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Abstract

Machine learning methods must be trusted to make appropriate decisions in real-
world environments, even when faced with out-of-distribution (OOD) samples.
Many current approaches simply aim to detect OOD examples and alert the user
when an unrecognized input is given. However, when the OOD sample significantly
overlaps with the training data, a binary anomaly detection is not interpretable
or explainable, and provides little information to the user. We propose a new
model for OOD detection that makes predictions at varying levels of granularity—
as the inputs become more ambiguous, the model predictions become coarser
and more conservative. The code available at https://github.com/rwl93/
hierarchical-ood.

1 Introduction

Recent studies have shown that fine-grained OOD samples are significantly more difficult to detect,
especially when there is a large number of training classes [1, 5, 13, 15, 6]. We argue that the
difficulty stems from trying to address two opposing objectives: learning semantically meaningful
features to discriminate between ID classes while also maintaining tight decision boundaries to avoid
misclassification on fine-grain OOD samples [1, 5]. We hypothesize that additional information about
the relationships between classes could help determine those decision boundaries and simultaneously
offer more interpretable predictions.

To address these challenges, we propose a new method based on hierarchical classification. The
approach is illustrated in Figure 1. Rather than directly outputting a distribution over all possible
classes, as in a flat network, hierarchical classification methods leverage the relationships between
classes to produce conditional probabilities for each node in the tree. This can simplify the classifica-
tion problem since each node only needs to distinguish between its children, which are far fewer in
number [10, 12]. It can also improve the interpretability of the neural network [14]. For example, we
leverage these conditional probabilities to define novel OOD metrics for hierarchical classifiers and
make coarser predictions when the model is more uncertain.

By employing an inference mechanism that predicts at different levels of granularity, we can estimate
how similar the OOD samples are from the ID set and at what node of the tree the sample becomes
OOD. When outliers are encountered, predicting at lower granularity allows the system to convey
imprecise, but accurate information.

2 Method

Hierarchical Classification. We define a hierarchy, H, as a tree-structured directed acyclic graph so
that there is a unique path from the root node to each leaf node. For notation, associate each node in
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Figure 1: Method overview. Top: A ResNet50 extracts features from images and fully-connected
layers output softmax probabilities pn(xi) for each set in the hierarchy H. Path-wise probabilities
are used for final classification. Path-wise probability and entropy thresholds generated from the
training set Dtrain form stopping criterion for the inference process. Bottom: Common error cases
encountered by the hierarchical predictor. From left to right: Standard error results from and incorrect
intermediate or leaf decision, ID under-prediction where the network predicts at a coarse granularity
due to high uncertainty, OOD over-prediction where the OOD sample is mistaken for a sibling node.

the tree with an integer {0, 1, . . . , N} where 0 denotes the root node. Let par(n) ∈ {0, . . . , n− 1}
denote the parent of node n, let anc(n) ⊂ {0, . . . , n− 1} be the set of all ancestors of node n, and
let ch(n) ⊆ {n + 1, . . . , N} denote the set of children of node n. Finally, let Y ⊂ {0, 1, . . . , N}
denote the set of leaf nodes (i.e. nodes for which ch(n) = ∅) and Z = {0, 1, . . . , N} \ Y be the set
of internal nodes.

Each training data point has an input xi ∈ Rd and a label yi ∈ Y , which is associated with a leaf
node of the hierarchy. The training distribution, Dtrain = {(xi, yi)}, is comprised of tuples of input
images, xi, and associated leaf nodes, yi. For each node n in the set of internal nodes Z , we define
Dn ⊆ Dtrain to be all the samples (xi, yi) whose ancestors contain n. Likewise, define D¬n all the
examples that whose ancestors do not contain n.

Given the input xi, the network outputs probability distributions pn = [pn,1, . . . , pn,|ch(n)|] for
each internal node n, where pn,j ≥ 0 and

∑|ch(n)|
j=1 pn,j = 1. In practice, we model each pn as a

softmax function of the features in the penultimate layer of a neural network. We parameterize a
distribution on leaf nodes as the product of probabilities associated with each node along that path,
Pr(yi = k | xi) =

∏
a∈anc(k)\0 ppar(a),a.

