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ABSTRACT: Widespread availability of protein sequence-fitness data would revolutionize both our biochemical understanding of 
proteins and our ability to engineer them. Unfortunately, even though thousands of protein variants are generated and evaluated 
for fitness during a typical protein engineering campaign, most are never sequenced, leaving a wealth of potential sequence-fitness 
information untapped. This largely stems from the fact that sequencing is unnecessary for many protein engineering strategies; the 
added cost and effort of sequencing is thus unjustified. Here, we present every variant sequencing (evSeq), an efficient protocol for 
sequencing a variable region within every variant gene produced during a protein engineering campaign at a cost of cents per 
variant. Execution of evSeq is simple, requires no sequencing experience to perform, relies only on resources and services typically 
available to biology labs, and slots neatly into existing protein engineering workflows. Analysis of evSeq data is likewise made simple 
by its accompanying software (found at github.com/fhalab/evSeq, documentation at fhalab.github.io/evSeq), which can be run on 
a personal laptop and was designed to be accessible to users with no computational experience. Low-cost and easy to use, evSeq 
makes collection of extensive protein variant sequence-fitness data practical.   

INTRODUCTION 

Engineered proteins are valuable tools across the biological 
and chemical sciences and have revolutionized industries 
ranging from food to fuels, pharmaceuticals, and textiles by 
providing green and efficient protein solutions to challenging 
chemical problems.1 Over the course of a protein engineering 
campaign, hundreds to thousands or more protein variants will 
be constructed and have their fitnesses (level of, e.g., 
thermostability, catalytic activity, substrate binding, etc.) 
evaluated. Notably, sequence information is typically not 
gathered alongside the functional information, even though it 
could provide useful biochemical insight.2–4 This is largely 
because many engineering strategies can be applied without 
sequencing. For example, during a typical directed evolution 
(DE) experiment, often only the best-performing variant or 
variants are sequenced in each round of mutagenesis and 
screening; sequencing every variant is viewed as an 
unnecessary expense. Given the massive amount of functional 
data gathered during a typical DE campaign, however, if 
sequencing were performed for the variants generated during 
these experiments, the resultant large datasets of sequence-
fitness information could be revolutionary for biological, 

biochemical, and biocatalytic research. This is especially true 
for data-driven protein engineering strategies such as machine 
learning (ML), the development of which has benefitted 
tremendously from large sequence-fitness datasets made 
available by strategies like deep mutational scanning (DMS) 
and in databases like ProtaBank.5–16  

Unfortunately, the standard sequencing strategy employed 
during DE—Sanger sequencing—is too expensive for 
sequencing all variants tested during a round of evolution.17 
Sanger sequencing is ubiquitous due to ease of sample 
preparation, accessibility of sequencing providers, and low 
cost. However, this cost scales linearly with the number of 
samples (Supplemental Figure S1). Thus, while the cost of 
sequencing just the top variants in a round of DE is minor, 
sequencing the hundreds or thousands of variants generated 
over the full engineering endeavor is not. Ideally, any new 
method for sequencing every variant produced during a 
protein engineering campaign would be comparable in cost 
and effort to that of sequencing just the top variants by Sanger 
sequencing. Here we present a method that accomplishes this 
goal. The method, which we call every variant sequencing 
(evSeq), expands on services made available by multiplexed 
next-generation sequencing (NGS) providers to allow amplicon 
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sequencing of a region of interest within every variant 
produced during a round of DE at a cost of cents per 
variant.18,19 Sample preparation for evSeq is simple, and the 
method requires no experience with NGS to perform, relies 
only on resources and services typically available to biology 
labs, and slots neatly into existing protein engineering 
experimental workflows. The accompanying software for 
analysis of evSeq data (found at github.com/fhalab/evSeq, 
documentation at fhalab.github.io/evSeq) was designed to be 
accessible to users with no computational experience and can 
be run on a personal laptop.  

