversarial training and meta-learning.

Notations. Consider an image classification task with input space X and output space Y . Let
x ∈ X ⊆ Rd denote a natural image and y ∈ Y = {1, 2, . . . ,K} denote the corresponding
ground-truth label. The natural and adversarial datasets X × Y = {(xi, yi)}ni=1 and X ′ × Y =
{(x′

i, yi)}
n
i=1 are sampled from a distribution D1 and D2, respectively. We denote a DNN model as

fθ : X → RK whose parameters are θ ∈ Θ, which should classify any input image into one of K
classes. The objective functions ℓ1 and ℓ2 for the natural and adversarial setting can be defined as:

ℓ1
def
= D1 × Θ → [0,∞) and ℓ2

def
= D2 × Θ → [0,∞), which are usually positive, bounded, and

upper-semi continuous (Blanchet & Murthy, 2019; Villani, 2003; Bartlett & Mendelson, 2001).

2.1 STANDARD ADVERSARIAL TRAINING

The goal of the adversary is to generate a malignant example x′ by adding an imperceptible perturba-
tion ε ∈ Rd to x. And the generated adversarial example x′ should be in the vicinity of x so that it
looks visually similar to the original one. This neighbor region Bε(x) anchored at x with apothem ε
can be defined as Bε(x) = {(x′, y) ∈ D2 | ∥x− x′∥ ≤ ε}. For adversarial training, it first generates
adversarial examples and then updates the parameters over these samples. The iteration process of
adversarial training can be summed up as:{

x′(t+1)
= ΠB(x,ϵ)

(
x′(t) + α sign

(
∇x′ℓ2

(
x′(t), y;θt

)))
θ(t+1) = θ(t) − τ∇θE[ℓ1(x, y;θt) + βR(x′, x, y;θt)],

(1)
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where ΠB(x,ϵ) is the projection operator, α is the step size, τ is the learning rate, andR(·) is the loss
difference of ℓ2(x′, y;θt) − ℓ1(x, y;θ

t). The tradeoff factor β balances the importance of natural
and robust errors. Various adversarial training methods can be derived from Eq. 1. For instance,
when β = 1, it is equivalent to the vanilla PGD training (Madry et al., 2018), and when β = 1/2, it
is transformed into the half-half loss in Goodfellow et al. (2015). The formulation degenerates to
standard natural training as β = 0. Besides, we can get the formulation in TRADES (Zhang et al.,
2019) when replacingR(·) with the KL-divergence.

2.2 MULTI-TASK LEARNING AND META-INITIALIZATION

Multi-Task Learning. Multi-Task Learning (MTL) is to improve performance across tasks through
joint training of different models (Bilen & Vedaldi, 2016; Lu et al., 2017; Yang & Hospedales, 2017).
Consider a set of assignments containing data distribution and loss function defined as A = {D, ℓ}
with corresponding models {Ma}|A|

a=1 parameterized by trainable tensors θMa . In MTL, these sets
have non-trivial pairwise intersections, and are trained in a joint model to find optimal parameters
θ⋆
Ma

for each task:
|A|⋃
a=1

θ⋆
Ma

= argmin
∪|A|

a=1θMa

EAED ℓa (Da;θMa
) , (2)

where ℓa(Da;θMa
) measures the performance of a model trained using θMa

on dataset Da. Our
approach Zipper is directly related to MTL at first glance because both of them tend to learn a specific
predictive model for different sources. However, Zipper differs significantly from MTL, i.e., multiple
tasks are still learned jointly under a unified form in MTL while each assignment can be optimized
by heterogeneous strategies in Zipper.

Meta-Learning. Meta-learning is to train a model that can quickly adapt to a new task. Suppose A is
divided into non-overlapping splits V andW , the model is first trained on the training sets and then
guided by a small validation set on a set of tasks to make the trained model can be well adapted to
new tasks:

θ⋆ = argmin
θ

EVEDV ℓV

(
DV ; argmin

θ
EWEDW ℓW (DW ;θ)

)
, (3)

meta-learning (Finn et al., 2017; Nichol et al., 2018) is often designed to generalize across unseen
tasks, whereas the goal of MTL is to tackle a series of known tasks. Nonetheless, our approach Zipper
uses the technique of meta-learning to set good initializations for base learners to transfer knowledge
between tasks.

3 THE PROPOSED NEW FRAMEWORK: ZIPPER

Similar to a physical-world zipper, our proposed Zipper also consists of two rows of protruding teeth
(i.e., base learners). Numbers of teeth are paved along both halves of a zipper to link the rows (i.e.,
checkpoints of base learners through training). A Y-shaped slider (i.e., the global learner) moves
along the rows of teeth from a starting point and meshes together with the opposing rows of teeth.

3.1 OVERVIEW

The overall procedure of our proposed algorithm is shown in Algorithm 1, which mainly comprises
two steps: optimizing parameters of the base learner θa in its assigned data distribution Da and
distributing parameters of the global learner θg to all base learners. Base learners and the global
learner share the same architecture, i.e., M1 = M2 = · · · = M|A|. Since we only focus on
recognizing natural examples and adversarial ones in our setting, the total number of tasksW is set
to two.

3.2 TASK-AWARE BASE LEARNERS

Given a global data distribution D for the tradeoff problem, as denoted in Section 2, D1,D2 are
subject to the distribution of training data DW . And natural images (x, y) ∼ D1 while adversarial
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Algorithm 1 Zipper: Leverage the learning trajectory with respect to task-aware base learners
Input: A DNN classifier f(·) with initial learnable parameters θg for the global learner and θn,θr for
each base learner with objective function ℓ1, ℓ2; number of iterations T ; number of adversarial attack steps
K; magnitude of perturbation ε; step size κ; learning rate τ1, τ2; exponential decay rates for ensembling
α′ = 0.999; mixing ratio γ; starting point and frequency of communication t′, c.
Initialize θg,θn,θr in Θ space.
for t← 1, 2, · · · , T do

Sample a minibatch (x, y) from data distribution D1

/* Parallel-1: Update parameters of base learner-1 over D1*/
(Optional) Performing model ensembling, data augmentation or label smoothing, etc.
θn ← Zn

[
E(x,y)(∇θℓ1(x, y;θn)), τn

]
/* Parallel-2: Update parameters of base learner-2 over D2*/
x′
0 ← x+ ε, ε ∼ Uniform(−ε, ε).

