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ABSTRACT

Recent advances in deep learning have accelerated the development of foundation
models (FMs) for electroencephalography (EEG), with significant efforts devoted
to assembling EEG datasets and training large-scale models. However, existing
EEG datasets remain highly fragmented and non-standardized, with limited re-
gional diversity since most originate from the United States. Similarly, current
EEG foundation models are trained on different datasets without consistent pro-
tocols, making it difficult to compare architectures fairly. Moreover, all existing
models are trained exclusively on unimodal EEG signals, limiting their clinical
utility, as many downstream diagnostic tasks, such as detecting neurodegenera-
tive diseases, require integration of additional modalities beyond EEG. To ad-
dress these limitations, we introduce, for the first time M-EEG, a multimodal
EEG dataset comprising over 6000 patients collected from two major hospitals
outside the US. In parallel, we unify all existing public EEG datasets into a single
standardized corpus, enabling the first rigorous benchmarking of state-of-the-art
EEG foundation model architectures under consistent pretraining and fine-tuning
pipelines. Finally, using our multimodal EEG dataset, we design and evaluate a
multimodal diagnostic model, demonstrating that integrating auxiliary modalities
(e.g., blood biomarkers and clinical notes) with EEG substantially improves down-
stream prediction accuracy, for instance, achieving a 27.64% gain in Alzheimer’s
disease risk prediction.

1 INTRODUCTION

Background. Recent breakthroughs in deep learning have catalyzed the development of foundation
models (FMs) for electroencephalography (EEG) Wang et al. (2025; 2024a;b); Yang et al. (2023);
Kostas et al. (2021), with the goal of learning transferable neural representations across diverse
clinical and cognitive tasks. In parallel, efforts have been made to assemble large-scale clinical EEG
corpora from multiple hospitals (Khan et al., 2022; Zhang et al., 2018; Sun et al., 2025), aiming to
broaden regional and clinical diversity and to better capture the inherently non-stationary, low signal-
to-noise characteristics of EEG. Despite these encouraging developments, existing EEG datasets and
foundation models continue to face significant limitations.

Limitations of existing EEG datasets and foundation models. On the dataset side, available cor-
pora remain fragmented: most are heavily US-centric (Obeid & Picone, 2016; Sun et al., 2025),
task-specific (Zhang et al., 2018), or involve relatively few subjects (Khan et al., 2022). Such con-
straints exacerbate overfitting when applying self-supervised pretraining methods, such as mask
prediction (Wang et al., 2024b;a; 2025; Yang et al., 2023) or contrastive learning (Yang et al., 2023;
Kostas et al., 2021), which depend critically on a wide subject pool to generate reliable positive and
negative pairs. Moreover, most datasets lack integration with minimally invasive modalities such
as blood-based biomarkers, which could be combined with EEG to strengthen diagnostic accuracy.
The recently introduced Harvard Electroencephalography Database (Sun et al., 2025) partially ad-
dresses these limitations by releasing nearly three million hours of data from four hospitals, yet it
remains entirely US-based and thus insufficient for studying regional diversity at scale.
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Concerning the EEG foundation models, current models (e.g., EEGPT(Wang et al., 2024a),
BIOT(Yang et al., 2023), CBraMOD(Wang et al., 2025)) exhibit two fundamental limitations: lim-
ited regional diversity and restricted clinical relevance. First, most models are pretrained on only
a handful of public datasets—largely from single regions, resulting in poor generalization across
demographic, clinical, and recording variations. Performance drops sharply when evaluated on un-
seen regional datasets, underscoring their vulnerability to distribution shifts (See Fig. 2). Dataset
heterogeneity in sampling rates, channel layouts, and annotation protocols further complicates the
establishment of standardized pretraining pipelines, reinforcing the need for a harmonized and glob-
ally representative corpus. Second, existing foundation models are trained exclusively on unimodal
EEG signals, whereas real-world diagnosis of complex brain disorders, such as Alzheimer’s disease,
often requires multimodal integration, including minimally invasive biomarkers like blood-based
tests. As illustrated in Table 5, incorporating auxiliary signals substantially improves disease risk
prediction performance over EEG alone, reinforcing the need for multimodal foundation modeling.
Yet, there remains a scarcity of public EEG datasets that are both regionally diverse and enriched
with complementary clinical modalities.

Our approach. To address these gaps, we present VEEG, a large-scale, clinically annotated EEG
dataset collected from two major hospitals outside of US, comprising 1, 170 hours of EEG record-
ings from 6, 081 patients. To our knowledge, this is the largest non-US clinical EEG corpus to date,
offering significant improvements in geographic coverage, subject diversity, and clinical complexity.
In addition, a unique subset of VEEG includes paired EEG, blood biomarkers, and clinical notes,
enabling the first non-US multimodal benchmark for EEG–lab fusion.

Building on VEEG, we conduct a standardized benchmarking study of state-of-the-art EEG founda-
tion models under identical pretraining and fine-tuning protocols across diverse clinical tasks drawn
from both US-based and non-US datasets. Our findings demonstrate that pretraining on VEEG
yields stronger generalization across regions and diseases, with clear gains on challenging diagnos-
tic tasks such as early Alzheimer’s risk prediction.

Contributions. Our contributions are summarized as follows:

• We release M-EEG, a large-scale clinical EEG corpus with 1,170 hours from 6,081 pa-
tients at two major hospitals, marking the largest non-US EEG dataset by subject count and
improving the diversity of EEG pretraining resources. Furthermore, we curate a subset of
M-EEG that integrates EEG signals with blood-based biomarkers and clinical notes, estab-
lishing the first non-US multimodal EEG benchmark and opening new avenues for research
in EEG-laboratory data fusion.

• We standardize all existing EEG datasets to construct a unified large-scale corpus and estab-
lish a benchmark to compare state-of-the-art EEG foundation model architectures on this
dataset. To the best of our knowledge, this is the first standardized large-scale EEG corpus,
and our work represents the first systematic benchmarking of EEG foundation models on
a common dataset using consistent pretraining and fine-tuning pipelines, thereby enabling
rigorous and dataset-independent comparison.

• We introduce a multimodal EEG model for early disease diagnosis. Experiments conducted
on our proposed multimodal EEG dataset, validated through Alzheimer’s risk prediction,
demonstrate that incorporating additional modalities substantially enhances prediction ac-
curacy.

2 EXISTING DATASETS AND EEG FOUNDATION MODELS

2.1 CURRENT PRETRAINING CORPORA

Table 1 provides an overview of major EEG datasets used for representation learning, emphasizing
their scale, geographic coverage, and any multimodal extensions. The field currently relies on a
patchwork of hospital-based clinical EEG corpora as the backbone for foundation model pretraining.