Hierarchical OOD Loss. To achieve high ID accuracy and reliable OOD detection we propose a
weighted multi-objective loss to optimize the hierarchical classifier. Formally, it is defined as,

Lsoft =
∑
n∈Z

Wn ·
∑

(x,y)∈Dn

H [onehotn(y),pn(x))] (1)

Wn =
|{j ∈ {1 . . . N} : n ∈ anc(j)}|

N
(2)

Lother =
∑
n∈Z

∑
(x,y)∈D¬n

H [U(|ch(n)|),pn(x)] (3)

L = α · Lsoft + β · Lother, (4)

2



Table 1: Hierarchical softmax classifier (HSC) performance on the Imagenet-100 dataset.OOD
performance is measured by AUROC scores for the fine-, medium- and coarse- OOD classes as
well as the overall OOD performance. For ensemble OOD methods [7] cells follow the format:
“mean(std)/ensemble”. All numbers are percentages.

MODEL (METHOD) ACCURACY
AUROC

FINE MEDIUM COARSE OVERALL

MSP [4] 81.26(0.53)/82.75 72.47(0.31)/73.62 — 92.62(0.67)/94.38 90.25(0.62)/91.94
ODIN [9] 81.26(0.53)/82.75 72.93(1.87)/74.36 — 95.90(0.47)/96.71 93.20(0.36)/94.08
MAHALANOBIS [11] 81.26(0.53) 78.05(0.09) — 91.34(0.62) 89.78(0.54)
MOS [5] 82.41(0.02) 70.00(0.72) — 96.66(0.23) 93.66(0.22)

HSC (α = 1, β = 0, PRED) 82.38(0.06)/83.25 76.78(3.38)/79.80 — 93.93(0.22)/95.08 91.33(0.28)/92.38
HSC (α = 1, β = 0, Hmean) 82.38(0.06)/83.25 77.27(3.83)/75.86 — 96.90(0.11) /96.89 93.92(0.20)/93.17
HSC (α = 1, β = 0.2, PRED) 82.85(0.14)/83.33 79.40(0.76)/80.39 — 95.06(0.13)/95.48 92.29(0.15)/92.82
HSC (α = 1, β = 0.2, Hmean) 82.85(0.14)/83.33 79.40(0.67)/76.89 — 97.23(0.11)/96.79 94.08(0.13)/93.28

where H[p, q] is the cross-entropy from p to q and parn(y) is the one-hot vector for the ancestor of y
corresponding to node n, onehotn(y) = [1(k ∈ anc(y)) : k ∈ ch(n)].

The first objective optimizes the network for ID classification accuracy by applying cross-entropy to
the network’s predictions Pr(k|xi) = [Pr(yi = k|xi)]k∈Y for each sample in the training distribution,
Dtrain (Equation (1)) 1. The second objective (Equation (3)) drives the probabilities at internal nodes
that are not along the path from root to ground-truth node to the uniform distribution, parameterized
by size, (U(s)) with cross-entropy. This utilizes in-distribution data as outliers for all nodes in the
hierarchy that are not one of its ancestors.

Prediction Path Entropy OOD Metric. We propose prediction path based OOD scoring functions
for performing OOD detection with hierarchical classifiers. First, we propose using maximum
prediction path probabilities calculated according to Section 2 which is hierarchical analog to
max softmax probability for standard networks. Second, we propose mean path-wise entropy,
Hmean(xi) =

1
|anc(ŷi)|

∑
n∈anc(ŷi)

H[pn]

3 Experiments

Fine-grain OOD datasets. Some applications may face more extreme OOD examples than others.
To construct OOD detection tasks with varying degrees of difficulty, we leveraged the fact that the
Imagenet-1K classes correspond to nouns in the WordNet hierarchy [2]. We generated OOD sets by
holding out subsets of Imagenet-1K classes in entire subtrees of the WordNet hierarchy. Withholding
large subtrees—those rooted at low depths of the hierarchy—leads to coarse-grained OOD detection
tasks, since the held-out classes are very different from the training classes. Holding out small
subtrees—those rooted at nodes deep in the hierarchy—leads to fine-grained OOD-detection tasks.

