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Abstract

Deep Neural Networks (DNNs) are shown to be vulnerable to backdoor poisoning1

attacks, with most research focusing on digital triggers—artificial patterns added2

to test-time inputs to induce targeted misclassification. Physical triggers, which are3

natural objects embedded in real-world scenes, offer a promising alternative for4

attackers, as they can activate backdoors in real-time without digital manipulation.5

However, existing physical backdoor attacks are dirty-label, meaning that attackers6

must change the labels of poisoned inputs to the target label. The inconsistency7

between image content and label exposes the attack to human inspection, reducing8

its stealthiness in real-world settings. To address this limitation, we introduce9

Clean-Label Physical Backdoor Attack (CLPBA), a new paradigm of physical10

backdoor attack that does not require label manipulation and trigger injection at11

the training stage. Instead, the attacker injects imperceptible perturbations into a12

small number of target class samples to backdoor a model. By framing the attack13

as a Dataset Distillation problem, we develop three CLPBA variants—Parameter14

Matching, Gradient Matching, and Feature Matching—that craft effective poisons15

under both linear probing and full-finetuning training settings. In hard scenarios16

that require backdoor generalizability in the physical world, CLPBA is shown to17

even surpass Dirty-label attack baselines. We demonstrate the effectiveness of18

CLPBA via extensive experiments on two collected physical backdoor datasets for19

facial recognition and animal classification.20

1 Introduction21

The development of DNNs has led to breakthroughs in various domains, such as computer vision,22

natural language processing, speech recognition, and recommendation systems [8, 11, 29, 22].23

However, training large neural networks requires a huge amount of training data, encouraging24

practitioners to use third-party datasets, crawl datasets from the Internet, or outsource data collection25

[15, 36]. These practices introduce a security threat called data poisoning attacks, wherein an26

adversary could poison a portion of training data to manipulate the behaviors of the DNNs.27

One line of research in data poisoning is backdoor attacks, in which the attackers aim to create an28

artificial association between a trigger and a target class such that the presence of such trigger in29

samples from the source class causes the model to misclassify as the target class. The backdoored30

model (i.e., the model trained on poisoned samples) behaves normally with ordinary inputs while31

misclassifying trigger instances (i.e., instances injected with the trigger), making backdoor detection32

challenging. For example, Gu et al. [15] show that a backdoored traffic sign classifier has high33

accuracy on normal inputs but misclassifies a stop traffic sign as “speed limit” when there is a yellow34

square pattern on it.35

Most backdoor attacks employ digital triggers, special patterns digitally added at inference time36

to cause misclassification. In contrast, an emerging line of research investigates physical triggers:37
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Figure 1: General pipeline of CLPBA. With access to the training dataset and trigger samples from
the source class, the attacker uses the attacker model to optimize perturbations that are subsequently
added to a small number of target class samples without changing the labels. At inference time, the
victim model trained on these perturbed samples will incorrectly classify the source-class samples
with the trigger as the target class.

natural objects in the physical environment (e.g., sunglasses, tennis balls) that can be added naturally38

into a scene. Physical triggers are particularly attractive for real-world, real-time applications such as39

facial recognition and traffic sign classification, since they do not require modification at inference40

time. However, existing physical backdoor attacks are dirty-label, meaning that training images41

containing the trigger are mislabeled to the attacker’s target class. This misalignment between image42

content and label makes the attack detectable by human inspection, especially when the poison43

samples all contain a visible physical trigger. Such approaches limit the stealth and applicability of44

physical backdoor attacks in practice. To address this, this paper raises a critical research question:45

“Is it feasible to execute a physical backdoor attack without trigger injection and label manipulation?”46

We answer this question affirmatively by introducing Clean-Label Physical Backdoor Attacks47

(CLPBA), which differ from prior approaches in several key aspects: (1) Clean-label: The poisoned48

samples retain their original labels, avoiding suspicious label mismatches; (2) Hidden-trigger: The49

poisoned samples do not explicitly contain a trigger but are perturbed with constrained noise, making50

them highly stealthy against human inspection; and (3) Real-time activation: CLPBA enables51

real-world attacks without digital alteration at inference time; a physical trigger present in the scene52

suffices to activate the backdoor. Our paper makes the following key contributions:53

1. We formulate CLPBA as a Dataset Distillation problem, in which an attacker optimizes perturba-54

tions on a small subset of target-class samples to encode information from the trigger dataset into55

these poison samples, ensuring that a model trained on them converges to the same solution as56

one trained on dirty-label backdoor data.57

2. We propose three variants of CLPBA: Parameter Matching, Gradient Matching, and Feature58

Matching, and introduce additional techniques to improve the effectiveness and stealthiness of59

poison samples. Extensive experiments on the collected physical backdoor datasets (Figure 2)60

validate the efficacy of our proposed attacks.61

3. We release the code and the animal classification dataset to facilitate future research in this domain.62

2 Related Works63

In backdoor attacks, an attacker poisons a small portion of the training data with a predefined trigger,64

causing the victim model to misclassify instances containing the trigger as the target label.65

Dirty-label attacks. The attacker enforces a connection between the backdoor trigger and the target66

class by adding the trigger to the training data and flipping their labels to the target class [15, 3, 30, 27].67

While dirty-label attacks achieve impressive performance, mislabelled poison samples are vulnerable68

to human inspection as their image contents visibly differ from target-class instances.69

Clean-label attacks. A more stealthy approach involves directly poisoning target-class instances70

without label manipulation. The concept of clean-label backdoor attacks was pioneered by Turner71

et al. [39], who proposed using adversarial perturbations and GAN-based interpolation to obscure the72

natural, salient features of the target class before embedding the trigger. By effectively concealing73

the latent features with the perturbations, the model becomes reliant on the introduced trigger for74

classifying instances of the target class. The following works on Clean-label attacks can be divided75
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Figure 2: Facial recognition dataset: 12,675 clean images (100 identities); 9,790 trigger images
(7 triggers, 10 identities). Animal classification dataset: 14,081 clean images (46 species); 1,406
trigger images (3 triggers, “cat” class).

into hidden-trigger and trigger-design attacks. In hidden-trigger attacks [35, 37], the trigger is hidden76

from the training data and only added to test-time inputs of the source class to achieve the targeted77

misclassification. In trigger-design attacks [50, 21], the attackers aim to optimize trigger patterns that78

represent the most robust, representative feature of the target class.79

Physical backdoor attacks. Digital backdoor attacks require modifying inputs at inference to insert80

the trigger, which is often impractical for real-time tasks such as facial recognition or object detection.81

To address this, some works explore physical-world backdoors. Chen et al. [10] showed that blending82

images of sunglasses into training data and wearing the same physical sunglasses at inference can fool83

facial recognition systems. Wenger et al. [42] later conducted a large-scale study using 3,205 images84

of nine facial accessories as potential triggers, followed by Xue et al. [46], who enhanced robustness85

through training-time transformations. Wenger et al. [43] developed a method to automatically86

identify physical triggers and target classes, while Yang et al. [47] proposed generating physical87

backdoor datasets via generative modeling. These works focus on dirty-label settings with label88

manipulation. Narcissus [50] is related to CLPBA in its physical applicability but differs by designing89

conspicuous adversarial patterns rather than using natural objects. BAAT [26] is another clean-label90

method that injects content-relevant triggers (e.g., purple hairstyle) via attribute editing, but it still91

requires digital modification at test time, unlike CLPBA’s use of purely physical triggers.92

3 Clean-Label Physical Backdoor Attack93

3.1 Threat Model94

In our threat model, the victim employs transfer learning, where a model that has been pretrained95

on a large-scale dataset (e.g., ImageNet) is fine-tuned on downstream tasks. Transfer learning has96

been widely applied in practice, as it enables the creation of high-quality models without the cost of97

training from scratch [55]. We consider two transfer learning approaches: linear probing and full98

fine-tuning. In linear probing, a pre-trained network with frozen weights serves as a feature extractor,99

and only a linear classifier is trained on the downstream task. In full fine-tuning, the entire network100

