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Abstract

As large language models (LLMs) are adopted in an increasingly wide range of
applications, user–model interactions have grown in both frequency and scale.
Consequently, research has focused on evaluating the robustness of LLMs, an
essential quality for real-world tasks. In this paper, we employ simple multi-
turn follow-up prompts to evaluate models’ answer changes, model accuracy
dynamics across turns with Markov chains, and examine whether linear probes
can predict these changes. Our results show significant vulnerabilities in LLM
robustness: a simple “Think again” prompt led to an approximate 10% accuracy
drop for Gemini 1.5 Flash over nine turns, while combining this prompt with a
semantically equivalent reworded question caused a 7.5% drop for Claude 3.5
Haiku. Additionally, we find that model accuracy across turns can be effectively
modeled using Markov chains, enabling the prediction of accuracy probabilities
over time. This allows for estimation of the model’s stationary (long-run) accuracy,
which we find to be on average approximately 8% lower than its first-turn accuracy
for Gemini 1.5 Flash. Our results from a model’s hidden states also reveal evidence
that linear probes can help predict future answer changes. Together, these results
establish stationary accuracy as a principled robustness metric for interactive
settings and expose the fragility of models under repeated questioning. Addressing
this instability will be essential for deploying LLMs in high-stakes and interactive
settings where consistent reasoning is as important as initial accuracy.

1 Introduction

The use of large language models (LLMs) in interactive applications has greatly expanded in recent
years (Kumar, 2024). As a result, research has increasingly focused on evaluating model robustness,
a quality essential for real-world tasks such as decision making and classification (Li et al., 2025a).
Prior research has shown that a simple "rethink" prompt could reduce model performance on question-
answering tasks (Pawitan & Holmes, 2024). Further research on single-turn accuracy has also found
that models are highly sensitive to even small variations in prompts (Salinas & Morstatter, 2024).

This work investigates the following research question: Given repeated prompts without new evidence,
how does a model’s accuracy evolve? Addressing this question provides insight into LLM stability and
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the prevalence of sycophantic behavior while also enabling the prediction of accuracy dynamics for
more reliable and interpretable human-AI interactions. This contribution is key to real-world settings
where users repeatedly query AI systems—such as education, coding, or research assistants—without
introducing new information. To explore this, we used simple multi-turn follow-up prompts to evaluate
models’ answer changes, model accuracy dynamics across turns with Markov chains, and examine
whether linear probes can predict these changes. Our research reveals significant vulnerabilities in
LLM robustness: models frequently revise originally correct answers when re-questioned or slightly
challenged, even without being presented new evidence. Additionally, we find that a model’s accuracy
across multiple turns—when subjected to both simple and adversarial prompts—can be successfully
modeled using Markov chains. Upon examining the model’s hidden states, we also find evidence that
future answer changes can be predicted using linear probes. Overall, we quantitatively characterize
LLMs’ multi-turn answer stability and reveal internal state patterns linked to robustness. We hope
our results can guide future research and model design to enhance reliability in practical, interactive
settings.

In summary, the main contributions of this paper are as follows:

• We provide insights into how simple follow-up prompts and semantically rephrased prompts
influence a model’s likelihood of changing its answer, evaluating performance across datasets
with diverse question types and difficulty levels.

• We demonstrate that model accuracy across multiple turns can be effectively modeled using
a Markov process, which often converges to a stationary accuracy that is below the initial
first-turn performance, as illustrated in Figure 1.

• We find that probing the models’ hidden states yields a notable layer-wise improvement in
predicting whether the model will change its answer or not, providing evidence that probes
are predictive of forthcoming answer shifts.

Figure 1: MathQA first-turn vs. stationary accuracies for GPT-4.1-nano and Gemini 1.5 Flash. GPT
shows declines of 4.4–9.7% across prompts (e.g., “You are wrong” drops from 31.5% → 21.8%),
while Gemini declines 9.4–15.6% (largest under “Are you sure,” 41.4% → 25.8%). On average,
GPT degrades by about 6.6% from first-turn to stationary accuracy, while Gemini degrades by 12%.

