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ABSTRACT

Reinforcement Learning (RL) has become a key driver for enhancing the
long chain-of-thought (CoT) reasoning capabilities of Large Language Models
(LLMs). However, prevalent methods like GRPO often fail when task difficulty
exceeds the model’s capacity, leading to reward sparsity and inefficient training.
While prior work attempts to mitigate this using off-policy data, such as mixing
RL with Supervised Fine-Tuning (SFT) or using hints, they often misguide policy
updates In this work, we identify a core issue underlying these failures, which we
term low training affinity. This condition arises from a large distributional mis-
match between external guidance and the model’s policy. To diagnose this, we in-
troduce Affinity, the first quantitative metric for monitoring exploration efficiency
and training stability. To improve Affinity, we propose HINT: Helping Ineffective
rollouts Navigate Towards effectiveness, an adaptive hinting framework. Instead
of providing direct answers, HINT supplies heuristic hints that guide the model
to discover solutions on its own, preserving its autonomous reasoning capabil-
ities. Extensive experiments on mathematical reasoning tasks show that HINT
consistently outperforms existing methods, achieving state-of-the-art results with
models of various scales, while also demonstrating significantly more stable learn-
ing and greater data efficiency. Code is available on Githu

1 INTRODUCTION

RL methods, particularly GRPO (Shao et al., [2024), play a pivotal role in advancing long CoT
reasoning (Wei et al [2022). By avoiding the instability and overhead of training a separate value
model, GRPO leverages group-based reward aggregation to deliver stable and efficient learning sig-
nals. Such RL approaches (Ahmadian et al., [2024} [Shao et al., 2024} Hu, 2025} [Yu et al., [2025))
have become a key driver of progress in reasoning ability, enabling models to explore solution paths
on verifiable problems. Building on these advances, recent reasoning models such as DeepSeek-
R1 (Guo et al. 2025), OpenAl-ol (Jaech et al. [2024), and Kimi-1.5 (Team et al.| [2025)) have
achieved remarkable performance on complex tasks like mathematical problem solving (Shao et al.}
2024)and programming (Jiang et al., 2024).

A critical challenge for GRPO, despite its strong empirical performance, is its tendency to generate
sample groups consisting entirely of incorrect answers on tasks whose difficulty exceeds the policy
model’s evolving capacity (Zhao et al.| 2025} [Yue et al.,|2025). In such cases, the learning process
suffers from reward sparsity, where the feedback becomes uniform and uninformative (Yu et al.,
2025)), ultimately reducing training efficiency and wasting valuable data.

Leveraging external, off-policy data is a key method for addressing this issue. This method has
been implemented in prior work through two main lines of remedies. (I) Mixed-policy (Yan et al.,
2025} Zhang et al.| 2025a; |Fu et al.| [2025b): Mixed-policy involves interleaving RL with SFT in a
hybrid scheme to stabilize training by leveraging off-policy data. (II) Using hints (L1 et al., 2025;
Liu et al., [2025b; [Zhang et al., |2025b): To mitigate reward sparsity and ensure continuous training
updates, another common approach is to leverage prompts derived from the ground truth during the
rollout phase, guiding the model’s exploration along correct trajectories.

'https://anonymous.4open.science/t/HINT-9DD9/
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Figure 1: Comparison of Hint Mechanisms and Their Impact on Learning. The answer-level hint
provides an explicit partial solution. The model can achieve a reward by simply completing this
pre-defined path, which encourages learning a superficial shortcut rather than genuine reasoning. In
contrast, our heuristic hint offers a high-level conceptual prompt, compelling the model to develop
its own solution path independently.

Despite their potential benefits, both of these approaches introduce a significant drawback rooted
in a substantial distributional mismatch. In mixed-policy training, this mismatch arises between
the off-policy SFT data and the on-policy updates, which lead to conflicting gradients and training
instability (Yan et al., 2025). Similarly, answer-level hints create a severe mismatch between the
distribution of the ground truth and the distribution of the current policy. This results in a deceptive
learning signal that, while inflating training rewards, ultimately misguides policy updates toward
non-generalizable or spurious solution paths (See Figure2).

Fundamentally, the aforementioned drawbacks stem from a lack of what we term training affinity.
This core issue that arises from an over-reliance on off-policy sources, such as SFT data or answer-
level hints, which inevitably creates a significant distributional mismatch with the model’s current
policy (Fu et al.| 2025a)). This mismatch, in turn, leads to excessively high variance in the importance
sampling ratios, destabilizing the entire training process. This instability is such a core challenge
that prominent algorithms like PPO introduce mechanisms such as clipping to manage it (Schulman
et al., 2017)), the behavior of which itself provides a signal of training dynamics. To leverage this
insight and create a quantitative diagnostic, we define Affinity metric in terms of training stability,
considering both the frequency of clipping and the variance of the importance sampling ratios.

