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Abstract

Modeling and recovering causal relationships in time-series data can be crucial for supporting
real-world interventions and decision-making, but progress in Time-Series Causal Discovery
(TSCD) is often limited by the lack of high-quality datasets with diverse and realistic temporal
causal relationships. This highlights the need to provide synthetic time-series generation
tools, with realism as a primary objective, an aspect that requires incorporating causal
relationships beyond mere correlation. To address this challenge, we propose a diffusion
model called DiffCATS. It simultaneously generates multiple causally associated time-series
as well as a ground truth causal graph that reflects their mutual temporal dependencies,
requiring only observational time-series data for training. Experiments demonstrate that it
outperforms state-of-the-art methods in producing realistic time-series with causal graphs
that closely resemble those of real-world phenomena. We highlight the practical utility of
our data on three downstream tasks, including benchmarking widely used TSCD algorithms.

1 Introduction

Many real-world time-series can be usefully modeled as arising from directed (causal) relationships among
variables, which motivates methods for representing and learning such structure from data (Runge, 2018;
Runge et al., 2023). Understanding such causal relationships is a well-recognized and important challenge
for decision-making and policy formulation, as it facilitates predicting the consequences of interventions on
underlying systems and variables (Hasan et al., 2023).

Over the years, several works have studied these underlying causal structures, starting from Granger Causality
(GC) (Granger, 1969). Unable to capture how time affects causal relationships between interdependent
time-series, GC has been complemented by Causal Graphs that incorporate the temporal lag in which causality
unfolds (Pearl, 2009). Many approaches tackling the Time-Series Causal Discovery (TSCD) problem (Hasan
et al., 2023) achieve satisfactory performance using statistical and machine learning techniques (Runge
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Dillingen

Kempten

Lenggries

Figure 1: A synthetic sample and causal graph of three river discharges in which Kempten has an effect on
Dillingen with a lag of 1.

Figure 2: Two generated examples in which the causal graph helps a predictor model to reconstruct the
target feature.

et al., 2019; Pamfil et al., 2020; Sun et al., 2023; Cheng et al., 2023), with discovered causal graphs closely
resembling the ground-truth counterparts. However, the limited data available may hinder the development
of new methodologies and studies, raising concerns about how existing algorithms would perform in unseen
real-world scenarios (Cheng et al., 2024).

Novel methodologies to generate realistic datasets with rigorously defined causal graphs are needed to support
research and development of algorithms on time-series causal graphs. This challenge has been recently tackled
by the works of Li et al. (2023) and Cheng et al. (2024), which mark an initial step in this direction, proposing
two deep learning models to generate synthetic time-series data, while extracting the corresponding causal
graphs. The first model focuses on the concept of Granger causality and proposes a recurrent Variational
Autoencoder (CR-VAE) framework that naturally encodes causality into the weight matrix connecting
input and hidden states. The second model introduces a comprehensive framework that supports prior
causal graphs to generate realistic time-series data. However, when an input causal graph is not provided,
the method extracts a hypothesized causal graph using explainability tools for feature importance (e.g.,
DeepSHAP (Lundberg, 2017)), which are inherently slow and only provide a posterior approximation of the
ground-truth graph.

In this paper, we introduce a novel generative framework called DiffCATS that combines the advantages of
previous approaches by jointly generating time-series along with its causal graph, directly within a diffusion
model architecture. Specifically, our model incorporates a τ -lag vector autoregressive structure (VAR(τ))
for multivariate time-series (Hamilton, 2020), where the coefficients are learned and generated through the
diffusion process. This approach enables the simultaneous generation of realistic time-series data and the
derivation of the corresponding ground-truth causal graphs from the VAR coefficients (Zivot & Wang, 2006).
DiffCATS can be trained directly on time-series data without requiring prior causal graphs, eliminating the
need for additional explainability tools.

Our work facilitates research and development of efficient algorithms for uncovering cause-effect relationships
in multivariate time-series across diverse fields. In particular, the generated synthetic data can complement
real-world data by providing known ground-truth with a diverse set of causal structures, which is especially
valuable when real data are scarce or have limited ground-truth causal structures. Different from existing
work, our approach specifically addresses the coherence between the synthetic sample and its corresponding
causal graph (see Figure 1), resulting in more realistic and useful synthetic data. As the experiments highlight,
the generated causal graphs are key to understanding the underlying dynamics of time-series, improving
predicting capabilities (see Figure 2).
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The main contributions of this work are the following:

• We present DiffCATS, a novel pipeline that employs a diffusion model to generate realistic time-series
along with their related causal graphs.

• With extensive experiments, we demonstrate that our method outperforms existing approaches, in
terms of synthetic time-series quality and fidelity of causal graphs to real-world phenomena.

• We conduct an evaluation of existing causal discovery algorithms using our synthetically generated
datasets, highlighting the practical benefits of our data.

• We demonstrate the utility of the causal graph and its coherence with time-series data through two
additional downstream tasks.

2 Related work

Several works have addressed the generation of synthetic time-series starting from real datasets (Yoon et al.,
2019; Jarrett et al., 2021; Rasul et al., 2021). Some approaches have focused on specific aspects, such as the
correlation dynamics among variables (Seyfi et al., 2022; Masi et al., 2023), user-specified constraints (Coletta
et al., 2023), or interpretable generation methods (Yuan & Qiao, 2024; Fons et al., 2024). However, only a
few works delve into the generation of time-series along with their causal structure (Li et al., 2023; Cheng
et al., 2024).

The work of Li et al. (2023) proposed a VAE-based framework capable of learning Granger causal relationships
from real multivariate time-series. This approach derives causal relationships from the weight matrix of
the model connecting the input and hidden states, learning a unique Granger causality matrix from the
data to which all generated samples adhere. A recent work of Cheng et al. (2024) proposed a pipeline
to generate realistic time-series along with the causal graph. However, their framework does not output
an interpretable-by-design time-series, but it performs the hypothetical causal graph inference through
DeepSHAP (Sundararajan & Najmi, 2020) on the trained generative model, introducing a considerable time
overhead.

Our goal is to further explore this area and address the gaps in the current literature. Specifically, we aim
to provide a novel generative approach to simultaneously generate multiple causally associated time-series
and their causal graphs, incorporating temporal lags. We strive to generate a unique causal graph for each
synthetic sample, introducing greater variety in the data and providing a naturally interpretable architecture.

3 Problem Formulation

3.1 Background Knowledge

Causal Discovery The Causal Discovery task aims to identify cause-effect relationships among the variables
of a d-variate time-series x = (x1, . . . , xd). We say that xi has an effect on (or causes) xj if the two variables
reflect a real phenomenon in which events reflected in the values of xi affect xj . Trivially, the cause must
precede the effect, so it is important to consider also the lag τ that elapses between observing the cause
event on xi and the effect event on xj . Causal Discovery algorithms are employed to observe real data and
point out the existence of causal relationships according to which xi causes xj , after τ time-steps, returning
(xi, xj , τ).

Causal Graphs Causal relationships are often represented in the form of Causal Graphs. Let τmax ∈ N+

be the maximum number of discrete time-steps (δt) we are interested in to model the cause-effect phenomena
of x. We define a Causal Graph G = (V, E) where the vertices V represent the time-series variables for
the various time-steps between −τmax and 0, and the edges E represent their causal relationships. In
particular, an edge (xi

t1
, xj

t2
) ∈ E indicates that the variable xi has a causal implication on the value of the

variable xj with a lag of t2 − t1 time-steps (i.e., xi
t1
⇒ xj

t2
). Formally, V = {xi

t−l | 0 < i ≤ d, 0 ≤ l ≤ τmax}
and E = {(xi

t1
, xj

t2
) |xi ⇒ xj with a lag of t2 − t1 ≥ 0}. Figure 1 illustrates a causal graph describing the
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Diffusion
Model Causal Graph

Synthetic Time-Series

Causal Coefficients

Figure 3: DiffCATS pipeline. Given a noisy sample z ∼ N (0, I) the diffusion model runs the denoising steps
and outputs (i) an initial prefix of τmax steps of the multivariate time-series and (ii) causal/VAR coefficients
{Cτ (l)}τmax

τ=0 , whose entries ci1,i2
τ (l) parameterize directed influences from variable i1 at lag τ to variable i2 at

time l. For each l > τmax, the remaining samples are produced via causal reconstruction (circle “×”), i.e., a
VAR-style update using the previously reconstructed window and the generated matrices (including C0(l)).
This yields the full synthetic time-series (solid prefix with dashed continuation). A sample-specific causal
graph is then derived from the generated coefficients by retaining the most significant relationships, with
nodes representing variables across time lags (e.g., xi

t−10, . . . , xi
t).

interdependencies among rivers according to the observations made by Ahmad et al. (2022). It shows that
variations in the water level of one river affect the level of the other one.

3.2 Task Definition

Let D = {x | x ∈ RL×d} be a set of d-dimensional input time-series of length L. Our goal is to use the
data in D to train a generative model that best approximates the distribution of the time-series, while
simultaneously learning the corresponding causal structures. In particular, we aim at generating couples
⟨x̂, ĝ⟩ where x̂ ∈ RL×d is a synthetic time-series and ĝ is a causal graph. We want x̂ to be similar to the
time-series observed in D, i.e., to show a realistic behavior that reflects similar statistical properties. We also
require x̂ to reproduce realistic causal relationships, as observed in D, and described by the causal graph ĝ
that will explain x̂ in terms of causal relationships. We formally define a causal relationship between two
time-series variables in the following section (Definition 1).

4 Methodology

Our framework, illustrated in Figure 3, builds upon a powerful class of generative models, the diffusion
models (Ho et al., 2020). 1 Originally designed to generate realistic images, diffusion models are used in this
paper to generate synthetic samples ⟨x̂, ĝ⟩. Unless otherwise noted, we adopt two common assumptions of
the Causal Discovery literature (Cheng et al., 2024; Runge et al., 2019; Pamfil et al., 2020; Sun et al., 2023):
Markovian conditions and faithfulness, as discussed in detail in Appendix A.1. While these assumptions
are crucial for causal discovery, the key consideration for generation from observational data is ensuring
structural consistency between the synthetic time-series and the causal graph. Indeed, unlike previous works,
we do not need to assume stationarity of the underlying causal phenomena, as our causal graphs will be
strictly related to individual samples.

4.1 Diffusion framework

A diffusion model is a type of latent variable model that operates through two key processes: the forward
process and the reverse process. Given a sample x0 ∈ D2, the forward process gradually adds Gaussian noise

1Although the proposed methodology is general and can, in principle, be applied to alternative generative paradigms such as
VAEs Kingma & Welling (2013) or GANs Goodfellow et al. (2014), these models often underperform diffusion models due to
more restrictive assumptions and less stable training dynamics. Consequently, we focus on a diffusion-based architecture, which
we carefully design for our setting.

2In this section, the subscript refers to the diffusion step, not the lag index used elsewhere.
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to obtain a noisy sample xT ∼ N (0, I). Specifically, given the parameters βt ∈ (0, 1) to schedule the amount
of noise added at diffusion step t ∈ [1, T ], the noisy sample xt is given by xt =

√
α̂t · x0 +

√
1− α̂t · ϵ where

ϵ ∼ N (0, I), αt = 1− βt, and α̂t =
∏t

i=1 αi.