2 Related works

Robustness in LLMs The robustness of LLMs has become an important field to study as these
systems are increasingly being deployed in critical and complex applications (Ma et al., 2025; Wu
et al., 2024). A popular line of investigation involves examining how LLMs respond to prompts
that subtly alter the semantics of the original question (Salinas & Morstatter, 2024; Seleznyov et al.,
2025). These prompts range from adding an extra space to purposely misspelling a word. Prior
research has shown that even the smallest of changes can lead to a significant decrease in model
performance across tasks (Zhu et al., 2023). Our work advances this line of research by extending
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prompt variations into a multi-turn setting and modeling the resulting interactions with a Markov
chain transition framework.

Multi-turn conversations with LLMs Recent research on multi-turn interactions with LLMs
has highlighted challenges in maintaining accuracy and confidence over multiple reasoning steps
(Zhang et al., 2025; Li et al., 2025b; Sirdeshmukh et al., 2025; Laban et al., 2025). One line of
work investigates the models’ confidence by measuring whether they adhere to initial answers when
given adversarial follow-up prompts (Xie et al., 2024). These studies show that models often fail to
maintain their original answers, leading to degraded performance. Our paper builds on these results
by testing models with not only adversarial prompts, but also simple prompts and rephrased questions
that preserve the original semantic meaning.

Sycophancy Research on the willingness of large language models (LLMs) to conform to user
beliefs—known as sycophancy—has shown that state-of-the-art models frequently exhibit untruthful
behavior across a range of tasks (Sharma et al., 2025; Malmqvist, 2024; Liu et al., 2025). Frameworks
such as SycEval assess sycophancy by presenting LLMs with user rebuttals following their initial
responses (Fanous et al., 2025). Their results reveal that sycophantic behavior persists across multi-
turn interactions, with 58.19% of all samples showing signs of answer changes in response to user
pressure. Building on prior work, we probe the model’s internal hidden states to assess whether such
answer changes can be predicted.

3 Experimental setup

3.1 Datasets

We select four datasets for our experiments, covering a range of difficulty levels and domains.

• MMLU: A dataset with approximately 16,000 questions spanning 57 subjects (Hendrycks
et al., 2020). From it, we sample 3,000 questions to evaluate the robustness of LLMs across
a broad range of domains.

• MathQA: A large-scale dataset of math word problems extending AQuA (Amini et al.,
2019; Ling et al., 2017). We use 2,985 of its MCQ questions to evaluate how robust LLMs
are in the specific field of mathematical reasoning and quantitative problem solving.

• Humanity’s Last Exam: A dataset of 2,500 challenging questions across 100+ subjects,
with state-of-the-art performance at only 25% (Phan et al., 2025). We use the dataset’s
multiple-choice questions to evaluate how models perform in a multi-turn interaction when
initial accuracy is low.

• GlobalOpinionsQA: A subjective dataset built with the goal of developing AI to be more
inclusive and serve all people worldwide (Durmus et al., 2023). The dataset is composed of
2,556 multiple-choice questions, and we utilize it to evaluate a model’s tendency to change
its answer on subjective questions.

3.2 Multi-turn prompting protocol

For our initial experiments, we begin by prompting the model with a question from the dataset. After
the original question, one of three simple follow-up prompts—“Think again,” “Are you sure?” or
“You are wrong”—is applied repeatedly across nine subsequent turns. These prompts gradually
increase the pressure on the model, with “You are wrong” being the most adversarial. In selecting
these prompts, we prioritize simplicity to evaluate whether straightforward, uncomplicated prompts
influence the model’s answer. From now on, we will refer to these prompts as "TA," "RUS," and
"URW" respectively. Between turns, no additional information about the initial problem is provided.