To leverage off-policy data for enhancing model capability while preserving training affinity, the
guiding principle must be to help the model articulate the solution on its own, rather than being
directly told the answer. To this end, we propose HINT: Helping Ineffective rollouts Navigate
Towards effectiveness, an adaptive hinting framework. As illustrated in Figure [T, HINT imple-
ments this principle by providing heuristic hints instead of partial ground-truth answers. These hints
serve as high-level guidance, helping the model navigate challenging problems without disclosing
solutions. This dynamic is akin to the Socratic method in teaching, where guiding a student with
thoughtful prompts, rather than supplying answers, is crucial for developing robust and generalizable
reasoning skills.

Our contributions can be summarized as follows:

* We introduce the first formal definition of low training affinity, a key failure mode in RL
methods that incorporate off-policy data. Building on this formalization, we propose Affin-
ity, a quantitative metric that enables the continuous monitoring of these critical training
dynamics.

* To effectively enhance the model’s reasoning capabilities while preserving high Affinity,
we propose HINT, a framework that adaptively providing heuristic hints. HINT guides the
model towards successful trajectories without compromising its autonomous exploration
and reasoning capabilities.

* Extensive experiments validate our approach. HINT consistently outperforms methods
based on mixed-policy and answer-level hints, achieving state-of-the-art results with mod-
els of various scales across multiple datasets. Furthermore, our method demonstrates ro-
bustness and superior generalization.
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2 METHODS

2.1 THE ILLUSION OF HIGH REWARD

A central challenge in RL is discovering successful trajec- 0.6
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detailed hints does not necessarily yield better outcomes,
since excessive bias may cause the model’s behavior to
deviate substantially from its current policy and poten-
tially destabilize training.

Figure 2: A comparison of training re-
wards (top) and test accuracy (bottom).
High rewards during training do not
The discrepancy between high training rewards and stag- necessarily lead to high test accuracy,
nant test accuracy raises a critical question: why does indicating that reward signals may be
an apparently strong learning signal fail to produce a misleading indicators of model general-
generalizable policy? Our analysis reveals that this prob- ization.

lem originates from the severe answer leakage caused by

answer-level hints. At a mechanistic level, these hints encourage large deviations from the current
policy, generating updates with high importance ratios. These updates are then frequently clipped,
which nullifies much of the potential learning signal. While this points to the importance of clip-
ping, we find that its frequency alone is an incomplete indicator of training quality. The stability
and diversity of the updates that survive clipping are also crucial for effective learning. To properly
diagnose these dynamics, we must quantify both how much of the learning signal survives clipping
and the variability of those surviving updates. This motivates our proposal of a new set of metrics
to evaluate exploration efficiency and quality.

2.2 QUANTIFYING EXPLORATION EFFICIENCY AND QUALITY

The foundation for our new metrics is a direct analysis of the clipping mechanism, which constrains
policy updates within a trust region (Schulman et al., 2015). While clipping improves stability, it
also suppresses part of the original learning signal, making it difficult to evaluate how effectively
the model leverages sampled trajectories. To quantitatively assess this, we focus on two factors that
critically influence training quality: (1) the frequency with which policy updates are clipped, and (2)
the variability of importance ratios. The first determines how much of the learning signal survives
clipping, while the second reflects how stably the surviving updates are distributed. Building on
these considerations, we introduce two complementary metrics: Effective Update Ratio (EUR) and
Update Consistency (UC).

Effective Update Ratio (EUR). EUR quantifies the proportion of policy updates that remain within
the trust region, thereby preserving the original learning signal. Formally, it is defined as
cw;L)l;] <6
BUR = 2 WillG <0
Zi Wi

In this definition, A; denotes the advantage of sample i, w; is the absolute advantage serving as its
weight, and ¢; is the log-importance ratio between the new policy 7y and the old policy A
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higher EUR indicates that most updates fall within the trust region and are therefore not suppressed,
allowing the model to retain more informative gradients.

Update Consistency (UC). While EUR measures the proportion of valid updates, it does not cap-
ture the variability of those updates. To address this, we focus on the set of samples whose log-
importance ratios remain within the trust region, i.e.,

Z=Ai:|4] <4}
UC is then defined as the weighted standard deviation of the log-importance ratios within this set:
ez Wil — pe)? ez Wil
UC = > iez Wil fie) = Diez ?)
DieT Wi Dier Wi

Here, uy represents the weighted mean of the log-importance ratios within the trust region, and Z
denotes the corresponding index set. A low UC implies that the updates are conservative and tightly
concentrated around the mean, whereas an excessively high UC suggests unstable updates driven by
values approaching the trust region boundary.

While the EUR and UC provide critical insights into training, neither metric is sufficient on its own
to guarantee high-quality exploration. For instance, a high EUR, which indicates that most updates
are being utilized, could be deceptive if those updates are highly inconsistent (a high UC), suggesting
an unstable policy on the verge of divergence. Conversely, perfect consistency (a low UC) is of little
value if very few updates are effective to begin with (a low EUR), a scenario that would indicate
stalled or overly conservative learning. An ideal training process must therefore achieve a balance:
leveraging a high volume of effective updates that are also highly consistent. Therefore, to capture
this essential synergy in a single, holistic measure, we define our unified metric, Affinity, as the
combination of EUR and UC:

Affinity = EUR - exp( _ UTC) r=6/2 3)
This multiplicative formulation ensures that Affinity is high only when both conditions hold simul-
taneously: a substantial fraction of updates remain within the trust region, and their variability is
moderate. As such, Affinity serves as a holistic indicator of exploration efficiency and training sta-
bility under online RL.