for k← 1, 2, · · · ,K do
x′
k ← Πx′

k
∈Bε(x)

(
κ sign

(
x′
k−1 +∇x′

k−1
ℓ2(x

′
k−1, y;θr)

))
end for
(Optional) Performing model ensembling, data augmentation or label smoothing, etc.
θr ← Zr

[
E(x′,y)(∇θℓ2(x

′
K , y;θr)), τr

]
/* For the global learner*/
θg ← α′θg + (1− α′)(γθr + (1− γ)θn)
if t ≥ t′ and t mod c == 0 then

θr,θn ← θg

end if
end for
Return Parameters of the global learner θg

examples (x′, y) ∼ D2 generated by Eq. 1. So the training process of base learners is to solve the
inner minimization of Eq. 3 over different distributions in a distributed manner:

{θ⋆
n,θ

⋆
r} = argmin⋃2

W=1 θW

EDW ℓW (DW ;θW) . (4)

Specifically, during the process, base learners fθn and fθr are assigned different subproblems that
only requires accessing their own data distribution, respectively. Note that two base learners work in
a complementary manner, meaning the update of parameters is independent among base learners and
the global learner always collects parameters of both base learners. So the subproblem for each base
learner is defined as:

θ⋆
W = argmin

θ
ZT

W [EW(∇θℓW(DW ;θW)), τW ], (5)

where the task-aware optimizer ZT
W(·, ·) search the optimal parameter states θ⋆

W over the subproblem
W in T rounds. Loss functions can also be task-specific and applied to each base learner separately.
It is natural to consider minimizing the 0-1 loss in the natural and robust errors, however, solving the
optimization problem is NP-hard thus computationally intractable. In practice, we select cross-entropy
as the surrogate loss for both ℓ1 and ℓ2 since it is simple but good enough.

3.3 INITIALIZATION FROM THE GLOBAL LEARNER

During the initial training periods, base learners are less instrumental since they are not adequately
learned. Directly initializing parameters of base learners may mislead the training procedure and
further accumulate bias when mixing them. Therefore, we set aside t′ epochs from the beginning
for fully training base learners and just aggregates states on the searching trajectory of base learners
through optimization by exponential moving average (EMA), computed as: θg ← α′θg + (1 −
α′)(γθr + (1− γ)θt), where α′ is the exponential decay rates for EMA and γ is the mixing ratio for
base learners. They then learn an initialization from parameters of the global learner every c epochs
when each base learner is well trained in its field. Thus, the optimization of each base learner for
every interlude can be expressed in Eq. 6:

θ⋆
W = argmin

θ
Zc

W [EW(∇θℓW(DW ;θg)), τW ]. (6)

Note that θg contains both θn and θr, meaning there always exists a term updated by gradient
information of distribution different from the current subproblem. This mechanism enables fast

4



Under review as a conference paper at ICLR 2023

learning within a given assignment and improves generalization, and the acceleration is applicable to
the given assignment for its corresponding base learner only (proof in Appendix B.1).

With all discussed above, the learning progress of Zipper can be constructed by decending the gradient
of θr,θn and mixing both of them. The calculating steps in Algorithm 1 can be summarized in Eq. 7.

θt
n = Zn

[
E(x,y)∼D1

(∇θnℓ1(x, y;θ
t−1
n )), τ1

]
θt
r = Zr

[
(E(x′,y)∼D2

∇θr
ℓ2(x

′, y;θt−1
r )), τ2

]
θt+1
g = α′θt−1

g + (1− α′)[γθt
r + (1− γ)θt

n]
θt
n = B(t, t′, c)θt+1

g + (1− B(t, t′, c))θt
n

θt
r = B(t, t′, c)θt+1

g + (1− B(t, t′, c))θt
r,

(7)

where B(t, t′, c) is a Boolean function that returns one only when both t ≥ t′ and t mod c == 0,
otherwise it returns zero. Zn and Zr are optimizers for natural training and adversarial training
assignments.

3.4 THEORETICAL ANALYSIS

In this part, we theoretically analyze how base learners help global learner in Zipper. For brevity, we
omit the expectation notation over samples from each distribution without losing generalization.
Definition 1. (Tradeoff Regret with Mixed Strategies) For the natural training assignment a1 and
adversarial training assignment a2, consider an algorithm generates the trajectory of states θ1 and
θ2 for two base learners, the regret of both base learners on its corresponding loss function ℓ1, ℓ2 is

RT =
1

2

2∑
a=1

(
T∑

t=1

ℓa
(
θt
a

)
− inf

θt
a∈Θ

T∑
t=1

ℓa (θ
⋆
a)

)
. (8)

The oracle state θ⋆
a represents the theoretically optimal parameters for each task a. RT is the sum of

the difference between the parameters of each base learner and the theoretically optimal parameters
for each task. Based on the definition, we can give the following upper bound on the expected error
of classifier trained by Zipper with respect to RT as:
Theorem 1. (Proof in Appendix B.2) Consider an algorithm with regret bound RT that generates the
trajectory of states for two base learners, for any parameter state θ ∈ Θ, given a sequence of convex
surrogate evaluation functions ℓ : Θ 7→ [0, 1]a∈A drawn i.i.d. from some distribution L, the expected
error of the global learner θg on both tasks over the test set can be bounded with probability at least
1− δ:

E
ℓ∼L

ℓ (θg) ≤ E
ℓ∼L

ℓ (θ) +
RT

T
+ 2

√
2

T
log

1

δ
. (9)

So the above inequality indicates that any strategy beneficial to reducing the error of each task that
makes RT smaller will decrease the error bound of the global learner. Considering Zipper divides
the tradeoff problem into two independent tasks, Theorem 1 guarantees the upper bound of the risks
given by the global learner trained by Zipper will get lower once the error for each task becomes
lower. In practice, we can apply customized learning rate strategies, optimizers, and weight averaging
to guarantee the error reduction of each base learner.

4 EXPERIMENTS

We conduct a series of experiments on ResNet-18 (He et al., 2016) and WRN-32-10 (Zagoruyko
& Komodakis, 2016) on benchmark datasets MNIST, SVHN, CIFAR-10, CIFAR-100, and TinyIm-
ageNet. For simplicity, we only report the results based on L∞ norm for the non-targeted attack
(results against the L2 adversary are in Appendix A.5).

