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ABSTRACT

Federated Graph-level Clustering (FGC) offers a promising framework for ana-
lyzing distributed graph data while ensuring privacy protection. However, ex-
isting methods fail to simultaneously consider knowledge heterogeneity across
intra- and inter-client, and still attempt to share as much knowledge as possi-
ble, resulting in consensus failure in the server. To solve these issues, we pro-
pose a novel Federated Graph-level Clustering Network with Dual Knowledge
Separation (FGCN-DKS). The core idea is to decouple differentiated subgraph
patterns and optimize them separately on the client, and then leverage cluster-
oriented patterns to guide personalized knowledge aggregation on the server.
Specifically, on the client, we separate personalized variant subgraphs and cluster-
oriented invariant subgraphs for each graph. Then the former are retained locally
for further refinement of the clustering process, while pattern digests are extracted
from the latter for uploading to the server. On the server, we calculate the relation
of inter-cluster patterns to adaptively aggregate cluster-oriented prototypes and
parameters. Finally, the server generates personalized guidance signals for each
cluster of clients, which are then fed back to local clients to enhance overall clus-
tering performance. Extensive experiments on multiple graph benchmark datasets
have proven the superiority of the proposed FGCN-DKS over the SOTA methods.

1 INTRODUCTION

Federated Graph Learning (FGL) (Liang et al., 2023; 2024b; Liu et al., 2024a;b; Li & Guo, 2025)
has recently emerged as a powerful paradigm for privacy-preserving machine learning, enabling
multiple clients to collaboratively train models without exposing their raw graph data. With the
explosive growth of graph-structured data in domains such as personalized recommendation (Wu
et al., 2021), decentralized fraud detection (Chen et al., 2024), and scientific discovery (Zhang et al.,
2023; Liang et al., 2024c), research on FGL has gained increasing attention.

Node-Level Graph-Level
Datasets hrO NS hrO hrI
Cite 23.7 SM 45.2 54.5
PubMed 18.6 SM-BIO 69.1 58.3
Photo 4.4 SN 43.6 39.6

Table 1: Multi-subgraph/graph hetero-
geneity in node- and graph-level tasks,
calculated by graph kernel. Here, hrO,
hrI denote inter- and intra-client hetero-
geneity, respectively. NS refers to non-
IID settings (i.e., the strategy of assign-
ing different private datasets to clients).

Among the various tasks in this domain, cluster-
ing (Zhang et al., 2024; Bo et al., 2020) plays a funda-
mental role by discovering latent patterns without label
supervision. In federated settings, clustering can be per-
formed at different granularities, which leads to two dis-
tinct paradigms: node-level and graph-level clustering.
In federated node-level clustering (Liang et al., 2024a;
Liu et al., 2023; 2025b), clients hold subgraphs drawn
from the same global graph, where distributions are rela-
tively homogeneous, allowing the server to easily achieve
consensus. In contrast, federated graph-level clustering
(FGC) (Liang et al., 2024c) requires clients to cluster
entirely different non-IID graphs. This introduces se-
vere intra-client heterogeneity (inconsistent graph pat-
terns within each client) and inter-client heterogeneity (domain shifts across clients), making server
consensus much more challenging (see Table 1). Recent methods such as FedGCN (Liu et al., 2025a)
and FedPKA (Wu et al., 2025) follow the paradigm of maximizing global knowledge sharing that
works for graph-level tasks, but they overlook the unique challenges of multi-graph heterogeneity.
As a result, they often suffer from consensus failure when applied to graph-level clustering.
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Inspired by FedPer (Arivazhagan et al., 2019), which separates model parameters across layers to
enable personalized training in FL, we extend this idea to graph structure by exploring how graphs
can be decomposed into different components for FGC. Guided by invariant graph learning (Sui
et al., 2024; Li et al., 2022b), we further attempt to separate each graph into invariant and variant
subgraphs: invariant parts are shared with the server to support global consensus, while variant parts
are kept locally to protect personalized knowledge, as shown in Fig. 1 (a). This design directly
matches our goal: invariant subgraphs contain stable cross-domain patterns (see Fig. 1 (b)), whereas
variant subgraphs represent client-specific information. However, deploying invariant graph learning
in federated settings is highly challenging. On each client, multiple graphs with diverse distributions
coexist, so the extraction of common components must be carefully controlled in granularity to
benefit both local clustering and global consensus. On the server, client heterogeneity prevents
simple weight aggregation. The global model must move beyond naive consensus and accurately
identify representative patterns across participants, guiding a more personalized aggregation process.

Figure 1: (a) Compared with the existing
FGL methods, our approach only shares
knowledge that is beneficial to global con-
sensus. (b) Graphs within the same cluster
share certain common substructures, and
there is also inter-cluster sharing across
different clients.

Based on the above challenges, we propose
Federated Graph-Level Clustering Network with
Dual Knowledge Separation (FGCN-DKS). The key
idea is to decouple graph knowledge within and
across clients, so that local clustering benefits from
personalization while the server achieves consensus.
On each client, an invariant subgraph separator divides
graphs into cluster-oriented common subgraphs and
client-specific personalized subgraphs. Only common
knowledge digests are uploaded to the server, while
personalized subgraphs remain local. On the server,
a Common Knowledge Sharing Strategy (CKSS)
aggregates invariant pattern digests by computing
cluster-level affinities and capturing semantically con-
sistent components. The resulting cluster-level signals
are sent back to clients, enabling finer-grained con-
sensus. Finally, clustering is conducted in two stages:
K-means is initialized with common representations
that are extracted from common parts and refined with
personalized representations for local adaptation. In
summary, our contributions are threefold:

• New Perspective. We provide the first systematic study of federated graph-level cluster-
ing (FGC) under both intra-client and inter-client heterogeneity, revealing why existing
paradigms of maximizing global knowledge sharing fail in this more challenging setting.

• New Method. We propose FGCN-DKS, a dual knowledge separation framework that sep-
arates invariant and variant subgraphs on clients and performs cluster-level consensus ag-
gregation on the server, directly addressing the identified challenges.

• Strong Results. Extensive experiments demonstrate that FGCN-DKS consistently outper-
forms state-of-the-art baselines in graph clustering performance.

2 RELATED WORK

2.1 INVARIANT GRAPH LEARNING

Learning graph representations that remain stable under distributional shifts has become a central
theme in out-of-distribution (OOD) generalization. Early work, such as GIL (Li et al., 2022a),
introduces a subgraph generator and invariant learning module to extract label substructures, infer-
ring latent environments via variant subgraphs and enforcing consistency across them. Building
on this, CIGA (Chen et al., 2022) employs an information-theoretic objective to identify subgraphs
whose embeddings maximize intra-class invariance under diverse graph interventions. At the clus-
ter level, CIT (Xia et al., 2023) ensures that cluster embeddings remain consistent despite structural
perturbations, promoting robust GNN representations. Beyond task-specific frameworks, several
general-purpose techniques further the cause of invariance in graphs. MARIO (Zhu et al., 2024)
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integrates an Information bottleneck with adversarial augmentations in graph contrastive learning
to distill invariant features. CGCL (Chen et al., 2025) enforces cross-view reconstruction consis-
tency between augmented graph views, enhancing OOD robustness for link prediction. IGM (Jia
et al., 2024) synthesizes new environments via env-Mixup and inv-Mixup on variant and invariant
subgraphs, obviating the need for manual environment labels. More recent advances continue to
push the task. InfoIGL (Mao et al., 2024) leverages a multi-level contrastive learning grounded
in the Information Bottleneck principle to isolate invariant graph features. MPHIL (Shen et al.,
2025) introduces hyperspherical invariant representations with multi-prototype matching and sepa-
ration losses, directly tackling semantic entanglement across unknown environments. Despite these
advances, existing methods assume centralized access to fully labeled data, which is incompatible
with federated settings where clients neither share raw data nor possess label supervision.

2.2 FEDERATED GRAPH LEARNING

FGL has emerged to enable collaborative model training across multiple clients while preserving
data privacy. A straightforward extension of FedAvg (Li et al., 2019) to GNN demonstrates that
naively averaging GNN parameters can yield reasonable performance but suffers under the non-IID
issue. Subsequently, FedPer (Arivazhagan et al., 2019) adapts personalization layers in GNNs, en-
abling clients to fine-tune private parameters while sharing a common backbone. FedProx (Li et al.,
2020) generalizes and re-parametrizes FedAvg, providing convergence guarantees when learning
from non-IID datasets. To address heterogeneity, FedGraphNN (He et al., 2021) introduces client-
specific adaptation layers and a global graph aggregator, improving convergence in graph classi-
fication and node prediction tasks. Building on this, FedSage (Zhang et al., 2021) and FedGAT
(Ambekar et al., 2024) incorporate sampling-based neighbor selection and attention mechanisms,
respectively, to reduce communication overhead and align local and global feature spaces. In par-
allel, FedStar (Tan et al., 2023) addresses client label heterogeneity by aligning local embeddings
via contrastive regularization. More recent research, FedGCN (Liu et al., 2025a), as a first FGC
framework, is proposed, which optimizes prototypes between multiple clients and guides the lo-
cal model to learn. Subsequently, FEDPKA (Wu et al., 2025) mitigates non-IID heterogeneity and
knowledge drift by confidence-guided knowledge aggregation and adaptive prototype adjustment for
personalized FL. However, existing methods still cannot effectively solve the consensus failure is-
sue caused by large knowledge differences. In contrast, FGCN-DKS effectively alleviates it through
client internal knowledge decoupling and cluster-oriented personalized aggregation between clients.