In Section we report Affinity curves alongside reward learning curves and demonstrate that
our method consistently achieves higher Affinity compared to baseline approaches, indicating more
stable and effective online policy updates.

2.3 HINT: HELPING INEFFECTIVE ROLLOUTS NAVIGATE TOWARDS EFFECTIVENESS

The preceding analysis, formalized by the Affinity metric, reveals a central dilemma in RL which
strong external guidance often degrades training quality by causing frequent clipping (low EUR) or
destabilizing updates (high UC). An ideal method must therefore provide guidance that is potent
enough to prevent unproductive exploration but gentle enough to maintain high Affinity.

To achieve this delicate balance, we introduce HINT. As illustrated in Figure[3} HINT is an adaptive
mechanism that steers the model toward productive reasoning paths. HINT achieves this by sourcing
heuristic hints from a stronger “teacher” model. These hints represent a higher form of guidance,
operating on a conceptual level to spark a reasoning process. This methodology is designed not to
provide answers directly, but to equip the model with the strategic insight needed to formulate the
solution autonomously, a philosophy akin to the principle of “teaching one to fish”.

Formally, the HINT framework operates as a two-stage process. The first stage mirrors a standard
GRPO update cycle. On the rollout stage, for a given problem ¢, the model begins by sampling
a set of trajectories {01, 09, ...,0¢} using its current policy. These trajectories are then evaluated
by a reward model or predefined rules to obtain a set of rewards {ry, 73, ...,rg}. If these rewards
are not sparse (i.e., at least one trajectory is correct), the process proceeds identically to the GRPO
algorithm. The non-sparse rewards are used to compute advantages and perform a normal policy
update.

The second stage, the hint-augmented rollout, is activated only if the initial rewards from the
first stage are sparse (i.e., all trajectories are incorrect). In this scenario, where GRPO would
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Figure 3: The HINT Framework: An Adaptive Two-Stage Rollout Process. HINT operates in two
stages. (1) Standard Rollout: The model first samples trajectories from the original problem. If the
rewards are non-sparse (at least one is correct), the process follows the standard GRPO update path.
(2) Hint-Augmented Rollout: If, however, the rewards are sparse (all trajectories are incorrect),
the hint mechanism is activated. The model then re-rolls out conditioned on a heuristic hint from a
“teacher model”. This stage is designed to produce non-sparse rewards, turning a failed sample into
a valuable learning opportunity.

stall due to a lack of learning signal, HINT intervenes. A pre-defined hint % is used to construct
a hint-augmented query qn. The model is then prompted to resample a new set of trajectories
{of, 0k, ..., oL}, this time conditioned on gn. These new, hinted trajectories are re-evaluated to
produce a new set of rewards {rf", 7% ... rl}. This rescue mechanism thus turns a failed rollout
into a valuable learning opportunity. By providing a heuristic hint, it is intended to enable a mean-
ingful gradient update, which enhances training efficiency. This is accomplished while the hint itself
is carefully constructed to avoid degrading training Affinity.

Mathematically, HINT optimizes the model’s behavior through the following objective function:

TNt (0) = By oy~ {01}6  ~mo,,, (10)

G 0|
1 1 ) @)
G ; o] z::( in(r; ;(8)A; ¢, clip (r; 1 (0),1 £€) Aiy) — BDKL(WGHWref))
where
r; t(e) = 779( iy ) q* _ q, Z?:l f(a70i) > 07 (5)
" T4 (0it | 11*701',<t)7 qn, otherwise.

In addition, we decouple the rollout prompt from the policy prompt. the rollout prompt may include
the hint-augmented problem, while the policy prompt is restricted to the original problem only. This
separation ensures that hints are used solely to stabilize exploration during rollouts, without leak-
ing into the policy optimization stage, thereby preventing the model from developing a systematic
reliance on hints after training.

3 EXPERIMENTS

3.1 SETUP

Experimental Setup. Our experiments are conducted using Qwen2.5-7B and Qwen2.5-3B (Team,
2024) as backbone models. To ensure a fair and controlled comparison, we constructed a high-
quality training set derived from the DAPO-Math-170K dataset (Yu et al., |2025). This process
involved using Qwen2.5-72B-Instruct (Teaml |2024) to generate four distinct reasoning trajectories
for each problem. These outputs were then validated for correctness with Math Verify”} from which
we retained 30k fully correct samples to form our final training data. For baseline methods that
require a ground-truth reference solution, we designated the shortest of the four correct trajectories
for each problem.