The reverse process performs the actual generation of a new sample starting from Gaussian noise. Following
the formulation of Ho et al. (2020), we perform the denoising procedure from xT ∼ N (0, I) according to the
following equation:

xt−1 = βt ·
√

α̂t−1

1− α̂t
· x̂0 + (1− α̂t−1) · √αt

1− α̂t
· xt + 1{t>0} · βt ·

1− α̂t−1

1− α̂t
· ϵ. (1)

In the above equation 1{·} is the indicator function, ϵ ∼ N (0, I), and x̂0 = Denθ(xt, t) is the output of a
neural network Denθ parametrized by θ, trained with respect the following loss function: LRec(x0, x̂0; θ) =
∥x0 − x̂0∥2

2, where ∥·∥p indicates the ℓp-norm. In practice, Denθ reconstructs the original sample taken from
the dataset by filtering out the noise added during the forward process.

In addition to the ℓ2-norm, we also consider other loss functions to improve the performance of the recon-
struction, such as the Dynamic Time Warping-based term LDT W (x0, x̂0; θ) introduced by Cuturi & Blondel
(2017). The training objective is:

L(x0, x̂0; θ) = Et∼U(1,T )
x0∼D

[LRec(x0, x̂0; θ) + λ1 · LDT W (x0, x̂0; θ)], (2)

where λ1 is a parameter weighting the additional term.

The architecture of Denθ consists of an initial convolutional layer followed by a series of Resnet and
Attention blocks (see Appendix B.3 for more details).

4.2 Causal reconstruction of the time-series

This section details how the output process inherently embeds a causal structure, allowing for the generation
of a coherent sample ⟨x̂0, ĝ⟩. Given x0 ∈ D, we denote with x0(l) the value of the time-series at time l, for
l ∈ [1, L], and considering its components as distinct features, we denote with xi

0(l) the value of the i-th
feature at time l, for i ∈ [1, d].

Let τmax ∈ N+ be the maximum lag for the causal relationships in the synthetic time-series3. Simultaneously
for each feature i, Denθ outputs the first τmax steps of the time-series, i.e., x̂i

0(l), ∀ 1 ≤ l ≤ τmax, and a
set of causal matrices C(l) =

{
Cτ (l) =

(
ci1,i2

τ (l)
)

1≤i1,i2≤d
∈ Rd×d| 0 ≤ τ ≤ τmax

}
for all the remaining

steps τmax < l ≤ L, where ci1,i2
τ (l) represents the impact of feature i1 on i2 with a lag of τ at time l.

The reconstruction of the whole time-series according to causal relationships evolves through a Vector
Autoregressive (VAR) model (Zivot & Wang, 2006): proceeding one step l at a time with τmax < l ≤ L,
x̂(l) =

∑τmax

τ=0 Cτ (l) · x̂(l − τ)4

We underline that, even though the reconstruction can be described by a VAR model, the generation
framework is not autoregressive. This is because the model does not consider previously generated outputs as
inputs. It instead generates the initial time-steps and the coefficients simultaneously.

Finally, to encourage the model to focus on the most important causal relationships, we add a regularization
term for the coefficients. While the ideal choice for such a function would be the ℓ0-norm, this is difficult
to optimize, therefore we consider the ℓ2-norm, as in (Sun et al., 2023; Li et al., 2023). Specifically, the
regularization is defined as:

LReg(x̂0; θ) = λ2 ·
∑L

l=τmax+1

∑τmax

τ=0
∥Cτ (l)∥2, (3)

where λ2 is the weight associated to such regularization term.
3The maximum lag and time-step granularity can be decided according to the domain and expert knowledge.
4Note that the matrix modeling instantaneous relationships C0(l), ∀l is generated as a lower triangular matrix with the

elements on the main diagonal also set to 0, in agreement with Hyvärinen et al. (2010).
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4.3 Causal Graph Extraction

While the broader field does not offer a single universally accepted characterization of causality in observational
time-series, we will provide a flexible definition based on a predictive formulation that is both widely adopted
in practice and grounded in robust theoretical principles. Indeed, given a synthetic sample x̂0 reconstructed
through the series of coefficients matrices c(l) it means that for each time-step τmax ≤ l ≤ L, for each feature
1 ≤ i ≤ d, we have importance weights C1(l), . . . , Cτmax

assigned to the previously generated time-steps, i.e.
the window [x̂0(l− τmax), . . . , x̂0(l− 1)] and instantaneous relationships in x̂0(l) according to C0(l). We also
call these coefficients the explanation of the synthetic sample. To infer the causal graph ĝ, we summarize the
causal relationships from the VAR coefficients according to the following formal definition.

Definition 1 Let ρ be the percentage of causal relationships we want to represent in the synthetic dataset.
For a synthetic sample x̂, we say that x̂i ⟨ρ, q⟩-causes x̂j with a lag of τ if the q-quantile of the corresponding
coefficients of the VAR model at lag τ is among the ρ% highest absolute values. Notice that ρ and q refer to
the whole dataset and the single sample, respectively.

Intuitively, the q-quantile value allows the identification of significant causal events within a sample (e.g.,
Figure 1) by aggregating the coefficients over the time-series. Additionally, the threshold ρ can be employed
as a reference point to identify and constrain causality to focus on the most relevant causal relationships. The
whole mechanism allows samples to have different causal graphs, i.e., some may exhibit dense connections
while others may have none. In fact, unlike previous work, we do not assume stationarity of the causal
relationships in the dataset: the causal graphs are strictly related to individual samples, enabling more
realistic and diverse samples.

This approach enables a fair evaluation of TSCD algorithms (see Section 6.1). Specifically, a TSCD algorithm
may fail to recover the ground-truth causal graph — derived from our prior knowledge of the system — if the
given sample does not exhibit any causal effect but is still linked to that prior causal graph. Our dataset serves
as an accurate and representative benchmark: each generated sample is explicitly linked to its corresponding
causal graph, which may denote the absence of causal relationships when none emerge from the time-series.

Finally, we notice that our definition ensures that each identified causal link captures not only statistical
predictability but also a meaningful, information-theoretic causal effect. In fact, our formulation is consistent
with prior work that extends Granger causality with lag-specific formulations (e.g., (Hyvärinen et al., 2010)),
as a significant predictive link also implies high transfer entropy from the cause to the effect (Runge et al.,
2012), indicating a substantial information flow between two variables. This information flow is the type of
relationship captured by our definition of causal links as discussed in more details in Appendix A.2.

5 Experiments

In the experiments section, we show that the proposed pipeline is able to generate high-quality synthetic
samples along with coherent and realistic causal graphs. In this regard, we conducted an experimental
campaign involving three different datasets. We compared our model against several state-of-the-art approaches
to highlight its advantages. We evaluate the generated samples both quantitatively and qualitatively, using
well-established metrics for synthetic time-series as well as metrics specifically designed to assess the realism
of the causal graphs. The code to reproduce the experiments is publicly released5.

5.1 Datasets

To evaluate the models’ capability to generate time-series alongside their causal relationships, we utilize two
real-world datasets (Rivers and AQI) and a synthetic dataset (Hénon) constructed using closed-form equations,
for which we have ground-truth knowledge. The datasets are described in the following paragraphs while we
refer the reader to Appendix B.1 for additional details, including the visualization of the ground-truth causal
graphs.
• Rivers: introduced by Ahmad et al. (2022), it consists of the average daily (δt = 1 day) discharges of the

5https://github.com/giuseppemasi99/DiffCATS

6

https://github.com/giuseppemasi99/DiffCATS


Published in Transactions on Machine Learning Research (01/2026)

Iller River at Kempten, the Danube River at Dillingen, and the Isar River at Lenggries between the year
2017 and 2019. The Iller is a tributary of the Danube, and we expect that an increase in the water level of
the former will flow into the latter within a day, i.e., with a lag of 1 time-step. In this case, d = 3 and the
only causal relationship is xKempten

t−1 ⇒ xDillingen
t .

• Air Quality Index (AQI): introduced by Cheng et al. (2024), it consists of the PM2.5 pollution index
monitored hourly (δt = 1 hour) over the course of one year by 36 stations spread across Chinese cities. In
this case, d = 36 and the available causal relationships are modeled through a Granger Causality matrix,
which is based on the pairwise distances between sensors.
• Hénon: introduced by Li et al. (2023), this synthetic dataset consists of d = 6 coupled Hénon chaotic
maps (Kugiumtzis, 2013) in which there is one positive (xi

t−2 ⇒ xi
t) and two negative causal relationships

(−xi
t−1 ⇒ xi

t and −xi
t−1 ⇒ xi+1

t ), ∀ 1 ≤ i ≤ d. The equations generating this dataset are described
in Appendix B.1.

In the experiments, the maximum lag τmax, introduced in Section 4.2, is fixed to 2 for all the datasets,
consistent with the maximum lag observed in the ground truth. A sensitivity analysis, and a discussion,
of parameter τmax is provided in Appendix C.3. The sequence length is 32 for the Hénon and the Rivers
datasets, and 24 for the AQI dataset.

5.2 Models

Benchmarks. We compare our model against the two most recent state-of-the-art works described in Sec-
tion 2, namely CausalTime (Cheng et al., 2024) and CR-VAE (Li et al., 2023). We also include two
other baseline solutions using diffusion models: (i) Base-Diffusion, a vanilla diffusion framework applied
to time-series generation; (ii) CSDI (Tashiro et al., 2021), appropriately adapted to a generation task as
described by Coletta et al. (2023). A detailed description of these models can be found in Appendix B.2.
DiffCATS: We trained our model setting the λ parameters in Equation (2) and Equation (3) to λ1 = 0.01
and λ2 = 1, respectively. An extensive ablation study about the impact of each loss component along with
additional loss functions, namely the ℓ1-norm and a Fourier-based loss, is presented in Appendix C.2. The
full list of hyper-parameters is shown in the Appendix in Table 7. To extract the causal graph from the VAR
coefficients, we set ρ = 1% and q = 0.95 (see Definition 1).

5.3 Evaluation Metrics

Evaluation of time-series. We evaluated the quality of the synthetic time-series using the following
metrics for fidelity, usefulness, and diversity: Discriminative Score (Discr.) (Yoon et al., 2019), Pre-
dictive Score (Pred.) (Yoon et al., 2019), Authenticity (Auth.) (Alaa et al., 2022), Maximum Mean
Discrepancy (MMD) (Gretton et al., 2006) and Cross-Correlation (xCorr.). All of them are well
described in Appendix B.4.
Evaluation of Causal Graphs. We note that, despite the existence of a causal phenomenon relating the
variables of the datasets, not all the samples extracted from the long time-series may exhibit clear evidence
of this. For instance, concerning the Rivers dataset, even if the Iller is a tributary of the Danube, if there is
no significant variation in the water level of the former, the phenomenon of causality cannot be observed.
Indeed, the water level of the three rivers simply remains stable over substantial periods of time. As a result,
many time-step windows extracted from the dataset will not provide evidence of the causal relationship.
Considering this issue, we employ metrics that do not penalize missing causal relationships from a sample.
In contrast, we want to penalize those causal relationships identified by the model when domain knowledge
clearly indicates that such relationships do not exist in real data (for instance, a tributary cannot be caused
by the recipient river). The recent works of Ahmad et al. (2022) and Hasan et al. (2023) addressed this
problem by introducing metrics based on the false positive rate of causal relationships.

