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ABSTRACT

Recent advances in deep learning have accelerated the development of foundation
models (FMs) for electroencephalography (EEG), with significant efforts devoted
to assembling EEG datasets and training large-scale models. However, existing
EEG datasets remain highly fragmented and non-standardized, with limited re-
gional diversity since most originate from the United States. Similarly, current
EEG foundation models are trained on different datasets without consistent proto-
cols, making it difficult to compare architectures fairly. Moreover, most existing
models are trained exclusively on unimodal EEG signals, limiting their clinical
utility, as many downstream diagnostic tasks, such as detecting neurodegenera-
tive diseases, require integration of additional modalities beyond EEG. To ad-
dress these limitations, we introduce, for the first time M-EEG, a multimodal
EEG dataset comprising over 6000 patients collected from two major hospitals
outside the US. In parallel, we unify several key public EEG datasets into a single
standardized corpus, enabling the first rigorous benchmarking of state-of-the-art
EEG foundation model architectures under consistent pretraining and fine-tuning
pipelines. Finally, we configure and evaluate multimodal diagnostic models based
on existing EEG foundation architectures, demonstrating that integrating auxiliary
modalities (e.g., blood biomarkers and clinical notes) with EEG substantially im-
proves downstream prediction accuracy, for instance, achieving a 27.64% gain in
Alzheimer’s disease risk prediction.

1 INTRODUCTION

Background. Recent breakthroughs in deep learning have catalyzed the development of foundation
models (FMs) for electroencephalography (EEG) Wang et al.| (2025} [2024azb)); |Yang et al.[ (2023);
Kostas et al.| (2021), with the goal of learning transferable neural representations across diverse
clinical and cognitive tasks. In parallel, efforts have been made to assemble large-scale clinical EEG
corpora from multiple hospitals (Khan et al.l 2022; Zhang et al., [2018; Sun et al.l 2025)), aiming to
broaden regional and clinical diversity and to better capture the inherently non-stationary, low signal-
to-noise characteristics of EEG. Despite these encouraging developments, existing EEG datasets and
foundation models continue to face significant limitations.

Limitations of existing EEG datasets and foundation models. On the dataset side, available cor-
pora remain fragmented: most are heavily US-centric (Obeid & Picone, [2016} |Sun et al.| 2025),
task-specific (Zhang et al., 2018)), or involve relatively few subjects (Khan et al.| [2022). Such con-
straints exacerbate overfitting when applying self-supervised pretraining methods, such as mask
prediction (Wang et al., 2024bga; [2025} |Yang et al.l 2023) or contrastive learning (Yang et al., [2023
Kostas et al.;[2021)), which depend critically on a wide subject pool to generate reliable positive and
negative pairs. Moreover, most datasets lack integration with minimally invasive modalities such
as blood-based biomarkers, which could be combined with EEG to strengthen diagnostic accuracy.
The recently introduced Harvard Electroencephalography Database (Sun et al.| 2025) partially ad-
dresses these limitations by releasing nearly three million hours of data from four hospitals, yet it
remains entirely US-based and thus insufficient for studying regional diversity at scale.
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Concerning the EEG foundation models, current models (e.g., EEGPT(Wang et al.l 2024a),
BIOT(Yang et al., 2023)), CBraMOD(Wang et al., [2025)) exhibit two fundamental limitations: lim-
ited regional diversity and restricted clinical relevance. First, most models are pretrained on only
a handful of public datasets—largely from single regions, resulting in poor generalization across
demographic, clinical, and recording variations. Performance drops sharply when evaluated on un-
seen regional datasets, underscoring their vulnerability to distribution shifts (See Fig. [3). Dataset
heterogeneity in sampling rates, channel layouts, and annotation protocols further complicates the
establishment of standardized pretraining pipelines, reinforcing the need for a harmonized and glob-
ally representative corpus. Second, existing foundation models are trained exclusively on unimodal
EEG signals, whereas real-world diagnosis of complex brain disorders, such as Alzheimer’s dis-
ease, often requires multimodal integration, including minimally invasive biomarkers like blood-
based tests. As illustrated in Table[7] incorporating auxiliary signals substantially improves disease
prediction performance over EEG alone, reinforcing the need for multimodal foundation modeling.
Yet, there remains a scarcity of public EEG datasets that are both regionally diverse and enriched
with complementary clinical modalities.