Foremost among these is the Temple University Hospital (TUH) corpus (Obeid & Picone, 2016),
which at roughly 24,000 hours of recordings from a single US hospital has underpinned much of the
recent progress in self-supervised EEG representation learning (Wang et al., 2025; Han et al., 2025).
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More recently, the Harvard Electroencephalography Database (HEEDB) (Sun et al., 2025) intro-
duced an unprecedentedly large corpus on the order of millions of EEG hours, drawn from multiple
US hospitals and enriched with patient metadata and auxiliary modalities, integrating demographics,
medication records, lab values, and free-text clinical notes (including blood-based biomarkers). This
rich multimodal resource significantly expanded data scale and scope; however, it remains entirely
US-based, exacerbating a persistent regional diversity gap in EEG data. Beyond the United States,
only a few smaller clinical corpora have been released. For example, the NMT-Scalp dataset from
Pakistan (Khan et al., 2022) provides valuable clinical EEG data but remains limited in scale, with
relatively few hours and subjects compared to TUH or HEEDB.

In addition to clinical datasets, a variety of laboratory or task-specific EEG datasets have been used
for representation learning. Notable examples include SEED (Zheng & Lu, 2015) for emotion recog-
nition, PhysioNet MI (Goldberger et al., 2000) for motor imagery, M3CV (Huang et al., 2022) for
cognitive workload, HGD (Schirrmeister et al., 2017) for brain–computer interface trials, and SHHS
(Zhang et al., 2018) for sleep monitoring. While each contributes valuable data for its specific do-
main, these datasets are relatively small in scale (often involving only tens of subjects or a few dozen
hours) and narrow in clinical scope. Moreover, they are typically single-modality (EEG only) and
collected under disparate protocols.

2.2 EXISTING EEG FOUNDATION MODELS

2.2.1 UNIMODAL EEG-BASED FOUNDATION MODELS

EEG foundation models aim to learn general-purpose neural representations from large corpora
without relying on task-specific labels. Table 6 summarizes representative architectures and their
original pretraining data.

Two open-source efforts, BENDR (Kostas et al., 2021) and CBraMOD (Wang et al., 2025), were
trained exclusively on the TUH clinical corpus, leveraging the breadth of U.S. hospital EEG record-
ings to drive self-supervised learning objectives. These works established TUH as the standard back-
bone for EEG foundation modeling. By contrast, EEGPT (Wang et al., 2024a) expanded beyond a
single corpus by pretraining on a composite of multiple laboratory datasets, including PhysioNet MI,
SEED, M3CV, HGD, and TSU to capture a wider spectrum of motor imagery and cognitive tasks.
Similarly, LaBraM (Jiang et al., 2024) aggregated a heterogeneous collection of public corpora
(e.g., TUEG subsets, BCIC IV-1, EmoBrain, Inria BCIC, SPIS Resting) together with private data,
aiming to maximize training diversity through scale and variety. Another line of work has drawn
on large-scale clinical cohorts beyond TUH. BIOT (Yang et al., 2023), for instance, leverages both
SHHS, a population-level sleep study, and a small subset of HEEDB collected at Massachusetts
General Hospital to pretrain a transformer architecture designed for cross-dataset generalization.
Unlike models tied to narrowly defined tasks, BIOT emphasizes scalability across heterogeneous
clinical EEG corpora, though its training sources remain limited to US-based datasets (with only a
small subset of HEEDB included).

Despite their architectural differences and varying objectives, a common limitation is that each foun-
dation model was developed using a distinct, and often narrow, pool of pretraining data. This incon-
sistency makes reported improvements difficult to attribute: performance gains may arise as much
from the scale, scope, or bias of the underlying corpus as from innovations in model design. Con-
sequently, direct comparison across models remains problematic without a unified and standardized
pretraining benchmark.

2.2.2 TOWARD MULTIMODAL EEG FOUNDATION MODELS

In clinical practice, EEG is rarely interpreted in isolation. Neurologists routinely contextualize EEG
findings with additional information such as blood biomarkers (indicating infection, inflammation,
or metabolic abnormalities), routine laboratory test results, and clinical notes that capture patient
history and diagnostic impressions. In many neurological disorders, further confirmation may re-
quire complex and costly procedures such as MRI, which highlights the value of minimally invasive
signals that can complement EEG in a more accessible way. These auxiliary data sources provide
critical context that can help disambiguate EEG abnormalities and improve diagnostic accuracy.

3
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Table 1: Existing EEG pretraining corpora. BBB denotes blood-based biomarkers. Dataset names
are color-coded as follows: blue for general clinical EEG corpora, brown for task-specific corpora,
and bold for our contribution (M-EEG).

Dataset name Region # Hours # Subjects # Sites # Channels Sampling (Hz) Modalities
BBB Clinical notes

HEEDB (Sun et al., 2025) US 3 000 000 109 178 4 22–57 200–512 ✓ ✓

TUEG (Obeid & Picone, 2016) US 24 000 10 874 1 31 250–256 ✗ ✗

NMT Scalp (Khan et al., 2022) Pakistan 625 60 1 19 200 ✗ ✗

M3CV (Huang et al., 2022) China 90 106 1 64 250 ✗ ✗

SEED series (Zheng & Lu, 2015) China 200 (total) 8–20 1 62 1000 ✗ ✗

PhysioNet MI (Goldberger et al., 2000) US 47 109 1 64 160 ✗ ✗

Inria BCIC (Margaux et al., 2012) France 30 26 1 56 200 ✗ ✗

BCIC IV-1 (Blankertz et al., 2007) Europe 8 7 1 59 1000 ✗ ✗

HGD (Schirrmeister et al., 2017) China 15 154 1 128 500 ✗ ✗

Raw EEG Data (Trujillo, 2020) US 34 48 1 64 256 ✗ ✗

Grasp and Lift (Luciw et al., 2014) UK 12 12 1 32 500 ✗ ✗

EmoBrain (Savran1 et al., 2006) Germany 5 16 1 64 1024 ✗ ✗

Resting State (Trujillo et al., 2017) US 3 22 1 72 256 ✗ ✗

SPIS Resting (Torkamani-Azar et al., 2020) China 1 10 1 64 2048 ✗ ✗

Target vs Non-Target (Korczowski et al., 2019) France 16 43 1 32 512 ✗ ✗

TSU (Wang et al., 2016) China 14 35 1 64 250 ✗ ✗

SHHS (Zhang et al., 2018) US 43 446 5 804 – 2 125 ✗ ✗

Siena Scalp (Detti, 2020) Italy 30 14 1 29 512 ✗ ✗

M-EEG Outside of US 1 170 6 081 2 22–44 200, 500 ✓ ✓

Despite this reality, existing EEG foundation models remain strictly unimodal, trained only on raw
EEG signals without auxiliary modalities. This limitation reduces their clinical utility: a model
that sees only EEG may miss critical disease indicators that would be apparent if combined with
supporting evidence such as blood tests or clinical reports.

Extending pretraining corpora beyond EEG is therefore essential for developing foundation mod-
els that generalize across diverse clinical scenarios. Incorporating modalities such as blood-based
biomarkers and textual clinical records into EEG representation learning can capture patterns more
consistent with real-world diagnostic reasoning (Moretti, 2015; Chetty et al., 2024), potentially im-
proving performance on tasks like early detection of neurodegenerative diseases or prognostication
after brain injury.