(feature extractor and classifier) is trained on the downstream dataset, allowing all parameters to be101

updated during training. In both settings, we assume that there exists an attacker who has access to102

the training data and can modify the target-class data by perturbing a small number of the original103

samples. The attacker, however, cannot influence the labeling process, and so poison samples remain104

correctly labeled. We consider a gray-box setting in which the attacker knows the architecture of the105

victim’s model but cannot manipulate its training process. Through poisoning, the attacker aims to106

manipulate the behavior of the victim model at inference time such that inputs from a source class107

containing a specific trigger are misclassified as the target class. For example, in facial recognition,108

the source class is an employee in a company who wears a special pair of sunglasses to fool the109

classifier into classifying him as the CEO, achieving privilege escalation, and gaining unauthorized110

access to confidential documents.111

3.2 Backdoor Attacks in the Physical World112

In traditional digital backdoor attacks, the attacker uses a static trigger pattern p to embed it into113

mislabeled training samples of the source class. The same p is then used at inference time to fool114

the model into misclassifying the trigger samples of the source class as belonging to the target class.115

This attack is highly effective since (1) the mislabeled source-class samples are hard to learn since116

their image contents are naturally different from samples of the target class, and (2) p remains static117

and universal across the mislabeled samples. These two factors cause the model to memorize p as a118
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Figure 3: First row: samples with natural physical triggers (“tennis ball” and “phone”) that are
subjected to the physical environment. Second row: samples with static digital triggers.

shortcut for target-class classification. This memorization-based attack mechanism is effective in119

digital settings where p remains identical between the training and testing phases. However, physical120

backdoor attacks face fundamentally different challenges. Physical triggers exist in real-world121

environments, where they undergo natural variations in shape, size, position, lighting, and color122

when captured in images. Under these conditions, exact memorization of a static pattern becomes123

insufficient. We argue that successful physical backdoor attacks require the backdoored model to124

generalize beyond mere pattern memorization. Specifically, the model must learn to map samples125

from the trigger distribution (i.e., distribution of source-class samples containing the physical trigger)126

to the decision boundary of the target class. This is the motivation for our formulation of CLPBA as a127

dataset distillation problem, in which the attacker aims to distill features of the trigger distribution128

into perturbations applied to target-class samples.129

3.3 Problem Formulation & Methodology130

In this section, we formulate CLPBA as a Dataset Distillation problem and introduce three CLPBA131

variants inspired by recent advances in Dataset Distillation.132

Let D = {(xi, yi)}Ni=1 =
⋃C

i=1 Dc be the training dataset with C classes, where each data point133

contains an input x ∈ X and a corresponding class label y ∈ {1, 2, . . . , C}. Let s and t denote the134

source class and target class indices. We assume D is sampled from the real dataset distribution D;135

likewise, Ds and Dt are sampled from the source-class distribution Ds and target-class distribution136

Dt. The goal of a CLPBA attacker is to minimize the objective:137

E(x∼D)

[
ℓ
(
Fθ(x), o(x)

)]
+ E(x∼D̃s)

[
ℓ(Fθ(x), t)

]
(1)

where o(.) is the oracle label predictor that always output the correct class label for an input,138

Fθ : X → RC is the victim classifier, parameterized by θ, that outputs prediction scores (logits) for139

each of the C classes, and ℓ is the loss function (i.e., cross-entropy); D̃s represents the source-class140

distribution with the physical trigger (e.g., source-class samples with sunglasses captured in different141

physical settings). The first term in Equation 1 corresponds to the standard classification objective,142

while the second term represents the backdoor objective—causing the model to misclassify trigger143

samples from the source class as the target class.144

To optimize both tasks as in Equation 1, a dirty-label physical backdoor attacker would typically145

inject samples from D̃s into the training dataset of the target class:146

Dp
t = Dt ∪ D̃p

s s.t D̃p
s = {(xi, t) | xi ∼ D̃s}

|D̃p
s |

i=1 (2)

D̃p
s is the set of trigger samples from the source-class with labels changed from s to t. Although this147

attack is highly effective, it lacks stealthiness due to the conflict between image content and label.148

Instead, the CLPBA attacker would directly perturb a subset of original samples in Dt:149

Dp
t = Pt(δ) ∪

(
Dt \Dpois

t

)
s.t Pt(δ) =

{
(xi + δi, t)

∣∣∣ (xi, t) ∈ Dpois
t

} (3)

where Dpois
t ⊂ Dt is a selected subset of Np samples designated for poisoning. Since Np << Nt,150

training on Dp
t would not affect the learning performance of the model on Dt and D in general. Thus,151

4



to achieve the backdoor target, the attacker must craft δ such that:152

θvictim = argmin
θ

LPt(δ)(θ) ≈ argmin
θ

LD̃p
s (θ) (4)

where LS(θ) = 1
|S|

∑
(x,y)∈S ℓ

(
Fθ(x), y

)
is the training loss in a dataset S. We note that Equation 4153

is an instance of Dataset Distillation [41], where the objective is to condense the dirty-label trigger154

dataset D̃p
s into a smaller clean-label poison dataset Pt(δ), such that the model trained on poison155

samples converges to the same solution as the one trained on the dirty-label trigger dataset.156

For ease of notation, denote θ(δ) and θ∗ as the minimizers of (θ) and LD̃s(θ). Under a chosen157

distance metric D(·, ·), Equation 4 can be reformulated as:158

min
δ
A = D

(
θ(δ),θ∗). (5)

However, since θ(δ) is defined implicitly as the minimizer of LPt(δ), the dependence of A on δ is159

non-trivial. Therefore, to perform gradient-based optimization over δ, we must compute the gradient160

∇δA, taking into account the implicit dependence of θ(δ) on δ through the optimality condition. We161

formalize this connection and derive the required gradient expression:162

Proposition 1. Assume L is continuously differentiable in (δ,θ), twice continuously differentiable in163

(δ), and that its Hessian is invertible at the stationary point θ(δ). Let θ(δ) be defined implicitly by164

∇θLPt(δ)
(
θ(δ)

)
= 0. Then for any differentiable distance function D, we have:165

∇δA = −G(δ)⊤ H(δ)−1∇θD
(
θ(δ)

)
, where (6)

166

H(δ) = ∇2
θLPt(δ)

(
θ(δ)

)
, G(δ) = ∇δ∇θLPt(δ)

(
θ(δ)

)
.

Remarks. To use this result, the attacker first finds the minimizer θ trained on Pt(δ), and then167

optimizes δ with the inverse of the Hessian matrix H−1, which is intractable for large neural168

networks. Furthermore, the exact solver for LPt(δ) may not exist for non-convex functions, leading169

to noisy gradient approximation. Instead, attackers can adopt unrolled optimization to approximate170

θ(δ) as the output after K gradient descent steps on LPt(δ), and then compute∇δA via automatic171

differentiation through the unrolled steps, which avoids the computation of H−1 [12].172

Methodology. Building on advances in dataset distillation, we now introduce three variants of173

CLPBA that differ in the distance function (Equation 5) and the space of optimization:174

• Parameter Matching (PM): Inspired by Trajectory Matching [7], PM attack aims to craft pertur-175

bations that encourage the victim model trained on the poison samples to have the same training176

trajectory as the one trained on the dirty-label trigger dataset. Let θt(δ) be the attacker model after177

t steps of gradient descent on the poison samples. We introduce θ∗
t as the backdoor expert model,178

initialized from θt(δ), that is trained m steps on dirty-label trigger datasets. For the victim model179

to follow the trajectory of backdoor expert model, this attack minimizes:180

APM =

∥∥θ∗
t+m − θt+1(δ)

∥∥2
2∥∥θ∗

t+m − θ∗
t

∥∥2
2

(7)

Specifically, m > 1 indicates that one gradient step on the poison dataset matches a long-range181

training trajectory (m steps) on the dirty-label dataset of the backdoor expert model.182