3.3 Models and hyperparameters

Our experiments testing model robustness through simple follow-up prompts were conducted primar-
ily on Gemini 1.5 Flash (Reid et al., 2024) and GPT-4.1-nano (Achiam et al., 2023). However, we
performed a smaller-scale study using Claude 3.5 Haiku (Anthropic, 2024) and GPT-4o (Achiam
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et al., 2023) to validate that our findings generalize across models of different capabilities. The
temperature of each model was set at 0 for deterministic answers.

3.4 Rephrased prompt variant

We developed a complementary experiment to evaluate whether models change their answer when a
question is rephrased. Prompt rephrasings are more ecologically valid than our prior three simple
prompts, and we aim to see whether such rephrasings also influence the model’s answers. These
experiments were only conducted on Claude 3.5 Haiku and GPT-4o using the MathQA and MMLU
datasets due to budget constraints. To avoid confusion and redundancy from excessive rephrasings,
we only use five subsequent prompts, each featuring a distinct question variant generated by GPT-4o
(example in Appendix A). We repeat this experiment with all three follow-up prompts outlined below:

• "Think again. Think about it this way: " + variation

• "Are you sure? Think about it this way: " + variation

• "You are wrong. Think about it this way: " + variation

The goal of this procedure is to test whether LLMs would remain consistent in their answers across
multiple semantically identical reworded prompts.

4 Models frequently change their minds

4.1 Results for simple follow-up prompts

Across GPT-4.1-nano and Gemini 1.5 Flash evaluated on the MathQA dataset, we observed a
consistent decline in accuracy over the course of multi-turn prompting (see Figure 2). The RUS
prompt caused the smallest accuracy degradation, approximately 5% for both models. In contrast, the
adversarial URW prompt produced the largest drop, with accuracies decreasing by 12.4% for GPT
and 11.9% for Gemini. As illustrated in Figure 8 and Figure 9, these trends were also observed in
other models such as GPT-4o, and on subjective datasets, such as GlobalOpinionsQA (GOQA).1 The
accuracy decrease was smaller for GPT-4o, suggesting that it exhibits greater robustness.

Overall, Gemini 1.5 Flash demonstrated higher accuracy levels, but also a steeper accuracy decline.
Another notable observation is the fluctuation in accuracy across most prompts. We hypothesize
that this instability arises from the model’s uncertainty on certain problems, causing it to oscillate
between correct and incorrect answers over successive turns.

Figure 2: Accuracy drift across 10 turns for GPT-4.1-nano and Gemini 1.5 Flash on MathQA questions.
For GPT-4.1-nano, the maximum accuracy decline (from the first turn to the lowest-performing turn)
for each prompt was 30.3% → 24.6% on TA, 31.6% → 26.8% on RUS, and 31.5% → 19.1% on
URW. For Gemini 1.5 Flash, the maximum accuracy decline for each prompt was 40.7% → 30.1%
on TA, 41.4% → 36.4% on RUS, and 41.0% → 29.1% on URW.

1Since GlobalOpinionsQA is subjective, we set the model’s initial response as the “correct” answer.
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To address concerns that accuracy degradation may be due to other factors such as model fatigue,
we conducted a control experiment using Gemini 1.5 Flash on 500 MathQA questions where each
question was repeated nine times without a simple follow-up prompt. Accuracies deviated much
less, by only 0.2% to 2.8% across turns, indicating that accuracy loss is primarily caused by prompt
pressure (see Appendix E).

Furthermore, we applied our three simple follow-up prompts to the multiple choice questions of
the Humanities Last Exam (HLE) dataset. The purpose of this was to analyze results on a dataset
where the initial accuracy is low. As shown in Figure 10, GPT-4.1-nano begins with an accuracy of
approximately 10%, which rises by roughly 2% over successive turns for all prompts. We explore why
this increase occurs in Section 5.3, where we utilize Markov chains to assess the models’ stationary
accuracies.