Baselines. We select six approaches to compare with: AT using PGD (β = 1 in Eq. 1) (Madry
et al., 2018), AT using the half-half loss (β = 1/2 in Eq. 1) (Goodfellow et al., 2015), TRADES
with different λ, Friendly Adversarial Training (FAT) (Zhang et al., 2020), Interpolated Adversarial
Training (IAT) (Lamb et al., 2019), and Robust Self Training (RST) (Raghunathan et al., 2020) used
labeled data for fair comparison. For Zipper, we set t′ = 75 and the optimal mixing strategy will be
discussed in Section 4.2.1.
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Table 1: Comparison of our algorithm with different training methods using ResNet-18 and WRN-
32-10 on CIFAR-10. The maximum perturbation is ε = 8/255. The best checkpoint is selected
based on the tradeoff between clean accuracy and robust accuracy against PGD20 on the test set. We
highlight the top two results on each task. We omit standard deviations of Zipper as they are very
small (< 0.5%). Average accuracy rates (in %) have shown that the proposed Zipper method greatly
mitigate the tradeoff of the model.

(a) The evaluation results based on ResNet-18.

Method NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FATt Square AA
NT 93.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AT (β = 1) 84.32 48.29 48.12 47.95 49.57 47.47 48.57 45.14 46.17 54.21 44.37
AT (β = 1/2) 87.84 44.51 44.53 47.30 44.93 40.58 42.55 40.20 44.56 50.76 40.06
TRADES (λ = 6) 83.91 54.25 52.21 55.65 52.22 53.47 50.89 47.93 48.53 55.75 48.20
TRADES (λ = 1) 87.88 45.58 45.60 47.91 45.05 42.95 42.49 40.32 43.89 53.49 40.38
FAT 87.72 46.69 46.81 47.03 49.66 46.20 47.51 44.88 45.76 52.98 43.14
IAT 84.60 40.83 40.87 43.07 39.57 37.56 37.95 35.13 36.06 49.30 35.14
RST 84.71 44.23 44.31 45.33 42.82 41.25 42.01 40.41 46.54 50.49 37.68
Zipper 89.09 50.01 50.00 52.19 50.04 46.53 48.70 45.37 47.32 56.68 46.07

(b) The evaluation results based on WRN-32-10.

Method NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FATt Square AA
NT 93.30 0.01 0.02 0.05 0.00 0.00 0.00 0.00 0.87 0.28 0.00
AT (β = 1) 87.32 49.01 48.83 48.25 52.80 48.83 49.00 46.34 46.11 54.26 48.17
AT (β = 1/2) 89.27 48.95 48.86 51.35 49.56 45.98 47.66 44.89 46.42 56.83 44.81
TRADES (λ = 6) 85.11 54.58 54.82 55.67 54.91 54.89 55.5 52.71 52.61 57.62 52.19
TRADES (λ = 1) 87.20 51.33 51.65 52.47 53.19 51.60 51.88 49.97 50.01 54.83 49.81
FAT 89.65 48.74 48.69 48.24 52.11 48.50 48.81 46.17 44.73 51.51 46.70
IAT 87.93 50.55 50.72 52.37 48.71 47.71 46.55 43.84 45.78 56.52 43.85
RST 87.27 46.55 46.76 47.02 45.99 45.73 46.58 41.52 43.18 52.44 45.78
Zipper 91.03 56.88 56.92 58.87 57.23 53.94 55.80 53.00 53.65 63.10 52.91

Evaluation. To evaluate the robustness of the proposed method, we apply several adversarial attacks
including PGD (Madry et al., 2018), MIM (Dong et al., 2018), CW (Carlini & Wagner, 2017),
AutoAttack (AA) (Croce & Hein, 2020) and all its components (APGDce, APGDdlr, APGDt,
FABt and Square).

4.1 THE TRADEOFF PERFORMANCE ON BENCHMARK DATASETS

To comprehensively manifest the power of our Zipper method, we present the results of both ResNet-
18 and WRN-32-10 on CIFAR-10 in Table 1. In Table 1(a), Zipper consistently improves standard test
error relative to models trained by several robust methods, while maintaining adversarial robustness
at the same level. More specifically, Zipper achieves the second highest standard accuracy of 89.09%
(only lower than 93.04% obtained by natural training (NT)), while meantime robust accuracy against
AA is 46.07%, hanging on to 48.2% from TRADES. If we force TRADES to meet the same level of
clean accuracy as Zipper (89%), the robustness of TRADES against APGD will drop to 30% (see
TRADES in Appendix A.6), which is significantly worse than Zipper. That means it is hard to obtain
acceptable robustness but maintain clean accuracy above 89% in the joint training framework even
if it is equipped with an advanced loss function, while the improvement of Zipper is notable since
we only use the naive cross-entropy loss. Contrary to FAT managing the tradeoff through adaptively
decreasing the step size of PGD, which still hurts robustness a lot, Zipper is the only method with
clean accuracy above 89% and robust accuracy against AA above 46%. We should emphasize the
final obtained model of Zipper is the same size as other trained models are. For the training time,
Zipper does perform both NT and naive AT but the cost of NT is negligible, so the overhead of Zipper
is smaller than TRADES, and whatever serial and parallel versions of Zipper are even faster than
TRADES (see Appendix A.6).

Things become more obvious when it comes to WRN-32-10. In Table 1(b), the gap between test
natural accuracy of Zipper and NT is reduced to 2.27%, a relative decrease of 3.65% in standard test
error as compared to the second highest natural accuracy (except NT) achieved by FAT. It is also
remarkable that the boost of accuracy does not hurt the robustness of Zipper, instead, Zipper even
outperforms TRADES across multiple types of adversarial attacks. In particular, we find that Zipper
has a standard test error of 6.7% while TRADES with λ = 6 has a standard test error of 14.89%
only. And the improved robustness of Zipper among PGD20/100, MIM, CW, FATt and Square is
conspicuous. Besides, the best performance on AA, which is an ensemble of different attacks and the
most powerful adaptive adversarial attack so far, demonstrates the reliability of Zipper. Likewise,
only Zipper attains robust accuracy of AA higher than 52% along with clean accuracy higher than
90%. It should be emphasized that these features confirm the practicability of Zipper. In short, Zipper
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Figure 2: Zipper with different mixing ratio strategies and various values of frequency on CIFAR-10.
We evaluate both natural accuracy and robustness against PGD20, C&W and AA attacks using
ResNet-18.

has consistently improved robustness without loss of natural accuracy. For more results on benchmark
datasets like MNIST, SVHN, CIFAR-100, and TinyImageNet, please refer to the results in Appendix
A.2 - A.4.