3 METHODOLOGY

In this section, we present the proposed Federated Graph Learning framework called Federated
Graph Clustering Network with Dual Separation (FGCN-DKS) in detail, which collaboratively
solves the issue of consensus failure both within and across clients. Its core idea is to decouple
knowledge that either promotes or hinders consensus, and then share the cluster-oriented, high-
affinity components to regulate the guidance signals for each cluster accurately. As illustrated in
Fig. 2, FGCN-DKS consists of three key modules: local pattern separation mechanism, common
knowledge sharing strategy, and two-stage K-means clustering. The ovarall process is detailed in
Algorithm 1, and the convergence proof of FGCN-DKS is provided in Appendix A.

3.1 NOTATIONS

We consider a non-IID federated setting with Nc clients, where each client i ∈ {1, . . . , Nc} holds a
private graph dataset containing Nϕ clusters and NG graphs, denoted as G = {Gj}NGj=1. All datasets
in the federated setting contain Nψ clusters. For each client, the node feature matrix is represented
as X ∈ RN×d, and the normalized adjacency matrix is represented as A ∈ {0, 1}N×N , where N is
the number of nodes, and d is the dimension of node attributes. The total number of edges is denoted
as |E|. A detailed list of symbols is provided in the Appendix B.

3.2 LOCAL PATTERN SEPARATION MECHANISM

In this section, we attempt to decouple two distinctive subgraph patterns (i.e., common subgraph and
personalized subgraph). Then, the knowledge stemming from the former is uploaded to the server for
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Figure 2: The framework of FGCN-DKS. We decouple the graph into invariant subgraphs and vari-
able subgraphs, guided by clusters and clients, respectively. The invariant component is optimized
in cluster-oriented coordination with global sharing, while the variable component further refines
the clustering objectives. The two promote each other to produce clearer cluster boundaries.

sharing, while the knowledge stemming from the latter is retained locally. To facilitate this, we de-
fine a series of environments by cluster, where each cluster represents a distinct distribution of graph
data. The goal is to learn the invariant signal that characterizes the common pattern of each cluster
while distinguishing the variant signal that reflects the personalized pattern of graphs. Specifically,
for each original graph Gi, we generate E = Nϕ perturbed views of its graphs {G(e)

i }Ee=1 through
randomized structure and attribute perturbations to simulate distributional shift for each client. Each
perturbed set Ek = {G(k)

j }NGj=1 defines an environment with graph structure A(k).

Subgraph Separation To disentangle invariant and variant parts from each graph, we introduce
node attribute separator Φ, and graph structure separator Ψ, which generate the structure mask Ms

and node attribute mask Mx for each graph Gi, as:

Ms = Φ({A(e)}Ee=1,X), Mx = Ψ({A(e)}Ee=1,X). (1)

Applying these masks yields two complementary adjacency matrices and node feature matrices, as

Ā = Ms ⊙A, Ã = (1−Ms)⊙A, (2)

X̄ = Mx ⊙X, X̃ = (1−Mx)⊙X, (3)
where ⊙ denotes the Hadamard product. Thus, two subgraphs for any graph are obtained: Ḡ =

{X̄, Ā} and G̃ = {X̃, Ã}. We then employ dual projector F̄θ and F̃θ based on GNN to extract node
invariant features H̄ and variant node features H̃, as

H̄ = F̄θ(Ā, X̄ | Θ̄), H̃ = F̃θ(Ã, X̃ | Θ̃), (4)

where Θ̄ and Θ̃ are parameters of F̄θ and F̃θ, respectively. Finally, graph-level representations Z̄
and Z̃ are obtained via a READOUT function, as Z = READ(H). To encourage the projector to
derive decoupled representations that are both cluster-discriminative and environment-invariant, we
first enforce samples belonging to the same cluster to share similar invariant subgraphs. Given the
set Pk = {i | c(i) = k} for cluster k, we minimize the pairwise variance within each group:

Linv =
∑E

ei=1

∑E

ej=1

∑Nϕ

k=1

1

|Pk|2
∑

i,j∈Pk
∥z̄(ei)i − z̄

(ej)
j ∥2. (5)

To prevent the collision of invariant subgraphs from different clusters, which would hinder the cap-
ture of sufficiently distinguishable cluster features, we design Ldiv to increase the distance between
invariant subgraphs from different clusters. Let N = (i, j) | c(i) ̸= c(j) denote inter-cluster pairs,
the Ldiv can be calculated as:

Ldiv =
1

|N |
∑E

ei=1

∑E

ej=1

∑Nc

k=1

∑
(i,j)∈N

ϑ(z
(ei)
i , z̄

(ei)
j ), (6)
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where ϑ(·, ·) is a inverse distance function. This term explicitly encourages inter-cluster separa-
tion in the embedding space. To enforce invariance under environmental shifts, we minimize the
variation of each graph’s invariant representation across different environments, as:

Lenv =
1

ENϕ

∑Nϕ

i=1

∑E

e=1
∥z(e)i − z̄i∥2 +

1

E

∑E

e=1
ϑ(Z̄(e), Z̃(e)), (7)

where z̄i = 1
E

∑E
e=1 z

(e)
i . This objective encourages the encoder to focus on information that is sta-

ble across distributional shifts, enhancing generalization to unseen environments, while effectively
separating the invariant and variant components, ensuring the model retains the stable structure of
the graph while capturing the patterns of variation. Finally, the overall optimization objective L in
each client is as:

L = Linv + β Ldiv + γ Lenv + Lmse. (8)

where Lmse is the node representation reconstruction loss. β and γ are two hyperparameters that
control the ratio of the loss. By doing so, we separate each graph into two distinct subgraph patterns
(i.e., variant subgraph and variant subgraph). The theoretical and experimental effectiveness of the
subgraph separation process are presented in Appendix C and Appendix D, respectively. Subse-
quently, these common subgraph structures Ḡ represented as C are uploaded and serve as irrecov-
erable digest information on the server to reflect inter-cluster affinity, facilitating the achievement of
personalized consensus. Meanwhile, the invariant subgraphs are kept on the client, offering crucial
guidance for clustering while safeguarding privacy. This design strikes a balance by enabling the
global model parameters to maintain coherence in local knowledge while simultaneously adapting
to local distributional variables.

3.3 COMMON KNOWLEDGE AGGREGATION STRATEGY

Algorithm 1 Algorithm Pseudo of FGCN-LKS

Require: Initial model parameters {Θ̄i}Nci=1, Node fea-
ture X, Adjacent matrix A; Client Number Nc.

Ensure: Clustering Result R.
1: on each client
2: for c = 1 → Nc do
3: Generate E perturbed graphs {G(e)}Ee=1 to con-

struct environments.
4: Obtain invariant mask Ms and Mx by Eq. (2).
5: Separate two type subgraphs Ā and Ã by Eq. (3).
6: Extract dual embeddings Z̃ and Z̄ by Eq. (4).
7: Upload common prototype p̄, pattern digest C and

invariant encoder parameters Θ̄ to the server.
8: end for
9: on the Server

10: Collect C, p̄ and Θ̄ from each client to the server.
11: Calculate affinity matrix S by Eqs. (9) - (10).
12: Personalized aggregate {p̄i}

Nψ
i=1 and {Θ̄i}Nci=1 to gen-

erate consensus knowledge by Eq. (11).
13: Feedback parameters and prototype to each client.
14: Execute 2-stage K-means clustering.
15: return R

In this section, we design a Common
Knowledge Sharing Strategy (CKSS),
aiming to aggregate negotiated-friendly
knowledge at a finer level of granular-
ity, mitigating the impact of weak cor-
relations on the target and enhancing
the overall quantity of global consen-
sus. First, the server receives the com-
mon prototype, parameters, and pat-
tern digests from the clients. Next, we
employ cluster-oriented common pat-
tern digests derived from subgraphs to
capture the relation of stable structural
semantics across clients. Finally, we
leverage these relations to guide the ag-
gregation of parameters and prototypes,
achieving personalized knowledge con-
sensus for different clients.