Accordingly, we consider the Granger Causality False Positive Rate (GC-FPR) and the Causal
Graph False Positive Rate (Graph-FPR), which account for the fraction of edges in the graph known
to be incorrect. Notice that, since CR-VAE does not output a causal graph for each sample, we use the
F1-Score to evaluate its causal relationships with respect to the ground-truth Granger Causality matrix.
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We emphasize that the generative method proposed in this paper is not designed to be used as a causal
discovery algorithm, so we do not focus on the exact causal relationships expected to be extrapolated from
the datasets. Rather than that, we focus on the realism of the causal graphs and their consistency with the
corresponding generated synthetic time-series, ensured by the design of the generative pipeline.

Finally, we evaluated the Inference Time (Inf. time) of the models, i.e. the time to generate a synthetic
sample and the corresponding graph.

5.4 Results

In this section, we discuss the results of our experiments. All the quantitative scores are shown in Table 1. We
report the results of DiffCATS with respect to the state-of-the-art approaches discussed in Section 5.2, namely,
Base-Diffusion and CSDI for comparing the generated time-series, and CausalTime and CR-VAE for
comparing both time-series and causal graphs. We point out that Base Diffusion and CSDI are included as
reference points, to show that DiffCATS ’ time-series quality is not far from high-performing time-series-only
generators, while additionally providing causal graphs. All the results report the mean and standard deviation
across 10 different seeds.
Table 1: Results of the models on the three datasets, where ↓ indicates lower is better and ↑ indicates higher
is better. For each metric, the best result is highlighted in bold, and the second-best result is underlined
(restricted to models able to generate both time-series and causal graphs).

Dataset Metric
Models Time-Series Only Models Time-Series & Causal-Graphs

Base
Diffusion CSDI DiffCATS CausalTime CR-VAE

Hénon

Discr. ↓ 0.032 ± 0.008 0.026 ± 0.011 0.032 ± 0.017 0.311 ± 0.142 0.243 ± 0.113
Pred. ↓ 0.170 ± 0.005 0.221 ± 0.006 0.156 ± 0.009 0.200 ± 0.011 0.244 ± 0.012
Auth. ↑ 0.679 ± 0.005 0.905 ± 0.015 0.693 ± 0.008 0.720 ± 0.031 0.651 ± 0.111
MMD ↓ 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.012 ± 0.009
xCorr ↓ 0.034 ± 0.005 0.094 ± 0.005 0.029 ± 0.005 0.060 ± 0.022 0.131 ± 0.031

GC-FPR ↓ — — 0.311 ± 0.001 0.482 ± 0.041 0.520 ± 0.070∗

Graph-FPR ↓ — — 0.017 ± 0.000 0.231 ± 0.010 —
Inf. time ↓ 1231ms 241ms 1548ms 8790ms 194ms∗

Rivers

Discr. ↓ 0.074 ± 0.007 0.019 ± 0.022 0.067 ± 0.010 0.090 ± 0.050 0.110 ± 0.090
Pred. ↓ 0.030 ± 0.001 0.043 ± 0.002 0.033 ± 0.001 0.026 ± 0.001 0.036 ± 0.002
Auth. ↑ 0.586 ± 0.008 1.000 ± 0.000 0.630 ± 0.010 0.560 ± 0.030 0.720 ± 0.020
MMD ↓ 0.001 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.009 ± 0.011 0.059 ± 0.029
xCorr ↓ 0.014 ± 0.004 0.018 ± 0.006 0.020 ± 0.010 0.010 ± 0.000 0.120 ± 0.020

GC-FPR ↓ — — 0.220 ± 0.000 0.570 ± 0.010 0.370 ± 0.140∗

Graph-FPR ↓ — — 0.070 ± 0.000 0.220 ± 0.010 —
Inf. time ↓ 1252ms 239ms 1492ms 4248ms 148ms∗

AQI

Discr. ↓ 0.287 ± 0.010 0.238 ± 0.068 0.293 ± 0.050 0.460 ± 0.020 0.250 ± 0.040
Pred. ↓ 0.043 ± 0.001 0.048 ± 0.001 0.047 ± 0.001 0.054 ± 0.001 0.043 ± 0.001
Auth. ↑ 0.860 ± 0.008 0.980 ± 0.013 0.820 ± 0.010 0.770 ± 0.010 0.800 ± 0.100
MMD ↓ 0.001 ± 0.000 0.018 ± 0.001 0.001 ± 0.000 0.008 ± 0.001 0.017 ± 0.001
xCorr ↓ 0.078 ± 0.005 0.080 ± 0.003 0.070 ± 0.010 0.030 ± 0.010 0.120 ± 0.010

GC-FPR ↓ — — 0.390 ± 0.000 0.490 ± 0.000 0.270 ± 0.000∗

Graph-FPR ↓ — — — — —
Inf. time ↓ 1079ms 242ms 1395ms 205s 442ms∗

Considering only the models that are able to generate both the time-series and the corresponding causal graph,
we can see that regarding the fidelity and the quality of the synthetic time-series, DiffCATS outperforms the
other approaches in terms of MMD on all three datasets, maintaining a satisfactory degree of Authenticity.
It is also the best model concerning the Discriminative Score on two out of three datasets, and in all the
other cases, it obtains scores very close to the benchmark. This validates our generated samples with respect
to their originality, usefulness, and indistinguishability from real data.

The results comparing DiffCATS’ time-series with those generated by the two state-of-the-art models capable
of producing only time-series demonstrate a comparable level of quality between them. This ensures that
the generation of the time-series through the VAR coefficients does not sacrifice the ability of the model to
produce high-quality samples.

Regarding the causal graphs, DiffCATS achieves both the best GC-FPR and the best Graph-FPR scores in
all three datasets, demonstrating its effectiveness in extracting causal relationships from the VAR coefficients.
This result is of critical importance given that it ensures the reliability of the graphs as a representation
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of the causal relationships exhibited by the time-series. For the AQI dataset, we report only the GC-FPR
metric that evaluates the Granger Causality matrix, as no lag information is provided in the ground-truth
causal phenomena. We recall that CR-VAE does not output a causal matrix for each sample, but it is learned
and fixed in the trained model. Therefore, since the Granger causality matrix is the same for all generated
samples, the GC-FPR metric does not fully capture the model’s ability in this context. For this reason
we reported the F1-score of the learned matrix with respect to the ground-truth Granger causality matrix,
highlighting room for improving performance.

Summarizing, we highlight that our model achieves the lowest Discriminative Score and MMD along
with the best Graph-FPR, ensuring that the synthetic samples exhibit a high level of realness and the causal
graphs are reliable. Furthermore, as evidenced in Figure 1, the model is able to generate synthetic traces with
strictly associated causal graphs, eliminating the need for stationarity assumptions in causal relationships
employed by previous works.

We also evaluated the inference time of the models to obtain a sample made up of the synthetic time-series and
the corresponding causal graph. CR-VAE turned out to be the fastest, thanks to its VAE-based architecture.
However, great time saving occurs because the causal graph is fixed for each sample since it is extracted from
the parameters of the model. Our model achieves an inference time significantly lower than CausalTime,
mainly because the post-processing of the feature importance through DeepSHAP is very time-consuming.
Instead, in our architecture, the causal graph is generated simultaneously with the time-series, with only
a moderate overhead. Moreover, the sampling of diffusion models can be accelerated, using, for example,
implicit diffusion models (Song et al., 2021).

Additional experiments and results can be found in the Appendix, including the evaluation of the time-series
through dimensionality reduction techniques, namely t-SNE and PCA [C.4], kernel density estimation [C.5],
the evolution of the evaluation metrics during the training [C.6], the robustness of the graph extraction to
noise in the time-series [C.7.1] and a different approach to extract the causal graph from the VAR coefficients
using the Dixon’s Q Test [C.7.2].

6 Downstream Tasks

6.1 Benchmark of Causal Discovery Algorithms

Our primary downstream task is to benchmark causal discovery algorithms. Given a generated couple ⟨x̂, ĝ⟩,
we feed the algorithm with the generated time-series x̂ and we compare the predicted causal graph against
the generated graph ĝ. Related work presenting this type of benchmark is described in Appendix E.1. In our
benchmark, we included the following approaches:
• Granger-Causality-based: Granger Causality (GC, (Granger, 1969)); Neural Granger Causality
(NGC, (Tank et al., 2021)); economy-SRU (eSRU, (Khanna & Tan, 2019)); Temporal Causal Discov-
ery Framework (TCDF, (Nauta et al., 2019)); CUTS (Cheng et al., 2022); CUTS+ (Cheng et al., 2023);
• LiNGAM-based: ICA-LiNGAM (Shimizu et al., 2006); VARLiNGAM (Hyvärinen et al., 2010); Di-
rectLiNGAM (Shimizu et al., 2011);
• Constraint-based: PCMCI+ (Runge et al., 2020);
• Gradient-based: NTS-NOTEARS (Sun et al., 2023); DYNOTEARS (Pamfil et al., 2020); Rhino (Gong
et al., 2023);
• CCM-based: Latent Convergent Cross Mapping (LCCM, (De Brouwer et al., 2020));
• Other: Neural Graphical Model (NGM, (Bellot et al., 2021)) employing neural ordinary differential
equations.

The results are shown in Table 2, evaluated in terms of AUROC and AUPRC (Area Under Precision-Recall
Curve). To always have a well-defined ground-truth, for this benchmark, we selected the strongest 15% causal
connections for each sample. As additional experiments, we also executed the benchmark using the top 1%
approach described in Section 4.3. These results are reported in Appendix E.3.

The comparison between real and synthetic data performance demonstrates encouraging coherence across
multiple causal discovery algorithms, suggesting that the synthetic data effectively captures key characteristics
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of real-world causal relationships. Several high-performing methods, including PCMCI+, CUTS, and CUTS+
show remarkably consistent performance between real and synthetic datasets, with AUROC differences
typically within 0.05, indicating that the synthetic generation process successfully preserves the essential
causal structure and complexity. The synthetic data proves particularly effective for methods like NGM
and eSRU, which achieve consistently strong AUPRC scores (0.73-0.81) across both real and synthetic
versions, demonstrating the synthetic data’s ability to maintain predictive relationships. Notably, the AQI
dataset shows the strongest real-synthetic correspondence across methods, while the synthetic Rivers dataset
successfully replicates the challenging characteristics of its real counterpart. While some methods, such as
NTS-NOTEARS and TCDF, exhibit performance variations, these discrepancies appear more attributable to
algorithmic sensitivity rather than fundamental limitations in synthetic data quality. Overall, these results
indicate that the synthetic data provides a high-quality approximation of real-world causal dynamics, offering
a valuable benchmark that captures the essential complexity needed for robust causal discovery evaluation.