4.2 COMPREHENSIVE UNDERSTANDING OF ZIPPER

We run a number of ablations to analyze the Zipper framework in this part. If not specified otherwise,
the experiments are conducted on CIFAR-10 using ResNet-18.

4.2.1 SELECTION OF COMMUNICATION FREQUENCY AND MIXING STRATEGIES

As illustrated in Algorithm 1, two factors control the tradeoff between accuracy and robustness
of the global learner: frequency of communication c and mixing ratio γ. So there must exist an
optimal tradeoff between communication frequency c and mixing rate γ. In this part, we empirically
investigate how these factors affect the performance of Zipper. For γ, we do not explicitly assign
a fixed value to it. In practice, we set several breakpoints and compute γ by the piecewise linear
function of these points. As for c, with the fixed mixing ratio strategy, we sweep over the frequency
of communication from 1 to 15.

Results are shown in Figure 2, and we have the following observations: Intuitively, a larger c
means base learners communicate with the global learner less frequently to get the initialization,
so they barely have the opportunity to move alternately towards two optimal solution manifolds.
But specifically, the natural accuracy falls back down after reaching the peak while the robust
accuracy in different adversarial settings roughly shows a trough. Such observation manifests that
too much/little communication has a negative influence on standard accuracy but results in relatively
higher robustness. It captures a tradeoff between natural and robust errors with respect to c. We
also deeply investigate the independence of different base learners when communication occurs,
please refer to Appendix C.1. Similarly, γ controls the tradeoff via balancing the contribution of
individuals to the global learner when base learners are gradually well trained. Note that γ is a scalar
but we dynamically adjust the value along the training process using a piecewise linear function to
decrease (the setting of increasing γ is in Appendix A.9). The numbers in brackets are the values
at the 0/40/80/120-th epoch. If γ gets smaller, the base learner in charge of natural classification
has a pronounced influence on the global learner. Among all configurations, the best one is to
apply γ = (1, 1, 1, 0) and c = 5 to the global learner after the 75th epoch. When compared to
strategies that γ decays during late periods, γ = (1, 1, 0.8, 0.2) shows lower standard and robust
accuracy, confirming that more sophisticated initialization could be useful for both accuracy and
robustness. With the increase of the last breakpoint of dynamical strategies, the robust accuracy
gradually increases; while the standard accuracy decreases by a small margin. We also investigate
the static/dynamic strategy for γ. By observing γ = 0.5 and γ = (1, 1, 1, 0.5), the scheduled mixing
strategy makes Zipper more robust to various attacks.

4.2.2 CUSTOMIZED POLICIES FOR INDIVIDUALS

As stressed in the preceding paragraphs, one of the major advantages of Zipper in comparison with
the standard joint training framework is that each base learner enables to customize the corresponding
strategy for their own tasks freely rather than using the same strategy for all tasks. In this part, we
investigate whether Zipper performs better when cooperating with diverse techniques.
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Weight Averaging. Recent works (Rebuffi et al., 2021; Izmailov et al., 2018; Wang & Wang, 2022)
have shown that weight averaging (WA) greatly improves both natural and robust generalization. The
average parameters of all history model snapshot through the training process to build an ensemble
model on the fly. However, such technique cannot benefit both accuracy and robustness in the joint
training framework. Therefore, we introduce WA into base learners separately. Results are shown in
Figure 3 (a). We employ WA in either NT (NT_only) or AT (AT_only) or both of them (NT+AT). We
also evaluate Zipper without EMA in Appendix A.8. Overall, the results confirm that the performance
of the global learner can be further improved after both base learners exploit WA. But unfortunately,
an obvious tradeoff happens if only one of the base learner is equipped with WA. For instance, the
standard test accuracy of NT_only continues to increase at the expense of the drop in the ability to
defend attacks. A likely reason is that WA implicitly controls the learning speed of base learners.
Actually, the base learner with WA becomes an expert much faster than the one without WA in its
sub-task, meaning the fast one is not in accordance with the slow one. This result is important because
it not only illustrates the potential of Zipper comes from its base learners but also identifies a key
challenge of tradeoff for future improvement.

Different Optimizers. We also investigate the effect of optimizers designed for different tasks. We
choose AT (β = 1) using SGD with momentum and Adam for piecewise learning rate schedule
optimized by joint training as the baseline. The initial learning rate for Adam is 0.0001. We alternately
apply these two optimizers in each subproblem. The comparison of the results is shown in Figure
3 (b). We can see that the gap of robust accuracy between models adversarially trained by Adam
and the ones trained by SGD is significant. All three schemes equipped with Adam, namely NT
(Adam)+AT (Adam), NT (SGD)+AT (Adam), and Baseline (Adam), perform worse than the ones
using SGD when evaluated by adversarial attacks. But on the other hand, by comparing the results of
Baseline (Adam) and NT (Adam)+AT (SGD), it confirms a proper optimization scheme with respect
to data distribution can effectively benefit the corresponding performance without overlooking the
other. That not only demonstrates the necessity of Zipper to decouple task-aware assignments from
joint training but also indicates using Adam may not be the principal reason for robustness drop. It is
just ill-suited for the outer and inner optimization in AT. Besides, though the best results still come
from using SGD, the learning rate for different tasks can be customized which is not feasible in the
joint framework, as shown in Appendix A.7.
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Figure 3: (a) We apply weight averaging to one of the base learner or both of them. Results demon-
strate that using weight averaging through training can bring performance boost in its corresponding
sub-task, and thus has an effect on predictions of the global learner. (b) Base learners of Zipper
optimized by different optimizers. The optimal selection is using Adam for the natural classification
task but maintaining SGD for the adversarial one.

4.2.3 WHERE DOES ZIPPER STEP FORWARD?

Considering the proposed method achieves impressive clean accuracy without a harsh drop in
robustness, it is naturally curious about what improvements Zipper has secured in comparison with
robust methods in detail. Thus, we further investigate the predictions that robust classifiers are prone
to make. As shown in Figure 4, we provide two perspectives to analyze the differences that classifiers
trained by different AT methods.