Our approach. To address these gaps, we present M-EEG, a large-scale, clinically annotated EEG
dataset collected from two major hospitals outside of US, comprising 1, 170 hours of EEG record-
ings from 6, 081 patients. To our knowledge, this is the largest non-US clinical EEG corpus to date,
offering significant improvements in geographic coverage, subject diversity, and clinical complexity.
In addition, a unique subset of M-EEG includes paired EEG, blood biomarkers, and clinical notes,
enabling the first non-US multimodal benchmark for EEG-lab fusion.

Building on M-EEG, we conduct a standardized benchmarking study of state-of-the-art EEG founda-
tion models under identical pretraining and fine-tuning protocols across diverse clinical tasks drawn
from both US-based and non-US datasets. Our findings demonstrate that pretraining on M-EEG
yields stronger generalization across regions and diseases, with clear gains on challenging diagnos-
tic tasks such as early Alzheimer’s risk prediction.

Contributions. Our contributions are summarized as follows:

* M-EEG: a large-scale multimodal EEG corpus. We release M-EEG, a large-scale clin-
ical EEG corpus with 1,170 hours from 6,081 patients at two major hospitals, marking the
largest non-US EEG dataset by subject count and improving the diversity of EEG pretrain-
ing resources. Furthermore, we curate a subset of M-EEG that integrates EEG signals with
blood-based biomarkers and clinical notes, establishing the first non-US multimodal EEG
benchmark and opening new avenues for research in EEG-laboratory data fusion. In addi-
tion, we standardize multiple existing EEG datasets to construct a unified large-scale corpus
and establish a benchmark to compare state-of-the-art EEG foundation model architectures
on this dataset. To the best of our knowledge, this is the first standardized large-scale
EEG corpus, and our work represents the first systematic benchmarking of EEG founda-
tion models on a common dataset using consistent pretraining and fine-tuning pipelines,
thereby enabling rigorous and dataset-independent comparison.

* Multimodal benchmarking of EEG foundation models for neurological diagnosis. We
adapt existing EEG foundation architectures to a multimodal setting for neurological dis-
order diagnosis, enabling benchmarking of their performance when combined with addi-
tional modalities. Experiments conducted on our curated multimodal EEG dataset, vali-
dated through Alzheimer’s risk prediction and the diagnosis of epilepsy, transient ischemic
attack (TTA), and Parkinson’s disease, demonstrate that incorporating additional modalities
substantially enhances prediction accuracy.

2 EXISTING DATASETS AND EEG FOUNDATION MODELS

2.1 CURRENT PRETRAINING CORPORA

Table [T provides an overview of major EEG datasets used for representation learning, emphasizing
their scale, geographic coverage, and any multimodal extensions. The field currently relies on a
patchwork of hospital-based clinical EEG corpora as the backbone for foundation model pretraining.
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Foremost among these is the Temple University Hospital (TUH) corpus (Obeid & Piconel [2016),
which at roughly 24,000 hours of recordings from a single US hospital has underpinned much of the
recent progress in self-supervised EEG representation learning (Wang et al.|[2025; |Han et al.| 2025)).
More recently, the Harvard Electroencephalography Database (HEEDB) (Sun et al., [2025) intro-
duced an unprecedentedly large corpus on the order of millions of EEG hours, drawn from multiple
US hospitals and enriched with patient metadata and auxiliary modalities, integrating demographics,
medication records, lab values, and free-text clinical notes (including blood-based biomarkers). This
rich multimodal resource significantly expanded data scale and scope; however, it remains entirely
US-based, exacerbating a persistent regional diversity gap in EEG data. Beyond the United States,
only a few smaller clinical corpora have been released. For example, the NMT-Scalp dataset from
Pakistan (Khan et al., [2022) provides valuable clinical EEG data but remains limited in scale, with
relatively few hours and subjects compared to TUH or HEEDB.

In addition to clinical datasets, a variety of laboratory or task-specific EEG datasets have been used
for representation learning. Notable examples include SEED (Zheng & Lul[2015)) for emotion recog-
nition, PhysioNet MI (Goldberger et al., [2000) for motor imagery, M3CV (Huang et al., [2022) for
cognitive workload, HGD (Schirrmeister et al.| |2017) for brain-computer interface trials, and SHHS
(Zhang et al., |2018) for sleep monitoring. While each contributes valuable data for its specific do-
main, these datasets are relatively small in scale (often involving only tens of subjects or a few dozen
hours) and narrow in clinical scope. Moreover, they are typically single-modality (EEG only) and
collected under disparate protocols.

2.2 EXISTING EEG FOUNDATION MODELS
2.2.1 UNIMODAL EEG-BASED FOUNDATION MODELS

EEG foundation models aim to learn general-purpose neural representations from large corpora
without relying on task-specific labels. Table [§| summarizes representative architectures and their
original pretraining data.