In this paper, we detail the development, protocol, and 
potential applications of evSeq. We begin by describing the 
strategies employed by evSeq to extend multiplexed NGS for 
sequencing protein variant libraries in a way that reduces both 
cost and effort. We then describe the wet-lab protocol of 
evSeq sample preparation, focusing on how it can be 
completed without disrupting an existing protein engineering 
workflow. Next, we discuss the features of the evSeq software 
before finally presenting two case studies that highlight 
potential applications of evSeq. In particular, we highlight how 
(1) the sequence-fitness data from evSeq can provide valuable 
information about the quality of variant libraries and the 
functional screen as well as how mutations modulate protein 
activity, and how (2) the data generated from evSeq can be 
used to implement ML for protein engineering. We designed 
evSeq for use as a routine procedure in many protein/enzyme 
assays (especially DE and protein engineering experiments 
leveraging mutagenesis strategies that target specific sites or 
a segment of the sequence). We believe that widespread 
adoption of evSeq—and the resultant datasets generated—
will be invaluable for future ML-guided protein engineering 
and will help us better understand protein sequence-fitness 
relationships. 

 

RESULTS AND DISCUSSION 

evSeq expands on commercially available multiplexed 
next-generation sequencing. Unlike Sanger sequencing, which 
outputs a single chromatogram that represents the population 
of DNA in a sequenced sample, NGS outputs millions of 
individual DNA reads that represent a random draw from the 
population of DNA in the sequenced sample.18 Confidence in 
NGS sequencing results is largely determined by the 
sequencing “coverage”, which for the purposes of this paper is 
defined as the number of returned reads that map to a specific 
nucleotide on a reference sequence. Higher coverage enables 
more confident identification of mutations relative to a 
reference sequence as the increased redundancy allows 
distinguishing between true sequence mutations and errors 
that arise during library preparation, clustering, or sequencing. 

A single NGS run is roughly three orders of magnitude more 
expensive than a Sanger sequencing run, but because the run 
outputs millions of reads this cost can be spread over multiple 
samples using a technique known as “multiplexed NGS” 
(Supplemental Figure S1). In multiplexed NGS, each submitted 
sample is tagged with a “molecular barcode”—a unique piece 
of DNA that encodes the sample’s original identity—before all 
samples are sequenced together in the same NGS run.19–25 Post 
sequencing, the barcodes are used to assign individual reads 

to individual samples. Multiplexed NGS can be outsourced just 
like Sanger sequencing, and sequencing providers typically 
charge tens of dollars per sample in a multiplexed sequencing 
run, yielding on the order of 104–105 individual sequences per 
sample (assuming the run is performed on an Illumina MiSeq 
instrument).  

The level of coverage granted by a set number of reads 
depends on the length of the DNA sample being sequenced, 
the length of the NGS read used to sequence it, and whether 
those reads are paired-end. NGS reads are short (300 bp or less 
on Illumina systems), and so reads must be spread across a 
longer sample to sequence it in full. The expected coverage 
(average coverage per nucleotide) obtained for a DNA sample 
thus depends both on its length and the read length used for 
sequencing. For example, with the ~105 reads returned by a 
commercial MiSeq multiplexed sequencing run, a 3 Mb 
genome could be sequenced with 150 bp paired-end reads to 
an expected coverage of ~10x, whereas a 20 kb plasmid could 
be sequenced to an expected coverage of ~1500x. 

Because shorter samples can be sequenced at higher 
coverage for a given number of reads, it is advantageous to 
sequence only the region of interest of a sample. This is 
exemplified by amplicon sequencing, a strategy in which a 
researcher sequences a PCR product (an amplicon) that targets 
a specific region of interest in the DNA.26 For instance, 
continuing the example from above, with ~105 total 150 bp 
paired-end reads, a 300 bp PCR product could be sequenced 
to an expected coverage of ~100,000x.  

Many mutagenesis methods employed in protein 
engineering (e.g., site-saturation27 and tile-based 
mutagenesis28 strategies) target mutations to a specific 
position or region in the sequence of a protein, and thus the 
variants produced can be sequenced with amplicon 
sequencing to high coverage.20 Notably, however, even though 
increasing coverage yields more confident results, it comes 
with diminishing returns, and it is generally held that coverage 
in the tens is more than sufficient for effective reference-
based identification of mutations (Supplemental Figure S1).29 
Indeed, clinical sequencing of human genomes targets 30x 
coverage or greater to minimize false base calls. Given this 
reference, it is clear that the ~100,000x coverage that would 
be returned from a multiplexed sequencing run for a 300 bp 
amplicon is far higher than necessary for effective 
identification of mutations—2,000 amplicons could be 
sequenced in the same run and still yield clinical-grade 
coverage.  