Results. We found that the hierarchical softmax classifier (HSC) outperformed baseline methods
on the Imagenet-100 dataset (Table 1).In particular, the Lother loss adds a regularization term that
improves ID accuracy as well as improving OOD performance. We assessed the effect of holdout
class granularity and found that the softmax-based OOD heuristics (MSP, ODIN, and prediction path
probability) and Mahalanobis detectors are most sensitive to fine-grain OOD samples whereas MOS
and path entropy metrics perform best on coarse-grain OOD as shown in Table 1. In Table 2, we
evaluate the sensitivity to hierarchy depth and composition for Imagenet-100 datasets.We find that
the performance across all OOD metrics introduced in Section 2 is comparable with no apparent
benefit to visually-derived hierarchies ([14]) vs. human-defined semantic hierarchies. However, we
believe that the hierarchy is a critical design choice and is likely application dependent. Specifically,
the hierarchy’s class balance, depth, and alignment with visual features are important characteristics
to consider. In natural image classification domains, human-defined semantic structures may improve
interpretability because they project image inputs into a human conceptual framework even though
they may not perfectly represent the visual properties of the input.

1When Wn = 1∀n ∈ Z the form in Equation (1) is equivalent to the entropy over the leaf nodes
H[y,Pr(k|Dtrain)]
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4 Analysis

Hierarchical classifiers decompose the classification problem into simpler intermediate tasks. By
analyzing the model’s confidence at each intermediate decision, we can understand where the model
becomes uncertain. Wan et al. [14] show that through analyzing intermediate decisions we can
explain the model’s decision process to understand where the model makes mistakes and how it
behaves on ambiguous labels greatly improving the interpretability and explainability compared to
softmax classifiers. We build off of this work by leveraging intermediate model confidence estimates
to determine at what level of granularity to make a prediction.

First, we aim to understand the effects of OOD data on the hierarchical classifier’s performance. We
plot the micro-ROC curves (Figure 2) for 4 synsets each corresponding to a separate classification
decision in the hierarchy. The “artifact”, “dog” and “bird” synsets include one or more OOD samples
and the “ball” synset does not have any corresponding OOD samples (see Figure 4). Notice in
Figure 2 that when adding the activations of the OOD data (“OOD” curve) the number of false-
positives increases and AUROC drops compared to the ID-only curve because the OOD data is
being predicted more confidently than some ID data. This occurs across all synsets in the hierarchy
even in the “ball” synset that does not contain any OOD descendants. However, when we employ a
path-wise probability based threshold at 99% TNR on the training data (“THR” curves in Figure 2),
the performance is recovered in all synsets. The micro-ROC curves for all synsets is displayed in
Figure 10.

Next, we compare path-wise and node-wise thresholding hierarchy distance and accuracy performance
to non-hierarchical OOD methods (Appendix A.3). We achieve 73% accuracy on the OOD samples
while maintaining 74% ID accuracy using a path-wise probability threshold chosen at 95% TNR as
witnessed by the blue line in Figure 8. However, when inspecting the hierarchy distance and accuracy
vs TNR plots (Figures 3 and 8), we notice a stepped nature for the path-wise thresholding technique
that underperforms and is less stable compared to the node-wise technique. The large step changes
and deviation of path-wise thresholding in Figure 8 and Figure 3 reflect that the path-wise thresholds
cause the network to predict at increasingly coarse nodes as the confidence degrades with increasing
depth (i.e. specificity, see Section 2). When the distribution of OOD classes is balanced across
granularity levels, the node-wise inference technique greatly outperforms the path-wise technique
due to the stepped nature of the path-wise technique (Figures 6 and 7).