Cluster-oriented Information Aggre-
gation Since the pattern digests re-
flect the underlying manifold structure
of the cluster, we utilize the cluster-
oriented pattern digest uploaded from
each client to compute potential rela-
tionships using graph kernels, such as
RW (Kang et al., 2012), WL (Liu et al., 2025b), SP (Borgwardt et al., 2020), LT (Johansson et al.,
2014), and others. These graph kernels effectively capture the similarity between cluster patterns,
aligning local information within each cluster with the global structure, while ensuring privacy pro-
tection. Specifically, the similarity between cluster i and j is given by k(Ci,Cj). The pairwise
affinity matrix S is then computed as: Sij = k(Ci,Cj), where k(·, ·) is the graph kernel method
and Ci is the pattern digest from i-th cluster. In this way, we obtain the initialized affinity matrix
of all clusters. However, relying solely on this initialization relationship to propagate knowledge is
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insufficient; we also need to incorporate additional information to ensure a more robust aggregation
process. Therefore, we further introduce historical information to define a stability coefficient α to
quantify the stability of relationships between clusters over multiple iterations, as

αij =
|k(C(t)

i ,C
(t)
j )− k(C

(t−1)
i ,C

(t−1)
j )|

max(k(C
(t)
i ,C

(t)
j ), ϵ)

, (9)

where t is the communication epoch. A smaller αij indicates a more stable relationship between
clusters. Then the affinity matrix can be updated as

S(t) = (1− λ) · S(t−1) + λ ·
∑

i,j
αij · k(C(t)

i ,C
(t)
j ), (10)

where λ is a hyperparameter controlling the relative weight between historical and current simi-
larity information. This smoothing trick ensures that the similarity matrix evolves gradually over
iterations, avoiding over-reliance on single-round updates, and stabilizing the convergence process.
Subsequently, the server performs personalized aggregation based on the cluster affinity to obtain a
consensus guide signal. The consensus prototype p̄glo|l for cluster l and the consensus parameters
Θ̄glo|m for client m are calculated as:

p̄glo|l =
∑Nψ

i=1
sli · p̃i, Θ̄glo|m =

∑
j∈Sm

∑Nψ

u=1
sujΘ̄u, (11)

where Sm denotes cluster set from client m. It is noteworthy that this alignment scheme differs
from traditional methods, which require equal cluster quantities for proportional division. Instead, it
leverages the inherent affinity of clusters through pattern relationships, guiding clients to delineate
clearer clustering boundaries.

This strategy allows each client to benefit from similar peers in the same latent space, while avoid-
ing negative transfer from unrelated distributions. Compared to the naive average strategy, our
method explores the relationship between patterns, allowing clients to be guided by more personal-
ized knowledge with greater affinity, enabling them to exert greater clustering advantages.

3.4 TWO STAGE K-MEANS CLUSTERING

When the personalized consensus knowledge is generated and fed back to the local models for op-
timization, we further exploit the disentangled representations learned through invariant training by
introducing a two-stage clustering. This process first captures cluster-oriented stable patterns and
then refines client-oriented personalized information. Specifically, we first perform clustering over
the invariant representations Z̄ using a standard K-means algorithm. Since these representations
are learned to be robust against environment-specific perturbations, the initial clustering C(0) pro-
vides a reliable global semantic grouping. Then, we further refine the initial clusters by leveraging
the variant representations Z̃, which are specifically designed to encode environment-sensitive or
instance-level information. Within each initial cluster C(0)

k , we perform a secondary clustering or
similarity-based refinement to enhance the granularity and expressiveness of the final partitioning.
This variant-aware refinement step enables the model to adaptively adjust for intra-cluster diver-
sity, thereby improving clustering fidelity and interpretability. Overall, this common-to-personalized
clustering paradigm enables a robust yet flexible representation-driven grouping mechanism. The in-
variant component ensures cross-environment consistency, while the variant component captures lo-
cal distinctions, jointly facilitating high-quality cluster assignments even under distributional shifts.

3.5 EFFICIENCY ANALYSIS

Compared with the standard parameter averaging in FedAvg, our framework introduces only a slight
increase in global computation through affinity-guided consensus aggregation. FedAvg performs a
weighted average with complexity O(d2), whereas our method additionally computes cluster-level
affinities from pattern digests at O(N2

ψκ), where Nψ ≪ d and κ is any linear kernel in practice. The
subsequent personalized aggregation requires only O(NcNψd) complexity. Therefore, the increase
in computational complexity is acceptable given the corresponding performance gains.
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Models SM2(7) SN3(2) SM-BIO2(9)

ACC NMI ARI F1 ACC NMI ARI F1 ACC NMI ARI F1

FedSage∗ 55.6±1.4 12.2±1.3 7.6±0.6 50.2±1.0 53.3±1.9 14.8±1.4 11.6±2.8 49.3±2.0 57.4±2.2 5.2±2.1 4.2±2.7 49.9±0.5
GCFL∗ 61.1±1.8 8.7±2.4 9.4±2.4 49.6±2.3 52.1±2.3 12.5±2.3 13.2±2.3 52.3±1.6 60.1±1.8 4.7±2.4 3.2±2.3 47.3±1.5
FedStar∗ 58.9±2.4 12.0±1.2 0.1±0.8 49.7±2.8 51.7±2.7 13.7±2.8 12.4±1.9 50.7±2.3 59.5±1.6 5.3±1.5 3.8±2.0 51.7±2.2
LG-FGAD† 65.8±0.8 18.8±1.9 3.4±1.1 62.9±0.6 37.9±2.5 9.6±2.9 0.4±0.7 26.3±3.5 59.6±1.5 9.0±1.4 7.8±1.7 56.0±2.6
FGAD† 66.4±2.4 20.2±2.6 4.3±3.2 63.8±2.6 41.2±1.9 5.8±2.4 0.5±1.4 35.8±1.6 63.5±1.0 14.7±1.1 2.1±2.0 60.7±1.5
AGDiff† 70.2±1.4 19.3±2.9 15.6±3.9 67.3±2.8 42.3±1.9 7.5±1.2 8.6±2.0 37.2±1.0 61.3±2.5 10.6±1.9 3.4±0.2 57.2±1.6

GLCC‡ 56.2±2.8 8.6±3.4 5.4±4.2 53.7±4.1 43.5±2.0 9.7±2.4 3.5±1.5 40.7±2.1 57.5±2.3 6.7±1.8 4.6±2.0 41.6±1.5
UDGC‡ 53.6±3.4 9.7±2.5 8.6±3.4 53.4±2.3 50.1±2.4 10.4±2.5 9.3±1.4 48.4±2.3 55.6±1.8 8.9±1.4 6.8±0.4 50.4±1.0
DGLC‡ 60.8±1.5 14.3±1.2 10.7±1.4 52.2±1.4 55.5±1.5 11.6±2.8 12.3±1.7 52.1±2.1 58.0±1.9 12.3±1.4 11.6±1.7 53.5±1.5
DCGLC‡ 63.1±1.7 17.5±1.5 17.6±1.7 58.4±2.0 59.6±1.9 13.7±2.0 15.6±1.8 56.8±2.3 60.4±1.6 13.2±1.1 15.8±1.9 56.6±1.2

FedGCN 75.9±0.8 23.1±1.6 31.1±3.4 67.1±1.5 66.6±2.3 30.4±6.6 34.1±5.3 50.8±2.4 69.2±0.6 14.0±2.7 17.5±3.1 59.1±0.9
FedPKA 77.0±0.2 26.8±3.8 31.2±3.3 67.3±2.0 67.5±1.5 25.7±2.3 32.6±2.4 55.5±1.5 70.8±1.4 15.4±2.7 19.6±3.4 60.6±2.1
OURS 79.2±0.5 28.3±1.1 34.6±0.9 72.3±1.1 70.2±0.4 34.2±1.7 36.8±1.2 60.4±1.9 74.4±1.9 21.5±1.8 24.6±1.2 63.6±1.5

SM-BIO-SY2(10) SN-SY11(2) CV15(3)

FedSage* 57.6±1.9 20.6±1.9 17.6±2.4 46.7±1.8 15.6±1.1 7.6±1.0 3.4±2.7 2.9±1.8 19.6±0.8 22.7±0.4 12.5±1.3 18.2±0.8
GCFL* 59.1±2.0 14.4±2.2 13.7±2.8 52.3±1.9 19.3±0.6 4.5±2.3 1.2±1.1 8.7±0.9 27.9±1.6 27.5±2.2 13.1±1.9 27.4±1.3
FedStar* 57.9±2.6 15.7±2.4 16.1±3.0 52.3±2.2 19.0±2.9 4.1±2.5 2.3±2.5 7.9±2.2 22.7±1.0 20.3±1.7 10.3±2.1 20.2±3.2
LG-FGAD† 58.4±0.5 7.6±0.4 6.4±0.8 54.6±0.7 19.1±1.4 6.7±0.6 3.3±1.0 7.4±1.1 27.4±1.6 31.4±4.0 9.6±3.2 24.7±3.3
FGAD† 62.2±1.3 14.6±2.6 3.0±2.9 56.7±0.8 16.4±0.5 7.4±0.5 2.7±0.3 8.3±0.7 26.0±1.1 31.9±1.2 7.3±1.1 25.2±1.1
AGDiff† 61.4±1.3 15.6±2.8 13.5±1.4 50.4±3.0 15.8±2.0 4.3±2.0 3.4± 0.2 9.6±2.8 23.6±1.4 27.5±1.3 8.7±0.9 22.8±1.4

