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ABSTRACT

Reinforcement Learning (RL) has become a key driver for enhancing the
long chain-of-thought (CoT) reasoning capabilities of Large Language Models
(LLMs). However, prevalent methods like GRPO often fail when task difficulty
exceeds the model’s capacity, leading to reward sparsity and inefficient training.
While prior work attempts to mitigate this using off-policy data, such as mixing
RL with Supervised Fine-Tuning (SFT) or using hints, they often misguide policy
updates. In this work, we identify a core issue underlying these failures, which we
term low training affinity. This condition arises from a large distributional mis-
match between external guidance and the model’s policy. To diagnose this, we in-
troduce Affinity, the first quantitative metric for monitoring exploration efficiency
and training stability. To improve Affinity, we propose HINT: Helping Ineffective
rollouts Navigate Towards effectiveness, an adaptive hinting framework. Instead
of providing direct answers, HINT supplies heuristic hints that guide the model
to discover solutions on its own, preserving its autonomous reasoning capabil-
ities. Extensive experiments on mathematical reasoning tasks show that HINT
consistently outperforms existing methods, achieving state-of-the-art results with
models of various scales, while also demonstrating significantly more stable learn-
ing and greater data efficiency. Code is available on Github1.

1 INTRODUCTION

RL methods, particularly GRPO (Shao et al., 2024), play a pivotal role in advancing long CoT
reasoning (Wei et al., 2022). By avoiding the instability and overhead of training a separate value
model, GRPO leverages group-based reward aggregation to deliver stable and efficient learning sig-
nals. Such RL approaches (Ahmadian et al., 2024; Shao et al., 2024; Hu, 2025; Yu et al., 2025)
have become a key driver of progress in reasoning ability, enabling models to explore solution paths
on verifiable problems. Building on these advances, recent reasoning models such as DeepSeek-
R1 (Guo et al., 2025), OpenAI-o1 (Jaech et al., 2024), and Kimi-1.5 (Team et al., 2025) have
achieved remarkable performance on complex tasks like mathematical problem solving (Shao et al.,
2024)and programming (Jiang et al., 2024).

A critical challenge for GRPO, despite its strong empirical performance, is its tendency to generate
sample groups consisting entirely of incorrect answers on tasks whose difficulty exceeds the policy
model’s evolving capacity (Zhao et al., 2025; Yue et al., 2025). In such cases, the learning process
suffers from reward sparsity, where the feedback becomes uniform and uninformative (Yu et al.,
2025), ultimately reducing training efficiency and wasting valuable data.

Leveraging external, off-policy data is a key method for addressing this issue. This method has
been implemented in prior work through two main lines of remedies. (I) Mixed-policy (Yan et al.,
2025; Zhang et al., 2025a; Fu et al., 2025b): Mixed-policy involves interleaving RL with SFT in a
hybrid scheme to stabilize training by leveraging off-policy data. (II) Using hints (Li et al., 2025;
Liu et al., 2025b; Zhang et al., 2025b): To mitigate reward sparsity and ensure continuous training
updates, another common approach is to leverage prompts derived from the ground truth during the
rollout phase, guiding the model’s exploration along correct trajectories.

1https://anonymous.4open.science/r/HINT-9DD9/
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Question: Calculate the sum of  all integers from 1 to 100.

Hint: The first pair, 1+100, sums to 
101, … ,yielding 101×50=5050. 

Hint: Try writing the series twice, once 
forwards and once backwards. 

S = 1 + … + 100, S = 100 + … + 1. Oh, I 
know! 2S = 101 × 100 = 10100, S = 5050.

Rollout Stage

The answer is 101.

Inference Stage
Question: Calculate the sum of  all 
integers from 1 to 1000.

The answer is 1001.

S = 1 + 2 + … + 1000, S = 1000 + 999 
+ … + 1, 2S = 1001 × 1000, S = 500500. 

Repeating the answer from the hint

The answer is 101.

Answer-level hint: Ours: 

The answer is 5050.

Getting the answer by itself Different performance

Answer-level hint: 

Ours: 

Figure 1: Comparison of Hint Mechanisms and Their Impact on Learning. The answer-level hint
provides an explicit partial solution. The model can achieve a reward by simply completing this
pre-defined path, which encourages learning a superficial shortcut rather than genuine reasoning. In
contrast, our heuristic hint offers a high-level conceptual prompt, compelling the model to develop
its own solution path independently.

Despite their potential benefits, both of these approaches introduce a significant drawback rooted
in a substantial distributional mismatch. In mixed-policy training, this mismatch arises between
the off-policy SFT data and the on-policy updates, which lead to conflicting gradients and training
instability (Yan et al., 2025). Similarly, answer-level hints create a severe mismatch between the
distribution of the ground truth and the distribution of the current policy. This results in a deceptive
learning signal that, while inflating training rewards, ultimately misguides policy updates toward
non-generalizable or spurious solution paths (See Figure 2).

Fundamentally, the aforementioned drawbacks stem from a lack of what we term training affinity.
This core issue that arises from an over-reliance on off-policy sources, such as SFT data or answer-
level hints, which inevitably creates a significant distributional mismatch with the model’s current
policy (Fu et al., 2025a). This mismatch, in turn, leads to excessively high variance in the importance
sampling ratios, destabilizing the entire training process. This instability is such a core challenge
that prominent algorithms like PPO introduce mechanisms such as clipping to manage it (Schulman
et al., 2017), the behavior of which itself provides a signal of training dynamics. To leverage this
insight and create a quantitative diagnostic, we define Affinity metric in terms of training stability,
considering both the frequency of clipping and the variance of the importance sampling ratios.

To leverage off-policy data for enhancing model capability while preserving training affinity, the
guiding principle must be to help the model articulate the solution on its own, rather than being
directly told the answer. To this end, we propose HINT: Helping Ineffective rollouts Navigate
Towards effectiveness, an adaptive hinting framework. As illustrated in Figure 1, HINT imple-
ments this principle by providing heuristic hints instead of partial ground-truth answers. These hints
serve as high-level guidance, helping the model navigate challenging problems without disclosing
solutions. This dynamic is akin to the Socratic method in teaching, where guiding a student with
thoughtful prompts, rather than supplying answers, is crucial for developing robust and generalizable
reasoning skills.

Our contributions can be summarized as follows:

• We introduce the first formal definition of low training affinity, a key failure mode in RL
methods that incorporate off-policy data. Building on this formalization, we propose Affin-
ity, a quantitative metric that enables the continuous monitoring of these critical training
dynamics.

• To effectively enhance the model’s reasoning capabilities while preserving high Affinity,
we propose HINT, a framework that adaptively providing heuristic hints. HINT guides the
model towards successful trajectories without compromising its autonomous exploration
and reasoning capabilities.

• Extensive experiments validate our approach. HINT consistently outperforms methods
based on mixed-policy and answer-level hints, achieving state-of-the-art results with mod-
els of various scales across multiple datasets. Furthermore, our method demonstrates ro-
bustness and superior generalization.
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2 METHODS

2.1 PRELIMINARY

Following common practice in recent work, our experiments build on the GRPO algorithm (Guo
et al., 2025) while omitting the KL penalty term, as also done in (Yu et al., 2025; Yan et al., 2025).
Mathematically, GRPO optimizes the model’s behavior through the following objective function:

JGRPO(θ) = E(q,a)∼D,{oi}Gi=1∼πθold
(·|q) 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
πθ(oi,t | oi,<t)

πθold(oi,t | oi,<t)
Ai,t, clip

(
πθ(oi,t | oi,<t)

πθold(oi,t | oi,<t)
, 1± ϵ

)
Ai,t

)) ,
(1)

for each prompt, GRPO draws a group of G rollouts and computes a group-normalized advantage
for every token. Let {Ri}Gi=1 denote the sequence-level rewards assigned to these rollouts. The
token-level advantages Ai,t are computed by normalizing each trajectory’s reward within the group:

Ai,t =
Ri −mean({Rj}Gj=1)

std({Rj}Gj=1) + ε
. (2)

When all rollouts in a group are assigned identical rewards, Ri − mean({Rj}Gj=1) becomes zero
for every i, causing every advantage Ai,t to collapse to zero. Such prompts therefore provide no
learning signal during training. Conversely, prompts that produce non-identical rewards across the
group yield non-zero advantages and therefore generate meaningful gradients.