“https://github.com/huggingface/Math-Verify
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Benchmarks. We evaluate the generalization ability of HINT on seven datasets, covering both in-
distribution and out-of-distribution scenarios, without using any hint during evaluation. For mathe-
matical reasoning, we adopt AIME2 MATH-500 (Hendrycks et al.,|2021), OlympiadBench (He
et al.| 2024)), and Minerva (Lewkowycz et al., 2022)), which are widely used benchmarks. Since the
test sets of AIME24 are relatively small, we report avg@32, while for the other datasets we use
pass@1. To assess complex reasoning and out-of-distribution generalization, we further evaluate on
ARC-Challenge (Clark et al., [2018), GPQA-Diamond (Rein et al., 2024)), and MMLU-Pro (Wang
et al.,[2024). To demonstrate HINT effectiveness, we conduct systematic experiments across multi-
ple benchmarks.

Baselines. We compare HINT against several existing methods designed to improve rollout accu-
racy rate or rollout efficiency in GRPO. The baselines include: (1)LUFFY (Yan et al., [2025): A
hybrid approach that combines on-policy and off-policy training, ensuring that each sampled batch
contains at least one correct trajectory. (2)CHORD (Zhang et al.,2025a)): A method dynamically in-
tegrating SFT as a weighted objective within on-policy RL. (3)GHPO (Liu et al.,|2025b): A method
that adaptively adjusts the hint length based on the ground-truth solution. If a shorter hint fails to
solve the problem, the hint length is progressively increased until the correct answer is obtained.
(4)QuestA (Li et al., [2025): A method constructs the hint by using the initial 50% of a reasoning
trajectory generated by a larger, more capable model. (5)BREAD (Zhang et al.| 2025b): A binary
search—based method that identifies a hint length such that the model’s rollouts are neither all correct
nor all incorrect, and uses this balanced point as the hint for training.

A comprehensive overview of our experimental configuration, including detailed prompts, hyper-
parameters, and implementation settings for all methods, can be found in the Appendix |A|for full
reproducibility.

3.2 MAIN RESULTS

We benchmarked our proposed method against several mainstream approaches, including both
mixed-policy strategies and other hint-based methods. These experiments were conducted on two
scales of backbone models: Qwen2.5-7B and Qwen2.5-3B. We report our results in Table |I} Our
analysis reveals the following key findings:

HINT enhances In-Distribution reasoning and teaches problem-solving skills. HINT signif-
icantly enhances the reasoning capabilities of models, achieving state-of-the-art performance on
multiple in-distribution benchmarks. Models trained with HINT demonstrate substantial gains, with
Qwen2.5-7B and Qwen2.5-3B showing average improvements of 9.0% and 6.8%, respectively, un-
derscoring the effectiveness of our approach. We also observed an interesting emergent behavior
during training: when a model encountered two similar, challenging problems, it would often rely
on a hint for the first but then solve the second independently by applying the same reasoning pat-
tern. This observation provides strong evidence that our heuristic and minimal hints teach the model
how to reason about a class of problems, rather than simply encouraging it to memorize a solution
path for a single instance.

HINT generalizes to Out-of-Distribution problems by optimizing reasoning paths. HINT also
demonstrates strong generalization, enhancing the model’s ability to tackle novel problems. Even on
out-of-distribution (OOD) test sets, models trained with HINT showed marked improvements. On
the OOD test sets, models trained with HINT demonstrated strong generalization, with Qwen2.5-7B
and Qwen2.5-3B achieving average performance gains of 7.4% and 1.6%, respectively, highlighting
the method’s robust ability to generalize. This strong OOD performance is explained by a deeper
phenomenon observed in our case studies. We found that the model successfully reapplies high-level
reasoning methods from our hints, such as Proof by Contradiction to solve new OOD problems. This
demonstrates that our method operates on a conceptual level, effectively teaching the model trans-
ferable problem-solving paradigms rather than just answers. It is this acquisition of new, abstract
reasoning skills that drives the model’s robust generalization.

The effectiveness of HINT scales with model size. Our results show that the benefits of HINT
are more pronounced in larger models, with the performance gains for Qwen2.5-7B consistently
outpacing those for Qwen2.5-3B across all evaluations. To understand the mechanism behind this

3https://huggingface.co/datasets/math-ai/aime24
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Table 1: Main Performance Comparison of HINT against Baselines. HINT demonstrates significant
performance gains on in-distribution datasets, improving the Qwen2.5-7B and Qwen2.5-3B models
by 13.5% and 6.8 %, respectively. The method also shows strong generalization capabilities on
out-of-distribution data.

Methods In-Distribution Avg Out-of-Distribution Avg
AIME Math Olympaid Minerva ARC GPQA MMLU
Qwen2.5-7B
Vanilla 9.8 50.2 34.0 19.5 284 853 25.6 46.0 52.3
GRPO 12.8 75.2 40.8 31.2 400 873 30.8 56.6 58.2
"CHORD 132 744 400 312 397 866 301 512 560
LUFFY 12.6 70.2 38.6 30.8 38.1 87.2 32.2 46.8 55.4
GHPO 13.1 75.6 42.2 30.0 40.2 87.0 32.0 50.0 56.3
QuestA 13.1 73.6 38.8 28.6 38.5 88.0 26.6 53.2 55.9
BREAD 11.7 72.8 41.8 29.2 389 85.0 29.4 48.8 54.4
CHINT 133 796 436 310 419 888 318 584 597
Qwen2.5-3B
Vanilla 2.9 39.8 12.0 9.8 16.1 4438 11.4 28.8 28.3
GRPO 4.3 44.0 18.2 12.2 19.7 45.0 11.8 28.0 28.3
" CHORD 45 466 202 130 21.1 400 110 264 258
LUFFY 33 40.0 18.0 13.2 18.6  40.8 11.2 24.0 25.3
GHPO 4.0 422 19.6 12.8 19.7 455 12.0 28.2 28.6
QuestA 3.9 42.0 19.6 12.4 19.5 448 12.0 29.0 28.6
BREAD 4.1 44 .4 20.4 134 20.6 45.5 11.8 29.2 28.8
CHINT 49 486 202 134 218 488 118 302 299