evSeq thus resulted from the realization that (1) at tens of 
dollars per sample, the cost of sending a single sample to an 
outsourced multiplexed NGS run is comparable to the total 
cost of Sanger sequencing the top variants in a round of DE, (2) 
amplicon sequencing can be used to identify mutations in 
protein variants from many protein engineering library types, 
and (3) enough reads are returned for a single sample in a 
commercial multiplexed NGS run to sequence hundreds of 
amplicons. Specifically, the evSeq protocol (Figure 1, 
Supplemental: evSeq Library Preparation/Data Analysis 
Protocol) works by focusing all reads of a single multiplexed 
NGS sample to specific regions on hundreds of protein 
variants, achieving sequencing depths of 101–103 at the 
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approximate cost of existing methods for sequencing just the 
top variants in a round of DE (Supplemental Figure S1).  

The evSeq library preparation protocol begins with PCR 
amplification of the region of interest in each variant (i.e., the 
position/region where mutations were made) and appending 
inline DNA barcodes to the resultant amplicons that encode 
their original plate-well position (Figure 1A). This is a one-pot, 
two-step, plate-based PCR procedure that uses two sets of 
primer pairs. Each primer in the first set of primers (“inner” 
primers) consists of a user-specified 3’ “seed” region that binds 
to the regions flanking the region of interest as well as a 5’ 
predefined universal adapter (Supplemental: Inner Primer 
Design). Each primer in the second set of primers (“outer” 
primers) consists of (1) a 3’ region that matches the adapter of 
the inner primers, (2) a central 7-nucleotide barcode where 
each barcode pair between forward and reverse outer primers 
is unique to a plate-well position, and (3) a 5’ sequence 
matching the Illumina Nextera transposase adapters 
(Supplemental: Outer Primer Design, Supplemental: Barcode 
Design, Supplemental Tables S1–S2). We designed 96 unique 
forward and 96 unique reverse outer primers for evSeq which, 
because both forward and reverse outer primers contain a 
barcode, can be combined to encode up to 962 = 9,216 possible 
plate-well positions (Supplemental: Preparation of evSeq 
Barcode Primer Mixes, Supplemental Tables S3–S10. Note that 
we also provide a pre-filled IDT order form for the outer 
primers on the GitHub associated with this work—see 
Supplemental: Ordering Barcode Primers from IDT for details. 
While we recommend using these pre-tested barcodes, users 
can also design their own to, e.g., further expand the number 
of available combinations). Importantly, this set of outer 
primers can be used to sequence any target region from any 
gene with evSeq, and so only needs to be ordered once; only a 
new inner primer pair is needed for each new region of 
interest.  

Once all barcoded amplicons have been produced, they are 
pooled and sent to a sequencing provider, who will then use 
the transposase adapters installed with the outer primers as a 
handle to barcode the pool of amplicons once again with a pair 
of sample-specific Illumina indices (Figure 1B). At this point 
each amplicon in the pool has one pair of sample-specific 
Illumina barcodes, a forward plate-well-specific inline barcode, 
and a reverse plate-well-specific inline barcode. This complete 
evSeq library is sequenced as a single sample in a multiplexed 
NGS run along with samples from other users (whether or not 
they are also evSeq samples). Post sequencing, the sequencing 
provider uses the sample-specific barcodes to identify those 
sequences belonging to the evSeq pool and returns them to 
the user (i.e., the provider “demultiplexes” the run, separating 
evSeq sequences from those of other users). The user then 
uses the evSeq software to analyze the returned sequences, 
assigning them to corresponding plate-well positions using the 
evSeq barcodes and identifying the mutations in the variants 
relative to a reference (Figure 1B, 1C). 

evSeq library preparation fits into existing protein 
engineering workflows and was designed to be resource 
efficient. A typical procedure for evaluating protein variants 
involves (1) arraying colonies of an organism (e.g., Escherichia 
coli) that harbor a plasmid encoding a protein variant into the 
wells of a (usually 96-well) microplate, (2) growing the 

resulting cultures to stationary phase (colloquially, an 
“overnight culture”), (3) using the overnight culture to 
inoculate a fresh culture that will be used to express the 
protein variants, and (4) evaluating the fitnesses of expressed 
protein variants. The expression stage (step 3) typically 
involves downtime where the experimentalist must wait until 
the culture reaches sufficient density before inducing protein 
expression and then again as expression takes place. evSeq 
library preparation can be performed easily in either of these 
time windows.  