Table 2: Results of the Causal Discovery algorithms on real and synthetic data. For real data, the highest
value is shown in bold and the second-highest value is underlined. For synthetic data, green background
indicates comparable performance to real data, while red background indicates a high difference from real
data performance.

Metric Method Real Data Synthetic Data
Hénon Rivers AQI Hénon Rivers AQI

AUROC

GC 0.54 ± 0.09 0.69 ± 0.24 0.53 ± 0.04 0.52 ± 0.03 0.57 ± 0.07 0.50 ± 0.00
DYNOTEARS 0.62 ± 0.11 0.54 ± 0.23 0.49 ± 0.03 0.60 ± 0.04 0.51 ± 0.03 0.50 ± 0.00

NTS-NOTEARS 0.48 ± 0.00 0.50 ± 0.00 0.50 ± 0.01 0.57 ± 0.04 0.69 ± 0.10 0.50 ± 0.00
PCMCI+ 0.70 ± 0.14 0.71 ± 0.28 0.72 ± 0.04 0.74 ± 0.02 0.77 ± 0.06 0.74 ± 0.00

Rhino 0.53 ± 0.01 0.45 ± 0.03 0.62 ± 0.02 0.51 ± 0.01 0.53 ± 0.06 0.50 ± 0.00
CUTS 0.80 ± 0.10 0.62 ± 0.04 0.78 ± 0.02 0.75 ± 0.02 0.76 ± 0.06 0.74 ± 0.00

CUTS+ 0.76 ± 0.01 0.72 ± 0.01 0.79 ± 0.00 0.75 ± 0.02 0.75 ± 0.08 0.74 ± 0.00
Neural-GC 0.68 ± 0.01 0.56 ± 0.02 0.50 ± 0.00 0.72 ± 0.01 0.52 ± 0.05 0.50 ± 0.01

NGM 0.60 ± 0.03 0.68 ± 0.10 0.53 ± 0.03 0.61 ± 0.06 0.69 ± 0.12 0.50 ± 0.00
LCCM 0.54 ± 0.02 0.50 ± 0.00 0.51 ± 0.00 0.55 ± 0.00 0.50 ± 0.00 0.52 ± 0.00
eSRU 0.50 ± 0.00 0.73 ± 0.07 0.50 ± 0.00 0.50 ± 0.00 0.75 ± 0.11 0.50 ± 0.00
TCDF 0.49 ± 0.02 0.50 ± 0.02 0.55 ± 0.02 0.52 ± 0.03 0.50 ± 0.01 0.50 ± 0.00

ICA-LiNGAM 0.45 ± 0.06 0.72 ± 0.27 0.52 ± 0.01 0.44 ± 0.07 0.76 ± 0.29 0.49 ± 0.01
VARLiNGAM 0.50 ± 0.06 0.56 ± 0.27 0.59 ± 0.03 0.50 ± 0.06 0.62 ± 0.31 0.48 ± 0.03

DirectLiNGAM 0.51 ± 0.06 0.72 ± 0.29 0.52 ± 0.01 0.50 ± 0.06 0.68 ± 0.31 0.48 ± 0.01

AUPRC

GC 0.42 ± 0.07 0.40 ± 0.29 0.57 ± 0.02 0.47 ± 0.13 0.46 ± 0.10 0.57 ± 0.09
DYNOTEARS 0.56 ± 0.02 0.62 ± 0.05 0.63 ± 0.01 0.52 ± 0.08 0.58 ± 0.03 0.65 ± 0.00

NTS-NOTEARS 0.17 ± 0.00 0.17 ± 0.00 0.36 ± 0.03 0.45 ± 0.07 0.54 ± 0.13 0.42 ± 0.10
PCMCI+ 0.63 ± 0.09 0.65 ± 0.15 0.74 ± 0.04 0.68 ± 0.02 0.64 ± 0.05 0.73 ± 0.02

Rhino 0.59 ± 0.04 0.64 ± 0.02 0.58 ± 0.03 0.70 ± 0.07 0.66 ± 0.07 0.69 ± 0.04
CUTS 0.43 ± 0.07 0.65 ± 0.05 0.64 ± 0.03 0.68 ± 0.02 0.64 ± 0.05 0.73 ± 0.00

CUTS+ 0.76 ± 0.03 0.55 ± 0.05 0.78 ± 0.03 0.68 ± 0.02 0.62 ± 0.08 0.73 ± 0.00
Neural-GC 0.66 ± 0.01 0.56 ± 0.06 0.62 ± 0.04 0.68 ± 0.01 0.55 ± 0.08 0.64 ± 0.05

NGM 0.75 ± 0.03 0.73 ± 0.09 0.81 ± 0.06 0.77 ± 0.05 0.73 ± 0.11 0.80 ± 0.05
LCCM 0.68 ± 0.01 0.77 ± 0.00 0.58 ± 0.00 0.67 ± 0.00 0.78 ± 0.00 0.57 ± 0.00
eSRU 0.76 ± 0.01 0.77 ± 0.09 0.77 ± 0.00 0.78 ± 0.02 0.76 ± 0.10 0.81 ± 0.00
TCDF 0.37 ± 0.09 0.51 ± 0.02 0.35 ± 0.02 0.65 ± 0.14 0.57 ± 0.03 0.64 ± 0.07

ICA-LiNGAM 0.34 ± 0.05 0.51 ± 0.37 0.30 ± 0.02 0.33 ± 0.05 0.61 ± 0.40 0.28 ± 0.01
VARLiNGAM 0.36 ± 0.06 0.33 ± 0.35 0.39 ± 0.04 0.36 ± 0.06 0.44 ± 0.41 0.27 ± 0.02

DirectLiNGAM 0.37 ± 0.07 0.53 ± 0.39 0.30 ± 0.01 0.37 ± 0.06 0.52 ± 0.42 0.27 ± 0.01

0.0 0.1 0.2 0.3 0.4 0.5
Difference (absolute value)

Regarding the performance of the algorithms, three of them — namely, PCMCI+, CUTS, and CUTS+
— achieve the best tradeoff between AUROC and AUPRC on all datasets. Additionally, NGM achieves
satisfactory results on the Hénon and Rivers datasets, yielding AUPRC values among the highest. Instead,
Neural-GC performed well only on the synthetic dataset of our benchmark, while eSRU performed well
only on the Rivers dataset. While LiNGAM-based approaches struggled with the non-linear Hénon dataset,
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ICA-LiNGAM and DirectLiNGAM demonstrated competitive performance on the real-world datasets (Rivers
and AQI), particularly in terms of AUROC. Among the constraint-based approaches, only PCMCI+ achieved
satisfying performances, while, in general, the Granger-Causality-based approaches proved to be the best ones.
None of the methods got an AUROC lower than 0.5, meaning that there were no inverted classifications. The
overall performance of tested algorithms is lower than what has been reported on simpler synthetic datasets,
such as Lorenz-96 (Cheng et al., 2023; Tank et al., 2021), where some methods achieved near-perfect scores.
This performance gap may suggest that current algorithms are still imprecise for certain samples and datasets,
and they could be further refined to improve accuracy. In general, more challenging synthetic datasets should
be used to rigorously test and potentially improve existing TSCD methods. The performance degradation
observed in some algorithms when exposed to new data further underscores the need for this approach.

Dealing with Latent Confounders. The existence of latent factors, called confounders, that influence
both the independent variable (the cause) and the dependent variable (the effect) may lead to spurious
associations, making it harder to determine the true causal relationship. Our generative model is designed to
faithfully replicate the underlying characteristics of the input real dataset, including any statistical and causal
properties that are present. As such, if the real dataset exhibits associations induced by latent confounders,
synthetic data generated by our framework will reflect these characteristics as well.

Schur & Peters (2024) conducted an experiment in which the observed variable X is modeled as an Orn-
stein–Uhlenbeck (OU) process, the hidden confounder U as an independent spectrally-sparse OU process,
and the effect time-series Y according to the equation Yt = βXt + Ut + ηt, where ηt is i.i.d. Gaussian noise.
The objective is to infer the true causal effect of X on Y , i.e. the estimation of β. The authors show that
their DecoR method achieves a lower Mean Absolute Error (MAE) in estimating β with respect to a standard
Ordinary Least Squares (OLS) approach.

Building on this framework, we assessed the ability of DiffCATS to preserve the relevant statistical and causal
properties of data generated from the true OU process. Specifically, we trained the generative model on data
simulated according to the above OU processes, with the parameters described by Schur & Peters (2024). We
evaluate how well causal effect estimation methods could recover β on both real (directly simulated) and
synthetic (generative model–produced) data. The results in Table 3 indicate that the generative model is
able to retain the essential statistical and causal properties of the original OU-based data, as evidenced by
the consistent estimation performance of both OLS and DecoR.

Table 3: MAE in estimating β.
Real Synthetic

OLS 0.76 ± 0.23 0.78 ± 0.19
DecoR 0.16 ± 0.14 0.19 ± 0.15

These findings show that: (i) existing deconfounding algorithms can be effectively applied to our synthetic
data; (ii) synthetic datasets produced by our approach can serve as valuable testbeds for developing and
validating new algorithms targeting latent confounding in observational data.

6.2 Causal Prediction and Classification

To demonstrate the utility of our dataset beyond benchmarking and improving causal discovery algorithms,
we introduce the following two downstream tasks:

• Causal Prediction. We show that conditioning a prediction model on the causal graph (see example
in Figure 2) significantly improves time-series reconstruction performance, underscoring both the
utility and coherence of our graphs. In detail, we trained a 2-layer LSTM to predict the i-th feature
of a time-series given the remaining features and the corresponding causal graph. Results are shown
in Table 4. Additional details are reported in Appendix C.10.

• Causal Classification. Classifying observational data (i.e., time-series) based on the underlying
system dynamics (i.e., causal graphs) is a critical task across numerous domains. Indeed, causal
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classification has broad applicability, ranging from emergency detection (i.e., identify transitions to
unsafe system dynamics from time-series data) to customer segmentation (i.e., assign customers to
meaningful segments based on their responses to incentives — such as purchase history, engagement,
or response to promotions — modeled as causal graphs). We demonstrate that our synthetic dataset
can effectively support (augment) the training of classification models, particularly in scenarios
where certain classes are underrepresented in real-world data. For demonstration, we organized the
synthetic and real Rivers data into 11 distinct classes according to their causal graphs. We then
trained a 2-layer LSTM to classify unseen real time-series, achieving an F1-score of 0.69, which
highlights the utility of synthetic data. All the details are described in Appendix C.11.

Table 4: Downstream task - Causal Prediction (Mean Absolute Error).
Dataset Predictor

w/ Causal Graph w/o Causal Graph

Hénon 0.13 ± 0.01 0.19 ± 0.01

Rivers 0.01 ± 0.00 0.02 ± 0.00

7 Conclusions & Limitations

We introduced DiffCATS, a novel pipeline to generate faithful time-series along with realistic and coherent
causal graphs specifically suited for the TSCD task. To the best of our knowledge, this is the first work to
incorporate the simultaneous generation of causal graphs for causally related time-series generation without
the need for the stationarity assumption. We demonstrated that our model can effectively generate synthetic
datasets to support the causal discovery community in enhancing their algorithms in various domains, learning
directly from real-world observational data.