trend, we analyzed the training rollouts and found a clear difference in how effectively each model
leveraged the provided hints. A quantitative analysis confirmed that out of 100 randomly sampled
rollouts where hints were provided to each model, Qwen2.5-7B produced a successful trajectory
following the hint 34.0% more often than Qwen2.5-3B did. This superior efficacy in converting
hints into successful outcomes directly explains the more pronounced performance gains, indicating
that the greater capacity of larger models allows them to better capitalize on the abstract guidance
offered by HINT.

3.3 TRAINING DYNAMICS

To investigate the impact of various off-policy strategies, we tracked the EUR, UC, and Affinity
metrics for our method alongside several key baselines which detailed in Section with the full
training dynamics plotted in Figure ] This analysis led to the following key observations.

In the early stages of training, the model shows strong resistance to off-policy data. As illus-
trated in the left plot of Figure ] all three off-policy methods exhibit a sharp drop in EUR, indicat-
ing that clipping occurs very frequently at this stage. We call this initial period the "EUR Collapse
Stage", where the model is highly resistant to the off-policy data and the clipping frequency is con-
sequently high. With more training steps, the model gradually adapts, leading to reduced clipping
frequency and eventual stabilization. Notably, compared to GHPO and LUFFY, HINT achieves
a higher steady-state EUR, demonstrating its superior ability to help the model accommodate and
leverage off-policy data.

Over-reliance on off-policy data often prevents the model from converging. As shown in the
middle plot of Figure d both GHPO and LUFFY quickly reach high UC values at the beginning of
training and remain at that level. This indicates persistently large variance in importance sampling,
which results in unstable model updates and hampers convergence. In contrast, the UC of HINT
does not spike early on but instead indicates that our heuristic hints avoid casing large distributional
shifts, allowing the policy updates to remain centered around a stable learning direction.
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Figure 4: We record the EUR, UC, and Affinity metrics across different training processes to investi-
gate the impact of various off-policy strategies on training. Left: EUR during training; Middle: UC
during training; Right: Affinity during training. Overall, HINT most effectively alleviates the EUR
collapse, avoids persistently high UC, and achieves higher Affinity, thereby enabling more stable and

efficient training.

HINT enables the model to genuinely absorb the knowledge provided by hints. As presented
in the right plot of Figure ] the Affinity of HINT gradually approaches that of GRPO as training
progresses. This implies that the model becomes increasingly capable of identifying which hints are
truly useful. In other words, HINT enhances training efficiency and sample utilization in the early
stages, while maintaining convergence trends consistent with GRPO in the later stages, thereby

balancing early gains with eventual stability.

3.4 IN-DEPTH ANALYSIS

Does hinting truly enhance training effectiveness? We
measured the number of valid samples (i.e., rollouts that
are not entirely incorrect) generated by GRPO and HINT
under an equal computational budget (8 hours of train-
ing). As shown in the top of Figure[5] although HINT pro-
duced slightly fewer total samples than GRPO, it yielded
a greater number of valid samples. This indicates that
HINT achieves higher training efficiency under the same
time constraints, suggesting that hints guide the model to-
ward more productive exploration trajectories rather than
wasting updates on implausible rollouts.

From a broader perspective of the entire training process,
the proportion of valid samples with HINT is higher than
that of GRPO by 18.9%, further confirming that hint-
ing improves the signal-to-noise ratio of training data.
In other words, the gradient updates induced by HINT
are more likely to be based on partially correct reasoning
chains, thereby amplifying useful supervision signals and
mitigating the destabilizing effects of noisy rollouts.

The dominance of valid rollouts under HINT suggests
that hints not only improve rollout quality but also re-
shape the global optimization landscape by steering pol-
icy learning toward regions where correct reasoning is
more likely to occur. This mechanism explains why
HINT can achieve sustained improvements even without
relying on answer leakage, ultimately leading to more ro-
bust and generalizable training outcomes.
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Figure 5: Sampling Efficiency of HINT
and GRPO at Different Training Stages.
Under an equal budget, HINT yields
1,485 more valid samples (top) and
achieves a 18.9% higher final propor-
tion of valid samples (bottom).