The evSeq library preparation protocol begins with the 
barcoding PCR described at the end of the previous section; 
this one-pot, two-step, plate-based PCR was designed to 
minimize both preparation time and laboratory resource usage 
(Supplemental: evSeq Library Preparation/Data Analysis 
Protocol). For instance, because evSeq relies on 96 unique 
forward barcodes and 96 unique reverse barcodes, a single-
primer PCR would require ordering 192 new barcoding primers 
for each new target region evaluated in each library. In our 
two-primer protocol, however, the inclusion of a universal 
adapter on the inner primers allows the same 192 outer 
primers to be used regardless of target position in the 
variant—only two unique primers (forward and reverse inner) 
must be purchased for each new target region, and only if 
existing inner primers from previously targeted regions are not 
already compatible. Additionally, the evSeq PCR directly uses 
liquid from the overnight culture as a source of template DNA 
(Figure 1B, Supplemental: evSeq Library Preparation/Data 
Analysis Protocol); the template DNA is released from lysed 
cells during the initial heating step of the PCR, avoiding a costly 
and time-intensive DNA isolation/purification step and 
allowing researchers to use materials already prepared as part 
of the protein expression workflow. 

The remaining steps of evSeq library preparation were, like 
the PCR stage, also designed to be resource and time efficient. 
After completion of the PCR, the resulting barcoded amplicons 
are pooled by plate and purified via gel extraction. Pooling 
prior to purification goes against standard practice for 
multiplexed NGS library preparation, which is to purify 
samples individually, quantify their DNA concentration, then 
combine them in equimolar quantities to ensure more equal 
read distribution across samples after sequencing.30 However, 
because individual plates in protein engineering libraries tend 
to contain variants from the same region of the same protein 
scaffold (e.g., as would be typical for variants from a 
comprehensive site-saturation library), evSeq assumes that 
the variation in PCR reaction yield will be minor within plates 
and that, as a result, the same plate can be pooled prior to 
quantification with only minor effects on read distribution. 
Using this “pooling first” strategy, only as many purifications 
as there are plates must be performed as opposed to as many 
as there are variants, thus enabling faster processing of evSeq 
amplicons while reducing resource usage. As will be shown in 
later sections, the distribution of reads returned using pooling 
first is perfectly acceptable for confidently identifying variant 
sequences. 

Once all pooled plates have been purified, the 
concentrations of the individual purified pools are measured. 
The pools are then normalized by molarity and combined into 
a final evSeq library, which is in turn submitted as a single 
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sample to a sequencing provider. As described in the previous 
section, the provider will perform a final PCR on the evSeq 
library to add sample-specific barcodes before sequencing it as 
a single sample in a multiplexed sequencing run. Outsourcing 
the sequencing stage has two main benefits: First, it allows 
evSeq to be performed by research groups with no prior 
sequencing experience and no direct access to sequencing 
equipment—groups need only be familiar with PCR, a 

ubiquitous technology in protein engineering laboratories. 
Second, to be cost effective, multiplexed sequencing should be 
run with tens of samples at least (Supplemental Figure S1). By 
outsourcing the sequencing stage, groups that do not 
frequently produce evSeq libraries need not wait until enough 
libraries have accumulated to run sequencing—a single 
outsourced submission, for instance, can be run along with 