GLCC‡ 54.2±3.5 10.8±1.3 7.6±0.9 53.5±1.6 16.3±2.6 3.8±2.1 3.2±2.0 10.0±2.3 22.8±1.2 20.4±1.3 10.6±1.5 14.2±1.0
UDGC‡ 55.6±2.5 12.7±2.4 11.4±2.6 54.1±2.2 17.5±1.2 8.1±2.2 6.4±3.5 9.7±2.9 20.4±2.3 10.5±2.3 8.2±1.6 14.7±1.8
DGLC‡ 57.8±2.0 14.4±1.3 10.7±1.6 54.3±1.2 18.2±1.0 9.1±1.4 7.5±1.1 8.6±1.3 29.5±2.4 21.6±1.3 14.5±1.4 22.1±1.7
DCGLC‡ 60.1±1.4 15.6±1.7 13.1±1.2 59.7±1.8 17.5±1.2 8.2±1.4 6.5±2.0 10.4±2.6 28.8±2.0 24.3±1.1 18.6±1.2 24.5±1.3

FedGCN 68.6±1.3 13.5±2.1 17.2±3.6 59.4±3.8 18.3±3.1 4.8±5.0 2.3±2.6 11.2±3.5 34.6±2.8 34.8±2.4 19.3±2.3 31.6±2.9
FedPKA 70.1±0.9 17.2±0.8 22.2±1.1 61.5±2.3 16.4±2.6 5.7±2.3 5.9±2.0 8.2±2.5 36.4±1.1 34.4±1.6 20.3±1.2 33.5±1.3
OURS 73.6±1.4 22.7±1.2 23.5±1.9 64.4±1.7 23.5±1.5 13.4±1.0 8.7±1.6 15.6±1.2 39.2±1.3 37.1±1.6 24.5±1.3 35.2±1.3

Table 2: Performance comparison across different FGL methods under six non-IID settings. * de-
notes supervised methods adapted for unsupervised learning. † denotes anomaly detection methods
adapted for clustering. ‡ denotes centralized deep graph-level clustering methods adapted for FGL.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the effectiveness and robustness of
FGCN-DKS. We first introduce the experimental setup, including datasets, baseline methods, and
implementation details. Then, we present the comparison results with the SOTA approaches, fol-
lowed by ablation studies to examine the contribution of each component. Finally, we provide
additional analysis further to validate the efficiency and generalizability of our methods.

4.1 EXPERIMENT SETTINGS

Benchmark Datasets We evaluate FGCN-DKS on 16 public datasets from the TUDataset collec-
tion, spanning small molecules, bioinformatics, computer vision, and social networks (Liang et al.,
2025). These datasets are organized into six non-IID settings: same-domain (SM, SN, CV) and
cross-domain (SM-BIO, SM-BIO-SY, SN-SY), aligned following FedGCN (Liu et al., 2025a). De-
tailed dataset information and non-IID settings are provided in Appendix E.

Evaluation Metrics To comprehensively assess the performance of FGCN-DKS, we adopt four
standard unsupervised clustering evaluation metrics: Accuracy (ACC) (Cai et al., 2022; 2024a),
Normalized Mutual Information (NMI) (Liang et al., 2024b), Adjusted Rand Index (ARI) (Cai et al.,
2024b), and F1 Score (Tu et al., 2024). Details of these metrics are given in the Appendix F.

Baseline Methods To rigorously evaluate the effectiveness of FGCN-DKS, we consider two types
of baselines. The first type includes the SOTA FGC method FedGCN and FedPKA and several
representative FGL methods adapted to FGC, such as FedSage (Zhang et al., 2021), GCFL (Xie
et al., 2021), FedStar (Tan et al., 2023), LG-FGAD (Cai et al., 2024c), FGAD (Cai et al., 2024d),
and AGDiff (Cai et al., 2025). The second type comprises advanced centralized Deep Graph-level
Clustering (DGC) methods, including GLCC (Ju et al., 2023), UDGC (Hu et al., 2023), DGLC (Cai
et al., 2024a), and DCGLC (Cai et al., 2024b). As these models rely on full data access, we adapt
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them to the FGL scenario by local training and parameter aggregation, ensuring fair comparison.
The description of the baselines and the implementation details of FGCN-DKS are provided in
Appendix G.

4.2 COMPARISON EXPERIMENTS

Comparison with FGL Methods We compare FGCN-DKS with advanced FGL methods to assess
the performance. As illustrated in Table 2, the experimental results lead to the following observa-
tions: Our approach delivers superior performance, primarily because invariant learning effectively
disentangles the two structural patterns and aggregates them globally in a cluster-oriented manner.
This process refines cluster-relevant signals while preserving the consistency of invariant represen-
tation learning. Compared with supervised FGC methods and unsupervised anomaly detection ap-
proaches, our method achieves superior performance. Supervised methods rely on label guidance,
and without labels, they lack a reliable signal to define meaningful cluster boundaries, leading to
degraded clustering quality, while unsupervised anomaly detection focuses on identifying rare, dis-
tinctive graph patterns rather than general clustering. Moreover, compared with SOTA FGC meth-
ods, our approach still demonstrates a significant advantage, indicating that merely sharing abundant
parameters and prototypes does not necessarily lead to more effective performance improvement.

Comparison with Centralized DGC Methods To further assess the performance of FGCN-DKS,
we compare it with some representative centralized DGC methods. The experimental results are
shown in Table 2, and the following conclusions are obtained: Compared with existing advanced
methods, FGCN-DKS significantly improves performance, which is mainly attributed to the lack
of ability of existing methods to perceive cluster-directed signal to adjust learning strategies. The
inherent paradigm will cause consensus failure due to large differences in optimization directions
between parameters. In contrast, our method cleverly separates the two structural patterns and uses
the cluster summary as a prototype to guide the server to learn with different strategies, overcoming
the difference in semantic granularity and improving the overall performance of the model.

Figure 3: Comparison experiment results on
the supervised methods with few labels un-
der five non-IID settings.

Comparison with Supervised FGL Methods To
further demonstrate the superior performance of
FGCN-DKS, we conduct a comparison with several
supervised methods by providing them with a par-
tial set of labels. The experimental results are shown
in Fig. 3, which leads to the following conclusions:
Compared with supervised methods, our method still
shows strong performance despite the lack of labels.
This is mainly attributed to the fact that our method
can effectively separate cluster-driven knowledge
and personalized features locally and use different
strategies to aggregate cluster-friendly guidance sig-
nals, improving the global performance.

4.3 MODULE ABLATION STUDIES

To provide a clearer and more systematic understanding of how each component contributes to the
overall performance of our framework, we organize the ablation settings into four representative
variants. The first adopts only the minimal client and server settings, forming a basic baseline with-
out any advanced mechanisms (Basic). The second removes the subgraph pattern separation module
and the two-stage k-means refinement, while retaining the basic local learning strategy and keep-
ing the server unchanged (-Local). The third replaces CKSS with the standard FedAvg aggregation
while preserving the complete local inference and learning pipeline (-Server). The final activates
the full proposed framework, where all modules and optimization mechanisms are jointly enabled
(Ours). This structured decomposition allows a fine-grained quantification of the importance of
each design choice. The experiment results are shown in Table 3, which reveal several notable
observations. First, performing knowledge separation solely on the client side already yields consis-
tent improvements across all datasets. This indicates that mitigating local knowledge heterogeneity
plays a crucial role in obtaining clearer representations of both shared and personalized graph pat-
terns. Second, using CKSS alone brings only moderate gains. This limitation arises because CKSS
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Variants SM SM-BIO SM-BIO-SY SN

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Basic 61.7±1.2 19.5±1.6 14.6±1.4 59.3±2.1 15.2±1.6 13.8±2.1 56.3±2.9 7.7±2.4 13.3±1.9 29.5±2.4 18.6±1.8 16.3±1.4
-Local 64.6±1.4 22.4±1.3 16.9±1.7 61.6±2.0 17.9±2.1 16.2±1.7 58.4±2.9 8.9±2.5 15.7±1.8 32.4±2.3 20.4±1.9 19.7±2.0
-Server 68.2±1.9 23.9±2.1 32.0±1.6 69.5±1.5 21.5±1.8 22.1±1.1 67.2±1.3 16.5±1.2 19.6±1.5 37.7±1.0 33.5±0.7 22.7±0.7
Ours 79.2±0.5 28.3±1.1 34.6±0.9 74.4±1.9 24.7±1.1 24.6±1.2 73.6±1.4 22.7±1.2 23.5±1.9 39.2±1.3 37.1±1.6 24.5±1.3

Table 3: Module ablation study results on SM, SM-BIO, SM-BIO-SY, and SN non-IID settings.