To broadly study the case, we perform experiments on NT, TRADES with different λ, FAT and
Zipper, then plot the distribution of the correct predictions of all methods for each class in Figure 4(a).
As evident at first glance, we note that animals are more frequently misclassified, especially cats/dogs
in the natural scenario and cats/deers in the adversarial scenario. In addition, the classifier trained by
standard natural training does not always outperform the ones adversarially trained. Actually, they
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Figure 4: Analyses of predilections that different robust classifiers have on CIFAR-10 using ResNet-
18. (a) Distribution of the correct predictions of different training methods for each class. We separate
out results on natural examples from adversarial ones (AA). Note that results of ‘NT Adv’ does
not appear in the figure just because they are literally zero. (b) Visualization of samples that other
methods misclassify while Zipper makes right predictions.

are equally skilled at most categories and the outcome is decided by specific categories (e.g. birds,
cats and dogs). Zipper keeps pace with NT in the natural task, and meanwhile promotes the higher
improvements in difficult items (e.g. cats and deers) against AA attack.

In Figure 4(b), we display specific samples in the testing dataset that are misclassified by robust
classifiers (TRADES and FAT) but recognized by our proposed method, including both natural
examples (the first two rows) and adversarial examples (the last two rows). We also provide typical
failure cases of Zipper while TRADES or FAT correctly classifies in Appendix C.2. Here, images
shown in the first row are easy ones where the foreground objects stand out from the clear backgrounds,
while hard samples are referred to those having confused objects with messy backgrounds. It is
worth noting that TRADES delivers poor performances not only on hard examples with complex
backgrounds or obscured objects but also on simple ones. For example, each image in the first row
is typically plain and regular, however, TRADES fails in categorizing them into the right class. A
plausible explanation for the issue is that TRADES lacks in a set of support measures specially
devised for the natural classification task unlike Zipper does, highlighting design differentiation for
sub-tasks is necessary.

Another interesting finding is that though both TRADES and FAT can build a robust classifier,
they still rely on spurious background information and thus are easily deceived when encountering
images with similar backgrounds but different objects. This phenomenon can be verified from the
misclassification of the fourth and fifth images in the first row (taking white/blue backgrounds as
evidence), and the fifth image in the fourth row (confused by the green background). But Zipper
has the ability to sift the invariant feature of the foreground object while ignoring the background
information spuriously correlated with the categories in both natural and adversarial settings. On
the whole, Zipper demonstrates its strength to differentiate difficult samples close to the decision
boundary and its potential to learn a background-invariant classifier.

5 CONCLUSION

In this paper, we proposed a bi-expert framework for improving the tradeoff issue between natural and
robust generalization, named Zipper, which trains two base learners responsible for complementary
fields and collects their parameters to construct a global learner. By decoupling from the joint training
paradigm, each base learner can wield customized strategies based on data distribution. We also
provide the theoretical analysis to justify the effectiveness of task-aware strategies and extensive
experiments show that Zipper better mitigates the tradeoff of accuracy and robustness.
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A ADDITIONAL EXPERIMENTS

A.1 DETAILED CONFIGURATIONS

All images are normalized into [0, 1]. We train ResNet-18 using SGD with 0.9 momentum for 120
epochs (200 epochs for CIFAR-100) and the weight decay factor is set to 3.5e−3 for ResNet-18
and 7e−4 for WRN-32-10. We use the piecewise linear learning rate strategy for performing weight
averaging in base learners. For the base learner of AT, the initial learning rate for ResNet-18 is set
to 0.01 and 0.1 for WRN-32-10 till Epoch 40 and then linearly reduced by 10 at Epoch 60 and 120,
respectively. The magnitude of maximum perturbation at each pixel is ε = 8/255 with step size
κ = 2/255 and the PGD steps number in the inner maximization is 10. For the base learner of NT, we
fix the initial learning rate as 0.1 and the weight decay is 5e−4 for both ResNet-18 and WRN-32-10.

A.2 EXPERIMENTS ON MNIST/SVHN

We conducted experiments on MNIST (ε = 0.3) and SVHN using ResNet-18 with the same setup in
Sec. A.1. We ran 5 individual trials and results with standard deviations are shown Table 2.

Table 2: Comparison of our algorithm with different training methods using ResNet-18 on MNIST and SVHN.
The maximum perturbation is ε = 8/255. The best checkpoint is selected based on the tradeoff between clean
accuracy and robust accuracy against PGD20 on the test set. We highlight the top two results on each task.
Average accuracy rates (in %) have shown that the proposed Zipper method greatly mitigate the tradeoff of the
model.

MNIST SVHN
Methods NAT PGD20 AA NAT PGD20 AA

TRADES 99.07
±0.13

94.45
±0.07

92.17
±0.21

93.1
±0.25

55.38
±0.71

45.52
±0.37

FAT 99.18
±0.03

93.54
±0.1

90.04
±0.68

93.87
±0.4

53.61
±0.88

40.92
±0.29

Zipper 99.24
±0.07

96.14
±0.15

92.3
±0.3

94.11
±0.27

55.29
±0.23

45.41
±0.26

A.3 EXPERIMENTS ON CIFAR-100

To further demonstrate our proposal achieve a better tradeoff between accuracy and robustness, we
also conduct experiments on CIFAR-100 datasets. Here we still use ResNet-18 as the backbone
model with the same configurations as claimed in Sec. A.1. We report the results of natural accuracy
and several advanced adversarial attack methods in Table 3. Note that we do not design a specialized
strategy for Zipper on CIFAR-100 but Zipper still achieves a gratifying tradeoff, so it still has the
potential to perform better.

Table 3: Comparison of our algorithm with different training methods using ResNet-18 on CIFAR-
100. The maximum perturbation is ε = 8/255. The best checkpoint is selected based on the tradeoff
between clean accuracy and robust accuracy against PGD20 on the test set. We highlight the top two
results on each task. Average accuracy rates (in %) have shown that the proposed Zipper method
greatly mitigate the tradeoff of the model.