Figure 1. Overview of evSeq library preparation and processing. (A) In the first stage of the PCR, a region of interest is amplified with primers 
that include a 3’ site-specific region (gray) with 5’ adapter sequences (dark blue). The second PCR stage adds molecular barcodes (rainbow) 
with primers that bind to the adapter regions and add adapters for downstream NGS processing (light blue). (B) To avoid costly DNA 
isolation steps, evSeq uses liquid cultures of cells harboring mutated DNA (e.g., an “overnight culture” of E. coli) as template during the 
one-pot two-step barcoding PCR described in A. Each plate is pooled individually and gel purified. Purified pools are then adjusted for 
concentration differences and pooled together before being sent to a sequencing provider, who then appends another set of barcodes as 
well as sequence elements necessary for Illumina NGS sequencing. This sample is now pooled with those of other users and a multiplexed 
sequencing run is performed. After sequencing, the sequencing provider uses the barcodes that they attached to separate (“demultiplex”) 
the evSeq reads from reads of other users; the provider returns evSeq reads in .fastq files. (C) The .fastq files returned by the NGS provider 
are inputs to the evSeq software, which uses the evSeq forward/reverse barcode pair to map each read to a specific plate and well based 
on known barcode combinations. The software also processes the mapped reads (see the Supplemental and evSeq documentation for 
more details) to, among other things, assign variant identities to each well and return interactive HTML visualizations. 
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those of other research groups with a variety of different 
sequencing needs.  

The final stage of the evSeq workflow is data analysis using 
the evSeq software (github.com/fhalab/evSeq) (Figure 1C). 
Extensive documentation of the software and its capabilities is 
available as a website (fhalab.github.io/evSeq). The software 
was designed to be accessible to users with varying degrees of 
computational experience and can be run through either a 
graphical user interface (GUI), a command line application, or 
in a Python environment (e.g., a Jupyter notebook). Outputs 
from the software range from high-level overviews of data 
(e.g., an interactive “Platemap” graphic that displays 
sequencing coverage and identified mutations in each well of 
each plate; see Figure 1C for an example) to low-level details 
about the population of reads assigned to each well (e.g., in a 
well identified as polyclonal, the percentage of reads mapping 
to each of the identified variants). Functional data can also be 
easily associated with identified variants using the evSeq 
software outputs to produce sequence-fitness datasets, and 
we provide Jupyter notebooks and web pages that walk users 
through the process. 

evSeq facilitates library construction, validation, and 
sequence-fitness pairing. To highlight the utility of evSeq for 
engineering and biochemical experiments, we first examined 
how it could be used to construct high-confidence and 
informative sequence-fitness data. Specifically, we 
constructed and screened eight single site-saturation libraries 
of the enzyme Tm9D8*—an engineered β-subunit of 
tryptophan synthase from Thermotoga maritima (TmTrpB)—
for tryptophan-forming activity at 30 °C (Figure 2).31 In two of 
the screened libraries, we targeted two positions distant from 
the active site (A118 and S292) that have been seen to play a 
role in allosteric regulation of TmTrpB enzymes; in the other 
six libraries, we targeted active-site residues known to 
modulate the activity of TrpB (E105, L162, I166, F184, S228, 
and Y301) (Figure 2A).32–34 As we show below, this type of 
sequence-fitness data can be used to assess the quality of a 
protein engineering library, identify improved variants during 
a round of directed evolution, and give insight into the 
significance of a given residue in catalysis.  

Many factors can introduce bias into a site-saturation 
mutagenesis experiment, such as annealing bias for the native 
nucleotides during the PCR for library construction or 
contamination with the template plasmid during 
transformation. Without sequencing all of the variants, it is 
impossible to know that the library is representative of the 
experimental design. Since evSeq reports exactly which 
variants are contained in a library, researchers can leverage 
this to implement important quality control practices as part 
of the standard protein screening workflow. For instance, of all 
153 possible unique variants in our eight single-site saturation 
libraries, we observed 149 of them (Figures 2B and C); only 
I166A, S292C, S292D, and S292H could not be assigned with 
confidence, where we define >80% abundance in a well with 
>10 reads as our confidence threshold. Of the variants 
identified, many were found in replicate (Figure 2D) due to 
oversampling during colony picking, which ensures that all 
protein variants have a chance to be found and screened (All 
libraries were constructed with the 22-codon trick35 and 88 
individual colonies were screened for each library, so we 

expected a 98% probability of seeing all variants assuming 
perfect construction of libraries). Conveniently, this 
oversampling also allows us to evaluate the noise in our 
functional screen (Figure 2E) which further improves the 
confidence in the quality of data gathered. 