Clients Ours FedGCN FedPKA FedAvg
Time (s) Cost (KB) Time (s) Cost (KB) Time (s) Cost (KB) Time (s) Cost (KB)

1 16.8 32.3 15.93 30.5 20.6 42.1 14.6 28.7
2 35.5 67.3 30.8 61.8 41.5 85.4 29.1 57.5
3 53.0 96.7 44.8 93.6 64.4 131.6 45.6 86.8

Table 4: Communication overhead comparison under the CV non-IID setting.

fundamentally relies on reliable common subgraph patterns extracted through local separation; with-
out them, the server struggles to accurately estimate inter-client affinities, reducing the effectiveness
of global consensus modeling. Finally, when both modules operate jointly, they reinforce each other,
leading to substantial improvements in clustering performance. These results collectively demon-
strate that local knowledge disentanglement and global consensus optimization are complementary
and jointly necessary for achieving high-quality federated graph-level clustering. Additional abla-
tion studies are shown in Appendix H.

Figure 4: Hyper-parameters α and β sensitivity analysis results under four non-IID settings with
varying α:β ratios in the range of [1:10, 10:1], report ACC, NMI, ARI and F1 values.

4.4 HYPER-PARAMETERS SENSITIVITY ANALYSIS

To investigate the effects of each loss component in Eq. (8), we perform a sensitivity analysis by
varying the weighting hyperparameters α and β. The experimental results are shown in Fig. 4, and
the following conclusions are obtained: FGCN-DKS achieved optimal balanced performance at a
1:1 ratio. Increasing the ratio slightly improved NMI and ARI, but led to a decline in ACC and F1.
Conversely, decreasing the ratio exhibited the opposite trend.

4.5 COMMUNICATION OVERHEAD ANALYSIS

To further evaluate the practicality of the proposed framework in federated environments, we con-
duct a communication overhead analysis. As shown in Table 4, our method incurs slightly higher
communication time and communication payload than FedGCN. This increase mainly results from
transmitting shared structural patterns, and the overall additional cost remains negligible relative to
the full model parameters. Compared with FedPKA, our framework shows clear advantages in both
communication time and communication payload. FedPKA requires frequent model gradient ex-
changes, which substantially increases its communication burden. In contrast, our design effectively
reduces unnecessary transmissions while preserving model performance. We also compare our ap-
proach with the standard FedAvg baseline. Although additional structure patterns are transmitted,
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Figure 6: Convergence curves on ACC, NMI, ARI clustering metrics and loss values under SM
non-IID setting, compared with FedPKA, FedGCN federated graph-level clustering methods.

their size is small. The resulting communication overhead remains marginal and does not affect
the overall efficiency of the model. Meanwhile, this lightweight increase brings notable perfor-
mance gains. Overall, the communication analysis indicates that our method achieves competitive
efficiency while maintaining strong performance across heterogeneous federated settings.

4.6 CONVERGENCE STUDIES

Figure 5: Client-wise per-
formance comparison experi-
ment results under SM-BIO-
SY non-IID setting.

To assess the stability and convergence behavior of FGCN-DKS,
we track the trajectories of ACC, NMI, ARI, and loss values
across communication rounds and compare them with FedGCN and
FedPKA. As shown in Fig. 6, our model converges smoothly and
rapidly with stable performance on all metrics. Although FedPKA
shows relatively strong early-stage performance due to its commu-
nity division mechanism, it fails to maintain improvement and ul-
timately does not converge. In addition, only local training also
converges, but remains clearly inferior without server coordination.
The training loss decreases steadily with only minor fluctuations,
indicating robust optimization dynamics under federated settings.
Overall, these results confirm that FGCN-DKS achieves reliable
and stable convergence throughout the training process.

4.7 CLIENT-WISE PERFORMANCE COMPARISON

To further evaluate the client-level effectiveness of FGCN-DKS, we
conduct a client-wise performance comparison, as shown in Fig. 5. The results show that our FGL
method consistently improves the accuracy of all clients, demonstrating strong robustness under het-
erogeneous data distributions. Although FedGCN enhances the overall performance to some extent,
it does so while reducing the accuracy of several clients, indicating an unbalanced aggregation effect.
In contrast, our approach yields both global performance gains and stable client-level improvements,
thereby achieving a more reliable and uniformly beneficial optimization across all participants.

5 CONCLUSION

In this paper, we propose FGCN-DKS, a federated clustering framework that effectively addresses
the challenge of consensus failure caused by knowledge heterogeneity. By improving invariant
learning and common knowledge shared strategy, our method decouples on two levels: (1) shared
subgraph patterns and personalized subgraph patterns, and (2) Cluster-oriented consensus pattern
and client-driven prior knowledge negotiation. Through this elegant design, we upload only the
shared subgraph pattern digests to the server for consensus optimization, focusing on the most ben-
eficial parts for clustering, while the personalized subgraph patterns are retained locally to refine the
clustering process by the 2-stage K-means clustering process. Regardless of the distribution pattern
on the clients, our approach achieves superior performance compared to existing state-of-the-art
methods. In the future, we plan to address this challenge at the node level, enabling more flexible
clustering without being overly constrained by inherent priors.
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6 REPRODUCIBILITY STATEMENT

We provide all essential details, including datasets, pseudocodes, hyperparameters, and environment
settings, to facilitate the reproducibility of our experiments.
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A CONVERGENCE PROOF FOR FGCN-DKS

A.1 ASSUMPTIONS AND NOTATION

We consider K clients, and denote the global model parameters by w ∈ Rdg , where dg represents
the dimension of the global model. This global model includes both the encoder parameters and the
cluster prototypes. Each client k minimizes its local expected loss, which is given by

Fk(Θ) = Eξ∼Dk [Lk(Θ; ξ)], (12)

where Dk and ξ represent the data distribution and the data sample at client k, respectively, and Lk
denotes the stochastic version of the local objective function. The global objective function is

f(Θ) =

K∑
k=1

pkFk(Θ),

K∑
k=1

pk = 1, (13)

where pk is the weight assigned to client k (in this manuscript, p are defined by the personalized
inter-cluster relations).

We assume the following conditions:

1. Smoothness: Each function Fk is L-smooth, meaning

∥∇Fk(u)−∇Fk(v)∥ ≤ L∥u− v∥, ∀u, v. (14)

2. Bounded stochastic variance: The stochastic gradients ∇Lk(Θ; ξ) satisfy

Eξ∥∇Lk(Θ; ξ)−∇Fk(Θ)∥2 ≤ σ2, ∀k,Θ. (15)

3. Bounded client heterogeneity (gradient dissimilarity): We assume that the average gra-
dient dissimilarity between the clients is bounded, i.e.,

1

K

K∑
k=1

∥∇Fk(Θ)−∇f(Θ)∥2 ≤ δ2, ∀Θ. (16)

ALGORITHMIC SETUP

At each communication round t, the server holds the global model parameters Θt. Each client
k initializes its local model Θtk = Θt and performs an update on its local dataset Dk using the
following rule:

Θt+1
k = Θtk − η∇Lk(Θtk;Dk), (17)

where ∇Lk(Θtk;Dk) is the gradient computed using the entire dataset Dk at client k. η is the learn-
ing rate. After the update, each client sends its updated model Θt+1

k to the server for aggregation:

Θt+1 =

K∑
k=1

pkΘ
t+1
k . (18)

Thus, the global model is updated as the weighted average of the local models.
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DESCENT LEMMA

Under assumption (A1), for any round t, we have the following descent inequality:

E[f(Θt+1)] ≤ E[f(Θt)]− ηE [⟨∇f(Θt),Θt+1 −Θt⟩] +
Lη2

2
E∥Θt+1 −Θt∥2. (19)

Proof. By the L-smoothness of f , we have the following standard inequality:

f(Θt+1) ≤ f(Θt) + ⟨∇f(Θt),Θt+1 −Θt⟩+
L

2
∥Θt+1 −Θt∥2. (20)

Since the model update is given by:

Θt+1 −Θt = −η

K∑
k=1

pkg
t
k, (21)

where gtk is the stochastic gradient at client k during round t, we substitute this into the above
inequality:

f(Θt+1) ≤ f(Θt) + ⟨∇f(Θt),−η

K∑
k=1

pkg
t
k⟩+

Lη2

2

∥∥∥∥∥
K∑
k=1

pkg
t
k

∥∥∥∥∥
2

. (22)

Taking expectations over the random gradients, we get:

E[f(Θt+1)] ≤ E[f(Θt)]− ηE

[
⟨∇f(Θt),

K∑
k=1

pkg
t
k⟩

]
+

Lη2

2
E

∥∥∥∥∥
K∑
k=1

pkg
t
k

∥∥∥∥∥
2
 . (23)

This completes the proof of the descent lemma.

BOUND ON THE DEVIATION OF LOCAL MODELS

Under assumptions (A1)–(A3) and the unbiasedness of the stochastic gradients, the following bound
holds for any t:

E∥Θt+1
k −Θt∥2 ≤ 1

KE

∑
k

E∥∇Fk(Θ
t
k)−∇Fk(Θt)∥2 + δ2 +

σ2

KE
. (24)

Sketch. To bound the deviation of the local model Θt+1
k from the global model Θt, we expand:

Θt+1
k −Θt = Θtk −Θt − η

E−1∑
s=0

gtk. (25)

Taking the squared norm of both sides and computing the expectation, we use variance-bias decom-
position to split the result into two parts: Local drift term: The difference Θtk − Θt represents
the drift of the local model from the global model. Gradient noise term: The stochastic gradients
introduce noise, bounded by σ2

KE .