These considerations motivate the collection of multimodal EEG datasets that combine electrophys-
iological signals with complementary clinical information. In the next section, we present M-EEG,
a multi-institutional dataset that pairs EEG recordings with blood biomarkers and clinical notes, and
introduce a unified benchmarking framework for evaluation. Together, these contributions expand
regional coverage, integrate multimodal context, and enable fair, standardized assessment of EEG
foundation models.

3 MULTI-INSTITUTIONAL MULTIMODAL EEG DATASET

In the following, we introduce a multi-institutional EEG dataset that has been systematically com-
piled and meticulously curated to support advanced research in computational neuroscience. The
dataset comprises three main components.

The first is M-EEG (Section 3.1), our in-house multimodal dataset collected outside the United
States, which includes synchronized EEG recordings alongside corresponding blood test results.
This multimodal dataset not only enhances the diversity of existing EEG data populations, thereby
improving the generalizability of EEG foundation models (as demonstrated in Section 4.3), but
also leverages its multimodal nature to boost performance on downstream tasks, as will be further
discussed in Section 4.4.

The second component, P-EEG (Section 3.2), is a unified public dataset constructed through the ag-
gregation and harmonization of multiple publicly available EEG datasets. It is designed specifically
for the pretraining of EEG foundation models. By standardizing data formats and preprocessing
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Figure 1: Overview of M-EEG. (1) Data construction: raw EEG, blood biomarkers, and clinical
notes collected from two hospitals are anonymized and standardized into BIDS format. (2) Bench-
marking: M-EEG enables large-scale pretraining and standardized evaluation of EEG foundation
models, with downstream results showing that region-specific data improves regional robustness.
(3) Multimodal integration: M-EEG includes paired EEG–blood data, allowing exploration of
multimodal foundation models for clinical tasks such as early disease risk prediction.

pipelines, this unified corpus offers a robust, scalable, and reproducible benchmark for training,
evaluating, and comparing foundation models in EEG-based machine learning research.

Finally, the T-EEG component is derived from publicly available task-oriented datasets. It is specif-
ically curated to evaluate the performance of foundation models on a range of targeted downstream
tasks.

3.1 M-EEG: AN IN-HOUSE MULTI-INSTITUTIONAL, MULTIMODAL EEG DATASET

We construct M-EEG, a multi-institutional, multimodal EEG dataset, collected from two major hos-
pitals located outside the United States. The primary objective of this dataset is to enhance the
diversity of existing EEG datasets, both in terms of geographical representation (regional diversity)
and data modality. Using this dataset, we demonstrate that regional diversity plays a critical role
in improving EEG representation learning for foundation models, while incorporating additional
modalities beyond EEG, such as blood biomarkers, significantly boosts the accuracy of brain-related
disease prediction.

The construction of M-EEG involved several key steps: (1) raw data acquisition, (2) cross-modality
synchronization, and (3) standardized data preprocessing. We present more details about each step
in Appendix A.7 and Figure 1.

M-EEG advances beyond prior corpora by providing the largest non-US clinical EEG cohort to
date, comprising 6,081 patients and 1,170 hours of recordings collected over a multi-year period
across two hospitals. Each record follows a standardized 10–20 montage with 22–44 channels and
sampling rates of 200 or 500 Hz. In addition to raw EEG, the dataset includes paired blood-based
biomarkers (BBB) and clinical notes, enabling multimodal representation learning. The cohort cov-
ers a wide spectrum of neurological conditions such as epilepsy, encephalopathy, sleep disorders,
and neurodegenerative diseases, reflecting real-world clinical diversity. All data are harmonized into
a BIDS-compliant release to ensure accessibility and reproducibility.

3.2 P-EEG: A UNIFIED EEG CORPUS FOR FOUNDATION MODEL PRETRAINING

To establish a fair and comprehensive benchmark for foundation model pretraining, we aggregate
multiple publicly available EEG datasets and integrate them with our proprietary VEEG dataset to
construct a unified corpus, referred to as P-EEG, specifically tailored for the training and evaluation
of EEG foundation models.

5
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Although a wide range of public EEG datasets exist, each is originally created for distinct research
purposes. Therefore, we carefully select only those datasets that align with the objectives and re-
quirements of foundation model training. In the following sections, we detail the criteria used for
dataset selection and describe the preprocessing pipeline employed to harmonize and standardize
the selected datasets into a coherent and consistent format.

3.2.1 DATASET SELECTION

We selected datasets from Table 1 based on two main criteria: (i) a focus on patient-based clinical
recordings rather than task-specific paradigms, and (ii) the ability to ensure both biological and
regional diversity while maintaining sufficient EEG channel coverage.

Specifically, we excluded task-oriented datasets, highlighted in brown in Table 1, as they are tai-
lored to narrow cognitive or motor tasks, which can bias representation learning toward predefined
downstream objectives. Although the SHHS dataset (Zhang et al., 2018) offers a large sample size,
it records only two EEG channels in a sleep-specific context, limiting its applicability for general-
purpose pretraining. We also deferred the inclusion of the HEEDB dataset (Sun et al., 2025) due to
its massive scale and the ongoing integration process, reserving it for future work.

As a result, the unified dataset, P-EEG, comprises three complementary corpora: the Temple Univer-
sity EEG (TUEG) dataset (Obeid & Picone, 2016), the NMT Scalp EEG dataset from Pakistan (Khan
et al., 2022), and our newly introduced dataset, M-EEG. Together, these datasets span multiple
hospitals, geographic regions, and acquisition protocols, forming a diverse yet clinically grounded
corpus for the training and evaluation of EEG foundation models.

3.2.2 DATA PREPROCESSING AND HARMONIZATION

Our preprocessing largely follows CBraMOD (Wang et al., 2025) to reduce variability and remove
noise. We discard the first and last minute of TUEG recordings, retain 19 common 10–20 channels,
and apply a 0.3–75 Hz band-pass filter plus a 60 Hz notch filter. Signals are resampled at 200 Hz,
segmented into 30 s windows, and normalized to [−1, 1] after excluding samples with amplitudes
above 100, µV (Yin et al., 2025). For NMT-Scalp (Khan et al., 2022) and M-EEG, we apply the
same pipeline but use a 50 Hz notch filter and Independent Component Analysis (ICA) (Makeig
et al., 1995) to further suppress artifacts.

3.3 T-EEG: A TASK-ORIENTED EEG BENCHMARK FOR DOWNSTREAM EVALUATION

Downstream BCI Tasks and Datasets. T-EEG serves as a task-oriented benchmark designed to
systematically evaluate the generalization of EEG foundation models across diverse downstream
applications. We include six representative tasks spanning seven EEG datasets, as summarized in
Table 7. The benchmark covers well-established challenges in brain–computer interface and clinical
EEG analysis: motor imagery (BCIC-2a (Blankertz et al., 2007)), sleep staging (SleepEDF (Kemp
et al., 2000)), seizure detection (TUEV (Obeid & Picone, 2016)), and abnormal EEG classification
(TUAB (Obeid & Picone, 2016)). To evaluate robustness under regional shifts, we further incorpo-
rate A&MISP (Ma Thi et al., 2025), ALS (Ngo et al., 2024), and N-FM (Neurought, 2023), which
introduce distinct recording conditions and subject populations. Finally, to assess multimodal in-
tegration, we include the external PEARL dataset (Dzianok & Kublik, 2024) for Alzheimer’s risk
prediction, where paired EEG and blood biomarkers enable evaluation of multimodal representation
learning.