• Gradient Matching (GM): Instead of directly minimizing the distance θ(δ) and θ∗, which can be183

challenging in a high-dimensional parameter space with many local minima, GM attack, inspired184

by [54], minimizes the distance between the gradient updates of the attacker model trained on the185

poison samples and dirty-label datasets:186

AGM = 1−

〈
∇θLPt(δ) (θ(δ)) , ∇θLD̃p

s (θ∗)
〉

∥∥∇θLPt(δ) (θ(δ))
∥∥
2

∥∥∥∇θLD̃p
s (θ∗)

∥∥∥
2

(8)

• Feature Matching (FM): GM and PM require solving a computationally expensive bi-level187

optimization problem. FM attack, inspired by [53], mitigates this by minimizing an empirical188
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estimate of the Maximum Mean Discrepancy (MMD) between the poisoned samples Pt(δ) and the189

source trigger distribution D̃s in a low-dimensional embedding space (i.e., the output of a feature190

extractor f in a deep neural network). The empirical MMD is defined as:191

AFM =

∥∥∥∥∥∥ 1

|D̃s|

|D̃s|∑
i=1

f(x̃i)−
1

|Pt|

|Pt|∑
j=1

f(xj + δj)

∥∥∥∥∥∥
2

2

(9)

3.4 Enhancements for CLPBA192

Minimize approximation error. We find that plain adaptation of data distillation methods to the193

CLPBA setting yields suboptimal performance due to the inherent approximation error between194

the attacker model used for crafting poisons and the victim model that is trained on the poison195

dataset. This gap arises from training randomness and differences in hyperparameters (e.g., batch196

size, learning rate). To reduce this mismatch, we employ three alignment techniques:197

• Iterative Re-training. Since the poisoned model parameters θ(δ) depend on perturbations δ,198

which are dynamically updated during poison crafting with a fixed θ, it is necessary to iteratively199

retrain θ(δ) on perturbed dataset with the latest δ after every K optimization steps.200

• Trajectory Alignment. Instead of using θ of only the last training iteration to update perturbations,201

we keep a buffer B = {θ0, θk, θ2k, . . .} to record the trajectory of the attacker model trained on the202

poison dataset. At each step, the attack will sample a θ from B to optimize perturbations.203

• Model Ensembling. Following prior works [37, 1], we also employ an ensemble of models to craft204

poisons. Specifically, at each iteration, we averaged the gradients of the perturbations computed205

across all models before applying the update. We observed that this strategy reduces the variance in206

ASRs between random seeds of victim model training, increasing the transferability of the attack.207

Carlini-Wagner (CW) loss for GM attack. Instead of using the standard cross-entropy objective208

to compute adversarial gradient ∇θLPt(δ), we use CW loss [6], which encourages high-confidence209

misclassification of trigger source-class samples:210

CW(x) = max(F (x)s − F (x)t,−k), ∀x ∈ D̃s

where k controls the desired misclassification confidence. CW loss empirically performs better than211

cross-entropy for GM attack, likely because it incorporates information of source-class logit in the212

gradient signal. While CW can also be adapted to PM attack to train backdoor experts, it yields213

inferior performance due to training misalignment between the backdoor expert and the victim model.214

Perturbation constraint. Following prior work [37, 35, 50], we constrain perturbations to improve215

the stealthiness of poisoned samples. Typically, this is enforced via Projected Gradient Descent216

(PGD), which projects each perturbation onto the set C = {δ : ∥δ∥∞ < ϵ} at every step, where ϵ217

denotes the maximum allowed perturbation per pixel. However, this hard projection often introduces218

high-frequency noise that is visually noticeable in facial images. To address this, we replace the219

projection step with a visual loss term that is jointly optimized with the attack objective.220

Lvisual = min(abs(δ)− ϵ, 0) + UTV(δ),

where the first term softly enforces the ℓ∞ constraint, and the second term (Upwind Total Variation [9])221

regularizes local gradients between neighboring pixels to suppress high-frequency artifacts. Utilizing222

visual loss improves the perceptual quality of poison samples while maintaining or even improving223

ASR. We study the visual loss in-depth in the Appendix F.224

We note that these proposed backdoor enhancements can be combined seamlessly in the pipeline of225

poison crafting. We refer readers to Appendix E for the algorithm and implementation details.226

3.5 Connection to Hidden-Trigger Backdoor Attacks.227

Our proposed GM and FM attacks share similarities with Sleeper Agent (SA) [37] and HTBA [35],228

as they optimize perturbations in the gradient and feature spaces. Despite having the same negative229

cosine loss function as SA, our GM attack can be considered an enhanced variant of SA with the230

mentioned improvements. Meanwhile, our FM attack differs from HTBA in the choice of objective:231

whereas HTBA minimizes pairwise distances between poisoned samples and trigger samples, FM232

minimizes the Maximum Mean Discrepancy between the poison set and the trigger distribution.233
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4 Evaluation234

Data Collection. We created a Facial Classification dataset in one month with 3,344 clean and 9,790235

trigger images from 10 Asian volunteers using 7 physical triggers (see Figure 2). To increase racial236

diversity, we added 90 random classes from PubFig [24], totaling 12,675 clean images. For animal237

classification, we combined a Kaggle dataset [2] (45 mammal classes) with 330 clean and 1,406238

trigger images (tennis ball, phone, book). Animal classification is more challenging due to variable239

trigger sizes and placements. Further details are in Appendix A.240

Training Settings. We split the datasets 80:20 for training and testing. ResNet50 [18] pre-trained241

on VGGFace2 [5] is used for facial recognition, and ResNet18 pre-trained on ImageNet-1K [34] for242

animal classification. We use a learning rate of 0.001 for finetuning and 0.1 for linear probing, with a243

step scheduler. The models converge after 40 epochs, with 99% accuracy for facial recognition and244

93% for animal classification.245

Attack Settings. We use 50% of source-class trigger images for poisoning, and evaluate the Attack246

Success Rate (ASR) based on misclassifications as the target class. CLPBA attacks are optimized247

with signAdam and a cosine decay scheduler for 750 iterations. The perturbation budget ϵ is 16/255,248

and the poison ratio α is 10%. CLPBA is evaluated with “sunglasses” and “fake beard” triggers for249

facial recognition, and “tennis ball” and “phone” for animal classification, using fixed source-target250

class pairs for comparison.251

Table 1: ASR (%) of CLPBA and Baseline methods. We fix α = 10% and ϵ = 16/255 for CLPBA
and LC. For CLPBA, we use an ensemble of 3 models with 3× retraining every 750 iterations. For
consistency, we craft all attacks with a hard ℓ∞ constraint.

Trigger Setting Baseline CLPBA
Naive LC Dirty-label-d Dirty-label-p PM GM FM

(a) Facial recognition on ResNet50. Poison rates: 0.29% - 30 images (sunglasses), 0.26% - 26 images (fake beard).

sunglasses linear 0.0± 0.0 1.7± 1.1 72.7± 18.5 99.3± 0.4 88.6± 5.3 95.2± 3.3 98.2± 0.8
full 0.0± 0.0 0.1± 0.2 17.3± 7.9 99.5± 0.2 65.8± 5.5 99.1± 0.7 99.3± 0.3

fake beard linear 0.0± 0.0 12.6± 15.7 85.7± 10.5 99.7± 0.5 100.0± 0.0 99.3± 1.2 100.0± 0.0
full 0.0± 0.0 1.0± 1.6 59.5± 5.5 100.0± 0.0 99.8± 0.4 100.0± 0.0 100.0± 0.0

(b) Animal classification on ResNet18. Poison rates: 0.23% - 27 images (tennis ball), 0.24% - 30 images (phone).

tennis linear 0.0± 0.0 0.5± 0.3 72.6± 3.8 89.9± 0.6 93.8± 0.9 95.1± 0.3 93.7± 0.2
full 0.1± 0.1 0.9± 0.5 26.6± 3.5 73.0± 3.9 26.9± 11.5 75.3± 4.9 59.2± 9.5

phone linear 0.0± 0.0 0.1± 0.1 35.0± 3.2 77.9± 0.7 84.7± 2.7 87.1± 1.8 87.7± 0.9
full 0.0± 0.0 0.0± 0.0 1.2± 0.7 56.4± 1.8 2.2± 0.7 61.5± 4.6 32.2± 12.5