2.2 THE ILLUSION OF HIGH REWARD

60 fewer steps

80 more steps

Figure 2: A comparison of training re-
wards (top) and test accuracy (bottom).
High rewards during training do not
necessarily lead to high test accuracy,
indicating that reward signals may be
misleading indicators of model general-
ization.

A central challenge in RL is discovering successful trajec-
tories under a limited sampling budget. Although most
approaches rely on the reward signal during training to
evaluate learning quality, this signal is not always reliable
or accurate. To demostrate this, we conduct a simple ex-
periment where we train Qwen2.5-7B (Team, 2024) on
the DAPO-Math-170K (Yu et al., 2025), with periodic
evaluation on MATH-500 (Hendrycks et al., 2021) test
set. During the training phase, if all of its rollouts for a
problem are incorrect, we will give an answer-level hint
to the model.

Figure 2 shows the outcome of this experiments. Answer-
level hint rapidly boosts rewards, creating the illusion of
faster convergence. However, the plot on the bottom re-
veals a different story, as this apparent improvement does
not translate into better generalization, with test accuracy
stagnating at a low level. Furthermore, providing more
detailed hints does not necessarily yield better outcomes,
since excessive bias may cause the model’s behavior to
deviate substantially from its current policy and poten-
tially destabilize training.

The discrepancy between high training rewards and stag-
nant test accuracy raises a critical question: why does
an apparently strong learning signal fail to produce a
generalizable policy? Our analysis reveals that this prob-
lem originates from the severe answer leakage caused by
answer-level hints. At a mechanistic level, these hints encourage large deviations from the current
policy, generating updates with high importance ratios. These updates are then frequently clipped,
which nullifies much of the potential learning signal. While this points to the importance of clip-
ping, we find that its frequency alone is an incomplete indicator of training quality. The stability
and diversity of the updates that survive clipping are also crucial for effective learning. To properly
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diagnose these dynamics, we must quantify both how much of the learning signal survives clipping
and the variability of those surviving updates. This motivates our proposal of a new set of metrics
to evaluate exploration efficiency and quality.

2.3 QUANTIFYING EXPLORATION EFFICIENCY AND QUALITY

The foundation for our new metrics is a direct analysis of the clipping mechanism, which constrains
policy updates within a trust region (Schulman et al., 2015). While clipping improves stability, it
also suppresses part of the original learning signal, making it difficult to evaluate how effectively
the model leverages sampled trajectories. To quantitatively assess this, we focus on two factors that
critically influence training quality: (I) the frequency with which policy updates are clipped, and (II)
the variability of importance ratios. The first determines how much of the learning signal survives
clipping, while the second reflects how stably the surviving updates are distributed. To capture these
two aspects in a principled way, we introduce two complementary metrics: Effective Update Ratio
(EUR), which measures how much of the learning signal survives clipping, and Update Consistency
(UC), which characterizes the stability of the surviving updates. As we will show, these metrics
further motivate a unified measure, Affinity, which combines both dimensions into a single indicator
of exploration efficiency and update quality.

Effective Update Ratio (EUR). We use the EUR to quantify how many token-level updates re-
main unclipped under the clipped objective introduced in PPO (Schulman et al., 2017), while stay-
ing within the trust-region regime that supports TRPO’s monotonic improvement guarantee (Schul-
man et al., 2015).

Consider a sampled trajectory (s1, a1), . . . , (sT , aT ). For each token step i, let si denote the prefix
tokens before generation step i, and let ai be the token generated at that step. The policy πθ(ai | si)
represents the current model, while πθold(ai | si) denotes the behavior policy used to collect the
trajectory. We define the importance ratio as ri =

πθ(ai|si)
πθold

(ai|si) and its log form ℓi = log ri, which
quantifies the local divergence between the updated policy and the behavior policy. A token is
considered to remain within a trust region if its log ratio satisfies |ℓi| ≤ δ, equivalently e−δ ≤ ri ≤
eδ . The term Ai denotes the token-level advantage, obtained by distributing the trajectory advantage
across tokens. Given these definitions, we introduce the EUR:

EUR =

∑
i wi1|ℓi| ≤ δ∑

i wi
, wi = |Ai|, ℓi = log

πθ(ai | si)
πθold(ai | si)

. (3)

EUR measures the advantage-weighted fraction of token-level updates whose probability ratios re-
main inside the trust region and therefore behave like unclipped PPO updates. This quantity is cru-
cial because unclipped updates preserve the true policy gradient direction, whereas clipped updates
either attenuate or nullify it, leading to ineffective learning even when reward appears high.

Importantly, we show that EUR provides (I) a principled estimate of the proportion of gradient
contributions that remain unclipped under the PPO surrogate, and (II) a proxy for controlling the
upper bound of policy divergence in the sense of the TRPO improvement guarantee. These two
facts together imply that a high EUR indicates stable and meaningful policy improvement, while
a low EUR signals that most gradient contributions are suppressed and the optimizer is effectively
operating with a near-zero learning rate. We present the full derivations and theoretical justification
in Appendix A.1.

Update Consistency (UC). While EUR measures how many token-level updates remain usable,
it does not capture how consistent these effective updates are. In practice, even if a large propor-
tion of updates fall within the trust region, their magnitudes may vary substantially: some updates
correspond to very small log-ratios (i.e., conservative steps), while others lie near the trust-region
boundary (i.e., aggressive steps). To distinguish stable updates from unstable ones, we introduce the
UC metric.

Recall that ℓi = log πθ(ai|si)
πθold

(ai|si) denotes the log-importance ratio, and Ai the token-level advantage.
We focus on the subset of token steps whose updates remain within the trust region, I = { i : |ℓi| ≤
δ }, which correspond exactly to the unclipped updates in the PPO objective. Within this set, we
define the weighted mean log-ratio as µℓ =

∑
i∈I |Ai| ℓi∑
i∈I |Ai| . With these quantities in place, we define
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the UC as the advantage-weighted standard deviation of the log-importance ratios:

UC =

√∑
i∈I |Ai| (ℓi − µℓ)2∑

i∈I |Ai|
. (4)

A low UC indicates that the effective updates exhibit small variability in their log-ratios and thus
form a stable and coherent update direction. Conversely, a high UC indicates that the supposedly
valid updates differ significantly in magnitude, with many lying near the trust-region boundary,
which in turn suggests unstable or oscillatory learning dynamics. In other words, while EUR cap-
tures the quantity of effective updates, UC captures their quality by measuring whether these updates
move the policy in a consistent direction.

We further show in Appendix A.2 that UC is closely related to the variance of the local KL diver-
gence and therefore reflects the stability of the policy update within the trust region. This connection
provides the theoretical motivation for using UC alongside EUR to characterize the reliability of
gradient-based policy improvement.

Affinity. While EUR quantifies how many token-level updates remain effective and UC measures
how consistent those effective updates are, neither metric alone is sufficient to characterize the qual-
ity of policy improvement. A high EUR may still correspond to unstable learning if the valid updates
exhibit large variability (i.e., high UC), indicating that many of them lie near the trust-region bound-
ary and pull the policy in conflicting directions. Conversely, a low UC provides little value when
EUR is small, as almost all gradients are clipped and the policy barely changes despite being “con-
sistent”.