We show that OOD average hierarchy distance consistently decreases and the ID average hierarchy
distance remains relatively constant (Figure 3, bottom). While the ID accuracy drops from 82.75% to
74.46% at the 95% TNR node-wise threshold, the average hierarchy distance decreases from 0.4045 to
0.4005 (Figure 3 bottom right). Therefore, by allowing the hierarchical classifier to predict with less
specificity, we can improve the overall prediction quality by removing uncertain leaf node predictions.
Our experiments show that by leveraging the intermediate predictions made by hierarchical classifiers,
we can directly interpret, explain, and validate the model’s decisions prior to deployment and improve
performance on uncertain ID and OOD data.

Figure 2: Micro-ROC curves for ID data,
ID/OOD, and ID/OOD threshold TNR=0.95.

Figure 3: Imagenet-100 ID and OOD average hierar-
chy distance across TNR threshold values.
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A Appendix

A.1 Compute resources

All experiments were run on an internal compute cluster with nodes containing 8 NVIDIA RTX
A5000 GPUs. Imagenet 100 experiments were trained on 1 GPU for 90 epochs which completed in
∼8 hours for the longest running experiments. Imagenet 1K experiments were trained on 2 GPUs
with data parallelization. Training for the Imagenet 1K’s longest running experiments lasted ∼52.5
hours.

A.2 Model Training

All models were trained from scratch as the available pretrained weights were trained on the fine-
grained OOD holdout classes. We used a ResNet50 [3] backbone for all models and trained for 90
epochs of stochastic gradient descent (SGD). We used a learning rate of 0.1 with learning rate decay
steps with a decay factor of 0.1 performed at epoch 30 and 60. The momentum and weight decay
parameters were 0.9 and 10−4, respectively. We standardized the training hyperparameters to avoid
performance differences due to the optimization procedure.

A.3 Inference Stopping Criterion

Given a hierarchical classifier optimized over Dtrain, we define a stopping criterion utilizing the
performance statistics on the validation data. Specifically, we select a true negative rate (TNR) on
the ID data to decide our inference stopping threshold from the micro-averaged receiver operating
characteristic (ROC) curve. In practice, this TNR threshold will be determined by the specific
application’s prediction fidelity requirements. Micro-averaged ROC curves are used to generate the
TNR thresholds for each node in Z . We utilize path probabilities Pr(n|xi) as the threshold score.

During inference the leaf node prediction ŷ is determined, then the prediction path anc(ŷ) is traversed
from root to leaf. If any of the nodes in the path do not meet the TNR threshold, the parent node is
chosen as the prediction (fig. 1). Both global path probability and node-wise probability and mean-,
min-entropy were explored as TNR threshold metrics.

A.4 Hierarchical Accuracy and Distance

We analyze the hierarchical classifier’s inference on ID and OOD samples with top-1 accuracy, as
well as, average hierarchical distance. The groundtruth for OOD samples is the closest ancestor that is
contained within ID hierarchy. For example, the OOD node junco in 1 is assigned the ID groundtruth
node bird.

Furthermore, we consider the inference procedure’s failure modes by decomposing the hierarchy
distance into two parts: (1) the prediction and (2) the groundtruth distance to their closest common
parent. Hierarchy distance is defined as the number of edges in the hierarchy between two nodes. By
recording the groundtruth and prediction distances to the closest common parent we can determine
how frequently the model incorrectly predicts, overpredicts, and underpredicts for a set of inputs.
fig. 1 (bottom) depicts common error cases that are encountered and their corresponding hierarchy
distances.

A.5 Imagenet 100 Hierarchy Experiments

Table 2: ID and OOD sensitivity to hierarchy selection on the Imagenet-100 dataset. H type indicates
whether the hierarchy is defined by human semantics or learned visual feature clustering. All numbers
are percentages.