Two open-source efforts, BENDR (Kostas et al., 2021) and CBraMOD (Wang et al., 2025), were
trained exclusively on the TUH clinical corpus, leveraging the breadth of U.S. hospital EEG record-
ings to drive self-supervised learning objectives. These works established TUH as the standard back-
bone for EEG foundation modeling. By contrast, EEGPT (Wang et al., |2024a)) expanded beyond a
single corpus by pretraining on a composite of multiple laboratory datasets, including PhysioNet MI,
SEED, M3CV, HGD, and TSU to capture a wider spectrum of motor imagery and cognitive tasks.
Similarly, LaBraM (Jiang et al., 2024) aggregated a heterogeneous collection of public corpora
(e.g., TUEG subsets, BCIC IV-1, EmoBrain, Inria BCIC, SPIS Resting) together with private data,
aiming to maximize training diversity through scale and variety. Another line of work has drawn
on large-scale clinical cohorts beyond TUH. BIOT (Yang et al., 2023)), for instance, leverages both
SHHS, a population-level sleep study, and a small subset of HEEDB collected at Massachusetts
General Hospital to pretrain a transformer architecture designed for cross-dataset generalization.
Unlike models tied to narrowly defined tasks, BIOT emphasizes scalability across heterogeneous
clinical EEG corpora, though its training sources remain limited to US-based datasets (with only a
small subset of HEEDB included).

Despite their architectural differences and varying objectives, a common limitation is that each foun-
dation model was developed using a distinct, and often narrow, pool of pretraining data. This incon-
sistency makes reported improvements difficult to attribute: performance gains may arise as much
from the scale, scope, or bias of the underlying corpus as from innovations in model design. Con-
sequently, direct comparison across models remains problematic without a unified and standardized
pretraining benchmark.

2.2.2 TOWARD MULTIMODAL EEG FOUNDATION MODELS

In clinical practice, EEG is rarely interpreted in isolation. Neurologists routinely contextualize EEG
findings with additional information such as blood biomarkers (indicating infection, inflammation,
or metabolic abnormalities), routine laboratory test results, and clinical notes that capture patient
history and diagnostic impressions. In many neurological disorders, further confirmation may re-
quire complex and costly procedures such as MRI, which highlights the value of minimally invasive
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Table 1: Existing EEG pretraining corpora. BBB denotes blood-based biomarkers. Dataset names
are color-coded as follows: blue for general clinical EEG corpora, brown for task-specific corpora,
and bold for our contribution (M-EEG).

‘ Dataset name ‘ Region ‘ # Hours ‘ # Subjects ‘ # Sites ‘ #Cl gs | pling (Hz Modalities

\ \
‘ \ \ \ | | | ) | BBB | Clinical notes |
| HEEDB (Sun ct al.|2025) | Us [ 3000000 | 109178 | 4 |22-57 | 200-512 | v | v |
| TUEG (Obeid & Picone|[2016} | Us | 24000 | 10874 | 1 |31 | 250-256 | X X |
| NMT Scalp (Khan et al.]2022} | Pakistan | 625 | 60 [ 1 |19 | 200 | X X |
| M3CV (Huang ct al.| 2022} | China | 90 | 106 [ 1 |64 | 250 | x| X \
| SEED serics (Zheng & Lu][2015) | China | 200 (total) | 8-20 [ 1 |6 | 1000 | x| X |
| PhysioNet M (Goldberger et al.][2000} | US | 47 | 109 | 1 |64 | 160 | x| X |
| Inria BCIC (Margaux et al.|2012} | France | 30 | 26 | 1 |56 | 200 | X X |
| BCIC 1V-1 (Blankertz et al.|2007) | Europe |8 |7 |1 |59 | 1000 | X X |
| HGD (Schirrmeister et al.| 2017} | China |15 | 154 |1 ]128 | 500 | X X |
| Raw EEG Data (Trujillo] 2020} | US | 34 | 48 |1 |64 | 256 | X ] X |
| Grasp and Lift (Cuciw et al|[2014) | UK | 12 | 12 | 1 |3 | 500 | x| X |
| EmoBrain (Savran® et al.| 2006} | Germany |5 | 16 | 1 |64 | 1024 | X X |
| Resting State (Trujillo et al.|2017) | Us |3 | 22 [ 1 |7 | 256 | x| X |
| SPIS Resting (Torkamani-Azar et al.}2020) | China |1 | 10 |1 |64 | 2048 | X X |
| Target vs Non-Target (Korczowski et al.]2019} | France | 16 | 43 |1 )32 | 512 | X X |
| TSU (Wang et al.| 2016 | China | 14 | 35 [ 1 |64 | 250 | x| X \
| SHHS (Zhang et al.|[2018} | Us | 43446 | 5804 | - |2 | 125 | x| X \
| Siena Scalp (Detti]2020) | Ttaly | 30 | 14 | 1 |2 | 512 | x| X |
| M-EEG | Ouside of US | 1170 | 6081 | 2 2244 | 200,500 | v | v |

signals that can complement EEG in a more accessible way. These auxiliary data sources provide
critical context that can help disambiguate EEG abnormalities and improve diagnostic accuracy.