Given just the fitness data gathered in this experiment, a 
protein engineer would identify 50 wells that are at least 1.2-
fold improved over the parent enzyme Tm9D8*. However, 
with the sequence-fitness pairs constructed via evSeq, we 
know that these 50 wells correspond to only 16 unique 
variants. Depending on how conservative the engineer was as 
to what should be sequenced, this could result in anywhere 
from 12 (2-fold improvement) to 50 (1.2-fold improvement) 
wells sent off for Sanger sequencing for a total cost of $36 to 
$150 (using an estimate of $3 per sequence). It would cost 
~$2000 to sequence all eight plates via Sanger. Using evSeq, 
we obtained the sequences of 625 wells of variants for only 
$100, corresponding to a total cost of $0.13 per non-control 
well, showing that evSeq is much more cost efficient for 
gathering sequence-fitness data from targeted mutagenesis 
libraries. Importantly, although the evSeq defaults currently 
allow only eight plates to be sequenced at once, the number 
of variants included in this experiment could likely have been 
increased as the median number of reads per well was 86 
(mean: 98), which is above what is needed for reliable 
sequencing. Assuming that doubling the number of plates 
would halve the number of reads seen for each well, doubling 
the number of plates sequenced would cause only 14 non-
control well sequences to drop below the confidence 
threshold.  

The per-variant cost of evSeq may be reduced even further 
using different services and sequencing platforms. For 
instance, in both this section and the next, the reported 
number of reads and ~$100 total cost are from outsourced 
MiSeq runs, which returned hundreds of thousands of total 
reads per evSeq library. We report these numbers because 
outsourced multiplexed MiSeq is a standard service available 
to all research groups. As an alternative to outsourcing, 
however, our institution provides multiplexed sequencing (via 
the Caltech Millard and Muriel Jacobs Genetics and Genomics 
Laboratory) on an Illumina NextSeq platform, returning an 
average of ~10x more reads than the outsourced MiSeq run for 
a total cost of ~$10. At 10x more reads and 10x less the total 
cost, the per-variant evSeq cost could decrease 100-fold to 
<$0.01. Indeed, we were able to re-sequence the TrpB libraries 
at a per-variant cost of ~$0.01 with ~2.2 million total reads 
returned for an average of thousands of reads per variant, far 
higher than what is needed for reliable variant calling. It must 
be noted, however, that analysis of the millions of evSeq reads 
was no longer practical on a personal laptop, requiring a 
desktop workstation instead. Computational power beyond a 
laptop will be needed when processing more than hundreds of 
thousands of reads with the existing evSeq software.  

Of final note, aside from providing valuable information for 
protein engineering experiments, evSeq can also facilitate 
investigation into the biochemical relevance of specific 
positions/mutations. Specifically, because all possible variants 
in a site-saturation library can be identified by evSeq, the 
sequence-fitness information generated can be used to 
explore the effects of mutations more fully than, for instance, 
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an alanine scanning experiment.36 Using an example from the 
TrpB data gathered here, an alanine scanning experiment 
would tell a biochemist that the mutation to the conserved 
catalytic residue E105A inactivates the enzyme, with no 
information about the effects of other amino acid changes at 
this position. Using site-saturation with evSeq, we instead find 
that all mutations to E105 except for E105D inactivate the 
enzyme. The fact that glutamate and aspartate are the only 
amino acids containing a carboxylic acid suggests that this 
functional group is critical for activity (Figure 2E, with inset). 

evSeq can be used to generate data for machine learning-
assisted protein engineering.  We next wanted to 
demonstrate the utility of evSeq for advancing and applying 
machine learning-assisted protein engineering (MLPE). In 
MLPE, models are trained to learn a function that relates 
protein sequence to protein fitness (i.e., they learn 
f(sequence) = fitness).5,6,9–11 These models are then used 
for rapid, low-cost in silico prediction of protein fitness, 
avoiding or greatly reducing the need for often-costly 
laboratory screening of variants (Figure 3).  