Baseline comparison. We compare CLPBA with four baselines: (1) Naive attack, where the attacker252

adds samples from D̃t to the target-class data; (2) Dirty-label-p attack, where mislabelled samples253

from D̃s are inserted into the target-class data; (3) Dirty-label-d is the standard digital attack that254

embeds p (i.e., the digital image of the physical trigger) to training samples in Ds and change their255

labels from s to t; and (4) Label-Consistent (LC) attack [39], in which the attacker perturbs the256

samples so that the victim model fails to classify them, and then overlays p onto the perturbed257

images to make it a dominant feature (see Appendix B). We adapt the Naive attack to Animal258

classification by embedding p onto target-class samples, due to the lack of trigger images. To improve259

the transferability of attacks with a digital trigger, we map p to the appropriate facial position in260

Facial recognition, while randomizing the trigger locations in Animal classification. We note that261

Narcissus [50] and COMBAT [21] are not suitable baselines since these methods optimize triggers262

that are both used during training and inference, while CLPBA predefines a natural physical trigger263

used for inference-time misclassification. For each attack, we run 3 trials to calculate the average and264

standard deviation of ASR on source-class trigger images.265

4.1 Attack Performance266

Comparison with baselines (Table 1). In the Facial recognition task, where the position and size267

of physical triggers remain static relative to human faces, Dirty-label-p naturally achieves high268

performances, and CLPBA maintains competitive results with FM reaching near-perfect ASRs across269

multiple configurations. Even in this easy attack setting, we can observe that Dirty-label-d fails for270

full-finetuning scenarios, which validates our hypothesis about the lack of generalizability of digital271
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backdoor attacks. In a more challenging task like Animal classification, where trigger appearance272

varies widely in location, shape, and size, CLPBA consistently outperforms the Dirty-label-p273

baseline across all configurations. For example, FM achieves an ASR improvement of 9.8% under274

linear-probing with phone trigger, while GM has a 5.1% increase under full-finetuning setting with275

phone trigger. Two other baselines (Naive, LC) fail in all settings, with most ASRs below 1%. We276

note that not all CLPBA variants have good performance, as PM has low ASRs for the full-finetuning277

setting of Animal classification; however, it still has higher ASRs than Dirty-label-d baseline.278

Overall, GM attack achieves the best performance out of all the evaluated methods.279

Figure 4: First row: sample in D̃s. Second row:
Perturbed target-class samples. Third row: Scaled
perturbations applied to target-class samples.

Analysis. Interestingly, CLPBA attacks outper-280

form Dirty-label attacks even with preserved281

ground-truth labels and constrained perturba-282

tions. We attribute the limited effectiveness of283

Dirty-label attacks to their memorization prop-284

erty, and the small number of dirty-label poi-285

sons cannot sufficiently cover the distribution of286

D̃s for test-time samples. CLPBA’s superiority287

over these baselines stems from learning gen-288

eralizable backdoor features rather than plain289

memorization. In other words, CLPBA em-290

beds representative trigger features through291

optimized perturbations, enabling robust per-292

formance across diverse physical conditions.293

As visualized in Figure 4, we can observe the294

shape of sunglasses and real-beard triggers be-295

ing constructed in perturbed images (columns 1-2), while multiple tennis ball features are embedded296

in the koala poison image (column 3).297

Table 2: ASR (%) of CLPBA with backdoor enhancements
and hidden-trigger baselines on ResNet18 (full-finetuning).

Trigger SA GM (ours) HTBA FM (ours)

tennis 62.9 ± 7.1 74.2 ± 3.6 1.1 ± 0.2 57.5 ± 2.9
phone 51.1 ± 4.9 65.5 ± 2.1 0.1 ± 0.1 30.1 ± 1.0

Comparison with hidden-trigger298

backdoor attacks (Figure 2). Re-299

garding gradient-space attacks, GM300

outperforms the SA attack by more than301

10% for both triggers by integrating the302

proposed enhancement techniques (CW303

Loss + Trajectory Sampling + Visual304

Loss). Regarding feature-space attacks, FM surpasses HTBA by a substantial margin as HTBA305

remains ineffective with ASRs near zero.306

4.2 Ablation Study307

Table 3: Ablation study on the animal classification task with ResNet18, full fine-tuning, and a tennis
trigger (α = 0.1, ϵ = 16). ASR (%) is reported. The "Single" column shows the effect of each
component in isolation, while the "Combine" column reports results with cumulative components.
The highest ASR in each column is highlighted.

GM FM

Single Combine Single Combine

Baseline 22.3± 5.3 14.9± 2.5
+ CW Loss 67.5± 3.7 N/A
+ Retrain 52.3± 1.7 60.9± 7.4 44.1± 4.9
+ Ensemble 43.0± 5.9 82.3± 1.7 12.6± 5.3 52.2± 5.0
+ TrajAlign 32.5± 5.3 77.8± 3.3 28.0± 6.8 56.8± 3.3
+ Visual Loss 46.7± 6.1 78.3± 2.3 17.6± 6.3 57.5± 2.9

In Table 3, we measure ASR(%) improvement when adding a single enhancement and adding a308

combination of enhancement techniques. Compared to the baseline, where no technique is applied,309

the integration of the proposed enhancements improves GM attack and FM attack by a maximum of310

60.0% and 42.6%. For the GM attack, every technique applied individually is shown to improve311

ASR significantly; CW Loss is the most notable with the increase of 45.2%. We can observe that312
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Trajectory Alignment with other techniques does not increase the ASR of the GM attack over the313

combination of (CW Loss, Retraining, Ensembling). We believe that this is because we didn’t set a314

sufficiently large number of attack iterations, which prevented the attack with Trajectory Alignment315

from converging optimally. On the other hand, for the FM attack, the combination of all backdoor316

enhancement techniques results in the highest ASR of 57.5%. Iterative Retraining is the most317

important enhancement for this attack, with an improvement of 28.2%.318

5 Defending against CLPBA319

We evaluated our Clean-Label Poisoning Backdoor Attack (CLPBA) against 15 representative320

defenses belonging to four families of defenses. Overall, CLPBA demonstrates significant robustness,321

evading most existing state-of-the-art defenses. We refer readers to Appendix G for a description of322

evaluated defenses and full experiment results. Below is the summary of our evaluation:323

Preprocessing-Based Defenses [51, 48]. These defenses apply strong data augmentations to weaken324

triggers during training. We find strong augmentations, such as MixUp [51] and CutMix [48],325

are largely ineffective against CLPBA. While Noising and Denoising augmentations can partially326

mitigate the attack since they disrupt the perturbations applied on poison samples, their effectiveness327

is nullified by a simple adaptive attack, where the attacker applies the same augmentation during328

poison crafting.329

Filtering Defenses [4, 31, 38, 17, 20]. Out of 5 evaluated filters, we only find Spectral Signature330

defenses (SS [38], SPECTRE [17]) can correctly filter poison samples with high True Positive Rate.331

This is perhaps not surprising since CLPBA’s poison samples contain features of trigger distribution,332

separating them from the natural distribution of the target class in the feature space. However, the333

downsides of these defenses are high False Positive Rate, removing up to 30.4% of clean samples to334

successfully weaken the attack.335

Firewall Defenses [13, 19, 49, 45]. These defenses aim to block the inference of victim models on336

malicious inputs at test time. We find that CLPBA is highly effective against these defenses. We337

believe that such defenses are designed specifically for dirty-label backdoor attacks, preventing their338

application to the clean-label backdoor attacks.339

Backdoor Detection [40, 28]. These defenses analyze the trained model to determine if it has been340

compromised, and reverse-engineer the triggers to purify the compromised model from the backdoor341

attack. We find Neural Cleanse (NC) [40] is ineffective against CLPBA, successfully identifying the342

backdoored class in only 2 out of 10 trials. NC uses Anomaly Index to detect the target class and the343

associated trigger, with the assumption that the trigger should have an unusually smaller norm for344

the target class than for other classes. This assumption is clearly violated by CLPBA with the use345

of physical triggers that are subjected to physical variability. ABS [28] is another detection method346

that aims to detect malicious neurons related to the backdoor attack before synthesizing the backdoor347

trigger. This method is also ineffective against CLPBA since it consistently associating malicious348

neurons with incorrect target classes and creating poor-quality triggers with 0.0% ASR.349