Under review as a conference paper at ICLR 2026

Does hinting affect the diversity of model’s outputs? Table 2: We compare the average en-
Entropy serves as a key metric for measuring generation tropy for different methods on samples
diversity (Cheng et al.,|2025;|Zheng et al.| [2025). Build- both with and without hints. The re-
ing on the training processes for HINT and the GHPO gults consistently show that HINT pro-
baseline detailed in Section we further compared motes higher entropy than answer-

their dynamics by analyzing the average entropy of rea- Jevel hints across both scenarios.
soning trajectories throughout the training period. For

each method, we separately computed the mean entropy w/hint  w/o hint Al
on samples with and without hints.

GRPO - 0.203  0.203
GHPO 0.123 0.141 0.129
HINT  0.188 0.198  0.193

As illustrated in Table 2] on the subset requiring hints, the
entropy of HINT is notably higher than GHPO, which is
answer-level hints. This is because answer-level hints of-
ten provide a “half-completed” reasoning trajectory, forc-
ing the model to follow a predetermined path with limited exploration. In contrast, ours do not
disclose specific solution steps, leaving the reasoning process entirely up to the model and thereby
encouraging broader exploration across different trajectories.

Even more surprisingly, we find that on samples where no hints are needed, GHPO still yield the
lowest entropy compared to both GRPO and HINT. This suggests that long-term exposure to answer-
level hints suppresses diversity at a deeper level: even when no hints are provided, the model’s ability
to generate diverse reasoning paths is diminished.

4 RELATED WORK

Reinforcement Learning for Large Language Model Reasoning. Recent advances in RL ap-
proaches have significantly enhanced the reasoning capabilities of LLMs. Large reasoning Mod-
els (LRMs) such as OpenAl-ol (Jaech et all 2024), DeepSeek-R1 (Guo et al., [2025)), and Kimi-
1.5 (Team et al.| [2025) achieve state-of-the-art performance on complex reasoning tasks (e.g., math-
ematics, coding, scientific problem solving) by leveraging Reinforcement Learning from Verifiable
Rewards (RLVR) (Liu et al.,|2025a; Hu et al.,2025; |Cui et al.,|2025)), where automatically checkable
rules provide supervision signals. Compared to earlier methods like SFT or reinforcement learning
from human feedback (RLHF), RLVR has shown superior generalization and robustness (Chu et al.,
20255 Snell et al., 2025). Building on this paradigm, subsequent studies have proposed improved
optimization strategies and structured prompting techniques that further strengthen reasoning capa-
bilities (Schulman et al.l 2017} [Wang et al.| |2020). Despite this progress, a critical failure mode
for existing RL methods is reward sparsity, which occurs when all rollouts in a sample fail. Over-
coming this challenge is essential for enhancing the stability and sample efficiency of training large
reasoning models.

Improving Rollout Efficiency in RL for LLMs. A well-known challenge in methods such as
GRPO is the vanishing gradient issue. This problem occurs when all trajectories in a sample group
are incorrect, as the group advantage collapses to zero, yielding no gradient for policy updates (Shao
et al., 2024} |Guo et al., [2025). To mitigate this, some works have focused on injecting external,
off-policy data to improve training efficiency and stability. This has been explored through two
main strategies. Some methods use mixed-policy, replacing a portion of on-policy rollouts with
complete, high-quality trajectories from off-policy datasets (Yan et al., 2025} |Lin et al., 2025; Xu
et al.| 2025} [Wang et al.| |2025). Others employ partial supervision, providing segments of a ground
truth to rescue failed rollouts (Li et al., [2025}; [Liu et al., 2025b; Zhang et al., 2025b). While these
approaches effectively improve rollout efficiency, their over-reliance on off-policy data can misguide
policy updates, steering the model toward non-generalizable or spurious solution paths.

5 CONCLUSION

In this work, we identify the problem of low training affinity caused by an over-reliance on off-policy
data and propose HINT, an adaptive framework to resolve this trade-off. HINT significantly outper-
forms strong baselines on competitive math benchmarks and demonstrates robust out-of-distribution
generalization. Our work showcases a scalable and principled path toward more capable, self-
improving reasoning models, with future work pointing towards extending HINT to new domains
and modalities.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper.

Additionally, All datasets are publicly available, ensuring consistent and reproducible evaluation
results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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APPENDIX

A EXPERIMENTAL DETAILS

A.1 DETAILED SETUP

Platform. All of our experiments are conducted on workstations equipped with 8§ NVIDIA A100
PCle GPUs with 80GB memory.

Training Data. The training was performed using a carefully selected subset of the DAPO-Math-
170K dataset (Yu et al.,|2025). As the original dataset lacks ground-truth solutions, we curated our
own by first using Qwen2.5-72B-Instruct to generate four reasoning trajectories for each problem.
After validating the final answers with Math-verify, we compiled a high-quality training set of 30k
problems for which all four generated trajectories were correct. For baselines requiring a ground
truth, the most token-efficient of these four correct trajectories was designated as the ground truth.
For our methods, we pre-generated the required heuristic hints for the entire 30k-sample training set
using Qwen2.5-72B-Instruct. The prompts used in the above process will be detailed in Section[A.2}

Important Parameters of HINT. HINT is implemented based on the open-source Rl framework
IsrI*} The RL algorithm employs the GRPO advantage estimator with no KL penalty (kl_coef is set
to 0.0). The clipping parameter e is set to 0.2. For each group, 8 answers are generated, and the
training batch size is set to 2. Distributed training utilizes the DeepSpeed library with the AdamW
optimizer and a learning rate of le-6. The train batch size is set to 8, gen batch size is set to 32,
accum steps 1is set to 64, gen update steps is set to 128, temperature is set to 0.9, max response is
set to 4096. Mixed-precision training with BF16 is enabled. Memory optimization employs ZeRO
Stage 2, with optimizer state offloading to CPU.