A desirable training process therefore requires both a substantial number of effective updates (high
EUR) and stable, coherent update magnitudes (low UC). To capture this joint requirement in a single
measure, we introduce the unified metric Affinity. Let δ denote the log-ratio trust-region threshold
used to define the unclipped set in EUR and UC, and let τ = δ/2 be a temperature parameter
controlling the sensitivity of UC. We define:

Affinity = EUR · exp
(
− UC

τ

)
. (5)

This multiplicative formulation ensures that Affinity is high only when both conditions hold simul-
taneously: EUR must be large enough to provide meaningful learning signal, and UC must be small
enough to guarantee that those updates move the policy in a stable direction. The exponential term
modulates the influence of UC, yielding a smooth but decisive penalty on inconsistent updates.

As a result, Affinity serves as a holistic indicator of exploration efficiency and training stability in
online RL. It summarizes, in a single scalar quantity, both the amount and the quality of effective
PPO updates. In Appendix A.3, we further discuss the theoretical motivation for this formulation
and its relationship to trust-region optimization principles.

2.4 HINT: HELPING INEFFECTIVE ROLLOUTS NAVIGATE TOWARDS EFFECTIVENESS

The preceding analysis shows that excessively strong or answer-level hints used in prior work tend
to degrade training quality by causing frequent clipping (low EUR) or unstable update magnitudes
(high UC). To improve Affinity, guidance should therefore avoid providing partial or complete
solution steps and instead operate at an abstract, conceptual level that encourages the model
to generate the reasoning autonomously.

We operationalize this principle through the design of HINT. As illustrated in Figure 3, HINT is an
adaptive mechanism that guides the model toward productive reasoning trajectories using hints
that are deliberately constrained to the abstract and conceptual level. These hints avoid reveal-
ing answers or intermediate steps and instead provide high-level reasoning cues that activate the
model’s own problem-solving process, thereby preserving the high-Affinity update regime required
for stable and effective GRPO training.

Formally, the HINT framework operates as a two-stage process. The first stage mirrors a standard
GRPO update cycle. On the rollout stage, for a given problem q, the model begins by sampling
a set of trajectories {o1, o2, . . . , oG} using its current policy. These trajectories are then evaluated
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Figure 3: The HINT Framework: An Adaptive Two-Stage Rollout Process. HINT operates in two
stages. (I) Standard Rollout: The model first samples trajectories from the original problem. If the
rewards are non-sparse (at least one is correct), the process follows the standard GRPO update path.
(II) Hint-Augmented Rollout: If, however, the rewards are sparse (all trajectories are incorrect),
the hint mechanism is activated. The model then re-rolls out conditioned on a heuristic hint from a
“teacher model”. This stage is designed to produce non-sparse rewards, turning a failed sample into
a valuable learning opportunity.

by a reward model or predefined rules to obtain a set of rewards {r1, r2, . . . , rG}. If these rewards
are not sparse (i.e., at least one trajectory is correct), the process proceeds identically to the GRPO
algorithm. The non-sparse rewards are used to compute advantages and perform a normal policy
update.

The second stage, the hint-augmented rollout, is activated only if the initial rewards from the
first stage are sparse (i.e., all trajectories are incorrect). In this scenario, where GRPO would
stall due to a lack of learning signal, HINT intervenes. A pre-defined hint h is used to construct
a hint-augmented query qh. The model is then prompted to resample a new set of trajectories
{oh1 , oh2 , . . . , ohG}, this time conditioned on qh. These new, hinted trajectories are re-evaluated to
produce a new set of rewards {rh1 , rh2 , . . . , rhG}. This rescue mechanism thus turns a failed rollout
into a valuable learning opportunity. By providing a heuristic hint, it is intended to enable a mean-
ingful gradient update, which enhances training efficiency. This is accomplished while the hint itself
is carefully constructed to avoid degrading training Affinity.

A key design in our method is to decouple the prompts used for trajectory generation from those
used for policy optimization. We refer to the input provided to the model during sampling as the
rollout prompt, and the input used when updating the policy as the policy prompt.

When HINT is triggered, the rollout prompt may include the hint-augmented version of the problem
in order to guide exploration and increase the likelihood of generating successful rollouts. However,
the policy prompt is always kept strictly identical to the original problem without any hint. This
separation ensures that hints influence only the sampling distribution—not the optimization objec-
tive—thereby preventing the model from implicitly learning to rely on hints. In other words, hints
are used solely as an exploration aid, while the policy is optimized on the original tasks, preserving
the correct training–inference alignment.

3 EXPERIMENTS

3.1 SETUP

Experimental Setup. Our experiments are conducted using Qwen2.5-7B and Qwen2.5-3B (Team,
2024) as backbone models. To ensure a fair and controlled comparison, we constructed a high-
quality training set derived from the DAPO-Math-170K dataset (Yu et al., 2025). This process
involved using Qwen2.5-72B-Instruct (Team, 2024) to generate four distinct reasoning trajectories
for each problem. These outputs were then validated for correctness with Math Verify2, from which
we retained 30k fully correct samples to form our final training data. For baseline methods that

2https://github.com/huggingface/Math-Verify
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require a ground-truth reference solution, we designated the shortest of the four correct trajectories
for each problem.

Benchmarks. We evaluate the generalization ability of HINT on seven datasets, covering both in-
distribution and out-of-distribution scenarios, without using any hint during evaluation. For mathe-
matical reasoning, we adopt AIME243, MATH-500 (Hendrycks et al., 2021), OlympiadBench (He
et al., 2024), and Minerva (Lewkowycz et al., 2022), which are widely used benchmarks. Since the
test sets of AIME24 are relatively small, we report avg@32, while for the other datasets we use
pass@1. To assess complex reasoning and out-of-distribution generalization, we further evaluate on
ARC-Challenge (Clark et al., 2018), GPQA-Diamond (Rein et al., 2024), and MMLU-Pro (Wang
et al., 2024). To demonstrate HINT effectiveness, we conduct systematic experiments across multi-
ple benchmarks.

Baselines. We compare HINT against several existing methods designed to improve rollout accu-
racy rate or rollout efficiency in GRPO. The baselines include: (1)LUFFY (Yan et al., 2025): A
hybrid approach that combines on-policy and off-policy training, ensuring that each sampled batch
contains at least one correct trajectory. (2)CHORD (Zhang et al., 2025a): A method dynamically in-
tegrating SFT as a weighted objective within on-policy RL. (3)GHPO (Liu et al., 2025b): A method
that adaptively adjusts the hint length based on the ground-truth solution. If a shorter hint fails to
solve the problem, the hint length is progressively increased until the correct answer is obtained.
(4)QuestA (Li et al., 2025): A method constructs the hint by using the initial 50% of a reasoning
trajectory generated by a larger, more capable model. (5)BREAD (Zhang et al., 2025b): A binary
search–based method that identifies a hint length such that the model’s rollouts are neither all correct
nor all incorrect, and uses this balanced point as the hint for training.

A comprehensive overview of our experimental configuration, including detailed prompts, hyper-
parameters, and implementation settings for all methods, can be found in the Appendix B for full
reproducibility.

3.2 MAIN RESULTS

We benchmarked our proposed method against several mainstream approaches, including both
mixed-policy strategies and other hint-based methods. These experiments were conducted on two
scales of backbone models: Qwen2.5-7B and Qwen2.5-3B. We report our results in Table 3. Our
analysis reveals the following key findings:

HINT enhances In-Distribution reasoning and teaches problem-solving skills. HINT signif-
icantly enhances the reasoning capabilities of models, achieving state-of-the-art performance on
multiple in-distribution benchmarks. Models trained with HINT demonstrate substantial gains, with
Qwen2.5-7B and Qwen2.5-3B showing average improvements of 9.0% and 6.8%, respectively, un-
derscoring the effectiveness of our approach. We also observed an interesting emergent behavior
during training: when a model encountered two similar, challenging problems, it would often rely
on a hint for the first but then solve the second independently by applying the same reasoning pat-
tern. This observation provides strong evidence that our heuristic and minimal hints teach the model
how to reason about a class of problems, rather than simply encouraging it to memorize a solution
path for a single instance.