Method NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FATt Square AA
NT 65.74 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.07 0.37 0.00
AT (β = 1) 60.10 28.22 28.27 28.31 24.87 26.63 24.13 21.98 23.87 27.93 23.91
AT (β = 1/2) 60.84 22.64 22.61 23.86 22.28 20.66 21.67 19.17 20.09 25.36 19.2
TRADES (λ = 6) 59.93 29.90 29.88 29.55 26.14 27.93 25.43 23.72 25.16 30.03 24.72
TRADES (λ = 1) 60.18 28.93 28.91 29.12 25.79 27.07 25.00 23.22 24.31 28.76 23.65
FAT 61.71 22.93 22.87 22.64 23.45 24.78 24.91 20.56 23.16 26.37 20.01
IAT 57.04 21.40 21.39 22.37 19.18 19.63 18.92 15.50 16.63 23.26 15.50
RST 60.30 23.56 23.61 23.71 22.40 24.69 24.18 21.66 23.82 27.05 21.18
Zipper 62.97 29.48 29.49 30.35 27.77 27.45 27.42 23.96 25.54 31.41 24.04

A.4 EXPERIMENTS ON TINYIMAGENET & TINYIMAGENET-C

We also perform empirical evaluation on more complex datasets. We adversarially train models on
TinyImageNet and add the robustness evaluation on TinyImageNet-C instead. We still use ResNet18
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as the baseline model to run experiments and the hyperparameters, such as learning rate and size of
attacks, are kept the same as for CIFAR datasets. We denote NAT as the classification accuracy on
the original clean testing images. Following the common setting in Hendrycks & Dietterich (2019),
we define natural robustness (NROB) as the average classification accuracy over all 15 corruptions,
to evaluate the robustness of trained models on TinyImageNet-C. Besides, we also report adversarial
robustness against various attacks. Results are shown in Table 4. Note that we only report the results
of TRADES (λ = 1), for it outperforms other versions of TRADES on the tradeoff performance
which our proposed method focuses on. From Table 4, we see that our method improves robust
accuracy against natural corruptions by a considerable margin compared with AT (β = 1) and
TRADES (λ = 1) and maintains excellent performance on clean and adversarial samples.

Table 4: Clean and robust accuracy (%) on TinyImageNet dataset with ResNet18.
NAT NROB PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FABt Square AA

NT 57.31 20.17 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AT (β = 1) 41.10 21.93 17.68 17.22 17.39 15.65 13.19 15.28 14.12 15.28 23.1 15.44
TRADES (λ = 1) 43.28 22.45 23.21 23.24 23.01 22.89 15.99 17.17 17.01 17.68 24.55 17.76
Zipper 48.1 24.88 24.57 23.24 23.43 23.27 16.2 17.53 17.16 18.01 26.11 19.03

A.5 RESULTS FOR TRAINING WITH l2 ATTACKS

We adversarially train models using AT (β = 1), TRADES (λ = 1) and Zipper against the l2
adversary on CIFAR-10. For l2 threat model, we fix magnitude of perturbation ε = 128/255; step
size κ = 15/255, which is a standard setting for adversarial training in Madry et al. (2018). We
report the results in Table 5. Our Zipper still shows its effectiveness when facing the l2 threat model.

Table 5: Clean and robust accuracy (%) on CIFAR-10 dataset using ResNet18 against the l2 adversary.
NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FABt Square AA

AT (β = 1) 88.27 64.43 64.35 63.10 60.77 62.19 62.03 62.51 62.81 72.91 62.71
TRADES (λ = 1) 89.06 68.3 68.41 67.99 67.03 66.18 66.23 66.37 66.58 77.91 66.26
Zipper 91.39 75.91 75.99 75.33 74.18 74.54 72.69 72.48 72.77 82.01 72.1

A.6 COMPUTATIONAL COST OF ZIPPER

We compute the actual training time of TRADES and Zipper (serial/parallel version) using ResNet18
on RTX 3090 GPU in Table 6. We also report the standard deviations over 5 runs to show the
sensitivity of Zipper. Neither version of Zipper is slower than TRADES. Zipper does perform both
NT and naive AT, but the cost of NT is negligible so the overhead (NT+AT) is smaller than TRADES.

Table 6: Evaluation of time complexity of different training methods using ResNet-18 on CIFAR-10.

Method NAT PGD100 APGD Training
Time (mins)

TRADES 89.91
±0.69

34.25
±0.56

30.20
±0.81 414

Zipper (Serial) 89.11
±0.23

50.12
±0.12

46.12
±0.11 397

Zipper (Parallel) 89.09
±0.34

50.00
±0.44

46.53
±0.3 342

A.7 INFLUENCE OF LEARNING RATE

In this part, we also study the influence of the learning rate for different distribution-aware tasks. For
simplicity, we set t′, γ and c as their best options according to the main body of the paper. We search
the most grid of learning rate configurations in the range of 0.1, 0.01, 0.001 for both natural training
and adversarial training.
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Table 7: Comparison of different learning rate for base learners. The optimal strategy for natural
accuracy occurs when NT=0.1 and AT=0.001, while the most robust model is trained using NT=0.01
and AT=0.01. This is not surprising because either of them is the optimal learning rate configuration
in its own domain, but each of them obtains performance boost in its complementary task due to
communication mechanism in our Zipper framework.

NAT AA
NT=0.1, AT=0.01 89.09 46.07
NT=0.1, AT=0.1 90.12 41.86
NT=0.1, AT=0.001 90.45 43.55
NT=0.01, AT=0.01 88.4 48.03
NT=0.01, AT=0.1 88.25 42.98

A.8 INFLUENCE OF EMA

We investigate the performance of Zipper without using the EMA technique on the global learner but
keep other settings unchanged (denoted as Zipper w/o EMA). Results are shown in Table 8. When
compared with the version of using the EMA technique on the global learner, removing EMA from
the global learner indeed brings performance decay. In conclusion, we recommend equipping Zipper
with the EMA technique for the global learner since it does not bring too much computational cost.