4.2 Results for rephrased prompts

We conducted experiments on GPT-4.1-nano and Gemini 1.5 Flash (see Figure 11), and then further
tested on Claude 3.5 Haiku and GPT-4o. These first two models overall showed slight decreases in
accuracy, with Gemini 1.5 Flash showing higher accuracy degradation, most notably 2.5% for prompt
URW. In contrast to the simple follow-up prompt setting used for the first two models, the latter two
models employed a Chain-of-Thought prompting approach, as detailed in Appendix B (Wei et al.,
2022). Our experiments with rephrased prompts show that slightly reworded questions combined
with multi-turn prompting produce effects similar to those of simple follow-up prompts, with all
three prompts resulting in an average accuracy drop of 15.7% for Claude 3.5 Haiku on MathQA
and approximately 3% for GPT-4o on MMLU (see Figure 3). The URW prompt again induced the
highest rate of answer changes. These findings suggest that even slight prompt rewording can induce
multi-turn accuracy degradation, underscoring the current limitations in model robustness.

Figure 3: Accuracy drift across 6 turns for Claude 3.5 Haiku (MathQA) and GPT-4o (MMLU). For
Claude 3.5 Haiku, the maximum accuracy decline for each prompt was 81.6% → 72.5% on TA,
81.2% → 71.5% on RUS, and 80.4% → 50.0% on URW. For GPT-4o, the maximum accuracy
decline for each prompt was from 88.6% → 86.1% on TA, from 88.8% → 86.3% on RUS, and from
89.5% → 84.1% on URW.

5 Modeling multi-turn interactions with Markov chains

5.1 Markov chain introduction

Markov chains are probabilistic models that describe the likelihood of transitions between a finite set
of discrete states (Pasanisi et al., 2012). They provide a simple yet powerful framework to capture
how a model’s answers evolve across multiple turns using probabilities. This approach allows us
to analyze and predict the probability of answer changes over time, rather than considering each
response independently. This is useful for uncovering systematic patterns in the fluctuations of model
predictions over multiple turns.
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5.2 Methodology

We model accuracy changes over turns using a two-state Markov chain, where states represent correct
(1) or incorrect (0) answers. At each turn, the model has some probability of being in the correct
state and the complementary probability of being in the incorrect state. To estimate the transition
dynamics, we split the dataset into 80% for training and 20% for validation. From the training data,
we count how often the model stays correct, flips from correct to incorrect, flips from incorrect to
correct, or stays incorrect. These counts are then used to estimate the probabilities of switching
between states: specifically, the chance of going from correct to incorrect (pTF ), and the chance of
going from incorrect to correct (pFT ).

Using these probabilities, we construct a transition matrix that tells us how likely the model is to
move between states from one turn to the next. Starting from the validation set’s initial accuracy, we
simulate how the probability of correctness evolves across turns by repeatedly applying the transition
matrix, as seen in Equation 1:[

ai+1

1− ai+1

]
=

[
1− pTF pFT

pTF 1− pFT

] [
ai

1− ai

]
(1)

where ai represents the simulated accuracy of the model at turn i. This allows us to see how accuracy
changes across multiple reconsiderations, up to ten turns in our experiments.

Over many turns, the system converges to a stationary accuracy: the long-run probability that the
model will be correct if the process were repeated indefinitely (Equation 2). If this stationary accuracy
is lower than the starting accuracy, it means the model’s answers tend to destabilize with more
reconsiderations. If it is higher, it suggests the model has a tendency to self-correct and improve over
time.

Acc∞ =
pFT

pTF + pFT
(2)

We use log loss and mean squared error (MSE) to assess how well the model’s predicted probabilities
align with actual outcomes. A log loss of 0 indicates that the predicted probabilities exactly match
the observed outcomes, with higher values reflecting poorer probabilistic calibration. MSE, on the
other hand, quantifies the average squared deviation between predicted probabilities and actual model
outcomes.