Preprocessing pipeline. Given the heterogeneity of real-world EEG collections, the datasets in T-
EEG vary substantially in sampling frequency, number of channels, and segment duration. To ensure
fair comparison, we establish a standardized preprocessing pipeline: linear channel mappings are
applied when necessary to align with the pretrained 19-channel montage, and signals are adaptively
truncated or segmented around task-specific annotations to extract meaningful samples. Table 7
details the preprocessing setup for each dataset, with further descriptions provided in Appendix A.
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Table 2: Performance of EEG foundation models pretrained on the unified corpus P-EEG and fine-
tuned on task-oriented dataset T-EEG. Results are reported on representative downstream bench-
marks.

Task Architecture Balanced Accuracy ↑ Cohen’s Kappa / AUPR ↑ Weighted F1 / AUROC ↑

BCIC-2a CBraMOD 0.4978 0.3304 0.4856
EEGPT 0.5374 0.3823 0.5138

TUEV CBraMOD 0.4449 0.5114 0.7394
EEGPT 0.5217 0.5581 0.7680

TUAB CBraMOD 0.6175 0.4384 0.6897
EEGPT 0.8018 0.8800 0.8826

Sleep-EDFx CBraMOD 0.7512 0.7258 0.7978
EEGPT 0.6585 0.5963 0.6976

4 EEG FOUNDATION MODEL BENCHMARKING

In this section, using the UEEG dataset, we conduct a series of experiments to address three key
research questions: (1) How do state-of-the-art EEG foundation models compare in performance?
(Section 4.2); (2) How effective is the VEEG dataset for pretraining EEG foundation models? (Sec-
tion 4.3); (3) To what extent does incorporating multimodality improve performance on EEG-related
downstream tasks? (Section 4.4).

4.1 EXPERIMENT SETTINGS

Baselines. We include two state-of-the-art EEG foundation models as baselines. (1) CBraMOD
(Wang et al., 2025), a reconstruction-based model was originally pretrained on TUH (TUEG). (2)
EEGPT (Wang et al., 2024a), a multi-corpus model was originally pretrained on laboratory datasets
including PhysioNet MI (Goldberger et al., 2000), SEED (Zheng & Lu, 2015), M3CV (Huang et al.,
2022), HGD (Schirrmeister et al., 2017), and TSU (Wang et al., 2016).

Tasks. We evaluate foundation models on the downstream tasks defined in T-EEG (section 3.3),
spanning both multiclass and binary classification settings. More details for each task are described
in Appendix A.

Metrics. To ensure consistent and interpretable evaluation across tasks, we report performance
using metrics tailored to the nature of each dataset. For multiclass classification tasks (BCIC-2a,
SleepEDF, TUEV, A&MISP, ALS, N-FM), we compute Balanced Accuracy, Cohen’s Kappa, and
Weighted F1, which account for class imbalance and provide a comprehensive view of classification
quality. For binary classification tasks (TUAB and PEARL), we report Balanced Accuracy together
with AUROC and AUPR, as these metrics are more informative under skewed class distributions.

4.2 MODEL COMPARISON

We begin by comparing representative EEG foundation model architectures under a unified pretrain-
ing setup. Specifically, all models are pretrained on the P-EEG dataset and then finetuned on the
T-EEG dataset.

We report results on four widely recognized tasks, BCIC-2a, TUEV, TUAB, and SleepEDF, spanning
distinct BCI tasks, including motor imagery, seizure detection, abnormal EEG classification, and
sleep staging. Together, these benchmarks cover both cognitive and clinical applications and provide
complementary perspectives on model generalization. Results are summarized in Table 2.

Overall, EEGPT tends to outperform CBraMOD across diverse tasks, likely because its auxiliary
alignment loss mitigates mode collapse and yields more discriminative representations, whereas
CBraMOD relies solely on masked prediction

4.3 IMPACTS OF REGIONAL DATA

As illustrated in Fig. 2, on BCIC-2a, which shares characteristics with the pretraining data described
in Table 6, both CBraMOD and EEGPT achieve justifiable performance (balanced accuracy: 0.49
vs. 0.51, Kohen’s kappa: 0.32 vs. 0.34, weighted F1: 0.47 vs. 0.49). In contrast, on A&MISP,
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Figure 2: Performance comparison on 4-class motor imagery tasks under in-region (ID) and out-of-
region (OOD) settings. BCIC-2a serves as the ID dataset, whereas A&MISP represents the OOD
dataset from the region represented in M-EEG.

collected under different regional conditions, performance collapses, with balanced accuracy and
F1 reduced by nearly 50% and kappa by more than 95%. To examine regional robustness, we split
P-EEG into two subsets: an out-of-region set collected from the same geographic area as M-EEG,
and an in-region set collected elsewhere. We then design two experiments: (1) adding M-EEG
should not downgrade the performance of models trained on the in-region subset (Table 3), and
(2) adding M-EEG should improve the performance of models trained on the out-of-region subset
(Table 4).

Table 3 shows that incorporating M-EEG does not degrade performance on the in-region subset.
Across BCIC-2a, TUAB, and TUEV, most metrics either improve or remain stable. For instance,
CBraMOD gains +17.20% balanced accuracy on TUEV and +4.41% on TUAB, while EEGPT im-
proves by +6.39% on BCIC-2a. The few decreases (e.g., EEGPT on Sleep-EDFx, below 3% on
secondary metrics) are marginal and do not alter the overall trend. These results confirm that adding
M-EEG preserves accuracy on benchmarks that have traditionally anchored EEG foundation model
comparisons, ensuring continuity with prior work and demonstrating that regional diversity does not
harm in-region tasks.

Table 4 highlights the out-of-region subset, where the benefits of M-EEG pretraining are pro-
nounced. Both CBraMOD and EEGPT consistently improve, with substantial relative gains on
A&MISP (+8.37% balanced accuracy and +190% Cohen’s κ for EEGPT) and ALS (+3.74% BA
and +19.43% κ for EEGPT). Even on the high-performing N-FM dataset, where baselines approach
ceiling, CBraMOD achieves a +3.92% improvement in balanced accuracy. These findings show that
regional coverage not only maintains comparability on in-region tasks but also directly enhances
robustness when models are transferred to populations and recording conditions absent from US-
centric corpora.

4.4 IMPACTS OF MULTIMODALITY DATA

Multimodal fusion. We integrate blood test results with EEG via a simple cross-attention module:
blood biomarkers are projected into the EEG embedding space and used as queries to attend over
EEG tokens. More details are presented in Appendix A.3.