Thus, we arrive at the final bound:

E∥Θt+1
k −Θt∥2 ≤ 2L2η2E

(
E−1∑
s′=0

E∥Θtk −Θt∥2 +
σ2

K

)
+ δ2. (26)
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MAIN THEOREM (NON-CONVEX CONVERGENCE)

Under assumptions (A1)–(A3), suppose the stepsize satisfies

η ≤ min

{
1

4LE
, 1

}
. (27)

Then running T communication rounds of the above procedure yields the following bound on the
gradient norm:

1

T

T−1∑
t=0

E∥∇f(Θt)∥2 ≤ 2(f(Θ0)− f⋆)

ηET
+ C1LηEδ2 + C2

σ2

KE
, (28)

where C1 and C2 are gradient dissimilarity and stochastic gradient noise error constants, respec-
tively.

Proof. We start from the descent lemma (19). Taking full expectation and applying Lemma 2, we
get:

E[f(Θt+1)] ≤ E[f(Θt)]− ηEE∥∇f(Θt)∥2 − ηEE⟨∇f(Θt), ḡt −∇f(Θt)⟩+
Lη2E2

2
δ2. (29)

From the smoothness and bounded variance properties of the gradients, we obtain a bound for the
gradient norm in terms of the initial loss, gradient noise, and client heterogeneity:

1

T

T−1∑
t=0

E∥∇f(Θt)∥2 ≤ 2(f(Θ0)− f⋆)

ηT
+O(ηδ2) +O(

σ2

K
). (30)

Thus, choosing an optimal η = O(1/
√
T ), we have the desired convergence result.

B NOTATIONS

All notations used in the proposed FGCN-DKS are summarized in Table 5.

C GRAPH DECOMPOSITION INTO INVARIANT AND VARIANT SUBGRAPHS

PROBLEM SETUP AND NOTATION

Let G = (V,E) be an undirected graph with node set V and edge set E, where each node v ∈ V has
a feature vector xv ∈ Rd. We assume that the graph G can be decomposed into two components: an
invariant subgraph Ginv and a variant subgraph Gvar, such that:

G = Ginv ∪Gvar, (31)

where Ginv is the invariant subgraph that represents the part of the graph that remains unchanged
across different datasets or transformations. Gvar is the variant subgraph that represents the part of
the graph that is sensitive to changes in the data, such as variations across different experiments,
graphs, or time steps.

Our goal is to provide a formal decomposition of the graph into these two subgraphs and to prove
that this decomposition is meaningful in terms of graph properties.

C.1 DECOMPOSITION METHODOLOGY

The decomposition process follows these steps:

1. Identification of Invariant Components: We first identify the subgraph Ginv by looking
for the parts of the graph that are consistent across all observed instances. This is done by
comparing the graph’s structure and node features across different datasets or views.
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Notations Meaning Notations Meaning

N Number of nodes NG Number of graphs from each client

Nc Number of clients Nϕ Number of clusters from each client

Nψ Number of clusters from all clients E Number of environments

d Dimensions of node attribute d′ Dimensions of node embedding

X Node attribute matrix A Graph adjacency matrix

Ms Graph structure mask matrix Mx Node attribute mask matrix

X̄ Invariant node attribute matrix Ā Invariant graph adjacency matrix

X̃ Variant node attribute matrix Ã Variant graph adjacency matrix

H̄ Invariant node embeddings H̃ Variant node embeddings

Z̄ Invariant graph-level embeddings Z̃ Variant graph-level embeddings

P̄ Common prototype P̃ Personalized prototype

Pglo Consensus prototype Θglo Consensus parameter matrix

Θ̄ Invariant model parameter matrix Θ̃ Variant model parameter matrix

γ Weight hyper-parameter β Weight hyper-parameter

S Affinity matrix α Stability coefficient

S Cluster set C Cluster node set

ϵ A small lower bound constant λ Weight hyper-parameter

Table 5: Basic notations for the proposed FGCN-DKS.

2. Identification of Variant Components: The remaining graph, Gvar, consists of the com-
ponents that change depending on external factors. These components are identified by
measuring the variation in the graph’s structure or node features over time or across differ-
ent instances.

3. Formalizing the Decomposition: The graph G is decomposed into two disjoint subgraphs
Ginv and Gvar, such that:

G = Ginv ∪Gvar, Ginv ∩Gvar = ∅. (32)

The invariant subgraph captures the stable, core relationships in the graph, while the variant
subgraph contains the dynamic or fluctuating parts.

INVARIANT AND VARIANT SUBGRAPH PROPERTIES

For the decomposition to be valid, we must ensure that the invariant subgraph captures only those
parts of the graph that are consistent across multiple views or datasets. We define the following
properties for the invariant and variant subgraphs:

• Invariant Subgraph (Ginv): The invariant subgraph contains the edges and nodes that
remain unchanged across different instances. Formally, for any two graphs G1 = (V1, E1)
and G2 = (V2, E2) with the same node set V , the edges in Ginv must satisfy:

Einv ⊆ E1 ∩ E2, ∀E1, E2 ∈ {E1, E2}. (33)

This ensures that the edges in Ginv are consistent across all graphs or datasets.

• Variant Subgraph (Gvar): The variant subgraph contains the edges and nodes that differ
between graphs. This can be formally defined as:

Evar = E \ Einv, Vvar = V \ Vinv, (34)

where Evar and Vvar are the edges and nodes in Gvar that do not appear in Ginv.
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Table 6: Effectiveness of subgraph separation under various non-IID settings (%).
Non-IID Settings IC DR AVG-IC

SM 88.7 90.2 54.8
SM-BIO 85.6 84.5 30.9

SN 90.1 83.2 56.4

MATHEMATICAL FORMULATION OF DECOMPOSITION

The decomposition can be viewed as an optimization problem, where the objective is to minimize
the difference between the original graph and the sum of the invariant and variant subgraphs. This
can be formulated as follows:

min
Ginv,Gvar

(
∥G− (Ginv +Gvar)∥2 + λ · ∥Ginv∥2

)
, (35)

where: Ginv and Gvar are the invariant and variant subgraphs, respectively. The first term ensures
that the sum of the subgraphs approximates the original graph. The second term is a regularization
term that penalizes the size of the invariant subgraph, ensuring that it only contains core, stable
components.

PROOF OF DECOMPOSITION VALIDITY

We now provide a proof that the decomposition of the graph into invariant and variant subgraphs is
valid, i.e., the decomposition maintains key structural properties of the original graph.

theorem Let G = (V,E) be a graph that can be decomposed into an invariant subgraph Ginv and a
variant subgraph Gvar. Then, the decomposition is valid if and only if:

G = Ginv ∪Gvar and Ginv ∩Gvar = ∅. (36)

Proof. We begin by noting that the invariant subgraph Ginv must consist of nodes and edges that
are consistent across all instances of the graph. Therefore, Ginv captures the stable relationships in
the graph. On the other hand, the variant subgraph Gvar consists of the edges and nodes that differ
between instances.

Since the decomposition is performed by removing the invariant components from the original
graph, we have:

Gvar = G \Ginv. (37)

Additionally, by construction, the invariant and variant subgraphs are disjoint, meaning that:

Ginv ∩Gvar = ∅. (38)

Thus, the graph G is indeed the union of Ginv and Gvar, as required.

Therefore, the decomposition is valid, and we have:

G = Ginv ∪Gvar, Ginv ∩Gvar = ∅. (39)

CONCLUSION

In this section, we have formalized the decomposition of a graph into invariant and variant sub-
graphs. The invariant subgraph captures the stable structural relationships across multiple instances
or transformations, while the variant subgraph captures the parts of the graph that vary. We have
proven that the decomposition is valid, and we have provided an optimization framework for learn-
ing such a decomposition. This decomposition is useful in various applications, such as graph-based
anomaly detection, graph classification, and multi-view learning, where the goal is to separate stable
and dynamic components of the graph.
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D EFFECTIVENESS ANALYSIS OF SUBGRAPH SEPARATION

To evaluate the effectiveness of our subgraph separation mechanism, we employ three complemen-
tary metrics: Invariance Consistency (IC), which quantifies the similarity of invariant subgraphs
extracted from different clients; Distinctiveness Ratio (DR), which measures the separability be-
tween invariant and variant subgraphs; and the average IC of raw graphs (AVG-IC), which indi-
cates the baseline similarity across clients without separation. As reported in Table 10, our method
consistently achieves high IC and DR values across various non-IID settings, even when the raw
cross-client similarity (AVG-IC) is considerably lower. These results demonstrate that the sepa-
ration mechanism substantially enhances cross-client pattern affinity and reveals shared structural
semantics that are less apparent in the original graphs. Overall, the findings confirm that our ap-
proach effectively identifies robust and meaningful common patterns despite substantial distribu-
tional shifts.