Backdoor Mitigation. These defenses attempt to cleanse poisoned models using small sets of clean350

data. We find I-BAU [44] is ineffective against CLPBA, with this adversarial unlearning method351

barely impacting the attack by only reducing ASR from 97.7% to 93.3%. However, NAD [25]352

is highly effective, successfully purging the backdoor through Neural Attention Distillation and353

reducing ASR from 97.7% to just 3.3% without damaging clean data accuracy. While NAD can354

mitigate CLPBA, the impact on ACC may depend on the amount of clean samples that the defender355

has for finetuning. Furthermore, the dependence of clean dataset limits its applicability for scenarios356

where third-party Machine Learning services are responsible for training the models.357

6 Conclusion358

We introduce Clean-Label Physical Backdoor Attacks (CLPBA), a new paradigm for physical359

backdoor poisoning that eliminates the need for label manipulation and trigger injection. Formulating360

the attack as a dataset distillation problem, we developed three CLPBA variants and introduced361

backdoor enhancement techniques that together craft highly effective and stealthy poison samples that362

can even surpass Dirty-label attacks in hard scenarios where backdoor generalizability is required.363
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A Dataset Collection & Pre-processing556

A.1 Ethics & Data Protection557

IRB approval. Before conducting our study, we submitted a "Human Subjects Research – Expedited558

Review Form" to our country’s Institutional Review Board (IRB). Our study received approval from559

the chairman of the institutional ethical review board under decisions No 24/2016/QD-VINMEC, No560

23/2016/QD-VINMEC, and No 77/2021/QD-VINMEC. We prepared a consent form beforehand to561

ensure transparency in the procedure of dataset collection. All 10 volunteers in our dataset provided562

explicit written consent for us to collect the dataset and use the images for research purposes,563

including permission to use the captured images in the research paper.564

Dataset protection. In adherence to strict ethical standards and privacy considerations related565

to the sensitive nature of the human face dataset, our research follows a comprehensive protocol566

to protect the privacy and confidentiality of the collected data. To safeguard the data, all images567

are securely stored on a protected server, with access restricted solely to the authors for research568

purposes. Additionally, all images in the paper are partially obscured to ensure that the identities of569

our volunteers are not exposed.570

A.2 Dataset Collection571

Due to the lack of publicly available datasets to study physical backdoor attacks, we collect a facial572

recognition dataset with 10 identities that contains 3,344 clean images and 9,790 trigger images of 7573

physical triggers. Sample images of identities are given in Figure 5. To reflect real-world conditions,574

the dataset was constructed in 1 month so that the images could be captured in various indoor/outdoor575

settings, under varying weather conditions, and with diverse shooting angles and distances. All576

photos are RGB and of size (224,224,3), taken using a Samsung Galaxy A53 and Samsung Galaxy577

S21 FE. To enhance the racial diversity of our dataset, we merge the collected dataset with 90 classes578

of the PubFig dataset [24], resulting in a total of 12,675 clean images.579

In our dataset, we choose triggers based on 3 criteria:580

• Stealthiness: Does the trigger look natural on a human face?581

• Size: How big is the trigger?582

• Location: Is the trigger on-face or off-face?583

With these criteria, we select 7 triggers, as shown in Table 4.584

Table 4: Our assessment of chosen physical triggers

Trigger Stealthiness On-Face Size
Yes No Yes No Small Medium Big

Earrings ✓ ✓ ✓
Fake Beard ✓ ✓ ✓
Sticker ✓ ✓ ✓
Facemask ✓ ✓ ✓
Hat ✓ ✓ ✓
Sunglasses ✓ ✓ ✓
Headband ✓ ✓ ✓

A.3 Dataset Preprocessing585

After collecting the images, we utilize a pre-trained MTCNN [52] (Multi-task Cascaded Convolutional586

Networks) model to detect and crop the face area. This preprocessing step ensures that the face is the587

focal point of each image, effectively removing any background noise. The cropped face regions are588

then resized to a standard dimension of 224× 224 pixels.589
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Figure 5: Visualization of the face detection process. Left: Original image. Right: Processed image
with face area cropped and resized to 224× 224 pixels.

Figure 6: Example images of the 10 volunteers, representing the first 10 classes in our facial
recognition dataset.

Figure 7: Physical triggers of the animal classification dataset.

A.4 Animal Classification Dataset590

Besides facial recognition, we also evaluate CLPBA on animal classification. We collected 1,670591

cat images (264 clean images + 1406 trigger images) of three physical triggers: tennis balls, mobile592

phones, and books. The trigger-free cat images are resized to 224× 224 and then concatenated to an593

existing animal classification dataset on Kaggle [2] to create an animal classification dataset with a594

total of 14,091 clean images of 46 species. Visualization of trigger images for this dataset is given in595

Figure 7.596

15



B Comparison between CLPBA and baselines597

Label-Consistent Attack. Label-Consistent (LC) attack [39] works by perturbing the poisoned598

samples with adversarial noise δ to make the salient features of the samples harder to learn (by599

ascending the cross-entropy loss on these samples) before injecting the digital trigger p on perturbed600

samples, forcing the model’s classification to depend on p for target-class classification.601

x← x+ argmax
∥δ∥∞≤ϵ

L(Fθ(x), t) + p ,∀x ∈ Dpois
t

To adapt LC to our setting, we extract the digital pattern of the physical trigger to embed on poison602

images (Figure 8).

Figure 8: Procedure of LC attack in Facial Recognition. We add the adversarial perturbations to the
poison instance before inserting the trigger into the appropriate facial area.

Figure 9: Visualization of baseline attacks and CLPBA with tennis trigger, and cat-koala is the
source-target class pair. Red label means that the sample has its label changed to the target class,
while the Green label preserves ground-truth labelling.

603

Dirty-label-p Attack. This is a strong baseline that involves the attacker injecting dirty-label trigger604

samples from the source class to the training dataset and changing their ground-truth labels to the605
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target class. Since the injected samples are drawn directly from the trigger distribution, a sufficiently606

high poison ratio will ensure that the physical backdoor attack is successful.607

Dirty-label-d Attack. This is an adapted version of digital backdoor attacks, where the attacker608

embeds the digital trigger into the source-class images and flips their labels to the target class.609

Naive Attack. A naive clean-label attack where the attacker injects trigger images from the target610

class into the training dataset to create a connection between the physical trigger and target-class611

feature space. This attack assumes that the attacker has trigger samples from the target class.612

Visualizations of the poison image for each of these baselines are given in Figure 9.613

C Detailed Experiment Settings614

Table 5: Victim Hyperparameters of CNN architectures
Hyperparameter Value

Optimizer SGD [33]
Full-finetuning lr 0.001
Linear-probing lr 0.1
Lr scheduler Drop by 90% every 10 epochs
Decay rate 5e-4
Batch size 64
Training epochs 40

C.1 Computational Resources.615

All the experiments are conducted on the two servers. The first one with 7 RTX 3090 Ti 24 GB616

GPUS, and the second one has 6 RTX A5000 24 GB GPUS. The code is implemented in PyTorch.617

We develop the codebase based on the previous works [37, 14].618

C.2 Training hyperparameters.619

We summarize key hyperparameters of the victim model training for our main table results in Table 5.620

We use the same set of hyperparameters across CNN architectures, while for Vision Transformers,621

we set a lower learning rate of 0.0001 for full-finetuning and 0.001 for linear-probing.622