Sequence-fitness data is critical for effective MLPE. Indeed, 
even though strategies exist that can predict protein fitness 
from sequence alone (e.g., those that use evolutionary data to 

predict protein fitness), their effectiveness is improved with 
the inclusion of sequence-fitness information.7,14,15,37 As a 
result, the most effective MLPE workflows require that both 
sequence and fitness data be collected, unlike a DE workflow, 
which requires only fitness data.  

The need to collect sequence data in addition to fitness data 
is an often-overlooked additional cost of MLPE strategies 
compared to standard DE. For instance, we recently developed 
an ML strategy known as machine learning-assisted directed 
evolution (MLDE) for efficient navigation of epistatic 
combinatorial protein variant libraries.38,39 Previously, we used 
MLDE to evolve Rhodothermus marinus nitric oxide 
dioxygenase (RmaNOD) for greater enantioselectivity in a 
carbon–silicon bond-forming reaction.39 Over the course of the 
engineering campaign, we collected six 96-well plates of 
sequence-fitness data for training ML models. In total, 
sequencing the variants in these plates by Sanger sequencing 
cost ~$1700. High additional sequencing costs like these can 
make MLPE methods far less attractive, even if they are more 
effective than traditional DE at finding high-fitness protein 
variants.38 However, given that evSeq enables sequencing all 
variants for a cost similar to standard DE methods, it enables 

Figure 2. evSeq enables low-cost investigation of library quality and sequence-fitness pairing in site-saturation mutagenesis libraries. (A) 
Eight residues (red) known to modulate the activity of Tm9D8* were independently targeted with site-saturation mutagenesis: A118 and 
S292 (distal residues), E105, L162, I166, F184, S228, and Y301 (active-site residues). An active form of the pyridoxal 5’-phosphate cofactor 
is represented in green, and the substrate indole is shown in light blue. (B) Library quality can be investigated by plotting a heatmap of the 
number of times ("Counts") each variant/mutant at each targeted position was identified from processed evSeq data. Parent amino acids 
are each marked with an asterisk. (C) Likewise, the effect of mutations and mutational “hotspots” can be identified by plotting a heatmap 
of the average activity ("Normalized Rate") for each variant/mutation in each library when fitness data is combined with evSeq data. (D) 
An example plot made possible by evSeq visualization functions shows the number of times each amino acid was found in a single TrpB 
library (position 105), also accounting for known controls and unidentified wells. (E) Another example output of the evSeq software shows 
activity for a single library (position 105), showing biological replicates. The inset displays the role of the mutated residue in this library, 
which is to coordinate the nitrogen of the indole substrate. 
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use of MLPE without added cost. In essence, evSeq eliminates 
the sequencing burden of MLPE.  

To demonstrate the application of evSeq to MLPE, we used 
it to sequence five plates of RmaNOD variants from a four-site 
combinatorial library. Coupled with fitness data, the 
sequences resulting from this run could be used to drive a 
round of MLDE. Notably, sequencing these plates by Sanger 
sequencing would have cost ~$1400; in contrast, sequencing 
by evSeq using an outsourced multiplexed MiSeq run cost 
~$100 for a per-variant cost of ~$0.21. The median read depth 
per variant in this run was 463 (mean: 506), much higher than 
is required for accurate sequencing, and so more plates—from 
either the same or a different library—could have reasonably 
been added to this evSeq run to decrease the per-variant 
sequencing cost even further (Figure 3B). Of course, as 
discussed in the previous section, in-house sequencing could 
have cut sequencing costs an additional ten-fold.  

The cost of sequencing is most notably a barrier for MLPE 
strategies that focus on developing models for a single protein 

with a well-defined fitness (e.g., MLDE); however, the 
applicability of evSeq to MLPE is not limited solely to cost-
reduction. For instance, ML strategies have been developed 
that, rather than focusing on a specific protein, train models 
on sequence-fitness information across multiple different 
protein scaffolds.16,40 The goal is for these models to learn 
global determinants of protein fitness, then to use the models 
as general-purpose protein fitness predictors. By enabling the 
collection of sequence-fitness pairs across a wider array of 
proteins and fitness definitions, evSeq opens these 
approaches to new and more diverse data sources. Generally 
speaking, the more sequence-fitness data available to train 
and benchmark these strategies, the better we expect them to 
perform and the more rapidly we expect improvements to be 
developed.16 It is no coincidence that large leaps forward in 
other ML disciplines have followed increased availability of 
large, diverse datasets, with the rapid advance in computer 
vision sparked by ImageNet being perhaps the most prominent 
example.41 Widespread adoption of evSeq—and commitment 
to depositing sequence-fitness data in resources such as 
ProtaBank—would provide such a dataset for protein 
engineering. This dataset would span the range of all 
engineered proteins and all target fitnesses, capture examples 
of sequences with both higher and lower/zero fitness relative 
to a parent (the latter of which is effectively never recorded 
with current DE sequencing practices), and overall enable 
rapid advancement in MLPE.8  