Experiments results. Table 5 reports Alzheimer’s risk prediction on the PEARL dataset across three
tasks: MSIT, SMT, and RST. Incorporating blood-based biomarkers alongside EEG consistently
improves performance for both CBraMOD and EEGPT. On MSIT, adding BBB yields relative gains
of +27.6% balanced accuracy and +37.4% AUPR for CBraMOD, and comparable improvements
for EEGPT (+25.1% and +37.6%). Importantly, this +27.6% gain is observed in a setting where
the unimodal EEG baseline already achieved balanced accuracy above 0.5, i.e., better than random
guessing, underscoring the substantial added value of multimodal integration.

Our preliminary findings demonstrate clear improvements in risk prediction, motivating future work
on developing foundation models that seamlessly integrate EEG with other minimally invasive
modalities.

5 CONCLUSION

In this study, we present M-EEG, a novel multimodal EEG dataset collected from two hospitals
outside the United States. To support large-scale modeling, we further curated and standardized
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Table 3: Comparison of EEG foundation models pretrained on the original datasets versus those
trained on P-EEG, considering datasets from the different regions with M-EEG.

Balanced Accuracy ↑ Cohen’s Kappa / AUPR ↑ Weighted F1 / AUROC ↑
Tasks Architectures Performance Gain Performance Gain Performance Gain

BCIC-2a
CBraMOD Base 0.4907 0.3210 0.4766

P-EEG 0.4978 +1.45% 0.3304 +2.93% 0.4856 +1.89%

EEGPT Base 0.5051 0.3402 0.4860
P-EEG 0.5374 +6.39% 0.3823 +12.38% 0.5138 +5.10%

TUEV
CBraMOD Base 0.3796 0.4734 0.7162

P-EEG 0.4449 +17.20% 0.5114 +8.03% 0.7394 +3.24%

EEGPT Base 0.5431 0.5361 0.7481
P-EEG 0.5217 -3.93% 0.5581 +4.10% 0.7680 + 2.66%

TUAB
CBraMOD Base 0.5914 0.5685 0.6230

P-EEG 0.6175 +4.41% 0.6167 +8.48% 0.6527 +4.77%

EEGPT Base 0.7891 0.8749 0.8708
P-EEG 0.8018 +1.61% 0.8800 +0.58% 0.8826 +1.36%

Sleep-EDFx
CBraMOD Base 0.7390 0.7316 0.8000

P-EEG 0.7512 +1.65% 0.7258 -0.79% 0.7978 -0.28%

EEGPT Base 0.6356 0.6117 0.7062
P-EEG 0.6585 +3.60% 0.5963 -2.52% 0.6976 -1.22%

Table 4: Comparison of EEG foundation models pretrained on the original datasets versus those
trained on P-EEG, considering datasets from the same region as M-EEG.

Balanced Accuracy Cohen’s Kappa Weighted F1
Tasks Architectures Performance Gain Performance Gain Performance Gain

A&MISP
CBraMOD Base 0.2604 0.0136 0.2523

P-EEG 0.2715 +4.26% 0.0286 +110.29% 0.2494 -1.14%

EEGPT Base 0.2507 0.0100 0.2138
P-EEG 0.2716 +8.37% 0.0290 +190.00% 0.2234 +4.49%

ALS
CBraMOD Base 0.3706 0.1930 0.4047

P-EEG 0.3715 +0.24% 0.2018 +4.56% 0.4019 -0.69%

EEGPT Base 0.3448 0.1549 0.3733
P-EEG 0.3577 +3.74% 0.1850 +19.43% 0.3843 +2.95%

N-FM
CBraMOD Base 0.9192 0.9183 0.9187

P-EEG 0.9553 +3.92% 0.9548 +3.97% 0.9551 +3.96%

EEGPT Base 0.9979 0.9979 0.9978
P-EEG 0.9989 +0.10% 0.9990 +0.11% 0.9989 +0.11%

Table 5: Alzheimer’s risk prediction on the PEARL dataset. We compare unimodal EEG (w/o
BBB) with multimodal EEG plus blood-based biomarkers (w/ BBB) with teal denotes the relative
improvements over the EEG-only baseline.

Balanced Accuracy AUPR AUROC
Tasks Architectures Performance Gain Performance Gain Performance Gain

PEARL–MSIT
CBraMOD w/o BBB 0.5283 0.5523 0.5877

w/ BBB 0.6743 +27.64% 0.7588 +37.39% 0.7779 +32.36%

EEGPT w/o BBB 0.4615 0.4285 0.4063
w/ BBB 0.5774 +25.11% 0.5895 +37.57% 0.5976 +47.08%

PEARL–SMT
CBraMOD w/o BBB 0.5296 0.4692 0.5040

w/ BBB 0.6288 +18.73% 0.6774 +44.37% 0.7156 +41.98%

EEGPT w/o BBB 0.4746 0.4132 0.4222
w/ BBB 0.5627 +18.56% 0.6109 +47.85% 0.5651 +33.85%

PEARL–RST
CBraMOD w/o BBB 0.4504 0.4445 0.4580

w/ BBB 0.6960 +54.52% 0.7772 +74.84% 0.7783 +69.93%

EEGPT w/o BBB 0.4366 0.3925 0.3949
w/ BBB 0.5753 +31.77% 0.5985 +52.48% 0.5483 +38.85%

existing public EEG datasets into two complementary resources: P-EEG, designed for pretraining
EEG foundation models, and T-EEG, a suite of task-oriented datasets tailored for finetuning models
on specific applications. Leveraging these datasets, we conducted a comprehensive evaluation of the
two most advanced EEG foundation models to date. Beyond benchmarking, we also investigated the
benefits of pretraining on M-EEG, and demonstrate that incorporating multimodal EEG substantially
boosts downstream predictive performance, most notably in Alzheimer’s disease detection. In the
future, we plan to further enrich M-EEG through larger-scale, longitudinal data collection and to
explore foundation models that integrate EEG with multiple minimally invasive modalities, aiming
toward clinically reliable multimodal foundation models.
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A APPENDIX

A.1 DOWNSTREAM DATASET DESCRIPTION

• BCIC-2A: Motor Imagery Task The dataset contains EEG recordings from 10 partici-
pants performing four motor-imagery tasks: left hand (Class 1), right hand (Class 2), feet
(Class 3), and tongue (Class 4). Each participant completed two sessions on separate days,
with 288 trials per session.

• A&MISP: Motor imagery tasks in Vietnamese his dataset comprises 220 EEG recording
sessions (2,640 trials) from 30 Vietnamese stroke patients (aged 43–78), recorded at 128
Hz using 22 motor-cortex channels (Emotiv EPOC Flex) under clinical conditions. Trials
were validated via ERD% ≥ 30% to ensure neural engagement, and rich clinical metadata
is included (NIHSS, mRS, Oxford muscle strength, lesion location).