Table 8: Clean and robust accuracy (%) on CIFAR-10 dataset using ResNet18 with or without EMA.
NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FABt Square AA

TRADES (λ = 1) 87.88 45.58 45.60 47.91 45.05 42.95 42.49 40.32 43.89 53.49 40.38
Zipper w/o EMA 88.33 49.13 49.14 51.68 49.80 45.36 47.88 44.25 45.24 55.89 44.91
Zipper with EMA 89.09 50.01 50.00 52.19 50.04 46.53 48.70 45.37 47.32 56.68 46.07

A.9 INFLUENCE OF DIFFERENT STRATEGIES OF γ

We apply two kinds of increasing strategies for γ by using a piecewise linear function, including
γ = (0.25, 0.5, 0.75, 1) and γ = (0.75, 0.75, 0.75, 1). Results are shown in Table 9. Because γ
controls the contribution of the base learner for the adversarial task, gradually increasing γ will lead
the global learner to better robustness than the baseline Zipper model. Higher γ in the later stage
of training means that adversarial learner brings more robustness to the global learner. Likewise,
when γ becomes smaller and smaller, clean accuracy of the global learner would be improved with
relatively high robustness. Overall, increasing strategy leads to relatively better robustness while the
decreasing one brings better tradeoff performance.

Table 9: Clean and robust accuracy (%) on CIFAR-10 dataset using ResNet18 when γ de-
creases/increases by using a piecewise linear function.

NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FABt Square AA

Zipper (Basline, γ = (1, 1, 1, 0.5)) 89.09 50.01 50.00 52.19 50.04 46.53 48.70 45.37 47.32 56.68 46.07
Zipper (γ = (0.25, 0.5, 0.75, 1)) 85.33 52.48 52.46 54.26 52.16 49.64 50.76 47.85 48.49 57.49 47.58
Zipper (γ = (0.75, 0.75, 0.75, 1)) 86.01 52.56 52.50 54.54 52.32 49.56 50.98 47.80 48.73 57.62 47.15

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF CLAIM IN SECTION 3.3

Proof. At epoch t, the parameters of the global learner are distributed to the experts and each expert
train from this initialization with c steps by calculating the gradients (e.g. using SGD optimizer).
Following Nichol et al. (2018), we approximate the update performed by the initialization based on
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the Taylor expansion:

gt+c = ℓ′
(
θt+c

)
= ℓ′

(
θt
)
+ ℓ′′

(
θt
) (

θt+c − θt
)
+O

(∥∥θt+c − θt
∥∥2)

= ḡt + H̄t
(
θt+c − θt

)
+O

(
τ2
))

= ḡt − τH̄t
t+c∑
j=t

gj +O
(
τ2
)

= ḡt − τH̄t
t+c∑
j=t

ḡj +O
(
τ2
)
.

(10)

Recalling thatZi represents an optimizer that updates the parameter vector at the t-th step: Zi(θ, τ) =
θ − τℓ′(θ). For each base learner, we approximate the gradient at intervals:

gval =
∂

∂θt
ℓ
(
θt+c

)
=

∂

∂θt
ℓ
(
Zt+c−1

(
Zt+c−2

(
. . .
(
Zt
(
θt
)))))

= Z ′t (θt
)
· · · Z ′t+c−1 (

θt+c−1
)
ℓ′
(
θt+c

)
=
(
I − τℓ′′

(
θt
))
· · ·
(
I − τℓ′′

(
θt+c−1

))
ℓ′
(
θt+c

)
=

t+c−1∏
j=t

(
I − τℓ′′

(
θj
)) gt+c.

(11)

Replacing ℓ′′
(
θj
)

with H̄j and substituting gt+c for Eq. 10, we expand to leading order:

gval =

t+c−1∏
j=t

(
I − τH̄j

)ḡt+c − τH̄t+c
t+c−1∑
j=t

ḡj

+O
(
τ2
)

=

I − τ

t+c−1∑
j=t

H̄j

ḡt+c − τH̄t+c
t+c−1∑
j=t

ḡj

+O
(
τ2
)

= ḡt+c − τ

t+c−1∑
j=t

H̄j ḡt+c − τH̄t+c
t+c−1∑
j=t

ḡj +O
(
τ2
)

(12)

Therefore, we take the expectation of gval over steps, and obtain:

E [gval] = E
[
ḡt+c

]
− τE

t+c−1∑
j=t

H̄j ḡt+c − H̄t+c
t+c−1∑
j=t

ḡj

+ E
[
O
(
τ2
)]

(13)

Recalling that θg is mixed by θn and θr. For simplicity of exposition, we use p and q to stand for the
scalar factors, meaning θg = pθn + qθr. Ignoring the higher order terms, for each expert initialized
by the global learner (e.g. θn), we have:

θn = θg − En [gval] = pθn + qθr − [E
[
ḡt+c
n

]
+ τnE

t+c−1∑
j=t

H̄j ḡt+c
n − H̄t+c

t+c−1∑
j=t

ḡjn

]
= [pθn − E

[
ḡt+c
n

]
] + [qθr − τnE

H̄t+c
t+c−1∑
j=t

ḡjn −
t+c−1∑
j=t

H̄j ḡt+c
n

]
= [pθn −

t+c−1∑
i=t

ḡi] + [qθr − τn

t+c−1∑
i=t

i−1∑
j=1

H̄iḡj ] (for c ≥ 2).

(14)

The first term pushes θn to move forward the minimum of its assigned loss over its data distribution;
while the second one improves generalization by increasing the inner product between gradients of
different minibatches and update the parameters from the other task.

15



Under review as a conference paper at ICLR 2023

B.2 PROOF OF THEOREM 1

Before we present the proof of the Theorem we present useful intermediate results which we require
in our proof.
Proposition 1. Consider a sequence of loss functions ℓa : Θ 7→ [0, 1]a∈A drawn i.i.d. from some
distribution L is given to an algorithm that generates a sequence of hypotheses {θa ∈ Θ}a∈A then
the following inequality each hold w.p. 1− δ:

1

T

T∑
t=1

E
ℓ∼D

ℓ
(
θt
)
≤ 1

T

T∑
t=1

ℓt
(
θt
)
+

√
2

T
log

1

δ
. (15)

Proof. The proof of the Proposition can be directly derived from the Proposition 1 in Cesa-Bianchi
et al. (2004).

Then we could immediately obtain the below inequality by the symmetric version of the Azuma-
Hoeffding inequality Azuma (1967)
Remark 1.