5.3 Results for simple follow-up prompts
Figure 4 displays the true and Markov simulated accuracies for GPT-4.1-nano and Gemini 1.5 Flash
on MathQA, both with the TA prompt. We found that the simulated accuracy accurately approximates
the true multi-turn dynamics of both models.2 These results align with the RUS and URW prompts,
seen in Figure 13 and Figure 14. In the subjective GlobalOpinionsQA dataset, the Markov model
closely simulated the observed trends as well, especially as the number of turns increased (see
Figures 15-17).

Figure 4: True vs. simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash. Both models were
prompted using TA on MathQA questions. For GPT-4.1-nano, accuracies on turn 10 deviated by
0.38%. For Gemini 1.5 Flash, accuracies on turn 10 deviated by 3.76%. The close match between
simulated and true accuracy shows that the Markov simulation accurately captures the model’s
multi-turn dynamics.

2Tables for log loss and MSE are shown in Appendix G
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After noting the accuracy increase in HLE, we attempt to explain this using Markov chains. This
increase in accuracy is in contrast with other datasets, possibly due to random answer switching
from initially incorrect guesses to correct ones. To provide some intuition for this conjecture, we
modeled the expected random-guess accuracy as a two-state Markov chain, providing a baseline that
shows that even random guessing can lead to an increase in stationary accuracy (see Figures 23-25).
Our results also indicate that answer dynamics on the HLE dataset can be effectively modeled using
Markov chains, even when initial precision is extremely low and when stationary accuracy increases.
That said, it is important to note that the decline in stationary accuracy for other datasets was much
more substantial than the increase for HLE.

5.4 Results for rephrased prompts
Figures 28-30 plots true and simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash, and Figure 5
plots true and simulated accuracy for GPT-4o and Claude 3.5 Haiku on the RUS prompt. Again, our
Markov model is able to well-approximate the multi-turn dynamics of GPT-4o and Claude 3.5 Haiku
for rephrased prompts. These results align with the TA and URW prompts as well, seen in Figures 26
and 27.

Figure 5: True vs. simulated accuracy for GPT-4o (MMLU) and Claude 3.5 Haiku (MathQA) with
the rephrased RUS prompt. For GPT-4o, accuracies on turn 6 deviated by 0.11%. For Claude 3.5
Haiku, accuracies on turn 6 deviated by 3.99%. The close match between simulated and true accuracy
shows that the Markov simulation accurately captures the model’s multi-turn dynamics.

GPT-4o on MMLU and Claude 3.5 Haiku on MathQA exhibit patterns consistent with those seen
under simple follow-up prompts, with the URW prompt producing the largest discrepancies between
stationary and original accuracy (Figure 31). Specifically, GPT-4o on MMLU exhibits drops of 2.47%
for prompt TA, 3.31% for prompt RUS, and 6.33% for prompt URW. In contrast, Claude 3.5 Haiku on
MathQA shows substantially larger decreases of 12.73%, 13.9%, and 34.82% for the same prompts.

5.5 Comparing simple follow-up and rephrased prompts
By comparing stationary accuracy degradation gathered from Markov Chains we can assess whether
vulnerabilities in model robustness are more pronounced under simple follow-up prompts or se-
mantically rephrased prompts. A complete stationary accuracy degradation table can be viewed in
Appendix H, with Figure 6 showing a comparison for Gemini 1.5 Flash.

Figure 6: Accuracy degradation of Gemini 1.5 Flash on MathQA. Overall, the model’s accuracy
decreases by an average of 12.03% for simple follow-up prompts and 3.97% for rephrased prompts.
This suggests that a model is more robust to reworded questions than to simple follow-up prompts.
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6 Can probes predict when a model will change its mind?

6.1 Linear probing

Linear probes are a commonly used technique to analyze representations learned by neural networks
(Alain & Bengio, 2016). Applying linear probes to an LLM’s hidden states provides insight into
internal model dynamics by revealing whether specific information is implicitly represented in
intermediate layers (Skean et al., 2025). In this work, we assess whether linear probes can be used to
effectively predict future answer changes and identify the layers in which these predictive signals
first emerge.