HINT generalizes to Out-of-Distribution problems by optimizing reasoning paths. HINT also
demonstrates strong generalization, enhancing the model’s ability to tackle novel problems. Even on
out-of-distribution (OOD) test sets, models trained with HINT showed marked improvements. On
the OOD test sets, models trained with HINT demonstrated strong generalization, with Qwen2.5-7B
and Qwen2.5-3B achieving average performance gains of 7.4% and 1.6%, respectively, highlighting
the method’s robust ability to generalize. This strong OOD performance is explained by a deeper
phenomenon observed in our case studies. We found that the model successfully reapplies high-level
reasoning methods from our hints, such as Proof by Contradiction to solve new OOD problems. This
demonstrates that our method operates on a conceptual level, effectively teaching the model trans-
ferable problem-solving paradigms rather than just answers. It is this acquisition of new, abstract
reasoning skills that drives the model’s robust generalization.

3https://huggingface.co/datasets/math-ai/aime24
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Table 1: Main Performance Comparison of HINT against Baselines. HINT demonstrates significant
performance gains on in-distribution datasets, improving the Qwen2.5-7B and Qwen2.5-3B models
by 13.5% and 6.8%, respectively. The method also shows strong generalization capabilities on
out-of-distribution data.

Methods In-Distribution Avg Out-of-Distribution Avg
AIME Math Olympiad Minerva ARC GPQA MMLU

Qwen2.5-7B
Vanilla 9.8 50.2 34.0 19.5 28.4 85.3 25.6 46.0 52.3
GRPO 12.8 75.2 40.8 31.2 40.0 87.3 30.8 56.6 58.2
SFT 13.0 77.8 42.4 32.0 41.3 77.7 25.8 44.4 49.3
CHORD 13.2 74.4 40.0 31.2 39.7 86.6 30.1 51.2 56.0
LUFFY 12.6 70.2 38.6 30.8 38.1 87.2 32.2 46.8 55.4
GHPO 13.1 75.6 42.2 30.0 40.2 87.0 32.0 50.0 56.3
QuestA 13.1 73.6 38.8 28.6 38.5 88.0 26.6 53.2 55.9
BREAD 11.7 72.8 41.8 29.2 38.9 85.0 29.4 48.8 54.4
HINT 13.3 79.6 43.6 31.0 41.9 88.8 31.8 58.4 59.7

Qwen2.5-3B
Vanilla 2.9 39.8 12.0 9.8 16.1 44.8 11.4 28.8 28.3
GRPO 4.3 44.0 18.2 12.2 19.7 45.0 11.8 28.0 28.3
SFT 5.0 48.0 20.8 14.0 22.0 20.4 7.6 20.2 16.1
CHORD 4.5 46.6 20.2 13.0 21.1 40.0 11.0 26.4 25.8
LUFFY 3.3 40.0 18.0 13.2 18.6 40.8 11.2 24.0 25.3
GHPO 4.0 42.2 19.6 12.8 19.7 45.5 12.0 28.2 28.6
QuestA 3.9 42.0 19.6 12.4 19.5 44.8 12.0 29.0 28.6
BREAD 4.1 44.4 20.4 13.4 20.6 45.5 11.8 29.2 28.8
HINT 4.9 48.6 20.2 13.4 21.8 48.8 11.8 30.2 29.9

The effectiveness of HINT scales with model size. Our results show that the benefits of HINT
are more pronounced in larger models, with the performance gains for Qwen2.5-7B consistently
outpacing those for Qwen2.5-3B across all evaluations. To understand the mechanism behind this
trend, we analyzed the training rollouts and found a clear difference in how effectively each model
leveraged the provided hints. A quantitative analysis confirmed that out of 100 randomly sampled
rollouts where hints were provided to each model, Qwen2.5-7B produced a successful trajectory
following the hint 34.0% more often than Qwen2.5-3B did. This superior efficacy in converting
hints into successful outcomes directly explains the more pronounced performance gains, indicating
that the greater capacity of larger models allows them to better capitalize on the abstract guidance
offered by HINT.

3.3 TRAINING DYNAMICS

To investigate the impact of various off-policy strategies, we tracked the EUR, UC, and Affinity
metrics for our method alongside several key baselines which detailed in Section 3.1, with the full
training dynamics plotted in Figure 4. This analysis led to the following key observations.

In the early stages of training, the model shows strong resistance to off-policy data. As illus-
trated in the left plot of Figure 4, all three off-policy methods exhibit a sharp drop in EUR, indicat-
ing that clipping occurs very frequently at this stage. We call this initial period the "EUR Collapse
Stage", where the model is highly resistant to the off-policy data and the clipping frequency is con-
sequently high. With more training steps, the model gradually adapts, leading to reduced clipping
frequency and eventual stabilization. Notably, compared to GHPO and LUFFY, HINT achieves
a higher steady-state EUR, demonstrating its superior ability to help the model accommodate and
leverage off-policy data.

Over-reliance on off-policy data often prevents the model from converging. As shown in the
middle plot of Figure 4, both GHPO and LUFFY quickly reach high UC values at the beginning of
training and remain at that level. This indicates persistently large variance in importance sampling,
which results in unstable model updates and hampers convergence. In contrast, the UC of HINT
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Figure 4: We record the EUR, UC, and Affinity metrics across different training processes to investi-
gate the impact of various off-policy strategies on training. Left: EUR during training; Middle: UC
during training; Right: Affinity during training. Overall, HINT most effectively alleviates the EUR
collapse, avoids persistently high UC, and achieves higher Affinity, thereby enabling more stable and
efficient training.

does not spike early on but instead indicates that our heuristic hints avoid casing large distributional
shifts, allowing the policy updates to remain centered around a stable learning direction.

HINT enables the model to genuinely absorb the knowledge provided by hints. As presented
in the right plot of Figure 4, the Affinity of HINT gradually approaches that of GRPO as training
progresses. This implies that the model becomes increasingly capable of identifying which hints are
truly useful. In other words, HINT enhances training efficiency and sample utilization in the early
stages, while maintaining convergence trends consistent with GRPO in the later stages, thereby
balancing early gains with eventual stability.

3.4 IN-DEPTH ANALYSIS

GRPO HINT

Figure 5: Sampling Efficiency of HINT
and GRPO at Different Training Stages.
Under an equal budget, HINT yields
1,485 more valid samples (top) and
achieves a 18.9% higher final propor-
tion of valid samples (bottom).

Does hinting truly enhance training effectiveness? We
measured the number of valid samples (i.e., rollouts that
are not entirely incorrect) generated by GRPO and HINT
under an equal computational budget (8 hours of train-
ing). As shown in the top of Figure 5, although HINT pro-
duced slightly fewer total samples than GRPO, it yielded
a greater number of valid samples. This indicates that
HINT achieves higher training efficiency under the same
time constraints, suggesting that hints guide the model to-
ward more productive exploration trajectories rather than
wasting updates on implausible rollouts.

From a broader perspective of the entire training process,
the proportion of valid samples with HINT is higher than
that of GRPO by 18.9%, further confirming that hint-
ing improves the signal-to-noise ratio of training data.
In other words, the gradient updates induced by HINT
are more likely to be based on partially correct reasoning
chains, thereby amplifying useful supervision signals and
mitigating the destabilizing effects of noisy rollouts.

The dominance of valid rollouts under HINT suggests
that hints not only improve rollout quality but also re-
shape the global optimization landscape by steering pol-
icy learning toward regions where correct reasoning is
more likely to occur. This mechanism explains why
HINT can achieve sustained improvements even without
relying on answer leakage, ultimately leading to more ro-
bust and generalizable training outcomes.