Despite this reality, most existing EEG foundation models remain strictly unimodal, trained only on
raw EEG signals without auxiliary modalities. This limitation reduces their clinical utility: a model
that sees only EEG may miss critical disease indicators that would be apparent if combined with
supporting evidence such as blood tests or clinical reports.

Extending pretraining corpora beyond EEG is therefore essential for developing foundation mod-
els that generalize across diverse clinical scenarios. Incorporating modalities such as blood-based
biomarkers and textual clinical records into EEG representation learning can capture patterns more
consistent with real-world diagnostic reasoning (Moretti, 2015} |Chetty et al.,|2024])), potentially im-
proving performance on tasks like early detection of neurodegenerative diseases or prognostication
after brain injury.

These considerations motivate the collection of multimodal EEG datasets that combine electrophys-
iological signals with complementary clinical information. In the next section, we present M-EEG,
a multi-institutional dataset that pairs EEG recordings with blood biomarkers and clinical notes, and
introduce a unified benchmarking framework for evaluation. Together, these contributions expand
regional coverage, integrate multimodal context, and enable fair, standardized assessment of EEG
foundation models.

3  MULTI-INSTITUTIONAL MULTIMODAL EEG DATASET

In the following, we introduce a multi-institutional EEG dataset that has been systematically com-
piled and meticulously curated to support advanced research in computational neuroscience. The
dataset comprises three main components.

The primary component is M-EEG (Section[3.1), our in-house multimodal dataset collected outside
the United States, which includes synchronized EEG recordings alongside corresponding blood test
results. This multimodal dataset not only enhances the diversity of existing EEG data populations,
thereby improving the generalizability of EEG foundation models (as demonstrated in Section4.3),
but also leverages its multimodal nature to boost performance on downstream tasks, as will be further
discussed in Section[4.4]
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Figure 1: Overview of M-EEG. (1) Data construction: raw EEG, blood biomarkers, and clinical
notes collected from two hospitals are anonymized and standardized into BIDS format. (2) Bench-
marking: M-EEG enables large-scale pretraining and standardized evaluation of EEG foundation
models, with downstream results showing that region-specific data improves regional robustness.
(3) Multimodal integration: M-EEG includes paired EEG-blood data, allowing exploration of
multimodal foundation models for clinical tasks such as early disease risk prediction.

In order to benchmark existing foundation architectures, we further introduce P-EEG and T-EEG.
The P-EEG component (Section[3.2) is a unified public dataset constructed through the aggregation
and harmonization of multiple publicly available EEG datasets. It is designed specifically for the
pretraining of EEG foundation models. By standardizing data formats and preprocessing pipelines,
this unified corpus offers a robust, scalable, and reproducible benchmark for training, evaluating,
and comparing foundation models in EEG-based machine learning research. Finally, the T-EEG
component is derived from publicly available task-oriented datasets and is specifically curated to
evaluate the performance of foundation models on a range of targeted downstream tasks.

3.1 M-EEG: AN IN-HOUSE MULTI-INSTITUTIONAL, MULTIMODAL EEG DATASET

We construct M-EEG, a multi-institutional, multimodal EEG dataset, collected from two major hos-
pitals, namely Hospital A and Hospital B, located outside the United States. The primary objective
of this dataset is to enhance the diversity of existing EEG datasets, both in terms of geographi-
cal representation (regional diversity) and data modality. As illustrated in Table 2] and Figure [2]
the multimodal subset exhibits a diverse age and gender distribution. Moreover, all patients in
our dataset are recruited from a country geographically distant from the United States, providing
regional characteristics that are complementary to existing US-centric EEG corpora. Using this
dataset, we demonstrate that regional diversity plays a critical role in improving EEG representa-
tion learning for foundation models, while incorporating additional modalities beyond EEG, such as
blood biomarkers, significantly boosts the accuracy of brain-related disease prediction.

The construction of M-EEG involved several key steps: (1) raw data acquisition, (2) cross-modality
synchronization, and (3) standardized data preprocessing.