Hierarchy H H Type Accuracy Path Predition Path Entropy
Mean Max Min

2 Lvl WN Semantic 82.19(0.38) 91.73(0.17) 93.43(0.08) 92.12(0.04) 93.08(0.13)

Pruned WN Semantic 82.38(0.06) 91.33(0.28) 93.92(0.20) 89.16(0.46) 93.70(0.13)

Binary NBDT [14] Visual 81.28(0.48) 91.33(0.29) 92.92(0.14) 86.68(0.18) 93.15(0.24)
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A.6 Hierarchy Statistics

Table 3: Imagenet dataset holdout set statistics. The number of leaf nodes that are held out due to
trimmed branches at each level of granularity. The uniform probability used to choose the holdout
nodes and the hierarchy depths for each granularity level are given for each dataset.

DATASET
MAX DEPTH # LEAF HOLDOUTSINTERNAL

LEAFS COARSE MEDIUM FINE

IMAGENET 100
6 15 0 2

28 — — —
100 LVLS 2 — LEAFS

BALANCED IMAGENET 100
6 15 5 10

28 — — —
100 LVLS 2 4–5 LEAFS

A.7 Imagenet 100 Hierarchy

Figure 4: IMAGENET-100 pruned WordNet hierarchy. Red edges correspond to OOD paths and blue
to ID.
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A.8 Balanced Imagenet 100 Results

Figure 5: BALANCED IMAGENET 100 pruned WordNet hierarchy. Red edges correspond to OOD
paths and blue to ID.

Table 4: Hierarchical softmax classifier (HSC) performance on the Balanced Imagenet 100 dataset.
The Lsoft and Lother weights (α, β) and the OOD metric are given in parenthesis for each HSC model.
OOD performance is measured by AUROC scores for the fine-, medium- and coarse- OOD classes
as well as the overall OOD performance. Each cell includes the performance statistics across 3
models trained with separate random seeds. For ensemble OOD methods [7] cells follow the format:
“mean(std)/ensemble”. Note that relative Mahalanobis [11] performance is reported as it outperformed
the original method [8]. All models are ResNet50 architectures trained for 90 epochs. All numbers
are percentages.

MODEL (METHOD) ACCURACY
AUROC

FINE MEDIUM COARSE OVERALL

BALANCED IMAGENET 100

MSP [4] 80.85(0.23)/82.11 72.11(0.65)/73.91 71.07(0.58)/73.51 92.32(0.49)/93.66 82.04(0.28)/83.72
ODIN [9] 80.85(0.23)/82.11 79.16(0.56)/80.37 74.35(0.57)/75.84 96.09(0.63)/96.78 86.82(0.23)/87.82
MAHALANOBIS [11] 80.85(0.23) 83.07(0.80) 72.66(0.59) 91.11(0.89) 85.36(0.64)
MOS [5] 80.35(0.21) 81.49(0.65) 86.80(0.35) 74.23(1.05) 86.80(0.35)

HSC (α = 1, β = 0, PRED) 81.19(0.26)/81.83 69.44(0.90)/71.25 71.57(1.44)/73.11 93.29(0.18)/94.49 81.72(0.44)/83.18
HSC (α = 1, β = 0, Hmean) 81.19(0.26)/81.83 69.81(1.01)/78.56 68.12(1.61)/72.75 96.46(0.11)/96.69 82.85(0.60)/86.66
HSC (α = 1, β = 0, Hmax) 81.19(0.26)/81.83 66.57(0.76) 71.00(1.53) 89.46(0.23) 78.75(0.60)
HSC (α = 1, β = 0, Hmin) 81.19(0.26)/81.83 70.72(1.85)/73.56 28.15(2.41)/71.45 95.21(0.79)/95.56 75.87(0.98)/84.21
HSC (α = 1, β = 0.2, PRED) 81.83(0.10)/82.97 73.91(1.04)/75.52 73.88(1.19)/75.86 94.20(0.09)/95.32 84.05(0.46)/85.47
HSC (α = 1, β = 0.2, Hmean) 81.83(0.10)/82.97 74.23(1.01)/80.38 70.64(1.33)/74.54 96.65(0.03)/96.43 84.84(0.42)/87.43
HSC (α = 1, β = 0.2, Hmax) 81.83(0.10)/82.97 71.29(0.89)/80.74 73.18(1.02)/74.23 92.68(0.14)/95.12 82.30(0.44)/86.84
HSC (α = 1, β = 0.2, Hmin) 81.83(0.10)/82.97 73.72(1.98)/81.94 27.26(0.85)/75.26 95.76(0.37)/96.33 77.00(0.44)/88.02
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A.9 Balanced 100 hierarchy distance and accuracy