9
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Table 2: We compare the average en-
tropy for different methods on samples
both with and without hints. The re-
sults consistently show that HINT pro-
motes higher entropy than answer-
level hints across both scenarios.

w/ hint w/o hint All

GRPO – 0.143 0.143
GHPO 0.123 0.141 0.129
HINT 0.188 0.198 0.193

Does hinting affect the diversity of model’s outputs?
Entropy serves as a key metric for measuring generation
diversity (Cheng et al., 2025; Zheng et al., 2025). Build-
ing on the training processes for HINT and the GHPO
baseline detailed in Section 3.1, we further compared
their dynamics by analyzing the average entropy of rea-
soning trajectories throughout the training period. For
each method, we separately computed the mean entropy
on samples with and without hints.

As illustrated in Table 2, on the subset requiring hints, the
entropy of HINT is notably higher than GHPO, which is
answer-level hints. This is because answer-level hints of-
ten provide a “half-completed” reasoning trajectory, forc-
ing the model to follow a predetermined path with limited exploration. In contrast, ours do not
disclose specific solution steps, leaving the reasoning process entirely up to the model and thereby
encouraging broader exploration across different trajectories.

Even more surprisingly, we find that on samples where no hints are needed, GHPO still yield the
lowest entropy compared to both GRPO and HINT. This suggests that long-term exposure to answer-
level hints suppresses diversity at a deeper level: even when no hints are provided, the model’s ability
to generate diverse reasoning paths is diminished.

4 RELATED WORK

Reinforcement Learning for Large Language Model Reasoning. Recent advances in RL ap-
proaches have significantly enhanced the reasoning capabilities of LLMs. Large reasoning Mod-
els (LRMs) such as OpenAI-o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Kimi-
1.5 (Team et al., 2025) achieve state-of-the-art performance on complex reasoning tasks (e.g., math-
ematics, coding, scientific problem solving) by leveraging Reinforcement Learning from Verifiable
Rewards (RLVR) (Liu et al., 2025a; Hu et al., 2025; Cui et al., 2025), where automatically checkable
rules provide supervision signals. Compared to earlier methods like SFT or reinforcement learning
from human feedback (RLHF), RLVR has shown superior generalization and robustness (Chu et al.,
2025; Snell et al., 2025). Building on this paradigm, subsequent studies have proposed improved
optimization strategies and structured prompting techniques that further strengthen reasoning capa-
bilities (Schulman et al., 2017; Wang et al., 2020). Despite this progress, a critical failure mode
for existing RL methods is reward sparsity, which occurs when all rollouts in a sample fail. Over-
coming this challenge is essential for enhancing the stability and sample efficiency of training large
reasoning models.

Improving Rollout Efficiency in RL for LLMs. A well-known challenge in methods such as
GRPO is the vanishing gradient issue. This problem occurs when all trajectories in a sample group
are incorrect, as the group advantage collapses to zero, yielding no gradient for policy updates (Shao
et al., 2024; Guo et al., 2025). To mitigate this, some works have focused on injecting external,
off-policy data to improve training efficiency and stability. This has been explored through two
main strategies. Some methods use mixed-policy, replacing a portion of on-policy rollouts with
complete, high-quality trajectories from off-policy datasets (Yan et al., 2025; Lin et al., 2025; Xu
et al., 2025; Wang et al., 2025). Others employ partial supervision, providing segments of a ground
truth to rescue failed rollouts (Li et al., 2025; Liu et al., 2025b; Zhang et al., 2025b). While these
approaches effectively improve rollout efficiency, their over-reliance on off-policy data can misguide
policy updates, steering the model toward non-generalizable or spurious solution paths.

5 CONCLUSION

In this work, we identify the problem of low training affinity caused by an over-reliance on off-policy
data and propose HINT, an adaptive framework to resolve this trade-off. HINT significantly outper-
forms strong baselines on competitive math benchmarks and demonstrates robust out-of-distribution
generalization. Our work showcases a scalable and principled path toward more capable, self-
improving reasoning models, with future work pointing towards extending HINT to new domains
and modalities.
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perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper.

Additionally, All datasets are publicly available, ensuring consistent and reproducible evaluation
results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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APPENDIX

A THEORETICAL FOUNDATIONS OF EUR, UC, AND AFFINITY

A.1 PROOFS FOR EUR

In this section, we provide the theoretical justification for the two main claims made in the main
paper regarding the EUR: (I) EUR estimates the fraction of unclipped PPO gradient contributions
(Schulman et al., 2017); (II) EUR serves as a proxy for bounding policy divergence in the sense of
TRPO’s monotonic improvement guarantee (Schulman et al., 2015).

A.1.1 PRELIMINARIES

For each token step i, let

ri =
πθ(ai | si)
πθold(ai | si)

, ℓi = log ri.

PPO optimizes a clipped surrogate objective (Schulman et al., 2017), defined as

LCLIP(θ) = Êi

[
min

(
riAi, clip(ri, 1− ε, 1 + ε)Ai

)]
, (6)

and then maximizes LCLIP(θ) with respect to θ.

Let I = {i : |ri − 1| ≤ ε} denote the set of unclipped updates and C the clipped ones. The gradient
of equation 6 decomposes as:

∇θLCLIP = E[∇θ(riAi)1(i ∈ I) ] + E[∇θ(r
clip
i Ai)1(i ∈ C) ]. (7)

As noted in Schulman et al. (2017), gradients from clipped terms either vanish or are directionally
distorted, while terms in I preserve the correct policy gradient direction.

The Effective Update Ratio is defined in the main paper as:

EUR =

∑
i |Ai|1(|ℓi| ≤ δ)∑

i |Ai|
. (8)

A.1.2 PROOF OF CLAIM (I): EUR ESTIMATES THE FRACTION OF UNCLIPPED PPO
GRADIENT CONTRIBUTIONS

We show that EUR provides a principled empirical estimate of the proportion of gradient contribu-
tions arising from unclipped PPO updates. Recall that, for token-level PPO, the unclipped surrogate
gradient at position i is

gi = ∇θ(riAi) = Ai ri∇θ log πθ(ai | si),
where ri =

πθ(ai|si)
πθold (ai|si) . For updates that fall inside the trust region (i.e., i ∈ I with |ℓi| ≤ δ), we

have ri = eℓi ≈ 1 because ℓi is small. Thus the gradient magnitude simplifies to

∥gi∥ ≈ |Ai| ∥∇θ log πθ(ai | si)∥,
and variations in ∥gi∥ across token steps are dominated by variations in |Ai|. Since ∥∇θ log πθ(ai |
si)∥ is locally bounded and does not change substantially across nearby policy iterates, the total
contribution of unclipped updates to the overall gradient is proportional to

E[ |Ai|1(i ∈ I) ] .

Similarly, the total gradient magnitude (including both clipped and unclipped updates) is propor-
tional to E[ |Ai| ]. Therefore, the fraction of gradient contributions that originate from unclipped
updates is

E[ |Ai|1(i ∈ I) ]
E[ |Ai| ]

.

By construction, this is exactly the EUR. Consequently, EUR serves as an effective estimator for the
fraction of gradient contributions that are not suppressed by clipping.
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A.1.3 PROOF OF CLAIM (II): EUR CONTROLS POLICY DIVERGENCE IN THE TRPO SENSE

TRPO (Schulman et al., 2015) establishes a monotonic improvement lower bound dependent on the
KL divergence:

η(θ) ≥ Lθold(θ)− C ·Dmax
KL (πθold , πθ), (9)

where C is a constant depending on γ and ϵ. The token-level empirical KL divergence can be
approximated by the expectation of log-ratios:

DKL(πθold∥πθ) ≈ Es,a∼πold
[ |ℓi| ].

Recall that EUR is the advantage-weighted fraction of updates within the trust region (|ℓi| ≤ δ).
Let C = {i : |ℓi| > δ} denote the set of clipped updates. The relationship between EUR and the
probability mass of C depends on the distribution of advantages.

Assumption 1. The expected magnitude of advantages for clipped updates is lower bounded by a
factor of the global expected magnitude, i.e., E[|Ai| | i ∈ C] ≥ αE[|Ai|] for some α > 0.