• ALS: Motor imagery tasks This dataset contains raw 32-channel EEG recordings sampled
at 256 Hz from six ALS patients each contributing up to ten sessions over three to five
months and 170 healthy controls (one session each)

• SleepEDF: Sleep Stage Detection Task This dataset better probes model generalization:
unlike trial- or event-based BCI data, sleep staging is continuous and requires long-duration
stage labels. SleepEDF comprises 197 overnight recordings (78 healthy participants) with
EEG, EOG, chin EMG, and event annotations.

• TUEV: Event type classification This dataset is subset of TUEG that contains annotations
of EEG segments as one of six classes: (1) spike and sharp wave (SPSW), (2) generalized
periodic epileptiform discharges (GPED), (3) periodic lateralized epileptiform discharges
(PLED), (4) eye movement (EYEM), (5) artifact (ARTF) and. The EEG signals contain 23
channel sat 256Hz and are segmented into 112,4915-second samples.

• TUAB: Abnormal detection This dataset is a corpus of EEGs which are 23-channel
and sampled at 256 Hz. All data have been annotated as normal or abnormal. There
are total 409,455 10-second samples that we use for binary classification to predict nor-
mal/abnormal.

• N-FM: Characters detection This dataset consists of EEG recordings collected from 282
volunteers, aged 15 to 70, for brainwave signal classification of 94 Vietnamese characters.
The data was collected using the NeuroSky Mindwave Mobile 2 headset in a controlled,
noise-minimized environment to ensure high-quality signals.

• PEARL: Alzheimer’s risk prediction: This dataset comprises data from 192 self-reported
healthy middle-aged individuals (50–63 years), with an equal gender distribution. While
79 subjects are publicly accessible, the dataset includes both EEG and fMRI modalities,
along with supplementary information such as blood test results, demographic profiles,
and health status.

Table 6: Summary of recent state-of-the-art architectures for EEG Foundation Models and their
original corresponding pretraining data.

Architectures Pretraning Datasets
CBraMOD TUEG

EEGPT PhysioNet MI, HGD, TSU, SEED, M3CV

LaBraM
a subset of TUEG, BCIC IV-1, EmoBrain, Grasp and Lift, Inria BCIC,
Resting State, SPIS Resting, SEED, Siena Scalp, Target vs Non-Target,
Raw EEG Data, Private Data

BIOT SHHS, a tiny subset from HEEDB

BENDR TUEG
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Table 7: Summary of T-EEG and its BCI Tasks.

BCI Task Dataset Rate # Channels Duration # Labels

Motor Imagery
BCIC-2a 250 Hz 22 4s 4
A&MISP 128 Hz 22 4s 4
ALS 128 Hz 19 4s 4

Sleep Staging SleepEDF 100 Hz 2 30s 5

Seizure / Event Detection TUEV 250 Hz 16 10s 4

Abnormal EEG Detection TUAB 250 Hz 16 10s 2

Characters Detection N-FM 512 Hz 1 1s 94

Alzheimer’s risk prediction PEARL 1000 Hz 19 30s 2

Table 8: Hyperparameters for M-EEG fine-tuning.

Hyperparameters Settings

Epochs 50
Batch size 64
Dropout 0.1
Optimizer AdamW
Learning rate 1e-4
Adam β (0.9, 0.999)
Adam ϵ 1e-8
Weight decay 5e-2
Scheduler CosineAnnealingLR
Cosine cycle epochs 50
Minimal learning rate 1e-6
Clipping gradient norm 1

A.2 FINE-TUNING ON DOWNSTREAM TASKS

We load the pre-trained weights of M-EEG and replace the reconstruction head with a task-specific
head which is composed of multi-layer perceptrons. Here the learned EEG representations are
flattened and fed into the task-specific head for downstream tasks. Then we fine-tune M-EEG
in downstream datasets. We employ binary cross-entropy (BCE) loss for binary classification,
cross-entropy loss for multi-class classification. More hyperparameters for M-EEG fine-tuning
on downstream datasets are shown in Table 8.

A.3 DETAILS ON MULTIMODAL FUSION FINETUNING

Motivation. We draw motivation from medical studies indicating that cognitive impairments, such
as Alzheimer’s disease, are often accompanied by measurable alterations in peripheral blood counts,
reflecting changes in both the numbers and proportions of circulating cells (Shad et al., 2013; Zhang
et al., 2022; Dzianok & Kublik, 2024). Importantly, blood-based biomarkers provide a low-cost and
minimally invasive means of capturing such physiological signals. Inspired by this, we propose a
multimodal pipeline that integrates blood test results with EEG data to facilitate earlier detection of
cognitive decline and support timely clinical intervention.

Multimodal fusion finetuning. Formally, let r ∈ Rm denote the normalized vector of blood-based
biomarkers. We apply a lightweight projection network MLP(·) that maps r into the EEG token
embedding space:

q = MLP(r) ∈ Rd. (1)
Given EEG embedded tokens Z = Eθ(X) ∈ RL×d, we implement late fusion by treating q as a
query attending to the EEG tokens:

α = softmax

(
(qWQ)(ZWK)⊤√

dk

)
, h = α(ZWV )WO ∈ Rd. (2)
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The resulting cross-modal representation h serves as input to a prediction head for downstream
tasks. At a high level, we adopt cross-attention since it enables adaptive alignment between
biomarker information and EEG dynamics: the biomarker query can selectively attend to the most
informative EEG patterns rather than relying on a static combination. This flexibility is particularly
important when the contribution of blood-based signals varies across patients or conditions.

A.4 MORE RESULTS ON ALZHEIMER’S RISK PREDICTION ON THE PEARL DATASET

In this section, we report additional results on Alzheimer’s risk prediction using the PEARL dataset.
Specifically, we investigate the contribution of blood biomarkers when combined with EEG repre-
sentations extracted from two foundation models (CBraMod and EEGPT). The goal is to assess
(i) whether multimodal fusion with blood improves over EEG-only baselines, and (ii) how EEG
compares to blood-only models in terms of predictive power.

In addition to evaluating the original checkpoints of EEGPT and CBraMod, we also pretrained
both foundation models on our dataset and repeated the same experiments. This allows us to assess
whether the observed multimodal gains are consistent across both the original and domain-adapted
versions of the foundation models.

Table 9 compares EEG-only models with multimodal EEG+Blood models (Concat and Attention fu-
sion). The addition of blood consistently improves performance across both CBraMod and EEGPT.
Among fusion strategies, attention achieves the strongest gains, suggesting that selective modality
weighting is more effective than simple concatenation.

Table 10 presents blood-only baselines trained with an MLP, compared with EEG-only and
EEG+Blood models. Blood-only consistently outperforms EEG-only, highlighting the stronger pre-
dictive value of blood biomarkers. However, combining EEG with blood further enhances per-
formance, indicating that blood biomarkers, when integrated into EEG signals, provide essential
complementary information for Alzheimer’s risk prediction.

As shown in Tables 11 and 12, similar trends are observed when using our pretrained checkpoints.
Attention-based fusion remains the best-performing strategy, and EEG-only models consistently out-
perform blood-only baselines. These results confirm that the benefit of incorporating blood biomark-
ers generalizes across both original and domain-adapted versions of EEG foundation models.