We acknowledge that one limitation of this work is that only linear causal relationships are present in
the synthetic samples. In Appendix C.9, we show a possible solution to accommodate non-linear causal
links by increasing the polynomial degree employed by the VAR. We also note that DiffCATS ’ expressivity
depends on the chosen maximum lag τmax, which bounds the longest temporal dependencies the model can
represent. Finally, the requirement of generating both the time-series and the causal graph could make its
time-series-only metrics trail specialized generators (namely CSDI) and its inference slower due to iterative
diffusion sampling with respect to competitors like CR-VAE. So practitioners may prefer CR-VAE for fastest
sampling (but with a fixed causal pattern for all synthetic samples), CSDI/time-series-only diffusion models
when graphs are unnecessary, and DiffCATS when coherent per-sample graphs are needed without expensive
post-hoc explanation.

In future works this approach can be extended to add a loss-based guidance of the coefficients so that the
generation can be conditioned on a prior-known causal graph. In fact, a key advantage of our approach is
the realism and flexibility that diffusion models provide, which allows the implementation of sophisticated
conditioning strategies on trained models.
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A Theory

A.1 Assumptions

Our work makes the following assumptions, aligned with several TSCD algorithms:
• Markovian Condition: The joint distribution of the multi-variate time-series can be factorized

into P (x) =
∏

i P (xi|P(xi)), i.e., every variable is dependent only on its parents.

• Causal Faithfulness: It assumes that the relationships between variables in the data faithfully
reflect the true causal connections between them.

On the other hand, thanks to the fact that our approach generates the time-series and its strictly associated
causal graph, we do not need to assume causal stationarity:

• Causal Stationarity: It states that all the causal links do not change over time.

A.2 Relation of Definition 1 to Granger Causality and Transfer Entropy

In this section we provide additional details and intuitions to clarify how our Definition 1 relates to established
notions such as Granger causality (GC) and Transfer Entropy (TE).

The intuition behind this is as follows:
1. Connection to Granger causality. Our method parameterizes inter-variable temporal dependencies

using a VAR-type structure, which is the same modeling family typically used to define linear GC.
When trained with an L2 (MSE) objective, the resulting estimation is closely related to least-squares
fitting of a linear autoregressive model. Under standard preprocessing/regularity conditions (e.g.,
standardized variables and limited predictor collinearity), larger VAR coefficients tend to correspond
to predictors with larger marginal contributions in reducing prediction error.

2. GC–TE equivalence under Gaussianity. We rely on the result of Barnett et al. (2009), which
shows that for jointly Gaussian processes (equivalently, linear models with Gaussian residuals), GC
and TE quantify the same directed dependence up to a constant factor.

Connection to Granger causality. Our formulation identifies candidate links by thresholding the
magnitude of learned VAR coefficients. Let ci,j

τ (l) denote the coefficient multiplying xi(l− τ) in the predictor
for xj(l) at lag τ and time index l (with τ ∈ {1, . . . , τmax}). In our framework, these coefficients arise from
the causal reconstruction module, while the overall model is trained to minimize an L2 reconstruction loss:
LRec = ∥x0 − x̂0∥2

2.

Minimizing MSE encourages the model to fit the conditional mean of each target variable given its predictors,
which is consistent with least-squares estimation of a linear VAR. Moreover, under a linear-Gaussian noise
interpretation (approximately Gaussian, homoscedastic residuals), minimizing squared error is equivalent to
maximizing a conditional Gaussian likelihood.

In linear VAR formulations, GC is defined via the improvement in the prediction of a target when including the
past of a candidate driver, relative to a restricted model that excludes it. Concretely, consider predicting the
target coordinate xj(l) from the past window {x(l−1), . . . , x(l−τmax)}. Let the full linear predictor include all
variables’ histories up to τmax, and let the restricted predictor remove the regressor corresponding to xi(l− τ)
(or, in a stronger form, remove all lags of xi). The “no directed influence at lag τ” null can be expressed as
H0 : ci,j

τ = 0, (and the “no Granger causality from i to j up to τmax” null as H0 : ci,j
τ = 0 ∀τ ∈ {1, . . . , τmax}).

In our sample-specific, time-varying setting, the natural analogue is local in time: H0(l) : ci,j
τ (l) = 0. Moreover,

since Definition 1 aggregates coefficient magnitudes over time using a quantile operator, an “absence of link”
consistent with our extraction rule can be stated as: H0 : Qq

({
|ci,j

τ (l)| : τmax ≤ l ≤ L
})
≤ ε, for a small ε

and Qq(·) denoting the q-quantile.

A common definition of linear GC strength is: Fi→j = log Var(εres
j )

Var(εfull
j

) , where εfull
j and εres

j denote the residuals of
the optimal full vs. restricted linear predictors (with analogous multivariate generalizations using covariance
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determinants). Our model is trained to minimize the reconstruction loss (Section 4.1), and the causal
reconstruction produces x̂ through the VAR coefficients. Minimizing squared reconstruction error is precisely
the criterion that (in a linear regression interpretation) minimizes residual variance. Thus, in the linear
predictive regime, the learned coefficients {ci,j

τ (l)} parameterize the same type of conditional-mean predictor
that underlies Granger-style predictability.

We recognize that, our Definition 1 is not an explicit computation of Fi→j , nor a formal hypothesis test.
Instead, it is a practical edge-selection rule based on the magnitude and persistence of the learned coefficients.
Summarizing, this is consistent with GC in the following sense:

• If ci,j
τ (l) ≡ 0 for τmax ≤ l ≤ L, then Qq(|ci,j

τ (l)|) = 0 and the corresponding link will not be selected,
matching the Granger-style “no predictive contribution” null.

• Under standardized variables and weak predictor collinearity, |ci,j
τ (l)| serves as a practical proxy for

the predictive importance of regressor xi(l−τ) in the conditional-mean model for xj(l): larger |ci,j
τ (l)|

is typically associated with a larger increase in residual variance when that regressor is removed, and
hence with larger Granger-style predictability gains. We explicitly state this as an interpretability
proxy.

Equivalence of Granger causality and Transfer Entropy (TE). Standard GC measures how much
the prediction-error variance decreases when a variable (or its past) is added to the predictor set. Transfer
entropy (TE) can be written as a conditional mutual information:

Ti→j = I
(
Xpast

i ; Xj(l) | Xpast
−i

)
,

where Xpast
−i denotes the past of all variables except i (up to τmax).

Barnett et al. (2009) show that for jointly Gaussian processes (equivalently, linear models with Gaussian
residuals), linear GC Fi→j and TE Ti→j quantify the same directed dependence up to a constant factor.
Using natural logarithms, this relationship can be written as Fi→j = 2 Ti→j , (with the constant changing if a
different logarithm base is used). Therefore, within the linear-Gaussian approximation, stronger directed
predictability gains (GC) correspond to stronger information flow (TE). Consistent with the discussion above,
our coefficient-thresholding rule should be interpreted as a practical proxy for such directed dependence in
the linear-Gaussian regime, rather than an explicit computation of GC/TE in full generality.

B Implementation Details

B.1 Datasets

Table 5 reports the most important statistics of our datasets and Figure 4 shows the real causal graphs of the
datasets. We also include additional details not discussed in Section 5.1.

Table 5: Statistics of the datasets.
Dataset Number of

Training Samples
Sequence

Length
Number of
Variables

Number of
Causal Relations

Hénon 11295 32 6 11
Rivers 9969 32 3 1
AQI 7246 24 36 354

Hénon: As described by Li et al. (2023), it is generated by the following equations:

x1
t+1 = 1.4− (x1

t )2 + 0.3 · x1
t−1

xi
t+1 = 1.4− (e · xi−1

t + (1− e) · xi
t)2 + 0.3 · xi

t−1

with i = 2, . . . , d, where the number of dimensions d = 6 and e = 0.3. The initial values are sampled from a
standard Gaussian distribution. In this dataset, the causal graph consists of one positive relationship with a
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(a) Hénon

Dillingen

Kempten

Lenggries

(b) Rivers
Figure 4: Real Causal Graphs (green and red arrows represent positive and negative causal relationships,
respectively).

lag of 2 between a variable and itself (xi
t−2 ⇒ xi

t) and two negative relationships. The first one is between
the variable and itself with a lag of 1 (−xi

t−1 ⇒ xi
t); the second one is between two consecutive variables

again with a lag of 1 (−xi
t−1 ⇒ xi+1

t ).

Rivers: The data are provided by the Bavarian Environmental Agency: https://www.gkd.bayern.de.

Air Quality Index (AQI): It can be found at: https://www.microsoft.com/en-us/research/project/
urban-computing. We recall that, as in (Cheng et al., 2024) state, the causal relations in the AQI dataset
are highly dependent on geometry distances. The graph contained in the dataset they released has been
extracted considering the Gaussian kernel and a threshold with respect to the geographic distances of the
sensors. In particular,

wij =
{

1, dist(i, j) ≤ σ

0, otherwise

where dist measures the distance between two sensors and σ is set to ≈ 40 km. See the work of Cheng et al.
(2024) for more details.

B.2 Benchmark

We compare our approach against two state-of-the-art approaches, whose code is available from the respective
repositories:

• CausalTime (Cheng et al., 2024): https://github.com/jarrycyx/UNN.
It is an autoregressive model based on normalizing flows, able to observe some time-steps of the
time-series and generate the subsequent step. Thanks to this architecture, the authors can extract the
importance of each feature in the input time-series using an explainability technique,i.e., DeepSHAP,
provided by Sundararajan & Najmi (2020), and eventually extract a causal graph.

• CR-VAE (Li et al., 2023): https://github.com/hongmingli1995/CR-VAE.
It is based on a recurrent VAE made up of a multi-head decoder, in which the p-th head is responsible
for generating the p-th feature of the time-series. Encouraged by a sparsity penalty on the weights of
the decoder, it learns a sparse causal matrix able to encode causal relationships among the variables.
Since the causal matrix is part of the model’s parameter, it will be the same for each synthetic
sample generated by the model, in contrast to our approach and CausalTime. Moreover, a notable
limitation of CR-VAE is that it is restricted to the notion of Granger Causality, implying that it
does not consider the concept of time lag in observing the causal relationships.

• CSDI (Tashiro et al., 2021): https://github.com/ermongroup/CSDI. We modified the original
CSDI model to make it suitable for the unconditional time-series generation task, following (Coletta
et al., 2023).