Under this mild assumption, we can relate EUR to the probability of clipping P (C):

1− EUR =

∑
i∈C |Ai|∑
all |Ai|

≈ P (C) · E[|Ai| | C]
E[|Ai|]

≥ αP (C).

This implies P (C) ≤ 1−EUR
α . Conversely, the contribution to the KL divergence from clipped

samples is lower bounded:
DKL ≥ P (C) ·min

i∈C
|ℓi| > P (C) · δ.

If EUR is low (close to 0), the advantage mass is concentrated in C. Unless the advantages in C
are negligibly small (contradicting meaningful exploration), a low EUR implies a significant P (C),
which forces DKL to exceed the trust region boundary δ. Therefore, maintaining a high EUR is a
necessary proxy for constraining DKL and preserving the validity of the TRPO bound.

A.1.4 SUMMARY

Taken together, the results above show that EUR simultaneously quantifies the fraction of gradi-
ent mass preserved by the unclipped PPO surrogate and provides a practical handle on the policy
divergence term appearing in TRPO’s monotonic improvement bound. Consequently, a high EUR
indicates that most updates lie within a stable trust-region regime where policy gradients remain
informative, whereas a low EUR reveals that clipped updates dominate the optimization process,
leading to vanishing effective gradients and ineffective learning.

A.2 PROOFS FOR UC

In this section, we provide the theoretical justification for the UC metric introduced in the main
paper. We show that UC can be interpreted as (I) an advantage-weighted measure of variability in
local log-importance ratios among unclipped updates, and (II) a proxy for the variance of the local
KL divergence, which is closely tied to the stability of policy updates.

A.2.1 PRELIMINARIES

Recall that for each token step i, we define

ri =
πθ(ai | si)
πθold(ai | si)

, ℓi = log ri,

and the trust-region condition |ℓi| ≤ δ identifies the set of unclipped updates:

I = { i : |ℓi| ≤ δ }.
The token-level advantages are denoted by Ai, and we use the absolute values |Ai| as importance
weights on the contribution of each token.

Within the set I, we define the advantage-weighted mean log-ratio:

µℓ =

∑
i∈I |Ai| ℓi∑
i∈I |Ai|

, (10)
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and the UC is given by the advantage-weighted standard deviation:

UC =

√∑
i∈I |Ai| (ℓi − µℓ)2∑

i∈I |Ai|
. (11)

A.2.2 UC AS A MEASURE OF VARIABILITY AMONG EFFECTIVE UPDATES

As shown in equation 11, UC is precisely the standard deviation of the log-importance ratios ℓi
over the set of effective updates I. A small UC indicates that the ℓi values within I are tightly
concentrated around their weighted mean µℓ, implying that the magnitudes of the effective updates
are consistent and that the resulting policy changes are approximately uniform across token posi-
tions. In contrast, a large UC reflects substantial variability among the ℓi values: some effective
updates correspond to very small log-ratios (i.e., conservative steps), while others lie close to the
trust-region boundary (i.e., aggressive steps). Such heterogeneity results in uneven and potentially
unstable policy updates.

Formally, define the normalized weights

w̃i =
|Ai|∑
j∈I |Aj |

, i ∈ I.

Then equation 11 can be rewritten as

UC2 =
∑
i∈I

w̃i(ℓi − µℓ)
2,

which is the weighted variance of ℓi under the empirical distribution induced by the advantages |Ai|.
Thus UC quantifies how “spread out” the log-ratios are among those updates that are not clipped.

A.2.3 RELATION BETWEEN UC AND GRADIENT VARIANCE

We now connect UC to the variance of the policy gradient updates. Consider the gradient contribu-
tion scale for a single token i within the trust region (i ∈ I), defined as Xi = Airi ≈ Ai(1 + ℓi).
The stability of training depends on the variance of this update scale. Assuming that the advantage
Ai and the log-ratio ℓi are uncorrelated within the local trust region, we can apply the variance
decomposition formula Var(XY ) ≈ E[X]2Var(Y ) + E[Y ]2Var(X) + Var(X)Var(Y ).

Evaluating Var(Xi) where Xi ≈ Ai +Aiℓi:

Var(gi) ∝ Var(Ai(1 + ℓi)) ≈ Var(Ai) + Var(Aiℓi). (12)

The first term Var(Ai) represents the inherent variance of the reward structure (baseline variance),
which is irreducible by policy constraint. The second term captures the variance introduced by the
policy shift. Applying the decomposition to Aiℓi:

Var(Aiℓi) ≈ E[A2
i ]Var(ℓi) + E[ℓi]2Var(Ai). (13)

Inside the trust region, ℓi is centered near 0, making E[ℓi]2 small. Thus, the dominant component of
the induced variance is:

Varinduced ≈ E[A2
i ] ·Var(ℓi).

Recall that UC2 is defined as the advantage-weighted variance of ℓi. Although strictly distinct from
the unweighted Var(ℓi), they are empirically aligned. As shown in equation 13, UC acts as a mul-
tiplicative gain on the gradient variance. A high UC amplifies the gradient noise proportional to
the squared advantages E[A2

i ], destabilizing the update direction. Thus, minimizing UC is theoreti-
cally justified to dampen the variance of policy updates specifically arising from diverse importance
ratios.

A.2.4 RELATION BETWEEN UC AND LOCAL KL VARIABILITY

We next relate UC to the variability in local KL divergence. The per-state KL divergence between
the old and new policy can be expressed as

DKL

(
πθold(· | s) ∥ πθ(· | s)

)
= Ea∼πθold

(·|s)
[
log r(a, s)

]
.
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At the token level, the empirical KL is estimated by averaging ℓi over samples from πθold . Thus, the
variability of ℓi within I directly reflects how much the local per-state KL can fluctuate around its
mean.

Since TRPO’s monotonic improvement bound (Schulman et al., 2015) depends on controlling KL,
large fluctuations in ℓi (i.e., a high UC) indicate that some states experience near-boundary pol-
icy changes even when the average KL remains small. This effectively weakens the trust-region
assumption and can cause oscillatory learning dynamics. By contrast, a low UC ensures that the
per-token KL changes are not only small on average but also uniformly bounded, leading to more
reliable surrogate optimization.

A.2.5 SUMMARY

In summary, UC captures the internal stability of policy updates within the trust region by measuring
the advantage-weighted variance of log-importance ratios among unclipped samples. A low UC
implies that effective updates move the policy in a coherent and conservative manner, while a high
UC reveals that updates, though nominally “valid,” are heterogeneous and prone to inducing unstable
or oscillatory behavior. Together with EUR, UC thus provides a complementary view of both the
quantity and the quality of effective policy updates during training.

A.3 THEORETICAL DISCUSSION OF AFFINITY

In this section, we provide the theoretical motivation for combining the EUR and UC into the unified
Affinity metric introduced in the main paper. We show that Affinity captures the joint requirements for
effective and stable policy updates in PPO-style RL, and we relate its form to principles underlying
trust-region optimization.

A.3.1 PRELIMINARIES

Recall the definitions of EUR and UC from the main paper. Let

ℓi = log
πθ(ai | si)
πθold(ai | si)

denote the log-importance ratio at token step i, and let I = {i : |ℓi| ≤ δ} be the set of unclipped
updates under the PPO objective. EUR measures the fraction of effective updates:

EUR =

∑
i |Ai|1(i ∈ I)∑

i |Ai|
,

while UC quantifies the internal variability of those updates:

UC =

√∑
i∈I |Ai|(ℓi − µℓ)2∑

i∈I |Ai|
, µℓ =

∑
i∈I |Ai|ℓi∑
i∈I |Ai|

.

A.3.2 RATIONALE FOR COMBINING EUR AND UC

As shown in Appendix A.1, EUR provides an unbiased estimate of the proportion of gradient mass
preserved by the unclipped PPO surrogate. Hence, a high EUR indicates that most updates meaning-
fully contribute to the policy gradient. However, EUR alone cannot ensure stability: if the log-ratios
within I vary widely (high UC), many of those “effective” updates may be close to the trust-region
boundary and induce oscillatory policy shifts.