6.2 Methodology

To investigate the model’s internal representations, we conducted our probing experiments using the
open-source Gemma 3 4B model (Team et al., 2025). We start by extracting the hidden state vectors
for the last token in every layer using a simplified user prompt, seen in Appendix B. This hidden vector
encodes the model’s internal contextual representations at each step of the processing, reflecting
what the model has integrated so far. In order to analyze the relationship between these internal
representations and the model’s answer stability, we pair each hidden vector with a binary label
indicating whether the model changed its answer on that subsequent turn. Both the hidden vectors
and labels are then used to train a linear probe using ridge regression to predict, from the internal
state of the model at each turn, whether the model changes its answer on the next reconsideration. For
brevity, we omit the low-level implementation details of linear probing and refer readers to Gurnee &
Tegmark (2023) and Marks & Tegmark (2023) for reference.

After training the classifier on 80% of the labeled data, we assess its generalization performance
by comparing the predicted outputs on the held-out test set to its true labels. Because the model
retained its original answer in more turns than it revised, we applied stratified sampling to select an
equal number of questions from turns with unchanged answers and turns with changed answers. This
balanced sampling approach ensures that our analysis fairly compares model behavior across these
conditions. We then evaluate probe performance using accuracy, reporting the proportion of correct
predictions made by the trained linear probes on the test set. This experiment is repeated for all three
reconsideration prompts on Gemma 3 4B on MathQA.

6.3 Results

Figure 7 illustrates how the probe’s predicted probability of an answer change increases in the early
layers under the TA prompt, then stabilizes after layer 3. This pattern suggests that signals indicative
of potential answer changes are present in the early layers, and that our linear probes can detect
them effectively. Under the adversarial URW prompt,3 we observe a weaker trend: probabilities rise
slightly in the initial layers before fluctuating, making its results hard to interpret. This suggests
that adversarial prompts make it harder to use probes to predict when a model is going to change its
answer. Our approach could be further enhanced by employing more capable models, by evaluating a
larger set of questions, or by training non-linear probes, which may reveal stronger and more robust
evidence. However, these preliminary results show that probing for answer changes could be valuable
for tasks such as early intervention during inference. By detecting signals that a model is likely to
change its answer, the system could alert users in advance. This allows for users to decide whether to
modify the input, request additional clarification, or re-run the model—potentially saving compute
resources.

3The RUS prompt was excluded from analysis due to the model producing too few answer changes, which
provided inadequate training data.
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Figure 7: Probed hidden layer predictions across 26 layers for Gemma 3 4B on dataset MathQA.
Under the TA prompt, the linear probe’s predicted probabilities of answer changes rise sharply in the
early layers from 0.50 at layer 0 to 0.89 at layer 3, then stabilize around 0.88–0.89 through layer 3
to 25. Under the adversarial URW prompt, the linear probe’s predicted probabilities increase more
modestly from 0.50 at layer 0 to 0.58 by layer 5 and fluctuate between 0.51 and 0.55 in higher layers.

7 Conclusion

While our findings provide insights into LLM stability and answer dynamics, there are several
limitations to consider. Although we tested on a broad range of models, we could not include
other potentially more capable models due to budget constraints. Another limitation of this study
is that our prompts do not fully reflect how users naturally interact with language models. Phrases
such as “Think again” or systematically rephrased questions were deliberately constructed to probe
robustness, but they differ from the informal and indirect ways users typically express uncertainty
or disagreement. As a result, the model behaviors observed here may not entirely generalize to
real-world interactions. Additionally, the scope of our probing experiments was limited, as they were
conducted only on one set of models and datasets. Consequently, we cannot yet determine the extent
to which these preliminary findings generalize to broader use cases. Finally, we did not compute
error bars or significance testing for our evaluation across runs, again due to cost constraints.