We tuned the hyper-parameters of these models on all the datasets and they are reported in Table 6.
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Table 6: Hyper-parameters of CausalTime, CR-VAE and CSDI.
Model Hyper-parameter Dataset

Hénon Rivers AQI

CausalTime

Share type Decoder Decoder Decoder
N. Epochs Train Phase 1 40 20 10
N. Epochs Train Phase 2 10 10 5

Learning rate 0.001 0.0001 0.0001
Batch size 32 32 32

Hidden_size 128 128 128
N. Layers 2 2 2
N. Heads 4 4 4
Dropout p 0.1 0.1 0.1

Flow length 4 4 4

CR-VAE

Hidden 64 64 64
N. Iterations Train Phase 1 1000 1000 1000
N. Iterations Train Phase 2 90000 9000 90000

Learning rate 0.05 0.05 0.05
Batch size 1024 1024 1024

CSDI

Epochs 39 79 59
Batch size 16 16 16

Learning rate 0.0001 0.0001 0.0001
β Schedule Quadratic Quadratic Quadratic

β Start 1e − 06 1e − 06 1e − 06
β End 0.5 0.5 0.5

Diffusion Timesteps (T) 50 50 50

B.3 Architecture of Denoising Network

Here we discuss the denoising network architecture. We slightly modified the architecture of the work of Song
et al. (2021) released in the authors’ repository6 by adding the convolution layer to output the coefficients.
The overall architecture of Denθ is depicted in Figure 5. It consists of an initial convolution layer and a
series of Resnet and Attention blocks shown in Figures 6 and 7, respectively.

To represent the denoising time-step t the model employs cosine embedding and an MLP block made up of
2 linear layers with the activation function f(x) = x · σ(x) in the middle, where σ represents the Sigmoid
function σ(x) = 1

1+e−x . The time-step information is injected in all the Resnet blocks.

In the pictures, Non-linearity and GroupNorm refer to the function f(x) and Group Normalization,
respectively. The Downsample block is just a 1d-convolution with a stride equal to 2. The Upsample block
is made up of a Nearest Interpolation and a 1d-convolution.

The end part of the architecture is made up of d + 1 convolutional layers. The first one is responsible for
outputting the first τmax steps of the time-series. Each of the remaining d convolutional layers is responsible
for the coefficients related to the causality impact on one feature. Then, the coefficients are multiplied
with the initial steps of the time-series and the final output is reconstructed following the formalization
in Section 4.2.

The most important hyper-parameters are reported in Table 7.

Table 7: Hyper-parameters of the generative model.
Training
epochs

Batch
size

Learning
rate

Diffusion
Timesteps (T) β schedule Time-step

embedding

50 32 1e-4 100 Linear Cosine
start=0.0001, end=0.02 dim=128

B.4 Evaluation Metrics

In this section, we describe each evaluation metric in detail.

• Discriminative Score (Yoon et al., 2019): It measures the fidelity of synthetic time-series, evaluating to
which extent they are indistinguishable from real ones. It consists in training an off-the-shelf 2-layer LSTM

6https://github.com/mirthAI/Fast-DDPM
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Attention
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Figure 5: Architecture of Denθ.

GroupNorm
Non-linearity Conv1d

Non-linearity Linear

GroupNorm
Non-linearity Dropout Conv1d

Figure 6: Architecture of the Resnet Block of Denθ.

to distinguish real samples from synthetic ones. The model is trained for 30 epochs with a learning rate of
1e− 4, hidden size equals 8, and batch size set to 32. The loss function to be optimized is the Binary Cross
Entropy where real samples are labeled as 1 and synthetic samples as 0. The score is formally defined as
|0.5−AUROC|, where AUROC is the area under the ROC (Receiver-Operating Characteristic) curve of the
trained discriminator.

• Predictive Score (Yoon et al., 2019): It measures the usefulness of synthetic time-series for a downstream
prediction task. Following the train-on-synthetic and test-on-real criterion, a post-hoc sequence-prediction
model is trained to predict the subsequent steps of a time-series on synthetic data and evaluated on real
data in terms of the Mean Absolute Error (MAE) of the reconstructions. We trained a 2-layer LSTM-based
predictor to forecast the last 1

10 · seq_len time-steps over each synthetic sample for 10 epochs, with a
learning rate of 1e− 3, hidden size equal to 32, and batch size set to 32. The loss function to be optimized
is the ℓ1-loss. Then, the predictor is evaluated on real data, and the error is quantified using the Mean
Absolute Error (MAE). Formally, given a real sequence x of length seq_len let xfirst and xlast be the
first 9

10 · seq_len and the last 1
10 · seq_len time-steps, respectively. The predictor observe xfirst and

GroupNorm Attention
Layer Conv1d

Figure 7: Architecture of the Attention Block of Denθ.
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predicts the subsequent 1
10 · seq_len time-steps, denoted as x̃pred. The MAE-based performance consists of

1
1

10 ·seq_len

∑ 1
10 ·seq_len
t=1 |xlast(t)− x̃pred(t)|.

• Authenticity (Alaa et al., 2022): It measures the proportion of synthetic data A ∈ [0, 1] that is authentic,
i.e. the models should not simply memorize the training dataset by generating copies of real samples it has
observed, should instead create new, original samples. We considered the original implementation provided
by the work of Alaa et al. (2022). The metric is evaluated through a hypothesis test for data copying, which
employs a nearest-neighbor classifier. A synthetic sample is considered unauthentic if it is closest to a real
training sample. A score close to 1 indicates that the model is generating novel, unseen data.

•Maximum Mean Discrepancy (Gretton et al., 2006): It measures the similarity of synthetic and real time-
series distributions. Formally, it is defined as MMD2(P, Q) = EP [k(X, X)]− 2 · EP,Q[k(X, Y )] + EQ[k(Y, Y )]
where k(·, ·) is the Radial Basis Function (RBF) kernel. We used the scikit-learn7 implementation of the
RBF kernel.

• Cross-Correlation: It measures the extent to which multiple synthetic time-series preserve the cross-
correlation present in real data. Specifically, we evaluate the MAE between the correlation values of the
real and synthetic features. We computed the Cross-Correlation distance for each lag up to 4. Formally,
let x and x̂ be a real and a synthetic sample respectively. Moreover, let xi and x̂i be the i-th feature of
the real and the synthetic sample (∀1 ≤ i ≤ d), respectively. The score is formally defined as

∑4
τ=0

1
(d

2)
·∑

{i,j}∈({1,...,d}
2 ) |(xi ⋆ xj)(τ)− (x̂i ⋆ x̂j)(τ)|, where (xi ⋆ xj)(τ) denotes the cross-correlation between xi and

xj with respect to lag τ .

C Additional Results

C.1 Samples

Figure 8 visually shows the algorithm for extracting the causal graph from the coefficients samples of the
Rivers dataset, according to Definition 1. In the figure, (a) and (b) are two synthetic samples with different
causal dynamics. Figure (c) shows the coefficients generating the Dillingen feature. In particular, for both
samples, each histogram considers the impact of each of the other features on Dillingen. For instance, the
pink histograms represent the impact of Kempten with a lag of 1 time-step on Dillingen since they are the
coefficients of the 1 time-step lagged Kempten that are used to generate Dillingen. Similarly to Figure (c),
Figures (d) and (e) show the coefficients weighting the impact on the Kempten and the Lenggries features.
The dashed black line in the figures is the q-quantile (q = 0.95)used in Definition 1, employed to quantitatively
evaluate the generated coefficients over the time-series time-steps. All the q-quantiles are then reported in (f)
and (g), for Sample A and Sample B, respectively, where the highest (in terms of magnitude) coefficients are
selected to get the ρ% sparsity parameter used in Definition 1. Indeed, the dashed black line in Figures (f)
and (g) is the threshold such that only the ρ% highest values are selected over the entire set of generated
samples.

Figures 9 and 10 show additional examples of real and generated samples for the Rivers and Hénon datasets,
respectively.

C.2 Additional ablation studies

Table 8 show the quantitative results for the other variants of our model, highlighting the impact of each loss
component. Additionally, DiffCATS w/L1 w/DTW considers a DTW-based loss and a ℓ1-norm to regularize
the coefficients; DiffCATS w/L2 w/Fourier considers a Fourier-based loss (weighted by a term λ3 = 100),
and ℓ2-norm to regularize the coefficients. We considered the Fourier-based term employed by Yuan & Qiao
(2024):

LF ourier(x0, x̂0; θ) = ∥FFT (x0)−FFT (x̂0)∥2
2, (4)

where FFT (·) indicates the Fast Fourier Transformation (Elliott & Rao, 1982).
7https://scikit-learn.org/
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Figure 8: Procedure to extract the causal graphs from the coefficients.
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Figure 9: Examples from the Rivers dataset.
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Figure 10: Examples from the Hénon dataset.
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Table 8: Results of other models on the three datasets. ↓ indicates lower is better and ↑ indicates higher is
better.

Dataset Metric
Models Time-Series & Causal-Graphs

DiffCATS
DiffCATS

w/L2
DiffCATS
w/DTW

DiffCATS
w/L1 w/DTW

DiffCATS
w/L2 w/Fourier

Hénon

Discr. ↓ 0.041 ± 0.026 0.045 ± 0.025 0.038 ± 0.022 0.035 ± 0.015 0.040 ± 0.024
Pred. ↓ 0.216 ± 0.010 0.217 ± 0.008 0.216 ± 0.010 0.217 ± 0.008 0.217 ± 0.0010
Auth. ↑ 0.663 ± 0.006 0.713 ± 0.007 0.662 ± 0.007 0.677 ± 0.008 0.700 ± 0.006
MMD ↓ 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
xCorr. ↓ 0.031 ± 0.003 0.035 ± 0.004 0.029 ± 0.004 0.037 ± 0.005 0.035 ± 0.05

GC-FPR. ↓ 0.403 ± 0.001 0.421 ± 0.001 0.423 ± 0.001 0.397 ± 0.000 0.403 ± 0.001
Graph-FPR. ↓ 0.090 ± 0.000 0.080 ± 0.000 0.023 ± 0.000 0.040 ± 0.000 0.090 ± 0.000

Rivers

Discr. ↓ 0.080 ± 0.010 0.130 ± 0.010 0.070 ± 0.023 0.480 ± 0.010 0.100 ± 0.010
Pred. ↓ 0.035 ± 0.001 0.037 ± 0.001 0.041 ± 0.002 0.043 ± 0.001 0.036 ± 0.001
Auth. ↑ 0.580 ± 0.010 0.620 ± 0.010 0.585 ± 0.012 0.870 ± 0.020 0.610 ± 0.010
MMD ↓ 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.054 ± 0.003 0.001 ± 0.000
xCorr. ↓ 0.060 ± 0.000 0.060 ± 0.010 0.022 ± 0.004 0.080 ± 0.010 0.070 ± 0.010

GC-FPR. ↓ 0.230 ± 0.000 0.220 ± 0.000 0.158 ± 0.001 0.270 ± 0.000 0.230 ± 0.000
Graph-FPR. ↓ 0.100 ± 0.000 0.070 ± 0.000 0.074 ± 0.002 0.160 ± 0.000 0.070 ± 0.000

AQI

Discr. ↓ 0.410 ± 0.020 0.430 ± 0.010 0.360 ± 0.015 0.440 ± 0.010 0.380 ± 0.030
Pred. ↓ 0.048 ± 0.001 0.048 ± 0.001 0.060 ± 0.002 0.049 ± 0.001 0.050 ± 0.001
Auth. ↑ 0.810 ± 0.020 0.810 ± 0.020 0.883 ± 0.008 0.820 ± 0.010 0.810 ± 0.010
MMD ↓ 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
xCorr. ↓ 0.090 ± 0.010 0.110 ± 0.010 0.100 ± 0.003 0.130 ± 0.010 0.100 ± 0.010

GC-FPR. ↓ 0.480 ± 0.000 0.400 ± 0.000 0.390 ± 0.000 0.390 ± 0.000 0.400 ± 0.000
Graph-FPR. ↓ — — — — —

As the results show, incorporating the ℓ2-norm of the coefficients into the objective loss as an attempt
to sparsify the causal graph reduces the number of wrong connections. Moreover, the DTW-based loss
considerably aids in extracting synchronization signals among the temporal sequences, significantly improving
overall performance.