Important Parameters of Other Baselines. For baselines with publicly available code repositories,
we utilized their official implementations and the parameters specified in their respective publica-
tions. For methods without public code, such as BREAD(Zhang et al.,|2025b) and QuestA(L1 et al.,
2025)), we reproduced their results using the Isrl framework, strictly adhering to the experimental
parameters detailed in their papers.

Reward Setup. For our experiments, we employ a sparse, binary reward function. The reward
is determined exclusively by the correctness of the final answer in a model’s generated trajectory.
We use the Math-Verify tool for automatic verification, assigning a reward of +1 for a correct final
answer and 0 for an incorrect one.

A.2 PROMPT LIST

Prompt Template for GRPO

System: You are a helpful Al assistant. A conversation takes place between the User and
the Assistant. The User asks a question, and the Assistant solves it. Please help me solve
this question. Wrap only the final answer in \\boxed{ }.

Question: [Question]

User:

*https://github.com/Isdefine/Isr]
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Prompt Template for HINT

System: You are a helpful Al assistant. A conversation takes place between the User and
the Assistant. The User asks a question, and the Assistant solves it. Please help me solve
this question. Wrap only the final answer in \\boxed{ }.

Hint: Here are some key information provided to assist you in solving the problem: [Hint]
Question: [Question]

User:

Prompt Template for Generating hints

System:

* Role and Goal

You are a top-tier problem-solving expert and a master educator. Your goal is not to solve
the problem, but to distill the single most critical ”Core Insight” or ”Aha! Moment” required
to find the solution.

* Core Task

You will be given a [Question] and its final [Answer]. Your sole job is to reverse-engineer the
most likely solution path and identify the crucial “mental bridge”—the non-obvious insight,
change in perspective, or core principle—that unlocks the problem.

* Thinking Framework

Analyze the Gap: First, understand the [Question] and look at the [Answer]. The core
difficulty lies in the conceptual space between them. What makes bridging this gap non-
trivial? Reconstruct the ”"Hidden” Step: Mentally construct the most elegant solution path.
In that path, what is the single most pivotal, non-obvious leap of logic or application of a
principle that a student is most likely to miss? Distill the Insight: Condense this pivotal leap
into an extremely short, potent, and core-focused sentence. This sentence is the key that
unlocks the door, not the map of the room.

* Constraints

Absolute Brevity: The insight must be a single sentence, ideally under 20 words. No Spoil-
ers: The insight must not reveal any part of the [Answer] or the specific numbers used to
calculate it. Inspirational, Not Instructional: It should inspire thought ("heuristic”), not pro-
vide a step-by-step recipe (algorithmic”). Target the Crux: It must address the most critical
linchpin that makes the entire solution possible.

* Output Format

Directly output the single, distilled ”Core Insight”. Do not include any other explanations,
headings, or conversational text.

User:

### Question:
[Question]
### Answer:

[Answer]

14
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Prompt Template for Generating Ground Truth

Question: [Question]

User:

System: You are a helpful Al assistant. A conversation takes place between the User and
the Assistant. The User asks a question, and the Assistant solves it. Please help me solve
this question. Wrap only the final answer in \\boxed{ }.

Question: [Question]

User:

Prompt Template for Evaluation

System: You are a helpful Al assistant. A conversation takes place between the User and
the Assistant. The User asks a question, and the Assistant solves it. Please help me solve
this question. Wrap only the final answer in \\boxed{}.

B FURTHER ANALYSIS

B.1 DETAILS OF HINT’S ENTROPY

HINT Encourages Sustained Exploration. The entropy
of the generation distribution serves as a key indicator of
exploration diversity. As illustrated in Figure [f] HINT
avoids the rapid entropy collapse observed in GRPO dur-
ing the early stages of training. Instead, HINT main-
tains a consistently high level of entropy, indicating that
the model actively explores when first introduced to the
hints. This period of high exploration corresponds di-
rectly to the “EUR collapse” phase (discussed in Sec-
tion [3.3)), explaining that while the model initially resists
the off-policy guidance, it is nevertheless engaged in a
productive and diverse search of the solution space.