Appendix A.2 further shows that UC approximates the variance of token-level policy divergence
and characterizes the consistency of unclipped gradients. Yet UC by itself is also insufficient: a
perfectly consistent set of updates (low UC) provides little value when EUR is small, since almost
all gradients are clipped and the policy barely moves.

Thus, a high-quality update requires satisfying both conditions simultaneously: a sufficiently large
proportion of effective updates (high EUR) and low variability among them (low UC).
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A.3.3 AFFINITY AS A JOINT STABILITY-EFFICIENCY INDICATOR

To encode this joint requirement in a single quantity, we define the Affinity metric:

Affinity = EUR · exp
(
− UC

τ

)
, τ = δ/2. (14)

This multiplicative formulation has two motivations:

Logical conjunction. The product structure ensures that a failure in either condition (low EUR
or high UC) produces a proportionally low Affinity. This structure captures the fact that effective
PPO-style updates require both conditions to be satisfied simultaneously, rather than individually.

Exponential penalty on inconsistency. Since UC measures weighted variance in log-ratios, an
exponential term exp(−UC/τ) acts analogously to an inverse smoothness regularizer, sharply pe-
nalizing updates near the trust-region boundary. The temperature term τ = δ/2 stabilizes the scaling
and ensures that the penalty becomes substantial when UC approaches the trust-region limit.

A.3.4 RELATIONSHIP TO TRUST-REGION OPTIMIZATION

Trust-region methods (including TRPO) rely on bounding the KL divergence to guarantee mono-
tonic policy improvement. While EUR controls the fraction of updates that satisfy the trust-region
condition and thus reflects the mean KL contribution, UC characterizes the variability of the local KL
divergence within that region by capturing the variance of the log-importance ratios. Consequently,
Affinity integrates both aspects of policy divergence: high Affinity indicates that the empirical KL
remains not only small (as ensured by high EUR) but also stable across updates (as ensured by low
UC), aligning with the conditions under which trust-region guarantees are most effective.

A.3.5 SUMMARY

Affinity synthesizes two complementary perspectives on PPO update quality: (I) how many updates
remain effective (EUR), and (II) how consistent those updates are (UC). The multiplicative for-
mulation in equation 14 captures the synergy required for reliable policy improvement and provides
a practical scalar diagnostic for monitoring exploration efficiency and training stability.

B EXPERIMENTAL DETAILS

B.1 DETAILED SETUP

Platform. All of our experiments are conducted on workstations equipped with 8 NVIDIA A100
PCIe GPUs with 80GB memory.

Training Data. The training was performed using a carefully selected subset of the DAPO-Math-
170K dataset (Yu et al., 2025). As the original dataset lacks ground-truth solutions, we curated our
own by first using Qwen2.5-72B-Instruct to generate four reasoning trajectories for each problem.
After validating the final answers with Math-verify, we compiled a high-quality training set of 30k
problems for which all four generated trajectories were correct. For baselines requiring a ground
truth, the most token-efficient of these four correct trajectories was designated as the ground truth.
For our methods, we pre-generated the required heuristic hints for the entire 30k-sample training set
using Qwen2.5-72B-Instruct. The prompts used in the above process will be detailed in Section B.2.

Important Parameters of HINT. HINT is implemented based on the open-source Rl framework
lsrl4. The RL algorithm employs the GRPO advantage estimator with no KL penalty (kl coef is set
to 0.0). The clipping parameter ϵ is set to 0.2. For each group, 8 answers are generated, and the
training batch size is set to 2. Distributed training utilizes the DeepSpeed library with the AdamW
optimizer and a learning rate of 1e-6. The train batch size is set to 8, gen batch size is set to 32,
accum steps is set to 64, gen update steps is set to 128, temperature is set to 0.9, max response is
set to 4096. Mixed-precision training with BF16 is enabled. Memory optimization employs ZeRO
Stage 2, with optimizer state offloading to CPU.

4https://github.com/lsdefine/lsrl
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Important Parameters of Other Baselines. For baselines with publicly available code repositories,
we utilized their official implementations and the parameters specified in their respective publica-
tions. For methods without public code, such as BREAD(Zhang et al., 2025b) and QuestA(Li et al.,
2025), we reproduced their results using the lsrl framework, strictly adhering to the experimental
parameters detailed in their papers.

Reward Setup. For our experiments, we employ a sparse, binary reward function. The reward
is determined exclusively by the correctness of the final answer in a model’s generated trajectory.
We use the Math-Verify tool for automatic verification, assigning a reward of +1 for a correct final
answer and 0 for an incorrect one.

B.2 PROMPT LIST

Prompt Template for GRPO

System: You are a helpful AI assistant. A conversation takes place between the User and
the Assistant. The User asks a question, and the Assistant solves it. Please help me solve
this question. Wrap only the final answer in \\boxed{}.

Question: [Question]

User:

Prompt Template for HINT

System: You are a helpful AI assistant. A conversation takes place between the User and
the Assistant. The User asks a question, and the Assistant solves it. Please help me solve
this question. Wrap only the final answer in \\boxed{}.

Hint: Here are some key information provided to assist you in solving the problem: [Hint]

Question: [Question]

User:

Prompt Template for Generating hints

System:
* Role and Goal
You are a top-tier problem-solving expert and a master educator. Your goal is not to solve
the problem, but to distill the single most critical ”Core Insight” or ”Aha! Moment” required
to find the solution.
* Core Task
You will be given a [Question] and its final [Answer]. Your sole job is to reverse-engineer the
most likely solution path and identify the crucial ”mental bridge”—the non-obvious insight,
change in perspective, or core principle—that unlocks the problem.
* Thinking Framework
Analyze the Gap: First, understand the [Question] and look at the [Answer]. The core
difficulty lies in the conceptual space between them. What makes bridging this gap non-
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trivial? Reconstruct the ”Hidden” Step: Mentally construct the most elegant solution path.
In that path, what is the single most pivotal, non-obvious leap of logic or application of a
principle that a student is most likely to miss? Distill the Insight: Condense this pivotal leap
into an extremely short, potent, and core-focused sentence. This sentence is the key that
unlocks the door, not the map of the room.
* Constraints
Absolute Brevity: The insight must be a single sentence, ideally under 20 words. No Spoil-
ers: The insight must not reveal any part of the [Answer] or the specific numbers used to
calculate it. Inspirational, Not Instructional: It should inspire thought (”heuristic”), not pro-
vide a step-by-step recipe (”algorithmic”). Target the Crux: It must address the most critical
linchpin that makes the entire solution possible.
* Output Format
Directly output the single, distilled ”Core Insight”. Do not include any other explanations,
headings, or conversational text.

User:
### Question:
[Question]
### Answer:
[Answer]

Prompt Template for Generating Ground Truth

System: You are a helpful AI assistant. A conversation takes place between the User and
the Assistant. The User asks a question, and the Assistant solves it. Please help me solve
this question. Wrap only the final answer in \\boxed{}.

Question: [Question]

User:

Prompt Template for Evaluation

System: You are a helpful AI assistant. A conversation takes place between the User and
the Assistant. The User asks a question, and the Assistant solves it. Please help me solve
this question. Wrap only the final answer in \\boxed{}.

Question: [Question]

User:
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C FURTHER ANALYSIS

C.1 DETAILS OF HINT’S ENTROPY

Figure 6: HINT Prevents Entropy
Collapse and Encourages Sustained
Exploration. HINT maintains a high
entropy level, especially in the early
stages, and stabilizes at a significantly
higher value. This demonstrates that
HINT’s heuristic guidance fosters more
continuous and diverse exploration, pre-
venting premature policy convergence.