evSeq detects all variability in the sequenced amplicons. 
Although we focused here on demonstrating applications 
involving targeted mutagenesis strategies, evSeq is also 
applicable to other mutagenesis methods, as the associated 
software can identify both user-specified and unspecified 
positions of variability (Figure 4A). This feature not only 
informs the user of potential unexpected mutations in the 
sequenced amplicon (Supplemental Table S11), but also allows 
it to work effectively with tile-based mutagenesis strategies 
and other semi-targeted mutagenesis strategies (e.g., error-
prone PCR of specific regions or small genes). All that is 

Figure 3. evSeq eliminates the sequencing burden of MLPE. Traditional DE only collects sequence information for top variants, essentially 
“throwing away” fitness data from inferior variants and learning nothing about the underlying fitness landscape. If, instead, evSeq is used 
to collect sequence information for all variants, MLPE methods, which require sequence-fitness pairs for supervised model training, can be 
implemented. Sampling from a fitness landscape, an ML model can be trained to predict the fitnesses of missing sequences and reconstruct 
the missing regions of this landscape. 

Figure 4. evSeq detects variability and can be expanded for 
random mutagenesis. (A) evSeq does not require that the user 
specify which position in the amplicon was targeted. Instead, the 
software can identify variable regions by comparing to a 
reference (B) evSeq can be used to sequence entire genes by 
designing a set of inner primer pairs which together capture the 
entire gene. Different evSeq barcodes can then be used for each 
region, and the user can reconstruct the entire sequence. 
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required is that the amplicon length and read length be able to 
capture the full region containing mutations. 

It should be noted that evSeq will not detect off-target 
mutations outside of the constructed amplicon as these 
regions are not sequenced, meaning that it is unable to identify 
other mutations in a larger DNA element that may be 
contributing to activity. Due to this fact, for exceedingly 
unexpected mutational effects that are not seen in replicate, 
we suggest sequencing the rest of the DNA element to confirm 
the presence or absence of any off-target mutations. However, 
this limitation is mitigated by the fact that off-target mutations 
are rare and, importantly, evSeq is agnostic to read length and 
will work with any length of paired-end sequencing. While the 
current software version is not yet suited for other, long-read 
sequencing technologies (e.g., PacBio or Oxford Nanopore), 
future versions could be updated and validated with these 
data formats and make full gene-length evSeq experiments 
more straightforward and cost effective. Given this, evSeq is 
currently best suited and most cost effective when all 
expected mutations exist in the sequenced amplicon, though 
sequencing of multiple overlapping amplicons can readily 
allow evSeq to be expanded to sequence entire genes of 
variants arrayed in microplates (Figure 4B). 

 

CONCLUSION 

Hundreds to thousands of protein variants (or more) are 
constructed and their fitnesses evaluated over the course of a 
standard protein engineering campaign. Without sequencing, 
these fitnesses are next to useless—the time, effort, and 
resources expended to produce them are largely wasted. As a 
strategy that is comparable in cost to existing protocols, 
accessible to non-computational scientists, and easy to 
implement with existing technology, evSeq rescues these 
fitness data by making the collection of sequence data for 
every variant a practical and highly useful step of the protein 
engineering pipeline. Given the number of research groups 
working on DE and other protein engineering projects, 
widespread adoption of this technology would lead to an 
explosion in the availability of sequence-fitness information. 
By sequencing every variant, no laboratory screening effort is 
wasted, and we open the door to advances in both our 
biochemical understanding of proteins and our ability to 
engineer them with data-driven methods.  
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