E DETAILS OF DATASETS AND NON-IID SETTINGS

In this manuscript, the statistical information of the benchmark datasets used is provided in Table
7. Based on these datasets, we construct a series of non-iid (Non-Independent and Identically Dis-
tributed) settings, which are consistent with FedGCN. The non-IID settings refer to the strategy of
distributing different datasets across clients, where each client possesses a private, exclusive dataset.
Detailed information on this setting is shown in Table 8. The Ground Truth for the datasets involved
is also provided, serving as the evaluation standard. All the Ground Truth information includes the
true labels for each dataset, which will be used for subsequent model evaluation and comparison.

• MUTAG dataset originates from chemical experiments and is primarily used for predicting
the mutagenicity (toxicity) of molecules. Mutagenicity is an important indicator in drug de-
velopment and environmental safety, making this dataset highly relevant in drug discovery
and molecular property prediction.

• BZR dataset is derived from drug screening experiments, aiming to predict whether a small
molecule can bind to the benzodiazepine receptor and exhibit biological activity. Ben-
zodiazepine drugs are associated with anti-anxiety, sedative, and muscle relaxant effects,
making this dataset valuable for research in drug design.

• COX2 dataset originates from the field of drug design, with the goal of predicting whether
a small molecule can inhibit Cyclooxygenase-2 (COX-2). COX-2 is an enzyme involved in
inflammatory responses, and its inhibitors are commonly used in anti-inflammatory, anal-
gesic, and anticancer drug development.

• DHFR is a key metabolic enzyme involved in DNA synthesis, repair, and cell prolifera-
tion. This dataset is used to predict whether a small molecule can inhibit the activity of
DHFR, which is crucial in the development of anticancer and antimicrobial drugs (such as
methotrexate).

• PTC MR is a subset of the Predictive Toxicology Challenge, with data from carcinogenic-
ity testing of compounds in experimental animals (in this case, male rats). The goal is to
predict whether a chemical molecule is toxic, which is particularly valuable in drug safety
evaluation and environmental chemical screening.

• AIDS dataset comes from the National Cancer Institute’s (NCI) drug activity screening
program. It is used to predict whether a small molecule can effectively inhibit HIV replica-
tion. Each molecule has been experimentally screened, and the labels indicate its inhibitory
effect on HIV, with active molecules potentially offering antiviral properties.

• BZR MD dataset originates from the inhibitory activity data of benzodiazepine receptors
obtained via molecular dynamics simulations. Compared to the BZR dataset, BZR MD
involves more complex molecular simulation information and is typically used in higher-
level drug screening and design, especially for evaluating drug molecules in environments
combining simulation and real-world data.

• DD dataset comes from the drug-drug interaction (DDI) prediction task. In clinical phar-
macology, drug-drug interactions are an important issue that can affect the efficacy of drugs
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or cause severe side effects. The DD dataset aims to predict potential interactions between
different drugs, aiding in drug development and clinical medication safety assessments.

• PROTEINS dataset is derived from the protein structure prediction task. The goal is to
predict whether a protein, based on its amino acid sequence and structure, is an enzyme.
Enzymes are vital molecules involved in catalyzing biochemical reactions, and this dataset
is significant for drug design, disease research, and biological studies.

• SYNTHETIC dataset is a synthetic benchmark dataset primarily used for model validation
and experimentation. It is typically used to test the effectiveness of new algorithms or
methods, rather than solving specific biological or chemical problems. Due to its synthetic
nature, the SYNTHETIC dataset provides a relatively simple and controlled environment
for evaluating the performance of graph classification models on diverse and structured
data.

• COLLAB dataset originates from social network analysis and is mainly used to study
cooperation and non-cooperation relationships between users in social networks. The goal
is to predict whether the structure of a social network graph is a cooperative one. Social
network analysis is highly important in modern society, with broad applications in user
behavior prediction, advertising, and social platform development.

• IMDB-MULTI dataset is derived from the IMDB movie database and is primarily used for
movie recommendation system classification tasks. The goal is to predict the category of a
movie based on its attributes and social relationships (such as actors, directors, and labels).
This dataset is especially suited for research on multi-label classification problems in social
network analysis and recommendation systems.

• Letter-high dataset is a standard dataset for letter graph classification, used in computer
vision for graph classification tasks. Each sample is an graph of a letter, and the goal is
to recognize the letter through the pixel information in the graph. This dataset is typically
used to test models in graph representation and classification tasks, especially in graph
classification algorithms within the computer vision field.

• Letter-low dataset is a standard dataset for classifying lowercase letter graphs, used in
computer vision for graph classification tasks. Each sample is an graph of a lowercase
letter, and the goal is to recognize the letter through the pixel information in the graph.
This dataset is commonly used to test graph classification algorithms, particularly in how
graph neural networks (GNN) handle graph data.

• Letter-med dataset is a standard dataset for classifying medium-sized letter graphs, used in
computer vision for graph classification tasks. Each sample is an graph of a medium-sized
letter, and the goal is to recognize the letter through the pixel information in the graph. This
dataset is frequently used to test model performance in graph classification tasks, especially
in how graph neural networks (GNN) process graph data with graph structures.

F DETAILS OF THE EVALUATION METRICS

• Clustering Accuracy (ACC) ACC computes the optimal mapping between predicted clus-
ter labels and ground-truth labels using the Hungarian algorithm. Formally, let yi be the
ground-truth label and ŷi the predicted cluster label for instance i, then:

ACC = max
π∈P

1

n

n∑
i=1

I (yi = π(ŷi)) , (40)

where π ranges over all possible label permutations and I(·) is the indicator function.
• Normalized Mutual Information (NMI) NMI measures the mutual dependence between

the predicted labels and true labels, normalized by their entropies:

NMI =
2 · I(Y ; Ŷ )

H(Y ) +H(Ŷ )
, (41)

where I(Y ; Ŷ ) is the mutual information and H(·) denotes entropy. NMI ranges from 0
(no mutual information) to 1 (perfect correlation).
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Datasets Domain Classes Graphs A.Nodes A.Edges

MUTAG

SM 2

188 17.93 19.79
BZR 405 35.75 38.36
COX2 467 41.22 43.45
DHFR 756 42.43 44.54
PTC MR 344 14.29 14.69
AIDS 2000 15.69 16.20
BZR MD 306 21.30 225.06

DD
BIO 2

1178 284.32 715.66
PROTEINS 1113 39.06 72.82

SYNTHETIC
SY

2 300 100.00 196.00
SYNTHIE 4 300 95.00 172.93

COLLAB
SN 3

5000 74.49 2457.78
IMDB-MULTI 1500 13.00 65.94

Letter-high
CV 15

2250 4.67 4.50
Letter-low 2250 4.68 3.13
Letter-med 2250 4.67 3.21

Table 7: Datasets statistics

non-IID Settings

Datasets Domains SM SM-BIO SM-BIO-SY SN SN-SY CV

MUTAG SM ✓ ✓ ✓
BZR SM ✓ ✓ ✓
COX2 SM ✓ ✓ ✓
DHFR SM ✓ ✓ ✓
PTC MR SM ✓ ✓ ✓
AIDS SM ✓ ✓ ✓
BZR MD SM ✓ ✓ ✓
DD BIO ✓ ✓
PROTEINS MD BIO ✓ ✓
SYNTHETIC SY ✓
SYNTHIE SY ✓
COLLAB SN ✓ ✓
IMDB-BINARY SN ✓ ✓
Letter-low SN ✓
Letter-med SN ✓
Letter-high SN ✓

Table 8: The non-IID benchmark settings.

• Adjusted Rand Index (ARI) ARI evaluates the similarity between the predicted and true
clusterings by comparing all pairs of instances. It adjusts for random chance:

ARI =
RI − E[RI]

max(RI)− E[RI]
, (42)

where RI is the Rand Index and E[RI] is its expected value under random labeling.
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• Macro-F1 Score (F1) The F1 score balances precision and recall across all classes. We
compute the macro-averaged F1:

F1 =
1

C

C∑
c=1

2 · Precc · Recc
Precc + Recc

, (43)

where C is the number of ground-truth classes, and Precc, Recc are the precision and recall
for class c.

G OUR METHOD IMPLEMENTATION AND BASELINE DESCRIPTIONS

G.1 HARDWARE ENVIRONMENTS

All experiments are conducted on a Windows operating system equipped with an Intel Core i9-
13900K CPU and an NVIDIA GeForce RTX 4090 GPU.

G.2 SOFTWARE ENVIRONMENTS

We implement the proposed method using PyTorch 2.4.0 with CUDA 12.1.

G.3 IMPORTANT PARAMETERS

The model is trained using the Adam optimizer with a batch size of 256 for 10 epochs per com-
munication round, and a total of 20 communication rounds. The learning rate is set to 0.001 with
a standard weight decay of 5e-4. The graph encoder is built with 4 layers of Graph Isomorphism
Networks (GIN), each configured with a hidden feature dimension of 10. The hyperparameter λ is
fixed at 0.5. The SP kernel is chosen as the kernel function.