C.3 Sensitivity Analysis of Lag Parameters τmax

In this subsection we perform a sensitivity analysis by varying τmax on the rivers dataset. In general, the
parameter τmax should be selected according to the time resolution and the expected causal dynamics of
the underlying phenomena. However, when the true value is uncertain, a slight overestimation can be safely
adopted. As shown in Table 9, the model maintains strong performance for both the generated time series and
the causal graph, even when τmax is overestimated or deviates from the true lag of the causal relationships
(the maximum ground-truth lag is 2). This demonstrates the model’s robustness in generating reliable
synthetic data, even with imperfect domain knowledge.

Table 9: Model performance under different lag values.
τmax Discr. score Pred. score Graph-FPR

1 0.099 0.032 0.022
2 0.067 0.033 0.070
3 0.060 0.031 0.078
4 0.050 0.033 0.086

C.4 Dimensionality Reduction

It is used to evaluate the diversity of synthetic samples, i.e., they cover the full variability of real samples.
We employed t-SNE (Van der Maaten & Hinton, 2008) and PCA (Bryant & Yarnold, 1995) on both real and
synthetic data to easily visualize how similar the two distributions are in a 2-dimensional space. We used the
scikit-learn7 implementation for both PCA and t-SNE. For each sample, we flattened the dimension of the
features by computing the mean.

Figure 11 and Figure 12 show the t-SNE and PCA plots of our best model against the state-of-the-art
approaches. It can be observed that the distribution of the synthetic samples closely resembles the real one
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Figure 11: Dimensionality reduction: t-SNE.
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Figure 12: Dimensionality reduction: PCA.

in two of the three datasets (Hénon and Rivers). This visually ensures that the model is generating realistic
time-series in a diverse set of fields. Figure 13 and Figure 14 show the dimensionality reduction results for
the other variants of the model on all considered datasets.

C.5 Kernel Density Estimation

Figure 15 shows the data distributions drawn from kernel density estimation (KDE) of DiffCATS against the
state-of-the-art approaches (ablations in Figure 16). KDE provides a visual assessment of the model’s ability
to capture the marginal distributions of the real data. A key insight from these plots is the high degree of
overlap between the Original real data (red) and DiffCATS’ data (blue) curves. This indicates that our model
faithfully reproduces the statistical properties of the underlying data, including multi-modal distributions
and peak densities. In contrast, baseline methods such as CR-VAE often exhibit smoother distributions that
fail to capture the sharper density peaks observed in the Rivers and Hénon datasets, suggesting a tendency
to over-regularize or average out specific data characteristics. The tight alignment achieved by DiffCATS
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Figure 13: Ablation - Dimensionality reduction: t-SNE.
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Figure 14: Ablation - Dimensionality reduction: PCA.
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Figure 15: Kernel Density Estimation.
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Figure 16: Ablation - Kernel Density Estimation.

confirms that the generated time-series preserve the fundamental distributional nature of the real-world
phenomena.

C.6 Evaluation Metrics during Training

Figures 17 to 19 show the evolution of the evaluation metrics during training on the Hénon, Rivers, and AQI
datasets, respectively. This offers several insights into the learning stability and convergence of DiffCATS.

First, we observe a rapid convergence of the MMD and Discriminative Score, which drop significantly within
the first 20 epochs. This indicates that the diffusion model quickly learns to generate samples that are
statistically similar to, and difficult to distinguish from, real data.

Second, the Authenticity metric, while decreasing from an initial value of 1.0 (where noise is purely novel),
stabilizes at a robust level (typically between 0.6 and 0.7). This confirms that while the model learns to
approximate the real distribution, it does not simply memorize the training set; it continues to generate novel
samples rather than copies.
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Finally, the causal metrics (GC-FPR and Graph-FPR) show a consistent downward trend or stabilization
concurrent with the time-series quality metrics. This demonstrates the effectiveness of the joint optimiza-
tion strategy: the model successfully refines its understanding of the causal structure (the causal graph)
simultaneously with the temporal dynamics, without one objective destabilizing the other.
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Figure 17: Evaluation metrics during training - Hénon dataset.
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Figure 18: Evaluation metrics during training - Rivers dataset.
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Figure 19: Evaluation metrics during training - AQI dataset.

C.7 Graph Extraction Module

C.7.1 Robustness of Graph Extraction

In this section, we report an additional experiment to highlight the robustness of the causal graphs to noise
in the time-series. In particular, we trained DiffCATS in a setting where Gaussian noise z ∼ N (0, σ2) has
been added to the training time-series. Table 10 reports the results of the Graph-FPR for σ2 = 0.005 and
σ2 = 0.01 showing the robustness of the extraction to noise in the time-series.

Table 10: Graph-FPR with respect to noisy time-series.
Dataset Noise variance (σ2)

0 0.005 0.01

Hénon 0.04 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

Rivers 0.07 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

C.7.2 Statistical test

Alternative approaches can be integrated to extract the causal graph based on the VAR coefficients. For
example Hyvärinen et al. (2010) suggests conducting a statistical test of the significance of the coefficient.
We tested the Dixon’s Q Test to assess if there is at least one of the generated coefficients significantly higher
than the others, resulting in a notable causal link. We evaluated the extracted causal graphs using this
method with a p-value of 0.05. The Graph-FPR metric is 0.016 and 0.066 for the Rivers and Hénon datasets,
respectively, which is very close to the score we obtained with the approach of Definition 1.

C.7.3 Impact of ρ and q

The results in Figure 20 show that the error in introducing edges remains contained when varying q ∈
{0.80, 0.85, 0.90, 0.95} and ρ ∈ {0.001, 0.005, 0.01, 0.02}. As the parameter ρ controlling the sparsity of the
dataset increases, the Graph-FPR increases as well, meaning that the more relationships are kept in the
dataset, the more it is the probability that they are wrong. However, it can be observed that the parameter q
is able to alleviate this by forcing each individual sample to keep only the coefficient of high magnitude.

We would like to highlight that the parameters ρ and q are used to extract causal graphs for the dataset from
the generated coefficients. Critically, this means that a potential user of the model does not need to retrain
the model to find the best ρ and q values.
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Figure 20: 3D surface plots showing Graph-FPR vs q and ρ for Hénon (a) and Rivers (b) datasets.

C.8 Execution Time

We ran the experiments on a machine equipped with Intel Core i9-10920X CPU @ 3.50GHz, NVIDIA GeForce
RTX 2060 GPU, and 8× 32 GB DDR4 RAM.

A training phase of our model required ∼1 hour for 60 epochs. We have trained 6 variants of our model on 3
different datasets, for a total of ∼18 training hours.

In more detail, Table 11 shows the inference time of the models isolating the generation of the time-series and
the extraction of the graph. It turns out that even if CausalTime is faster than DiffCATS in generating the
time-series, the graph extraction through DeepSHAP introduces an important overload making it the slowest
model.

Table 11: Inference time.

Dataset
Model

DiffCATS
DiffCATS

with Graph CausalTime CausalTime
with Graph CR-VAE

Hénon 1481ms 1548ms 465ms 8790ms 194ms

Rivers 1425ms 1492ms 235ms 4248ms 148ms

AQI 1395ms 1535ms 1349ms 205s 442ms

C.9 Increasing the Polynomial Degree

To accommodate non-linear causal links, the polynomial degree employed in the VAR reconstruction can
be increased to approximate non-linear relationships. With a certain degree of approximation, any (non-
linear) continuous function can be represented by a polynomial (Stone-Weierstrass Theorem), trading off
approximation error of the real function with computational time, since there will be more coefficients
generated by the model. As an example, we performed an experiment on the Hénon dataset with a polynomial
of degree set to 2 since this dataset comprehends a quadratic relationship. Results shown in Table 12 show
that the metrics to evaluate the time-series and the causal graph remain satisfactory even by raising the
degree of the polynomial.

Table 12: Results on the Hénon dataset increasing the polynomial of the VAR.
Metric Polynomial Degree

1 2

Discr. 0.032 0.021
Pred. 0.156 0.226

Graph-FPR 0.017 0.019
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C.10 Causal Prediction Downstream Task involving Causal Graphs

In this section, we show the results of a downstream task involving the causal graphs. In particular, we
considered the task of predicting the i-th feature of the multivariate time-series given its other dimensions
and the corresponding causal graph.

Let x/i be the (d − 1)-variate time-series consisting of all the features but the i-th. The predictor model
consists of a 2-layer LSTM to compute the embedding of the observed time-series and a linear layer Lgraph

to learn the embedding of the associated graph g. The two embeddings are summed and passed through a
linear layer (Lout) to output x̂i. Formally, x̂i = Lout(ets + eg) where ets = LSTM(x/i) and eg = Lgraph(g).
The model is trained to minimize the ℓ1-loss with respect to xi, i.e. the real i-th feature of x.

We compared the above model with the case in which only the (d− 1)-variate time-series x/i is exploited
to forecast xi, i.e. the model does not see the causal graph. The models are evaluated in terms of Mean
Absolute Error (MAE) on an independent validation set. Table 13 shows the quantitative results highlighting
that the causal graphs are useful to improve the reconstruction ability of the predictor, and Figure 21 shows
some examples.

Table 13: Downstream task - Causal Prediction (Mean Absolute Error).
Dataset Predictor

w/ Causal Graph w/o Causal Graph

Hénon 0.13 ± 0.01 0.19 ± 0.01

Rivers 0.01 ± 0.00 0.02 ± 0.00
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Figure 21: Causal Reconstruction.

C.11 Causal Classification Downstream Task

Classifying time-series data based on their underlying causal dynamics represents a critical challenge in
machine learning, especially because the causal structure of the system influences the observable behaviors.
The broader significance of the causal classification task lies in its ability to enable meaningful grouping
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of observations by their causal nature. This can be applied to problems like emergency detection, where
identifying unsafe system dynamics relies on understanding the causal mechanisms driving those dynamics,
or customer segmentation, where groups are formed based on inferred causal responses to interventions.

The DiffCATS framework supports this challenge by generating synthetic time-series explicitly paired with
their associated causal graphs, enabling models to capture and leverage causal dependencies for classification
tasks. Therefore, in this downstream task, the causal graph serves as a label or defining feature for the
grouping of samples based on their underlying system dynamics, rather than being directly integrated into
the prediction process as in the Causal Predictive task.