1

T

T∑
t=1

E
ℓ∼L

ℓ
(
θt
)
≥ 1

T

T∑
t=1

ℓt
(
θt
)
−
√

2

T
log

1

δ
. (16)

Finally, we give the definition of the regret of minimizing any subproblem:
Definition 2. (Subproblem Regret) Consider an algorithm generates the trajectory of states
{θt ∈ Θ}t∈[T ], the regret of such an algorithm on loss function {ℓt}t∈[T ] is:

R̄ =

T∑
t=1

ℓt
(
θt
)
− inf

θ⋆∈Θ

T∑
t=1

ℓt(θ). (17)

Theorem 2. (Restated) Consider an algorithm with regret bound RT that generates the trajectory of
states for two base learners, for any parameter state θ ∈ Θ, given a sequence of convex surrogate
evaluation functions ℓ : Θ 7→ [0, 1]a∈A drawn i.i.d. from some distribution L, the expected error of
the global learner θg on both tasks over the test set can be bounded with probability at least 1− δ:

E
ℓ∼L

ℓ (θg) ≤ E
ℓ∼L

ℓ (θ) +
RT

T
+ 2

√
2

T
log

1

δ
. (18)

Proof. From Theorem 1 and Remark 1, we obtain that

1

T

T∑
t=1

E
ℓ∼L

ℓ
(
θt
)
≤ 1

T

T∑
t=1

ℓt (θ) +
R̄

T
+

√
2

T
log

1

δ
≤ E

ℓ∼L
ℓ (θ) +

R̄

T
+ 2

√
2

T
log

1

δ
. (19)

It is obvious that:
R̄

T
+

√
2

T
log

1

δ
≤ RT

T
+

√
2

T
log

1

δ
and

R̄

T
+ 2

√
2

T
log

1

δ
≤ RT

T
+ 2

√
2

T
log

1

δ
. (20)

So we obtain:

1

T

T∑
t=1

E
ℓ∼L

ℓ
(
θt
)
≤ 1

T

T∑
t=1

ℓt (θ) +
RT

T
+

√
2

T
log

1

δ
≤ E

ℓ∼L
ℓ (θ) +

RT

T
+ 2

√
2

T
log

1

δ
. (21)

Recalling that in Section 3.3, θg can be expressed by the linear combination of θn and θr through
t = 1, · · · , T since θg is aggregateed by EMA, so the above inequality can be further derived by the
Jensen’s inequality (convex surrogate functions could be selected to evaluate the test errors instead of
the 0-1 loss):

E
ℓ∼L

ℓ (θg) = E
ℓ∼L

ℓ

(
T∑

t=1

θt

)
≤ 1

T

T∑
t=1

E
ℓ∼L

ℓ
(
θt
)
≤ 1

T

T∑
t=1

ℓt (θ) +
RT

T
+

√
2

T
log

1

δ

≤ E
ℓ∼L

ℓ (θ) +
RT

T
+ 2

√
2

T
log

1

δ
.

(22)

Note that this inequality also holds when applying weight averaging technique to the base learner,
because weight averaging is still the linear combination of all history states.
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C VISUALIZATION

C.1 PROPERTIES OF BASE LEARNERS AS TRAINING PROGRESSES

We show clean/adversarial accuracy of base learners as training progresses in Figure 5. From the
curve of adversarial accuracy of two clean learners (the yellow and the red one), it can be inferred
that adversarial examples generated from different base learners are not the same.
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Figure 5: We plot clean accuracy of adversarial learner and robust accuracy of clean learner as
training progresses. Adversarial examples for the evaluation of clean learner are generated from both
clean learner and adversarial learner using PGD20.

We also apply t-SNE to visualize adversarial images of the clean learner and adversarial learner as
training progresses in Figure 6. Note that the mixture happens every 5 epochs when the training
epoch ≥ 75. It is clear that adversarial images of two learners are disparate and easy to separate
before epoch=90 even though they are periodically re-initialized using the same parameters of the
global learner from epoch=75. Specifically, when compared with the base learners before being
re-initialized (e.g. epoch=79, 84) and after being re-initialized (e.g. epoch=80, 85), the distribution
of the adversarial images generated by different base learners is totally different. However, we should
admit that the optimizer with a small learning rate is not able to greatly change the weight state after
each re-initialization since the learning rate becomes smaller and smaller as training progresses, so
the boundary of adversarial examples from different base learners is not clear at a later stage (e.g.
epoch≥ 94). But the best tradeoff performance mainly comes from 90 ≤epoch≤ 100 rather than at
the very end of training and it is still obvious that a majority of adversarial images of two learners are
not the same at that time, which reflects the validity of our theory from the side.

C.2 FAILURE SAMPLES OF ZIPPER

We visualize typical failure cases of Zipper while TRADES or FAT correctly classifies them in Figure
7. For natural samples, we notice that most cases that Zipper fails in also make TRADES misclassify
and the wrong predictions of TRADES seem irrelevant in semantics. Considering TRADES is not
as good as Zipper on clean accuracy, it is natural to see TRADES cannot recognize samples not
successfully predicted by Zipper. As for adversarial ones, we also observe that samples wrongly
classified by Zipper will also be misclassified by FAT in most cases. Similarly, this is attributed to the
poorer robustness of FAT than that of our proposed method. Because the robustness of the model
trained by TRADES is better than Zipper with ResNet18, TRADES (λ = 6) will correctly classify
more adversarial examples than our method. We also provide two cases that TRADES, FAT and our
Zipper all misclassify. We believe that these cases contain some confusing information or texture (e.g.
horse body hair in the third sample) that other categories may have, leading to the misclassification.
From the above qualitative analysis, we believe that there is still some room for Zipper to improve
recognition of foreground objects with confusing body shapes (e.g. cat/dog or horse/deer).
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Epoch=1 Epoch=21 Epoch=41 Epoch=61 Epoch=75

Epoch=79 Epoch=80 Epoch=84 Epoch=85 Epoch=89

Epoch=90 Epoch=94 Epoch=95 Epoch=99 Epoch=100

Epoch=109 Epoch=110 Epoch=115

AEs from adv learner
AEs from clean learner

Figure 6: We choose natural images to generate corresponding adversarial examples of the clean
learner and adversarial learner and visualize these samples by t-SNE as training progresses. Note that
the mixture happens every 5 epochs when the training epoch ≥ 75.
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FAT: dog
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Zipper: horse
TRADES: horse
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Natural

Figure 7: Typical failure cases of our method. We also provide the corresponding predictions of
TRADES and FAT.
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