Figure 6: Balanced Imagenet 100 average
hierarchy distance vs. TNR threshold values.

Figure 7: Balanced Imagenet 100 hieararchy
accuracy vs. TNR threshold values.

A.10 ID and OOD Inference accuracy vs. TNR

Figure 8: Imagenet-100 ID and OOD accuracy across TNR threshold values for path-wise and
synset-wise threshold metrics with ODIN baseline.
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A.11 Supplemental hierarchy distance confusion matrices

(a) Node-wise Inference (b) Path-wise Inference

Figure 9: Imagenet-100 path- and node-wise inference hierarchy distance confusion matrices on ID
and OOD data.
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A.12 Supplemental Micro-ROC curves

Figure 10: Imagenet-100 synset micro-ROC curves for ID data only, ID and OOD, and ID and OOD
with a TNR=0.95 prediction path threshold.
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A.13 Fully Connected Head Experiments

Table 5: Hierarchical softmax classifier (HSC) performance on the Imagenet-100 dataset when adding
additions fully-connected (FC) layers to classification head. AUROC scores are provided for each
OOD method: MSP [4], ODIN [9], MOS [14]. Note that the node-wise scaling of the HSC methods
is different from table 1 causing the discripancy in HSC numbers. All numbers are percentages.

MODEL ACCURACY BASELINE AUROC PATH PREDICTION
PATH ENTROPY

MEAN MIN

IMAGENET 100

MSP 81.26(0.53) 90.25(0.62) — — —
ODIN 81.26(0.53) 93.20(0.36) — — —
MOS 82.41(0.02) 93.66(0.22) — — —

MSP FC3 82.12(0.29) 90.68(0.41) — — —
ODIN FC3 82.12(0.29) 93.78(0.31) — — —
MOS FC3 81.82(0.15) 93.49(0.49) — — —

HSC (α = 1, β = 0) 78.36(0.87) — 89.09(0.65) 92.39(0.43) 92.68(0.24)
HSC (α = 1, β = 0.2) 83.05(0.12) — 92.16(0.26) 93.93(0.27) 94.29(0.27)

HSC FC3 (α = 1, β = 0) 81.90(0.08) — 91.51(0.35) 93.86(0.20) 93.46(0.18)
HSC FC3 (α = 1, β = 0.2) 82.73(0.24) — 91.80(0.46) 93.78(0.28) 94.57(0.20)

A.14 Supplemental OOD granularity performance

Table 6: Hierarchical classifier performance on the fine-grain Imagenet-1K datasets. AUROC
scores are provided for each OOD method: (Ours) Hierarchical softmax classifier (HSC), MSP [4],
ODIN [9], MOS [14]. All models are ResNet50 architectures trained for 90 epochs. FC: Number of
fully-connected layers for classifier

DATASET MODEL
AUROC

FINE MEDIUM COARSE

IMAGENET 100

MSP 72.47(0.31) — 92.62(0.67)

ODIN 72.93(1.87) — 95.90(0.47)

MOS 70.00(0.72) — 96.66(0.23)

MSP FC3 72.55(1.22) — 93.09(0.39)

ODIN FC3 69.05(0.75) — 97.08(0.26)

MOS FC3 69.78(2.65) — 96.66(0.21)

HSC (α = 1, β = 0, PRED) 74.63(0.92) — 91.02(0.67)

HSC (α = 1, β = 0, Hmean) 73.09(0.95) — 94.96(0.46)