A.5 M-EEG’S STATISTICS

To further characterize our cohort, we summarize demographic distributions and recording statistics.
The following subsection highlights patient demographics (age, gender), overall recording length,
and site-specific acquisition configurations, providing a compact overview of the dataset composi-
tion.

• Patient demographics: We first summarize the demographics of patients included in M-
EEG. Patient age was estimated from year of birth at the time of recording, yielding a
median age of 46 years. Gender distribution comprised 61.63% female, 22.30% male, and
16.07% unspecified. In total, M-EEG includes 6081 unique patients, representing a broad
and heterogeneous population across both hospitals. We included patients’ demographics
in Table 13 and Figure 3

• Recording statistic: We next characterize the EEG recordings themselves. Across both
hospitals, M-EEG contains a total of 1170 hours of EEG, with a mean duration of 11.6
minutes per session. Temporal coverage spans 2019–2025, with the number of recordings
generally increasing over time. The largest volumes were collected in 2024 (2258 subjects)
and 2025 (2896 subjects), which contributed comparable numbers of sessions and together
account for the majority of the dataset. Figure 4 summarizes these statistics, showing both
the distribution of recording durations and the yearly distribution of subjects.

• Site-specific patient demographics: We further examined the distribution of subjects
across acquisition sites. Hospital B contributed the majority of patients (5,134 subjects, 500
Hz, 44 channels), whereas Hospital A contributed 947 subjects recorded with a 200 Hz, 22-
channel setup. This site-specific imbalance reflects differing patient volumes and hardware
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Table 9: Alzheimer’s risk prediction on the PEARL dataset. We compare unimodal EEG (baseline)
with multimodal EEG plus blood-based biomarkers (Concat. and Attention). Metrics are balanced
accuracy, PR-AUC and ROC-AUC. Relative improvements (%) over EEG-only are shown in the
Gain columns, with teal denoting improvements and magenta for drops.

Task Architecture Metric EEG-Only EEG + BBB (Concat.) EEG + BBB (Attention)
Perf. Gain Perf. Gain Perf. Gain

PEARL–MSIT

CBraMOD
Acc 0.4816 0.5263 +9.28% 0.6373 +32.33%
pr auc 0.5597 0.6013 +7.43% 0.6863 +22.62%
roc auc 0.5818 0.5979 +2.77% 0.7235 +24.36%

EEGPT
Acc 0.4550 0.4968 +9.19% 0.5560 +22.20%
pr auc 0.4840 0.5767 +19.15% 0.6056 +25.12%
roc auc 0.4035 0.4915 +21.81% 0.5023 +24.49%

PEARL–RMT

CBraMOD
Acc 0.5280 0.4982 -5.64% 0.6288 +19.09%
pr auc 0.4661 0.5656 +21.35% 0.6043 +29.65%
roc auc 0.4985 0.5946 +19.28% 0.6554 +31.47%

EEGPT
Acc 0.4312 0.4310 -0.05% 0.5226 +21.20%
pr auc 0.3982 0.4462 +12.05% 0.5745 +44.27%
roc auc 0.3805 0.4072 +7.02% 0.5285 +38.90%

PEARL–RST

CBraMOD
Acc 0.4504 0.5606 +24.47% 0.5793 +28.62%
pr auc 0.3927 0.6600 +68.07% 0.6666 +69.75%
roc auc 0.3997 0.6098 +52.56% 0.6416 +60.52%

EEGPT
Acc 0.3952 0.4096 +3.64% 0.5722 +44.79%
pr auc 0.3556 0.3910 +9.96% 0.4856 +36.56%
roc auc 0.3281 0.3742 +14.05% 0.4310 +31.36%

Table 10: Comparison of BBB-only, EEG-only (original baseline), and EEG plus BBB (Attention)
models on the PEARL dataset. Metrics are balanced accuracy, PR-AUC and ROC-AUC. Relative
improvements (%) over EEG-only are shown in the Gain columns, with teal denoting improvements
and magenta for drops.

Task Architecture Metric EEG-only BBB-only EEG + BBB (Attention)
Perf. Gain Perf. Gain Perf. Gain

PEARL–MSIT

CBraMOD
Acc 0.4816 -11.3% 0.543 0.6373 +17.4%
pr auc 0.5597 +6.4% 0.526 0.6863 +30.7%
roc auc 0.5818 -3.5% 0.603 0.7235 +19.9%

EEGPT
Acc 0.4550 -16.2% 0.543 0.5560 +2.4%
pr auc 0.4840 -7.9% 0.526 0.6056 +15.13%
roc auc 0.4035 -33.1% 0.603 0.5023 -16.7%

PEARL–RMT

CBraMOD
Acc 0.5280 -2.7% 0.543 0.6288 +15.8%
pr auc 0.4661 +11.4% 0.526 0.6043 +14.9%
roc auc 0.4766 -20.9% 0.603 0.5402 -10.4%

EEGPT
Acc 0.4615 -15.0% 0.543 0.5976 +10.1%
pr auc 0.4203 -20.1% 0.526 0.5458 3.7%
roc auc 0.4050 -32.8% 0.603 0.5407 -10.33%

PEARL–RST

CBraMOD
Acc 0.5283 -2.7% 0.543 0.5877 +8.2%
pr auc 0.5001 -4.9% 0.526 0.5620 +6.8%
roc auc 0.4766 -20.9% 0.603 0.5402 -10.4%

EEGPT
Acc 0.4615 -15% 0.543 0.5976 +10.1%
pr auc 0.4203 -20.1% 0.526 0.5458 +3.7%
roc auc 0.4050 -32.8% 0.603 0.5407 -10.3%

configurations but ensures representation from both institutions. The overall breakdown is
summarized in Table 14.
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Table 11: Alzheimer’s risk prediction on the PEARL dataset. We compare unimodal EEG (pre-
trained using P-EEG) with multimodal EEG plus blood-based biomarkers (Concat. and Attention).
Metrics are balanced accuracy, PR-AUC and ROC-AUC. Relative improvements (%) over EEG-only
are shown in the Gain columns, with teal denoting improvements and magenta for drops.