HINT Encourages Sustained Exploration. The entropy
of the generation distribution serves as a key indicator of
exploration diversity. As illustrated in Figure 6, HINT
avoids the rapid entropy collapse observed in GRPO dur-
ing the early stages of training. Instead, HINT main-
tains a consistently high level of entropy, indicating that
the model actively explores when first introduced to the
hints. This period of high exploration corresponds di-
rectly to the “EUR collapse” phase (discussed in Sec-
tion 3.3), explaining that while the model initially resists
the off-policy guidance, it is nevertheless engaged in a
productive and diverse search of the solution space.

During the middle stages of training, HINT’s entropy
does not decrease monotonically. It exhibits periodic in-
creases. We attribute this to the model encountering novel
types of hints and adapting its exploratory behavior to
learn how to utilize them. Crucially, even after the pol-
icy stabilizes in the later stages, HINT maintains a sig-
nificantly higher entropy level than GRPO. This provides
strong evidence that HINT’s heuristic guidance success-
fully fosters more continuous and diverse exploration, preventing the policy from prematurely con-
verging to a deterministic state.

C.2 DETAILS OF HINT’S ACCURACY

Figure 7: Accuracy of Different Meth-
ods. HINT Achieves Higher Final Ac-
curacy Despite Slower Initial Conver-
gence.

Our results reveal an interesting trade-off: while the off-
policy guidance from HINT may initially slow the rate of
convergence, it ultimately enables the model to achieve a
higher performance ceiling. As shown in Figure 7, HINT
initially exhibits a slower rate of accuracy improvement
compared to GRPO. This initial lag is consistent with the
early training stages where the model shows resistance
to the heuristic hints and has not yet learned to lever-
age them effectively. However, as training progresses,
the model begins to adapt and utilize the guidance. This
leads to an accelerated learning rate after approximately
100 steps, with HINT’s accuracy eventually surpassing
GRPO’s and reaching a higher final value. This dynamic
suggests that the model requires an adaptation period to
master the use of heuristic hints, but once learned, this
skill allows it to develop stronger and more robust capa-
bilities.

C.3 QWEN3-4B OUTCOME

To verify the effectiveness of HINT on other models, we have supplemented our experiments with
results on Qwen3-4B. These results underscore the distinct advantages of HINT in balancing effec-
tiveness and generalization. Compared to the GRPO baseline, HINT delivers comprehensive gains,
raising the average scores by 4.1 points on in-domain tasks and 5.6 points on out-of-domain bench-
marks, thereby validating the efficacy of our framework. Furthermore, when contrasted with SFT,
HINT demonstrates superior robustness; although HINT trails SFT marginally by 0.2 points on in-
domain tasks, which is an expected outcome of supervised fitting, it significantly outperforms SFT
on out-of-domain benchmarks with a substantial lead of 14.9 points. This stark contrast confirms
that while SFT tends to overfit to the domain, HINT cultivates transferable reasoning skills.
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Table 3: Main Performance Comparison of HINT against Baselines on Qwen3-4B. HINT con-
sistently outperforms the GRPO baseline, achieving average improvements of 4.1 points on in-
distribution tasks and 5.6 points on out-of-distribution benchmarks, validating the method’s robust-
ness across different model generations.

Methods In-Distribution Avg Out-of-Distribution Avg
AIME Math Olympiad Minerva ARC GPQA MMLU

Qwen3-4B
Vanilla 53.3 82.0 61.8 32.2 57.3 82.5 28.0 60.4 57.0
GRPO 58.8 84.8 63.9 36.4 61.0 87.0 28.4 61.2 58.9
SFT 68.6 87.6 66.1 39.0 65.3 72.0 22.4 54.4 49.6
LUFFY 59.6 85.2 64.4 37.1 61.6 83.0 20.1 62.2 55.1
CHORD 59.1 88.0 64.0 36.2 61.8 85.0 33.2 66.6 61.6
GHPO 62.3 87.0 66.6 34.2 62.5 87.5 29.6 68.4 61.8
QuestA 60.3 84.4 63.0 36.6 61.1 88.4 29.6 62.3 60.1
BREAD 65.1 85.0 63.4 35.4 62.2 86.0 28.4 68.2 60.9
HINT 68.9 87.2 65.0 39.3 65.1 88.1 35.4 70.1 64.5

C.4 CASE STUDY

Case Study

Question Let a and b be positive integers such that all but 2009 positive integers are ex-
pressible in the form ma + nb, where m and n are nonnegative integers. If 1776 is one of
the numbers that is not expressible, find a+ b.

Hint: How many positive integers cannot be expressed in the form ma+nb with nonnegative
integers m,n?

Before the Hint:
By the two-coin Frobenius result, for co-
prime positive integers a, b the number of
positive integers not representable as ma +

nb equals
(a− 1)(b− 1)

2
.

So
(a− 1)(b− 1)

2
= 2009

(a− 1)(b− 1) = 4018

Factor 4018 = 41 ·98. Take a = 42, b = 99.
Hence a+ b = 141.
Answer: 141 $

After the Hint:
By the two-coin Frobenius result, for co-
prime positive integers a, b the number of
positive integers not representable as ma +

nb equals
(a− 1)(b− 1)

2
.

So
(a− 1)(b− 1)

2
= 2009

(a− 1)(b− 1) = 4018

Candidates:
(2, 4019), (3, 2010), (8, 575),

(15, 288), (42, 99), (50, 83).
Require gcd(a, b) = 1,
leaving (2, 4019), (8, 575), (50, 83).
Check 1776: representable for first two, not
for (50, 83).
Thus a+ b = 133.
Answer: 133 "
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Why the hints works in this question?

The key to solving this problem is identifying it as an instance of the Frobenius Coin Problem.
This theorem states that for two coprime positive integers, a and b, the number of positive integers
not expressible in the form ma+ nb is precisely (a−1)(b−1)

2 . Without guidance, the model correctly
sets up the equation (a − 1)(b − 1) = 4018 but may hastily select a factor pair, such as (42, 99),
while neglecting the crucial precondition that a and b must be coprime. As shown in the ”Before the
Hint” example, this oversight leads to an incorrect answer.

The provided hint is designed to steer the model away from this pitfall. By asking about the number
of non-representable integers, the hint explicitly directs the model’s attention toward the Frobenius
formula. This encourages a more rigorous, systematic approach: first, finding all possible integer
pairs for (a, b); second, filtering these candidates by checking the essential coprimality condition
(gcd(a, b) = 1); and finally, verifying which of the remaining valid pairs satisfies the constraint
that 1776 is non-representable. This structured reasoning process, prompted by the hint, is effective
because it signals the specific theoretical framework needed to solve the problem, thereby preventing
common errors and guiding the model to the correct solution.

C.5 ALGORITHM DETAILS

Algorithm 1 HINT: Helping Ineffective rollouts Navigate Towards effectiveness

1: Input: initial policy model πθinit ; reward models rϕ; task prompts D; hints H; hyperparameters
ϵ, β, µ

2: policy model πθ ← πθinit

3: for iteration = 1, . . . , I do
4: reference model πref ← πθ

5: for step = 1, . . . , M do
6: Sample a batch Db from D
7: Update the old policy model πθold ← πθ

▷ Stage 1: Standard Rollout
8: Sample G outputs {oi}Gi=1 ∼ πθold(· | q) for each q ∈ Db

9: Compute rewards {rij}Gi=1 for each oi by running rϕ
▷ Stage 2: Hint-Augmented Rollout (if necessary)

10: if all rewards {rij} are sparse (e.g., zero) then
11: Get hint h ∈ H for problem q
12: Construct hint-augmented query qh
13: Resample G new outputs {ohi }Gi=1 ∼ πθold(· | qh)
14: Compute new rewards {rhij}Gi=1

15: Let {oi} ← {ohi }, {rij} ← {rhij}
16: end if
17: Compute Âi,t for each token t of oi using final rewards
18: for HINT iteration = 1, . . . , µ do
19: Update πθ by maximizing GRPO objective
20: end for
21: Update rϕ via replay training
22: end for
23: end for
24: Output: πθ

D LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.
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It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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