C.3 Evaluation Metrics.623

To evaluate the performance of CLPBA, we adopt two standard metrics for backdoor attacks:624

• Attack success rate (ASR) (%): The proportion of examples in a trigger dataset of the source-class625

that the model misclassifies as the target class at inference time.626

• Accuracy (ACC) (%): The model’s prediction accuracy on clean, ordinary test-time data.627

Table 6: ACC of the victim model before and after GM attack under full-finetuning scenario.
Pre-Attack Post-Attack

ResNet50
(Face recogntion) 99.7 99.8± 0.0

ResNet18
(Animal classification) 93.6 93.8± 0.1

Since we observe that ACC is only minimally affected by the attacks or even increased after the628

attack (Table 6), we omit this metric in our experiments. We note that our experiments use a low629

poison ratio of around 0.2% to 0.3% poison ratio over the whole training set, which explains why630

ACC is not affected in most cases.631
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D Proof for Proposition 1632

The proof of Proposition 1 is derived based on the Implicit Function Theorem [23]:633

Proof. By the chain rule, the gradient of A = D(θ(δ)) is:634

∇δA =

(
∂θ(δ)

∂δ

)⊤

∇θD

While ∇θD is trivial to compute, we focus on the implicit gradient ∂θ
∂δ . Since θ(δ) is the minimizer635

of LPt(θ) by construction, we can define θ(δ) implicitly by the optimality condition:636

∇θ LPt(δ)
(
θ
) ∣∣∣

θ=θ(δ)
= 0

We differentiate the equation∇θL(θ(δ)) = 0 with respect to δ using the total derivative and applying637

the chain rule:638

d

dδ

[
∇θLPt(δ)

]
= ∇δ∇θLPt(δ) +

(
∇2

θLPt(δ)
) ∂θ

∂δ
= 0

Using the definitions for G and H, this is G+H∂θ
∂δ = 0. We solve for the Jacobian:639

∂θ

∂δ
= −H−1G

Substituting this into the chain rule expression:640

∇δA =
(
−H−1G

)⊤∇θD = −G⊤(H−1)⊤∇θD

Since the Hessian H and its inverse are symmetric, (H−1)⊤ = H−1, we obtain the result:641

∇δA = −G⊤H−1∇θD

This completes the proof.642

Discussion. This result is a direct application of the implicit function theorem to the bilevel structure643

of CLPBA. It highlights three key quantities: (i) G transfers the effect of pixel-level perturbations δ644

onto the model parameters through the training loss, (ii) H−1 measures the local curvature of that loss,645

and (iii)∇θD steers the parameters toward the dirty-label optimum θ∗. Since H−1 is computationally646

expensive, and the exact solution of θ(δ) is intractable for large networks; practical attackers use647

unrolled optimisation, i.e. back-propagating θ through a finite inner loop of K gradient-descent steps648

training on Pt(δ), as proposed by [12].649

E Algorithm and Implementation Details650

E.1 Algorithm and Implementation.651

The full algorithm of CLPBA, with the proposed enhancements, is given in Algorithm 1. First, the652

attacker initializes and trains the attacker models, storing the model checkpoints in the buffer B653

(Lines 1-3). In our codebase, however, the buffer will store algorithm-specific inputs to avoid repeated654

computations in the inner loops:655

• GM: The buffer stores adversarial gradients of models at different timesteps.656

• FM: The buffer stores the weights of models at different timesteps.657

• PM: The buffer stores a pair of (starting parameters, target parameters), where the starting658

parameters are the parameters that train normally on the training data D, and the target659

parameters are the parameters of the expert backdoor model that have been fine-tuned on660

dirty-label backdoor data.661
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Algorithm 1 CLPBA poison crafting procedure

Input: Training dataset D, source triggerset D̃s.
Parameter: Perturbation budget ϵ, poison budget α, retrain factor R, optimization step K, learning
rate for updating perturbations η, number of models in an ensemble M , weight of the visual loss
λvisual.
Output: The set of poison samples: Pt(δ) =

{
(xi + δi, t)

∣∣∣ (xi, t) ∈ Dpois
t

}
, where Dpois

t ⊂
Dt ⊂ D contain the target-class samples that the attacker can perturb.

1: Initialize the attacker model F as an ensemble of models: F = {F (1)

θ(1) , F
(2)

θ(2) , . . . F
(M)

θ(M)}.
2: Initialize a buffer B to store the trajectory of every model F .
3: Train each of the models in F with the training data D and fill up B with checkpoints for every

timestep k: B = {(θ(1)
k , . . .θ

(m)
k ), (θ

(1)
2k , . . .θ

(m)
2k ), . . .}.

4: Under the poison budget α, select Np samples from Dt to create Dpois
t .

5: Initialize δ = {δ1, . . . δNp} as perturbations for Dpois
t .

6: for r = 1, 2, . . . , R do
7: for t = 1, 2, . . . , T do
8: Sample a set of weights θ ∼ B representing a specfic timestep.
9: Sample a batch b̃s ∼ D̃s and a batch bt ∼ Pt(δ).

10: Compute attacker objective: Ladv ← A(θ, bt, b̃s; δ)
11: if visual loss is used then
12: Compute visual loss:

Lvisual =
∑
i

max (|δi| − ϵ, 0) +
∑
i,j

[
(δi+1,j − δi,j)

2 + (δi,j+1 − δi,j)
2
]

13: Compute the gradient ∇δ (A+ λvisualLvisual) and update δ with signed Adam and a
learning rate η.

14: else
15: Compute the gradient∇δ (A) and update δ with signed Adam and a learning rate η.
16: Project δ to constraint set C = { δ : ||δi||∞ ≤ ϵ, ∀i }.
17: end if
18: Ensure that every sample in Pt(δ) stays within the range [0, 1] after δ is updated.
19: end for
20: Reinitialize the buffer B.
21: Retrain the attacker model F on the poison dataset Dp =

(
D \Dpois

t

)
∪ Pt(δ) and fill up

the buffer B.
22: end for
23: return Pt(δ).

After initializing the buffer, the attacker proceeds to optimize perturbations δ that are to be added to662

target-class samples Dpois
t . Inner-loop (Lines 6-17): At each optimization step, the attacker samples663

a batch of source-class trigger samples b̃s and a batch of target-class poison samples bt to optimize664

δ with the attacker objective (as defined in the Methodology section of the main paper). If visual665

loss is used (Lines 10-12), the attackers compute Ladv as the sum of soft ℓ∞ penalty (first term) and666

Upwind Total Variation (second term) [9]. Outer-loop (Lines 19-20): After K optimization steps,667

the attacker reinitializes the buffer B and re-trains the attacker model on the updated poison dataset668

to fill up the buffer.669

As observed in Algorithm 1, our proposed backdoor enhancement components are used in different670

parts of the algorithm, and thus can be combined naturally. During Iterative Re-training, the buffer671

stores the checkpoints for Trajectory Alignment to minimize approximation error between attacker672

and victim models. Visual loss is optimized along with the attacker’s objective to improve the673

perceptual quality of perturbations. CW Loss is used during re-training steps to store the adversarial674

gradients for the GM attack.675

Discussion. Three points are worth mentioning: (1) The three attacks represent three spaces of676

optimization for the perturbations: parameter space, gradient space, and feature space. PM can be677
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thought of as an extension of GM, where one gradient step on Pt(δ) matches m gradient steps on678

D̃p
s . However, we find that the performance of PM is often inferior to GM (Table 1 in the main679

paper). The reason is that training the expert model on D̃p
s causes its training trajectory to drift farther680

away from the trajectory of the victim model, and thus optimizing APM cannot reliably approximate681

the adversarial learning dynamics of the victim model on poisoned training data. (2) Compared to682

PM and GM, FM is more efficient since it does not involve solving inner-loop optimization with683

higher-order gradients∇δ∇θLPt(δ). (3) Our formulation of CLPBA as a data distillation problem684

allows for a more general case of data-poisoning attacks where information of an arbitrary source685

distribution Ds, which may not necessarily represent a class in the training set, is embedded into the686

target class for test-time misclassification. We leave this direction for future work.687

E.2 Hyperparameters for CLPBA.688

We discuss important hyperparameters for CLPBA and its influence on attack performance and689

stealthiness:690

Figure 10: Visualization of perturbed “koala” images under GM attack with ℓ∞ constraint.