As a demonstration, we used the Rivers dataset. We identified the 10 most frequent causal graphs within
the dataset and treated them as class labels; we also added an additional class to capture residual or less
common causal dynamics. Each class represents a distinct causal graph that reflects different patterns in
river discharge behavior. We then trained a 2-layer LSTM network on synthetic time series generated by
DiffCATS, with the goal of predicting the underlying causal class (i.e., label) from the observed time-series.
When evaluated on real time-series samples, the classifier achieved an F1-score of 0.69. This result highlights
the potential of using synthetic datasets to enhance classification tasks by providing explicit structural labels.

To conclude, we believe DiffCATS provides a robust support for classification tasks by generating datasets
with coupled time-series and causal graphs, ensuring high fidelity in both the signals and their causality.
This capability is particularly valuable in scenarios where certain classes are underrepresented or entirely
absent. In fact, our experiments demonstrate that the synthetic data produced by DiffCATS serve as effective
surrogates for training accurate classifiers.

D Algorithms

We show the algorithm to reconstruct the whole time-series from the output of Denθ (i.e. the initial time-steps
xstart and the set of coefficients c) in Algorithm 1.

The sampling procedure of a synthetic couple ⟨x̂, ĝ⟩ is described in Algorithm 2.

Algorithm 1 Reconstruction of x̂ from xstart and c.
Input: xstart, c
Output: x̂
▷ xstart.shape = [d, τmax]
▷ c.shape = [d, d · τmax, L− τmax]
x̂0 = xstart

for all i from 0 to L− τmax do
sup← x̂0[ : ,− τmax : ].flatten()
c← c[ : , : ,i]
x← torch.einsum(’a,ba->b’, sup, c)
x̂0 ← torch.cat([x̂0,x.unsqueeze(− 1)], dim=− 1)

end for
Return x̂0

E TSCD Algorithms Benchmark

E.1 Related work

Recent works have studied and tested causal discovery algorithms in several scenarios and domains. Hasan
et al. (2023) provide a benchmark of 5 algorithms on both a synthetic and a real dataset, evaluating them
using several binary classification metrics. Lawrence et al. (2021) use their framework to generate numerical
datasets and evaluate 5 causal discovery algorithms, with an in-depth performance analysis concerning their
diverse assumptions and hyper-parameters selection. Cheng et al. (2024) employs the synthetic version of
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Algorithm 2 Sampling of ⟨x̂, ĝ⟩.
Input: Trained denoising network Denθ

Output: x̂, ĝ
xT ∼ N (0, I)
for all t from T to 0 do

(xstart, c)← Denθ(xt, t)
x̂0 ← Reconstruct(xstart, c)

xt−1 ← βt ·
√

α̂t−1
1−α̂t

· x̂0 + (1−α̂t−1)·√αt

1−α̂t
· xt

if t > 0 then
xt−1 ← xt−1 + βt · 1−α̂t−1

1−α̂t
· ϵ

end if
end for
ĝ ← ExtractGraph(c)
Return x̂0, ĝ

three real datasets to benchmark 13 representative state-of-the-art causal discovery algorithms. Finally, the
very recent work of Li et al. (2024) incorporates LLMs to discover causal relationships from observational
and interventional data. Their method is compared with 4 state-of-the-art baselines.

E.2 Details on the algorithms

To evaluate the different TSCD algorithms we adapt/test them to our task using their source available code,
whose repositories are listed below.

• GC: Granger Causality test implemented in the statsmodels8 library.

• DYNOTEARS: https://github.com/mckinsey/causalnex

• NTS-NOTEARS: https://github.com/xiangyu-sun-789/NTS-NOTEARS

• PCMCI+: https://github.com/jakobrunge/tigramite

• Rhino: https://github.com/microsoft/causica

• CUTS / CUTS+: https://github.com/jarrycyx/UNN

• Neural-GC: https://github.com/iancovert/Neural-GC

• NGM: https://github.com/alexisbellot/Graphical-modelling-continuous-time

• LCCM: https://github.com/edebrouwer/latentCCM

• eSRU: https://github.com/sakhanna/SRUforGCI

• TCDF: https://github.com/M-Nauta/TCDF

The used hyper-parameters of the algorithms are reported in Table 14 (they are the same for all datasets).

E.3 Benchmarking Causal Discovery Algorithms

Table 15 shows the results of our benchmark on a synthetic dataset where the causal graphs are extracted
globally, following the procedure in Section 4.3.

8https://www.statsmodels.org/stable/index.html
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Table 14: Hyper-parameters of the causal discovery algorithms.
Algorithm Hyper-parameter Value

GC maxlag 2

DYNOTEARS p 2
max_iter 100

NTS-NOTEARS
lags 2

w_threshold 0.3
h_tol 1e − 60

PCMCI+ τmax 2
PCα 0.01

Rhino
Noise Distribution Gaussian

init_rho 30
init_alpha 0.2

CUTS
Input step 2

λ 0.1
τ 0.1 → 1

CUTS+
Input step 2

λ 0.01
τ 0.1 → 1

Neural-GC
Learning rate 0.05

λridge 0.01
λ 0.002 → 0.02

NGM
Steps 500

Horizon 5
GL_reg 0.1

LCCM hidden_size 20
Learning rate 0.01

eSRU
µ1 1

Learning rate 0.005
Batch size 30

Epochs 500

TCDF
τ 10

Epochs 1000
Learning rate 0.01

Table 15: Other results of the benchmark of Causal Discovery Algorithms. Bold and underline are used to
highlight the best and the second best result, respectively.

Method AUROC AUPRC
Hénon Rivers AQI Hénon Rivers AQI

GC 0.55 ± 0.10 0.73 ± 0.16 0.50 ± 0.00 0.45 ± 0.11 0.54 ± 0.09 0.48 ± 0.08
DYNOTEARS 0.45 ± 0.11 0.52 ± 0.08 0.50 ± 0.00 0.52 ± 0.15 0.56 ± 0.08 0.51 ± 0.02

NTS-NOTEARS 0.64 ± 0.14 0.73 ± 0.15 0.50 ± 0.00 0.40 ± 0.13 0.55 ± 0.14 0.30 ± 0.23
PCMCI+ 0.84 ± 0.08 0.82 ± 0.08 0.68 ± 0.00 0.54 ± 0.09 0.64 ± 0.08 0.50 ± 0.03

Rhino 0.50 ± 0.02 0.57 ± 0.12 0.50 ± 0.00 0.52 ± 0.01 0.65 ± 0.10 0.51 ± 0.03
CUTS 0.81 ± 0.10 0.86 ± 0.09 0.68 ± 0.01 0.54 ± 0.07 0.55 ± 0.08 0.51 ± 0.02

CUTS+ 0.81 ± 0.09 0.75 ± 0.09 0.67 ± 0.01 0.53 ± 0.07 0.58 ± 0.08 0.51 ± 0.02
Neural-GC 0.67 ± 0.00 0.52 ± 0.07 0.50 ± 0.01 0.52 ± 0.01 0.53 ± 0.05 0.48 ± 0.10

NGM 0.84 ± 0.13 0.80 ± 0.13 0.50 ± 0.01 0.63 ± 0.16 0.81 ± 0.12 0.47 ± 0.13
LCCM 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.51 ± 0.00 0.78 ± 0.00 0.21 ± 0.00
eSRU 0.50 ± 0.0 0.71 ± 0.10 0.50 ± 0.00 0.53 ± 0.01 0.76 ± 0.08 0.53 ± 0.01
TCDF 0.50 ± 0.0 0.50 ± 0.01 0.50 ± 0.00 0.50 ± 0.03 0.53 ± 0.09 0.45 ± 0.15

F Limitations and Trade-off

Even if Table 1 reports the performance of strong generators (e.g., CSDI), our intended like-for-like comparison
is against methods that can generate both (i) the multivariate time series and (ii) an associated causal graph,
ideally with an explicit mechanism that promotes graph–sample consistency. DiffCATS is designed precisely
for this paired generation setting: each synthetic sample is produced together with a corresponding causal
graph, and the two are structurally coherent by construction. Instead, Base Diffusion and CSDI are optimized
only for the fidelity of the synthetic time-series and are included as reference points, to show that DiffCATS ’
time-series quality is not far from high-performing time-series-only generators, while additionally providing
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causal graphs. This is a trade-off induced by requiring causal-graph generation and consistency, rather than
as an across-the-board weakness.

Furthermore, regarding efficiency, Table 1 shows DiffCATS inference around 1.4–1.5 s/sample, which is slower
than CR-VAE (hundreds of ms), consistent with diffusion sampling requiring multiple denoising steps. At
the same time, DiffCATS is substantially faster than CausalTime, whose inference is dominated by post-hoc
feature-importance (DeepSHAP), reaching seconds to minutes in (e.g., up to 205s on AQI).

We also evaluated the number of GLOPs required by the models to generate a synthetic sample. The results
for DiffCATS include all the denoising steps (100 in our case) while the results for CausalTime include all
the steps involved in their autoregressive generation.

Table 16: GFLOPs per sample.
DiffCATS CR-VAE CausalTime

Hénon 14.885 0.004 6.613
Rivers 14.819 0.002 3.301

AirQuality 15.725 0.022 22.695

CR-VAE is consistently the cheapest (0.002–0.022 GFLOPs/sample) because it produces a sample in
essentially a single lightweight forward pass of a variational autoencoder. DiffCATS requires 14.8–15.7
GFLOPs/sample across all three datasets due to its iterative diffusion sampling procedure. CausalTime’s
generation cost is competitive on small/moderate settings (3.301 GFLOPs on Rivers; 6.613 on Hénon), but
increases markedly on the high-dimensional AirQuality setting (22.695 GFLOPs), consistent with the fact
that its autoregressive generation must be repeated across the sequence and its per-step computation grows
with dimensionality.

Importantly, the CausalTime GFLOPs reported here only count the forward computation needed to output
a synthetic sample and do not include its post-processing for extracting the causal graph by interpreting the
model with DeepSHAP. In practice, most of CausalTime’s wall-clock inference overhead comes from this
DeepSHAP-based attribution step, which requires many additional evaluations and can dominate runtime
even when the raw GFLOPs/sample for generation looks moderate. By contrast, in our pipeline, even
if DiffCATS requires more GFLOPs to generate a sample, the subsequent causal-graph extraction step is
lightweight, so the end-to-end overhead is not driven by an expensive interpretability pass.

Finally, the GFLOPs trends across datasets also highlight scaling with the number of features (Rivers: 3,
Hénon: 6, AirQuality: 36). DiffCATS stays roughly constant (∼ 15 GFLOPs) across these experiments, while
CR-VAE increases modestly (from 0.002 to 0.022 GFLOPs) and CausalTime grows substantially, especially
at 36 features (22.695 GFLOPs). This suggests DiffCATS ’ generation compute is comparatively less sensitive
to feature dimensionality in our implementation, whereas CausalTime’s autoregressive generator becomes
significantly more expensive as dimensionality increases.
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