HSC (α = 1, β = 0, Hmin) 62.24(0.72) — 96.74(0.25)

HSC (α = 1, β = 0.2, PRED) 71.11(1.98) — 94.96(0.04)

HSC (α = 1, β = 0.2, Hmean) 70.01(1.93) — 97.11(0.07)

HSC (α = 1, β = 0.2, Hmin) 65.14(1.40) — 98.18(0.13)

HSC FC3 (α = 1, β = 0, PRED) 72.22(0.56) — 94.09(0.44)

HSC FC3 (α = 1, β = 0, Hmean) 71.55(0.49) — 96.83(0.28)

HSC FC3 (α = 1, β = 0, Hmin) 59.69(1.57) — 97.96(0.01)

HSC FC3 (α = 1, β = 0.2, PRED) 71.86(0.17) — 94.46(0.53)

HSC FC3 (α = 1, β = 0.2, Hmean) 70.67(0.25) — 96.86(0.33)

HSC FC3 (α = 1, β = 0.2, Hmin) 68.87(0.11) — 97.99(0.23)
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A.15 Performance on far-OOD benchmarks

Table 7: Coarse-grain OOD dataset baseline performance. AUROC scores are provided for each
OOD method: (Ours) Hierarchical softmax classifier (HSC), MSP [4], ODIN [9], MOS [14]. All
models are ResNet50 architectures trained for 90 epochs. FC: Number of fully-connected layers for
classifier

ID DATASET MODEL
AUROC

INATURALIST SUN PLACES TEXTURES

IMAGENET 100

MSP 92.22(0.46) 93.62(0.23) 92.24(0.17) 88.60(0.57)

ODIN 95.60(0.34) 97.30(0.19) 96.10(0.13) 94.85(0.35)

MOS 93.50(0.04) 95.85(0.04) 94.72(0.12) 95.13(0.21)

MSP FC3 93.04(0.23) 94.77(0.03) 93.43(0.13) 90.07(0.13)

ODIN FC3 96.52(0.10) 98.00(0.07) 96.87(0.04) 95.89(0.12)

MOS FC3 93.83(0.32) 95.89(0.20) 94.83(0.14) 94.78(0.18)

HSC (α = 1, β = 0, PRED) 91.22(0.27) 92.64(0.59) 91.25(0.76) 87.69(0.03)

HSC (α = 1, β = 0, Hmean) 91.83(0.26) 93.40(0.55) 92.33(0.71) 89.83(0.04)

HSC (α = 1, β = 0, Hmin) 86.50(0.82) 94.19(0.68) 92.66(0.87) 92.88(0.06)

HSC (α = 1, β = 0.2, PRED) 94.05(0.40) 95.73(0.19) 94.59(0.03) 91.51(0.15)

HSC (α = 1, β = 0.2, Hmean) 94.38(0.29) 96.31(0.18) 95.45(0.02) 93.44(0.14)

HSC (α = 1, β = 0.2, Hmin) 90.73(0.39) 96.30(0.19) 95.06(0.19) 95.22(0.22)

HSC FC3 (α = 1, β = 0, PRED) 93.25(0.48) 95.25(0.36) 93.80(0.36) 90.82(0.21)

HSC FC3 (α = 1, β = 0, Hmean) 94.09(0.47) 96.08(0.29) 94.87(0.28) 92.79(0.17)

HSC FC3 (α = 1, β = 0, Hmin) 91.93(0.47) 96.79(0.12) 95.53(0.10) 95.29(0.19)

HSC FC3 (α = 1, β = 0.2, PRED) 93.83(0.20) 95.68(0.12) 94.32(0.18) 90.82(0.29)

HSC FC3 (α = 1, β = 0.2, Hmean) 94.13(0.10) 96.19(0.14) 95.16(0.12) 92.69(0.22)

HSC FC3 (α = 1, β = 0.2, Hmin) 91.20(0.76) 96.42(0.14) 95.14(0.11) 94.93(0.06)
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