• Poison budget α: This determines the attacker’s capability as it decides the number of691

target-class samples that the attacker can poison. In practice, with full access to the training692

data, the attacker can craft poisons with a high poison budget since the hidden-trigger and693

clean-label characteristics of CLPBA make the perturbed samples harder to detect via human694

inspection or automated filtering. Generally, higher α increases attack influence on victim695

models, allowing the attacker’s objective to converge to a lower value.696

• Perturbation budget ϵ: Setting a high value of ϵ also improves attack convergence; however,697

it may compromise the perceptual quality of perturbed images. We find that a value of698

8 to 16 (Figure 11a) is an appropriate range for our facial recognition task that balances699

between performance and stealthiness, while for the animal classification task, where there700

is more natural background, we can set a higher value of 16 to 32 (Figure 10 without greatly701

impacting the visual quality of poison images.702

• The weight for the visual loss λvisual balances between attacker objective and visual stealth703

of poison samples. We set this to 1 across all configurations.704

• Number of inner-loop optimization steps K: We find that a higher value of K is beneficial705

to all of the attacks, since it allows for better convergence of A. We generally set K to be706

between 250 to 750 steps.707

• Retrain factor R: Similar to K, a higher retrain factor improves attack success as it better708

aligns the attack model with the victim model. However, the effect saturates as R increases.709

We note that setting a high R results in a long running time since it involves re-training on710

the full poisoned dataset. We set R to be between 1 to 5.711

• Learning rate to update perturbations η: This parameter can be tuned to improve the712

convergence of the attack. In our experiments, we set η to 0.1 for GM & PM and 0.01 for713

FM across all settings.714

• Number of backdoor training steps m for PM attack: Since PM naturally suffers from715

higher approximation error compared to GM and FM, since the backdoor expert model is716

fine-tuned on a dirty-label backdoor dataset, we set m = 1 to reduce the misalignment.717

• Batch size for inner-loop optimization: We observe that a larger batch size for sampling718

from the poison set leads to a more effective attack since the adversarial loss can converge719

to a lower value.720
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F Analysis of the Visual Loss.721

(a) Visualization of perturbed images under FM attack with ℓ∞ constraint.

(b) Visualization of perturbed images under FM attack with visual loss.

Figure 11: Comparison of perturbed images under different FM attack constraints.

Our study reveals a nice complement of the Upwind Total Variation (UTV) term to the soft ℓ∞ penalty.722

When using only the soft ℓ∞ penalty, we observe that the attacker’s objective dominates the penalty723

term during the optimization, causing the perturbations to grow quickly. This not only degrades the724

visual quality of the poison samples but also causes instability to the optimization process, as observed725

in fluctuations of the attacker’s objective. We have also tested with ℓ2 regularization; however, this726

regularization tends to penalize the perturbation norm too heavily, which causes difficulty for the727

optimization process. UTV is a lighter regularization compared to ℓ2: Instead of penalizing pixel-level728

values, it penalizes the norm of gradients between neighbouring pixels, ensuring a smoother transition729

between a pixel to its neighbours. We analyze two nice properties of CLPBA with the visual loss:730

improved stealthiness of poison images and improved convergence of attacker objective.731

Visual Loss improves stealthiness. We demonstrate the comparision between images perturbed with732

original ℓ∞ constraint and images perturbed with the proposed visual loss in Figure 11. We observe733

that when ϵ is 16, we start seeing visible artifacts on face image with ℓ∞ constraint. This effect is734

more notable with ϵ = 32 and ϵ = 64. On the other hand, using the visual loss effectively smoothen735

the perturbations, and preserves the perceptual quality of poison images. As can be observed in736

Figure 11b, even at a high value of ϵ = 32, there is no visible difference between poison image737

and original image. We also record the Peak Signal-to-Noise Ratio (PSNR) in dB, a popular metric738

to evaluate the quality of corrupted images with. Higher values of PSNR indicate better image quality.739
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As shown in Table 8, the visual loss consistently achieves higher PSNR across all ϵ, indicating the740

better stealthiness of perturbed samples.741

Visual Loss improves effectiveness. We observe that the visual loss helps improve ASR over the742

standard ℓ∞ constraint since it enables the attacker’s objective to converge to a smaller value. Since743

the visual loss has a larger space of optimization compared to ℓ∞, visual loss would benefit from a744

higher number of optimization steps. As can be seen in Table 7, both ℓ∞ constraint and visual loss745

benefit from higher numbers of optimization steps, and visual loss outperforms ℓ∞ constraint in 3 out746

of 4 tests. Notably, when T = 750, using the visual loss increases ASR (%) by 17.4%.747

Table 7: Comparison of GM attacks with ℓ∞ constraint and visual loss under different numbers of
optimization steps.

T = 250 T = 500 T = 750 T = 1000

ℓ∞ constraint 32.5± 1.6 48.1± 2.8 42.8± 1.4 47.5± 1.3
Visual loss 44.6± 1.2 49.1± 0.8 60.2± 2.1 44.8± 2.1

Table 8: Comparison of Peak Signal-to-Noise Ratio (PSNR) (dB) under different perturbation budgets
(ϵ). Higher PSNR values indicate better perceptual image quality.

ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 64

ℓ∞ constraint 31.7 26.2 20.5 15.0
Visual loss 33.3 28.4 23.2 18.2

G Evaluation of Defenses748

To defend against backdoor attacks in DNNs, defenses of different categories have been proposed.749

We summarize the families of defenses that we evaluate CLPBA against:750

• Preprocessing-based defenses: These defenses aim to weaken embedded triggers by pre-751

processing the training data. Strong data augmentations (e.g., MixUp, CutMix) have been752

shown to improve the robustness of model training with poisoned data [51, 48]. Noise-753

based augmentation (e.g., Gaussian noising/denoising) has also been shown to be effective754

against perturbation-based attacks. Thus, we evaluate CLPBA against MixUp and CutMix755

augmentations, together with Gaussian noising/denoising.756

• Backdoor detection defenses focus on detecting whether the model has been backdoored757

or not.758

• Filtering-based defenses aim to filter poison samples during traing stage.759

• Firewall defenses aim to safeguard to model from making inferences on suspicious test-time760

inputs.761

• Model reconstruction defenses aim to cleanse the model on held-out clean validation data762

to remove any backdoor effect on the models.763

For Backdoor Detection and Backdoor Mitigation defenses, we sample 50% of the test set as764

the defense set (12.5% of the train set size). We followed the original settings, but tuned certain765

hyperparameters for the defenses to adapt better to our dataset in terms of ACC and ASR.766

G.1 CLPBA under data augmentations.767

As shown in Table 9, GM attack is robust to MixUp and CutMix. While Noising and Denoising par-768

tially mitigate the attack, the attacker can craft an adaptive attack that applies the same augmentation769

to the poison crafting process, improving the robustness of poison samples to augmentations.770

Evaluation metrics. We adopt different sets of metrics to comprehensively evaluate CLPBA with771

filtering and firewall defenses:772

For Filtering Defenses:773

• Elimination Rate (ER): The percentage of poisoned samples that are correctly filtered.774
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Table 9: Performance of GM attack under augmentations.
MixUp CutMix Noising Denoising

GM 77.2 95.7 64.4 39.3
GM (with augment) N/A N/A 96.4 99.3

• Sacrifice Rate (SR): The percentage of clean samples that are incorrectly filtered.775

For Firewall Defenses:776

• True Positive Rate (TPR): The percentage of trigger source-class samples that are correctly777

filtered.778

• False Positive Rate (FPR): The percentage of non-trigger samples that are incorrectly779

filtered.780

G.2 Filtering-based & Firewall defenses.781

Table 10: Performance of GM attack under filtering defenses

Filtering Defenses
Metrics AC SS DeepKNN SPECTRE CT
ER (%) 0.0 61.7 23.3 91.7 48.3
SR (%) 7.6 32.6 0.0 30.4 4.94
ASR (%) 97.7 0.0 5.3 0.0 69.3