G.4 ADAPTATION SCHEME

The adaptation scheme for all comparison methods follows that of FedGCN. For supervised fed-
erated graph-level learning baselines, labels are removed, and the same clustering loss used in our
approach is applied. For federated graph anomaly detection methods, samples are grouped accord-
ing to their anomaly scores.

G.5 EVALUATION METRICS

To ensure reproducibility, each experiment is conducted 5 times with different random initializa-
tions. We report the mean and standard deviation of the following clustering metrics: Accuracy
(ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and F1 score.

All baseline methods are adapted to the unsupervised federated learning setting to perform graph-
level clustering, ensuring a fair and consistent comparison with our proposed approach. Detailed
descriptions of each baseline are shown below

• FGAD (Cai et al., 2024d) LGAD proposes an effective framework for federated graph
anomaly detection to address key challenges in collaborative learning. The framework
introduces an anomaly generator that perturbs normal graphs to create anomalous graphs,
which are then distinguished from normal ones by a trained anomaly detector. To preserve
the personalization of local models and mitigate the adverse effects of non-IID problems, a
student model is employed to distill knowledge from the trained anomaly detector (teacher
model). Furthermore, a novel collaborative learning mechanism is introduced to ensure the
preservation of local model personalization while significantly reducing communication
costs between clients.

• LG-FGAD (Cai et al., 2024c) LG-FGAD introduces a self-adversarial generation mod-
ule that generates anomalous graphs, which are then distinguished from normal graphs by
a trained discriminator. To enhance anomaly awareness, the framework maximizes and
minimizes mutual information from both local and global perspectives. To address the
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challenges posed by non-IID problems in collaborative learning, a dual knowledge distilla-
tion module is proposed. This module performs knowledge distillation over both logits and
embedding distributions, with only the student model engaging in collaboration, thereby
preserving the personalization of each client’s model.

• AGDiff (Cai et al., 2025) AGDiff leverages the latent diffusion framework to introduce
subtle perturbations into graph representations, generating pseudo-anomalous graphs that
closely resemble normal graphs. By jointly training a classifier to distinguish these gen-
erated anomalies from normal graphs, AGDiff learns more discriminative decision bound-
aries. The key innovation of AGDiff lies in the shift from focusing solely on modeling
normality to explicitly generating and learning from pseudo-graph anomalies, enabling it
to capture complex anomalous patterns that may be overlooked by other methods.

• GLCC (Ju et al., 2023) The GLCC: A general framework for graph-level clustering
(GLCC) framework is designed to enhance graph-level clustering tasks by leveraging con-
trastive learning principles. This method focuses on learning discriminative representations
of graph-level features through a contrastive loss function, which encourages the network
to distinguish between similar and dissimilar graphs. GLCC incorporates both local and
global graph structures in the learning process, thereby improving the clustering quality by
optimizing the embedding space. The framework uses a contrastive objective to maximize
the similarity between similar graph pairs while minimizing the similarity between dissim-
ilar ones, ensuring better generalization and robustness in graph clustering applications.

• UDGC (Hu et al., 2023) Learning Uniform Clusters on Hypersphere for Deep Graph-
level Clustering (UDGC) addresses the challenges of graph-level clustering, which involves
grouping multiple graphs into clusters, a task that has received less attention than node-level
clustering. Graph-level clustering is important in real-world applications like molecule
property prediction and community detection in social networks. However, this task is
difficult due to the insufficient discriminability of graph-level representations, which often
leads to cluster collapse in deep clustering methods.

• DGLC (Cai et al., 2023) DGLC is a graph-based clustering approach that leverages dual-
level learning to improve the quality of clustering in graph data. It incorporates both global
and local structural information from graphs, and optimizes the clustering process by si-
multaneously considering intra-graph and inter-graph relations. This method enhances the
clustering accuracy by using a self-supervised mechanism to adaptively capture graph-level
representations and achieve better performance in various graph-based tasks.

• DCGLC (Cai et al., 2024b) DCGLC extends the DGLC framework by introducing a dual
contrastive learning mechanism. This approach focuses on improving graph-level clus-
tering by integrating contrastive learning with graph-level features, thereby enhancing the
model’s ability to distinguish between clusters. DCGLC employs both positive and nega-
tive samples for contrastive learning, encouraging the model to learn more discriminative
and robust representations. This method further optimizes the clustering process, improv-
ing its scalability and accuracy in diverse applications of graph data.

Settings SM SM-BIO SM-BIO-SY CV

Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Local 58.2±1.3 16.8±1.6 12.8±0.4 55.6±2.7 13.5±2.9 12.2±2.4 55.5±3.1 6.4±2.8 12.0±2.9 27.2±1.3 17.9±1.3 13.4±0.9
Localk 61.6±1.2 20.7±1.6 21.9±1.5 59.3±1.2 17.5±1.3 16.7±1.5 57.6±1.8 11.5±1.4 16.8±1.2 29.2±1.3 23.5±0.8 14.5±0.2
w/o VE 72.3±0.8 24.2±0.4 30.5±0.5 68.6±2.3 17.2±1.4 20.8±1.3 66.1±1.9 18.6±1.4 19.2±2.0 34.1±1.8 35.3±1.5 21.6±2.1
w/o SS 54.3±2.2 11.8±1.5 17.5±2.5 56.6±3.0 13.5±3.4 16.4±3.1 51.7±2.5 15.2±3.0 12.0±2.5 15.4±1.5 19.5±2.4 10.5±1.4
FedProx 66.3±1.5 21.4±2.1 32.1±1.8 70 .2±1.3 22.2±2.3 23.8±2.6 71.2±2.6 21.5±1.7 18.7±1.8 36.5±1.4 32.3±1.8 20.6±0.5
FedPer 67.4±1.9 24.5±2.4 33.5±2.2 69.4±1.6 22.1±2.6 24.8±2.2 69.5±2.4 19.7±1.8 20.3±1.4 37.6±1.3 35.6±0.5 21.9±1.1
FedAvg 68.2±1.9 23.9±2.1 32.0±1.6 69.5±1.5 21.5±1.8 22.1±1.1 67.2±1.3 16.5±1.2 19.6±1.5 37.7±1.0 33.5±0.7 22.7±0.7
OURS 79.2±0.5 28.3±1.1 34.6±0.9 74.4±1.9 24.7±1.1 24.6±1.2 73.6±1.4 22.7±1.2 23.5±1.9 39.2±1.3 37.1±1.6 24.5±1.3

Table 9: Ablation study results on different variants of FGCN-DKS under four non-IID settings.
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Table 10: Performance Comparison on clients with non-identical numbers of clusters.
Methods ACC NMI ARI F1

FedGCN 54.5 17.6 13.4 40.7
OURS 62.1 20.7 14.8 54.4

H ADDITIONAL ABLATION STUDIES

To better understand the contribution of each component of FGCN-DKS, we conduct an ablation
study by incrementally removing or modifying key components and measuring the impact on clus-
tering performance. Specifically, we evaluate the following ablated variants: 1) Local: Trains solely
on the local model without applying the two-stage K-means. 2) Localk: Trains solely on the lo-
cal model while applying the two-stage K-means. 3) w/o Variant Encoder (VE): Disables F̃ and
removes the two-stage K-means. 4) w/o Subgraph Separation (SS): Disables F and omits param-
eter aggregation on the server. 5) +FedAvg / +FedProx / +FedPer: Replaces common knowledge
aggregation strategy with alternative aggregation strategies (i.e., FedAvg, FedProx, or FedPer).

The performance is demonstrated in Table 9, and the following result can be observed: 1) Removing
the subgraph separation mechanism, the performance drops significantly. This is mainly because
the model degenerates into a basic deep clustering framework, losing the advantages of both feder-
ated learning and the unique local model’s strengths of FGCN-DKS. 2) When training is performed
solely on local data, the local knowledge cannot be shared, which limits the improvement of model
performance. However, once the two-stage K-means is enabled, the performance shows a noticeable
gain. This indicates that even in the local setting, separating the common and personalized patterns
is beneficial for enhancing clustering performance. 3) Removing the variant encoder leads to a de-
cline in performance, particularly in terms of NMI and ARI. This is mainly due to the absence of
guidance from the variant components of the graph, which prevents K-means from effectively cap-
turing intra- and inter-cluster affinities, hindering further refinement of the distribution. 4) Replacing
the common knowledge aggregation strategy results in performance degradation, as knowledge sep-
aration alone is insufficient. Without accurately capturing inter-client relationships and conducting
targeted information sharing, the model fails to establish a high-quality knowledge consensus.

I ADDITIONAL EXPERIMENTS ON CLIENTS WITH NON-IDENTICAL NUMBERS
OF CLUSTERS

To further demonstrate the advantages of our proposed method, we conduct additional experiments
on clients with non-identical numbers of clusters. Specifically, the non-IID setting includes MU-
TAG (2 clusters), COLLAB (3 clusters), and Letter-low (15 clusters). We compare our method
with FedGCN under this non-IID setting. As shown in Table 10, our method consistently outper-
forms FedGCN. This improvement is primarily attributed to the ability of our method to perceive
the distinct cluster structures between clients and align the personalized optimization parameters
accordingly for different clusters.
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