Task Architecture Metric EEG-Only EEG + BBB (Concat.) EEG + BBB (Attention)
Perf. Gain Perf. Gain Perf. Gain

PEARL–MSIT

CBraMOD
Acc 0.5283 0.5515 +4.39% 0.6743 +27.64%
pr auc 0.5523 0.5609 +1.56% 0.7588 +37.39%
roc auc 0.5877 0.6148 +4.61% 0.7779 +32.36%

EEGPT
Acc 0.4615 0.5505 +19.29% 0.5660 +22.64%
pr auc 0.4285 0.5319 +24.13% 0.5789 +35.10%
roc auc 0.4063 0.4974 +22.42% 0.5191 +27.76%

PEARL–RMT

CBraMOD
Acc 0.5296 0.5492 +3.70% 0.6213 +17.32%
pr auc 0.4692 0.6213 +32.42% 0.6773 +44.35%
roc auc 0.5040 0.6274 +24.48% 0.7156 +41.98%

EEGPT
Acc 0.4746 0.4861 +2.42% 0.5627 +18.56%
pr auc 0.4132 0.5375 +30.08% 0.6109 +47.85%
roc auc 0.4222 0.4855 +14.99% 0.5651 +33.85%

PEARL–RST

CBraMOD
Acc 0.4375 0.6472 +47.93% 0.6960 +59.09%
pr auc 0.4445 0.7095 +59.62% 0.7772 +74.85%
roc auc 0.4580 0.6839 +49.32% 0.7783 +69.93%

EEGPT
Acc 0.4366 0.4776 +9.39% 0.5753 +31.77%
pr auc 0.3925 0.4127 +5.15% 0.5985 +52.48%
roc auc 0.3949 0.4165 +5.47% 0.5483 +38.85%

Table 12: Comparison of BBB-only, EEG-only (pretrained using P-EEG), and EEG plus BBB (At-
tention) models on the PEARL dataset. Metrics are balanced accuracy, PR-AUC and ROC-AUC.
Relative improvements (%) over EEG-only are shown in the Gain columns, with teal denoting im-
provements and magenta for drops.

Task Architecture Metric EEG-only BBB-only EEG + BBB (Attention)
Perf. Gain Perf. Gain Perf. Gain

PEARL–MSIT

CBraMOD
Acc 0.5283 -2.07% 0.543 0.6743 +24.18%
pr auc 0.5523 +5.00% 0.526 0.7588 +44.26%
roc auc 0.5877 -2.54% 0.603 0.7779 +29.01%

EEGPT
Acc 0.4615 -15.01% 0.543 0.5660 +4.24%
pr auc 0.4285 -18.54% 0.526 0.5789 +10.06%
roc auc 0.4063 -32.62% 0.603 0.5191 -13.91%

PEARL–RMT

CBraMOD
Acc 0.5296 -2.47% 0.543 0.6213 +14.42%
pr auc 0.4692 -10.80% 0.526 0.6773 +28.76%
roc auc 0.5040 -16.42% 0.603 0.7156 +18.67%

EEGPT
Acc 0.4745 -12.62% 0.543 0.5627 +3.63%
pr auc 0.4132 -21.45% 0.526 0.6109 +16.14%
roc auc 0.4222 -29.98% 0.603 0.5651 -6.29%

PEARL–RST

CBraMOD
Acc 0.4375 -19.43% 0.543 0.6960 +28.18%
pr auc 0.4445 -15.49% 0.526 0.7772 +47.76%
roc auc 0.4580 -24.05% 0.603 0.7783 +29.07%

EEGPT
Acc 0.4366 -19.59% 0.543 0.5753 +5.95%
pr auc 0.3925 -25.38% 0.526 0.5985 +13.78%
roc auc 0.3949 -34.51% 0.603 0.5483 -9.07%

A.6 DESCRIPTION OF THE BIDS STRUCTURE OF THE DATABASE

In this study, we organized our database following the Brain Imaging Data Structure (BIDS)
specification, version 1.8.0. BIDS is a community-driven standard that provides a uniform way to
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Table 13: Summary of Patient Statistics

Category Statistic Value

Age Mean ± STD 45.88 ± 18.08
Minimum - Maximum 1 - 104

Gender
Female 61.63%
Male 22.30%
N/A 16.07%

Figure 3: Patients’ demographics

Table 14: Site-specific patient demographics between 2 hospitals

Site #Subjects Channels Sampling Rate
Hospital A 947 22 200

Hospital B 5,134 44 500

arrange neuroimaging and physiological datasets, ensuring consistency, interoperability, and repro-
ducibility across studies.

By adopting BIDS v1.8.0, we gain several advantages:

• Standardization: Data from different acquisition sites and modalities (e.g., EEG signals,
clinical laboratory results) are represented in a consistent format, reducing ambiguity in
interpretation.

Figure 4: Recording duration and yearly distribution of subjects in M-EEG
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• Compatibility: The dataset can be directly integrated with existing BIDS-aware software
tools for preprocessing, quality control, and statistical analysis.

• Reproducibility: Researchers can reuse the dataset with minimal manual curation, which
facilitates replication studies and meta-analyses.

• Extensibility: Beyond EEG recordings, our design includes phenotype-level information
(e.g., laboratory test results), enabling multimodal analysis that links neurophysiological
data with clinical variables.

At the top level, the dataset is structured according to the BIDS hierarchy, which includes:

• dataset description.json: Contains metadata describing the dataset, its author-
ship, and BIDS compliance.

• participants.tsv and participants.json: Contain participant-level demo-
graphic and group information.

• phenotype/: Contains clinical laboratory test results in results.tsv and related
metadata in results.json.

• sub-xxxx/: Contain subject-specific data, including an eeg/ subfolder with EEG
recordings, associated metadata, channel information, and a sub-xxxx scans.tsv file
documenting recording timestamps.

This organization ensures that the dataset is self-describing and can be recognized by BIDS-
compatible tools without requiring additional documentation. For reproducibility and illustration
purposes, a small selection of de-identified EEG recordings along with corresponding metadata will
be provided as supplementary material once the manuscript is accepted.

A.7 DETAILS ON DATA ACQUISITION

Raw data acquisition. M-EEG comprises 1, 170 hours of routine clinical EEG collected from
6, 081 patients across two hospitals over multiple years. Raw signals were acquired under standard
clinical protocols but with distinct hardware setups: Hospital A employed a 22-channel 10–20 mon-
tage sampled at 200 Hz, while Hospital B employed a 44-channel configuration sampled at 500 Hz.
The cohort spans a broad range of neurological conditions, including epilepsy, encephalopathy, sleep
disorders, and neurodegenerative diseases, reflecting the heterogeneity of real-world practice. All
recordings were fully de-identified before release, with patient identifiers removed and institution-
specific metadata anonymized, thereby preserving clinical fidelity while ensuring compliance with
privacy and ethical standards.

Cross-modality synchronization. In addition to EEG, VEEG provides minimally invasive phys-
iological and textual context. All routine blood-based biomarkers and de-identified clinical notes
are centralized in a dedicated phenotype/ directory. Each patient is linked to two files:
results.tsv, containing tabular laboratory values, and results.json, containing free-text
diagnostic notes and impressions. This design ensures consistent alignment between EEG and aux-
iliary modalities while remaining lightweight and machine-readable.

Standardization. EEG recordings follow BIDS conventions with sidecar JSON metadata, and aux-
iliary modalities are synchronized by subject identifiers in the phenotype/ directory. This unified
schema enables seamless integration of EEG, biomarkers, and clinical notes, providing a scalable
foundation for multimodal representation learning.

A.8 LIMITATIONS

The robustness gains from incorporating regional data are marginal but consistent, indicating steady
benefits even at limited scale. These results provide encouraging evidence that regional coverage can
enhance generalization, though M-EEG remains smaller than corpora such as TUEG or HEEDB. As
we expand data collection to achieve greater balance, future work will more fully explore the role of
regional diversity in building robust EEG foundation models.
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