That being said, our findings demonstrate a consistent decrease in model accuracy over multiple
turns, without new evidence, highlighting the limited robustness of current models. Especially in
high-stakes domains such as healthcare or law, ensuring such robustness is key to reliable deployment.
Additionally, the successful modeling of accuracy dynamics across multiple turns using Markov
chains enables for the prediction of future accuracies. Combined with preliminary evidence that
linear probes can anticipate future answer changes, these results allow for more interpretable and
reliable human-AI interactions by revealing when a model’s confidence and correctness begins to
diverge.

Ultimately, our study highlights that multi-turn prompting often degrades model performance across
different follow-up prompts. This accuracy degradation was successfully modeled using Markov
chains, which allowed us to compare stationary accuracy with original accuracy, while hidden-state
probing provided preliminary evidence that future answer changes may be predictable. These insights
underscore the need for future work focused on enhancing LLM robustness, particularly in high-stakes
applications where consistent reasoning is critical.
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A Rephrased prompts variation generation process

Our variations were generated with explicit instructions to preserve semantic meaning, answer
choices, and difficulty level. Here is a sample question and its variation:

• Original: "Mark bought a set of 6 flower pots of different sizes at a
total cost of 8.25. Each pot cost 0.1 more than the next one below
it in size. What was the cost, in dollars, of the largest pot?"

• Variation: "Samantha purchased 6 uniquely sized picture frames for a
combined price of 8.25. Each frame was priced 0.10 more than the
smaller one before it. What was the price of the largest frame in
dollars?"

B Prompts

System prompt non-COT

"You are an assistant skilled in solving multiple choice questions.
Only respond with the final answer letter as the only character in your
message. Do not include any other text or explanations. This letter
should correspond with the correct answer to the question provided."

User prompt non-COT

"Always respond with just the letter that corresponds to the correct
answer. Remember: Only respond with the final answer letter (A-E) as
the only character in your message. Do not include any other text or
explanations."

System prompt COT:

"You are an assistant skilled in solving multiple choice questions.
Always provide the final letter as the last character in your message
in the format ’Final Answer: X’ where X is the correct letter choice."

User prompt COT:

"Please think step by step, but always end your response with just the
final letter on the last line." + question + "Remember: You must ALWAYS
give your final answer as a capital letter as the LAST character in your
message, in the format ’Final Answer: X’ where X is the correct letter
choice."
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Simplified user prompt for hidden-state experiments:

"Answer with only the letter A, B, C, D, or E." + question

C Additional simple follow-up prompt results

Figure 8: Accuracy drift across ten turns for GPT-4o on MathQA. Only two prompts were ran due to
budget restraints.

Figure 9: Accuracy drift across ten turns for Gemini 1.5 Flash and GPT-4.1-nano on GOQA.

Figure 10: GPT-4.1-nano accuracy increases over turns on Humanities Last Exam.
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D Additional rephrased prompts

Figure 11: Accuracy drift across six turns for GPT-4.1-nano and Gemini 1.5 Flash on MathQA.

E Control experiment

Figure 12: Gemini 1.5 Flash on 500 MathQA questions that are repeated nine times without a simple
follow-up prompt.

F Additional Markov modeling results

Simple follow-up prompts:

Figure 13: True vs simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash on dataset MathQA
for the prompt RUS.
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Figure 14: True vs simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash on dataset MathQA
for the prompt URW.

Figure 15: True vs simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash on dataset GOQA for
the prompt TA.

Figure 16: True vs simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash on dataset GOQA for
the prompt RUS.

21



Figure 17: True vs simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash on dataset GOQA for
the prompt URW.

Figure 18: True vs simulated accuracy for GPT-4.1-nano on MMLU for the prompt TA.

Figure 19: True vs simulated accuracy for GPT-4.1-nano on MMLU for the prompt RUS.

Figure 20: True vs simulated accuracy for GPT-4.1-nano on MMLU for the prompt URW.
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Figure 21: True vs simulated accuracy for Claude 3.5 Haiku on MMLU for the prompt RUS.

Figure 22: True vs simulated accuracy for Claude 3.5 Haiku on MMLU for the prompt URW.