We evaluate CLPBA against 5 representative filtering-based defenses and six representative firewall782

defenses:783

• Activation Clustering (AC) [4]: This defense filters poisoned inputs in the latent space of the784

poisoned model via clustering. It assumes that the poisoned inputs form a small cluster separate785

from the clean inputs.786

• Spectral Signatures (SS) [38]: This defense identifies a common property, spectral signature, of787

backdoor attacks: Feature representations of the poisoned samples strongly correlate with the top788

singular vector of the feature covariance matrix. This defense then filters a predefined number of789

samples that have the highest correlation to the singular vector.790

• SPECTRE [17]: This defense improves upon the Spectral Signature defense with robust covariance791

estimation that amplifies the spectral signature of corrupted data.792

• DeepKNN [31]: This defense was originally introduced for clean-label data poisoning. It assumes793

that poisoned samples exhibit different feature distributions from clean examples in the feature794

space. It then uses K-nearest neighbors to filter samples with the most number of conflicting795

neighbors (neighbors that have different labels).796

• Confusion Training (CT) [32]: This is a proactive defense technique that deliberately applies an797

additional poisoning attack on an already poisoned dataset to actively disrupts benign correlations798

in the data while amplifying the backdoor patterns, making them easier to detect.799

• STRIP [13]: This defense detects poisoned inputs by applying random perturbations and observing800

the model’s prediction entropy. Poisoned inputs typically produce more consistent (lower entropy)801

predictions under perturbations compared to clean inputs.802

• IBD-PSC [19]: This defense clusters inputs based on their feature representations and identifies803

poisoned samples as distinct clusters in the feature space, separate from clean samples.804

• Frequency-based Detection [49]: This defense identifies backdoor triggers by analyzing frequency805

patterns in the input data. Trigger artifacts often show statistically distinct patterns that can be806

isolated through frequency domain analysis.807

• Cognitive Distillation (CD) [20]: This method detects backdoor patterns by isolating minimal808

features, called Cognitive Patterns (CPs), that trigger the same model output. Backdoor samples809

consistently yield unusually small CPs, making them easy to identify.810
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• SCALE-UP [16]: This method etects backdoor inputs by checking for unusually consistent model811

predictions when input pixels are scaled. It works in a black-box setting without needing model812

access.813

• BadEXpert [45]: This method creates a specialized "backdoor expert" model from the victim814

model to identify and filter poisoned inputs accurately, maintaining good clean-data performance.815

Evaluation on Filtering Defenses As shown in Table 10, we find that most filtering-based defenses816

are not robust against our clean-label poisoning attack.817

• AC and DeepKNN are largely ineffective, with Elimination Rates (ER) of 0.0% and 23.3%,818

respectively. This is because CLPBA is designed to make poisoned samples indistinguishable from819

benign samples in the feature space. The poisoned inputs are crafted to lie within the distribution820

of the target class, thereby violating the core assumption of these defenses that poisoned data will821

form separable clusters or have conflicting neighbors. Consequently, the Attack Success Rate822

(ASR) remains high at 97.7% against AC.823

• SS and SPECTRE, which rely on spectral signatures, can successfully mitigate the attack, reducing824

the ASR to 0.0%. SPECTRE, in particular, identifies and removes 91.7% of the poisoned samples.825

However, this effectiveness comes at an unacceptably high cost: both defenses incorrectly filter826

over 30% of the clean samples (Sacrifice Rate, SR), rendering them impractical for real-world use.827

This indicates that while CLPBA leaves a detectable spectral artifact, it is not distinct enough to be828

separated from benign data without significant collateral damage.829

• Confusion Training (CT) shows limited effectiveness. While it manages to filter nearly half of the830

poisoned samples (ER of 48.3%), the ASR remains high at 69.3%. This suggests that the backdoor831

patterns embedded by CLPBA are robust and not easily amplified or isolated by the disruptive832

signals introduced by CT.833

In summary, CLPBA successfully evades defenses that assume feature-space separability and forces834

other methods like SPECTRE to discard an impractical amount of clean data to be effective.835

Evaluation on firewall defenses. As demonstrated in Table 11, input-level detection methods are836

not effective for CLPBAs because they either miss trigger samples or incorrectly filter out too many837

benign samples. This behavior is expected, as CLPBAs challenge the main assumptions underlying838

these defenses:839

Table 11: Performance of GM attack under Firewall defense.

Firewall Defenses
Metrics STRIP CD IBD-PSC Frequency BadEXpert SCALE-UP
TPR (%) 0.0 79.6 0.0 0.0 0.0 3.7
FPR (%) 6.7 65.3 16.7 0.9 16.7 25.1
ASR (%) 100.0 21.3 100.0 100.0 100.0 96.3

• STRIP and IBD-PSC: These methods assume that backdoor correlation (trigger and target label840

prediction) is more consistent than the classification of benign samples, and thus find ways to841

unlearn normal classification tasks to highlight trigger samples. However, since CLPBAs work by842

synthesizing natural features from the target class with the trigger, unlearning normal classification843

tasks also unlearns the backdoor correlation between the trigger and the target class.844

• Frequency-based Detection: This method assumes that poisoned samples exhibit high-frequency845

artifacts that differ from benign ones. This assumption holds true for digital triggers, where there846

is no inherent correlation between the trigger and the natural image content in the pixel space.847

However, physical triggers, which are integrated naturally into the image, do not produce such848

high-frequency artifacts, making this defense less effective.849

• Cognitive Distillation: This approach assumes that a backdoored model focuses on much smaller850

regions for classifying trigger samples than for classifying clean samples. However, because851

CLPBAs aim to embed the distribution of the source class with the trigger into the feature space852

of the target class, the classification region for trigger samples is larger. The model relies on a853

combination of the trigger and natural features of the source class for misclassification.854
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It is also important to note that these defenses are built for dirty-label all-to-one attacks instead855

of clean-label one-to-one attacks as CLPBA. Therefore, the assumption of a consistent backdoor856

correlation for STRIP and IBD-PSC may not hold true.857

G.3 Backdoor detection858

NC [40], ABS [28]: NC uses an Anomaly Index metric to quantify how unusually small the reverse-859

engineered trigger perturbation for a given class is compared to others. Classes with high Anomaly860

Index values (greater than 2.0) are flagged as likely backdoor targets. However, in our experiments,861

NC only successfully identified the correct target class in 2 out of 10 trials. We attribute this limitation862

to NC’s assumption of small, memorized trigger perturbations, which fails for CLPBA since it863

leverages adversarial feature manipulations rather than simple memorized trigger features (Section864

5). ABS (Artificial Brain Stimulation) first identifies subsets of suspicious neurons and associates865

them with their suspected target classes by analyzing neuron activations. It then uses these identified866

neurons to reverse-engineer the backdoor trigger pattern. Despite this sophisticated approach, ABS867

fails against CLPBA because the malicious neurons it detects are consistently linked to incorrect868

target classes. Consequently, the synthetic triggers reverse-engineered by ABS yield a 0% attack869

success rate (ASR), in contrast to a 97.7% ASR achieved by the physical trigger.870

G.4 Backdoor mitigation871

NAD [25], I-BAU [44]: NAD mitigates backdoors by fine-tuning the poisoned model on a clean872

defense dataset to construct a teacher model and then performing distillation onto the original poisoned873

model by matching activations in convolutional layers. I-BAU employs adversarial unlearning to874

remove backdoors by iteratively optimizing an implicit hypergradient objective. Our experiments875

demonstrate that NAD effectively defends against CLPBA without reducing clean accuracy (ACC),876

reducing ASR from 97.7% to 3.3%. In contrast, I-BAU is less effective against CLPBA, only877

decreasing ASR to 93.3% after 100 fine-tuning rounds.878
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