During the middle stages of training, HINT’s entropy
does not decrease monotonically. It exhibits periodic in-
creases. We attribute this to the model encountering novel
types of hints and adapting its exploratory behavior to
learn how to utilize them. Crucially, even after the pol-
icy stabilizes in the later stages, HINT maintains a sig-
nificantly higher entropy level than GRPO. This provides
strong evidence that HINT’s heuristic guidance success-

0.6 GRPO
— HINT

0 25 50 75 100 125 150 175 200
Steps

Figure 6: HINT Prevents Entropy
Collapse and Encourages Sustained
Exploration. HINT maintains a high
entropy level, especially in the early
stages, and stabilizes at a significantly
higher value. This demonstrates that
HINT’s heuristic guidance fosters more
continuous and diverse exploration, pre-
venting premature policy convergence.

fully fosters more continuous and diverse exploration, preventing the policy from prematurely con-

verging to a deterministic state.
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B.2 DETAILS OF HINT’S ACCURACY

Our results reveal an interesting trade-off: while the off-
policy guidance from HINT may initially slow the rate of
convergence, it ultimately enables the model to achieve a
higher performance ceiling. As shown in Figure[7] HINT
initially exhibits a slower rate of accuracy improvement
compared to GRPO. This initial lag is consistent with the
early training stages where the model shows resistance
to the heuristic hints and has not yet learned to lever-
age them effectively. However, as training progresses,
the model begins to adapt and utilize the guidance. This
leads to an accelerated learning rate after approximately
100 steps, with HINT’s accuracy eventually surpassing
GRPO’s and reaching a higher final value. This dynamic
suggests that the model requires an adaptation period to
master the use of heuristic hints, but once learned, this
skill allows it to develop stronger and more robust capa-
bilities.

B.3 CASE STUDY

— GRPO

— HINT

0 20 40 60 80 100 120 140 160 180 200
Steps

Figure 7: Accuracy of Different Meth-
ods. HINT Achieves Higher Final Ac-
curacy Despite Slower Initial Conver-
gence.

Case Study

the numbers that is not expressible, find a + b.

integers m, n?

Question Let a and b be positive integers such that all but 2009 positive integers are ex-
pressible in the form ma + nb, where m and n are nonnegative integers. If 1776 is one of

Hint: How many positive integers cannot be expressed in the form ma+nb with nonnegative

Before the Hint:

By the two-coin Frobenius result, for co-
prime positive integers a,b the number of
positive integers not representable as ma +

nb equals W.

So
W = 2009
(a—1)(b—1) =4018

Factor 4018 = 41-98. Take a = 42,b = 99.
Hence a + b = 141.

Answer: X

After the Hint:

By the two-coin Frobenius result, for co-
prime positive integers a,b the number of
positive integers not representable as ma +

nb equals W.
So

(a—1)(b—1) =4018
Candidates:

(2,4019), (3,2010), (8,575),

(15,288), (42,99), (50, 83).

Require ged(a, b) = 1,

leaving (2,4019), (8,575), (50, 83).

Check 1776: representable for first two, not
for (50, 83).

Thus a + b = 133.

Answer: 4
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Why the hints works in this question?

The key to solving this problem is identifying it as an instance of the Frobenius Coin Problem.
This theorem states that for two coprime positive integers, a and b, the number of positive integers

not expressible in the form ma + nb is precisely %2(1’71). Without guidance, the model correctly
sets up the equation (a — 1)(b — 1) = 4018 but may hastily select a factor pair, such as (42, 99),
while neglecting the crucial precondition that a and b must be coprime. As shown in the “Before the
Hint” example, this oversight leads to an incorrect answer.

The provided hint is designed to steer the model away from this pitfall. By asking about the number
of non-representable integers, the hint explicitly directs the model’s attention toward the Frobenius
formula. This encourages a more rigorous, systematic approach: first, finding all possible integer
pairs for (a,b); second, filtering these candidates by checking the essential coprimality condition
(ged(a,b) = 1); and finally, verifying which of the remaining valid pairs satisfies the constraint
that 1776 is non-representable. This structured reasoning process, prompted by the hint, is effective
because it signals the specific theoretical framework needed to solve the problem, thereby preventing
common errors and guiding the model to the correct solution.

B.4 ALGORITHM DETAILS

Algorithm 1 HINT: Helping Ineffective rollouts Navigate Towards effectiveness

1: Input: initial policy model 7, ; reward models r; task prompts D; hints H; hyperparameters

init

€ B, p
2: policy model 7y < 7,
3: for iteration=1,...,1do
4: reference model 7 < 7y
5 for step=1,...,Mdo
6: Sample a batch Dy, from D
7: Update the old policy model 7y, < mg
> Stage 1: Standard Rollout
8: Sample G outputs {0;}&, ~ ma,, (- | g) for each g € Dy
9: Compute rewards {r;; }&  for each o; by running
> Stage 2: Hint-Augmented Rollout (if necessary)
10 if all rewards {r;;} are sparse (e.g., zero) then
11: Get hint h € H for problem ¢
12: Construct hint-augmented query gy,
13: Resample G new outputs {0 }&. | ~ 7o, (- | qn)
14: Compute new rewards {r};}
15: Let {o0;} < {ol'}, {ri;} « {rfj}
16: endif
17: Compute A; ; for each token ¢ of o; using final rewards
18: for HINT iteration=1, ..., u do
19: Update my by maximizing GRPO objective
20: end for
21: Update 7 via replay training
22: end for
23: end for

24: Qutput: 7y

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.
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It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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