Figure 23: True vs simulated accuracy for GPT-4.1-nano on HLE for prompt TA.

Figure 24: True vs simulated accuracy for GPT-4.1-nano on HLE for prompt RUS.

23



Figure 25: True vs simulated accuracy for GPT-4.1-nano on HLE for prompt URW.

Rephrased follow-up prompts:

Figure 26: True vs simulated accuracy for GPT-4o on MMLU and Claude 3.5 Haiku on MathQA for
the prompt TA.

Figure 27: True vs simulated accuracy for GPT-4o on MMLU and Claude 3.5 Haiku on MathQA for
the prompt URW.
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Figure 28: True vs simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash on MathQA for the
prompt TA.

Figure 29: True vs simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash on MathQA for the
prompt RUS.

Figure 30: True vs simulated accuracy for GPT-4.1-nano and Gemini 1.5 Flash on MathQA for the
prompt URW.
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Figure 31: Comparison of original and stationary accuracies across three prompt types (TA, RUS,
and URW) for GPT-4o on the MMLU dataset and Claude Haiku 3.5 on the MathQA dataset.

G Error metrics

Table 1: Average log loss and MSE for Gemini 1.5 Flash on MathQA and GOQA.

(a) MathQA
Prompt Log Loss MSE
RUS 0.1118 0.0234
TA 0.4444 0.1388
URW 0.4743 0.1505

(b) GlobalOpinionsQA
Prompt Log Loss MSE
RUS 0.1094 0.0249
TA 0.2790 0.0771
URW 0.2294 0.0608

Table 2: Average log loss and MSE for GPT-4.1-nano on MathQA and GOQA.

(a) MathQA
Prompt Log Loss MSE
RUS 0.1930 0.0480
TA 0.5746 0.1934
URW 0.4924 0.1632

(b) GlobalOpinionsQA
Prompt Log Loss MSE
RUS 0.0915 0.0184
TA 0.6143 0.2119
URW 0.6736 0.2403

Table 3: Average log loss and MSE for Claude 3.5 Haiku and GPT-4o across MMLU and MathQA
datasets.

(a) Claude 3.5 Haiku
Prompt Log Loss MSE
RUS 0.3349 0.0948
TA 0.2935 0.0796
URW 0.5436 0.1791

(b) GPT-4o
Prompt Log Loss MSE
RUS 0.2917 0.0821
TA 0.2080 0.0540
URW 0.3452 0.1012

H Stationary accuracy change table
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Table 4: Stationary accuracy change (%) across models and prompt types.
Model Type Prompt Dataset Stationary Accuracy Change
Gemini 1.5 Flash Rephrased TA MathQA −2.8

Rephrased RUS MathQA −1.9
Rephrased URW MathQA −7.2

Simple Follow-Up TA MathQA −9.4
Simple Follow-Up RUS MathQA −15.6
Simple Follow-Up URW MathQA −11.1

GPT-4.1 Nano Rephrased TA MathQA −0.3
Rephrased RUS MathQA +1.3
Rephrased URW MathQA −1.9

Simple Follow-Up TA MathQA −4.4
Simple Follow-Up RUS MathQA −5.8
Simple Follow-Up URW MathQA −9.7

Claude 3.5 Haiku Rephrased TA MathQA −12.73
Rephrased RUS MathQA −13.90
Rephrased URW MathQA −34.82

GPT-4o Rephrased TA MMLU −2.47
Rephrased RUS MMLU −3.31
Rephrased URW MMLU −6.33

Gemini 1.5 Flash Simple Follow-Up TA Global Opinions QA −5.0
Simple Follow-Up RUS Global Opinions QA −15.4
Simple Follow-Up URW Global Opinions QA −9.8

GPT-4.1 Simple Follow-Up TA Global Opinions QA −26.6
Simple Follow-Up RUS Global Opinions QA −41.5
Simple Follow-Up URW Global Opinions QA −54.2
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