Raw data acquisition. M-EEG advances beyond prior corpora by providing the largest non-US
clinical EEG cohort to date, comprising 1, 170 hours of routine clinical EEG collected from 6, 081
patients across two hospitals over multiple years. The detail configurations are presented in Ta-
ble 3] All recordings were fully de-identified before release, with patient identifiers removed and
institution-specific metadata anonymized, thereby preserving clinical fidelity while ensuring com-
pliance with privacy and ethical standards.

Cross-modality synchronization. In addition to raw EEG, the subset from Hospital B includes
paired blood-based biomarkers (BBB) and clinical notes, enabling multimodal representation learn-
ing. We report the statistics for this subset in Table 2] and Figure[2} Currently, the dataset contains
only single-day EEG recordings per patient, without multi-day follow-up sessions. Laboratory re-
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| Year | Patients (M, F) | Age (years) | %125 I
2019 8(2,6) | 625+ 9.77 5 100
2020 11(1,10) | 55.6 £ 16.12 é s \
2021 20(3,17) | 53.5+£ 1798 2 50
2022 35(3,32) | 73.3+7.94 25
2024 2235 (497, 1738) | 44.09 +17.94 o 20 20 60 0 160 20
2025 2795 (850, 1945) | 46.19 4+ 17.87 Age (years)
| Total | 5104 (1356, 3748) | 45.88 + 18.08 | Figure 2: Age distribution of patients in the

multimodal corpus from Hospital B

Table 3: Site-specific configurations of Table 4: Performance of EEG foundation models pre-

2 hospitals in M-EEG. trained on the unified corpus P-EEG and finetuned on task-
oriented dataset T-EEG.

‘ ‘ Hospital A ‘ Hospital B ‘ | Task || Architecture | Balanced Acc. 1 | Kappa/AUPR 1 | W.F1/AUROC 1 |
| # Patients | 947 | 5,134 | BCIC2: CBraMOD 04978 03304 0.4856
-2 EEGPT 0.5374 0.3823 0.5138
| #Records | 947 | 5.272 | TUEY CBraMOD 04449 05114 0.7394
| # Hours | 290 | 880 | EEGPT 0.5217 0.5581 0.7680
TUAB CBraMOD 06175 0.4384 0.6897
| Channels | 22 | 44 \ EEGPT 0.8018 0.8800 0.8826
. CBraMOD 07512 0.7258 0.7978

| Sampling (Hz) | 200 | 500 | ‘S'eeP‘EDF" EEGPT ‘ 0.6585 ‘ 0.5963 ‘ 0.6976 ‘

sults and clinical notes are collected on the same calendar day as the EEG. The cohort covers a wide
spectrum of neurological conditions such as epilepsy, encephalopathy, sleep disorders, and neurode-
generative diseases, reflecting real-world clinical diversity. All routine blood-based biomarkers and
de-identified clinical notes are centralized in a dedicated phenotype/ directory. Each patient is
linked to two files: results.tsv, containing tabular laboratory values, and results. json,
containing free-text diagnostic notes and impressions.

Standardization. M-EEG is organized following the Brain Imaging Data Structure (BIDS) spec-
ification Gorgolewski et al.|(2016)), version 1.8.0. At the top level, the dataset is structured according
to the BIDS hierarchy, which includes:

* dataset_-description. json: Contains metadata describing the dataset, its author-
ship, and BIDS compliance.

* participants.tsv and participants. json: Contain participant-level demo-
graphic and group information.

* phenotype/: Contains clinical laboratory test results in results.tsv and related
metadata in results. json.

* sub-xxxx/: Contain subject-specific data, including an eeg/ subfolder with EEG
recordings, associated metadata, channel information, and a sub—-xxxx_scans.tsv file
documenting recording timestamps.

3.2 P-EEG: A UNIFIED EEG CORPUS FOR FOUNDATION MODEL PRETRAINING

To establish a fair and comprehensive benchmark for foundation model pretraining, we aggregate
multiple publicly available EEG datasets and integrate them with our proprietary M-EEG dataset to
construct a unified corpus, referred to as P-EEG, specifically tailored for the training and evaluation
of EEG foundation models.

Although a wide range of public EEG datasets exist, each is originally created for distinct research
purposes. Therefore, we carefully select only those datasets that align with the objectives and re-
quirements of foundation model training. In the following sections, we detail the criteria used for
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dataset selection and describe the preprocessing pipeline employed to harmonize and standardize
the selected datasets into a coherent and consistent format.

3.2.1 DATASET SELECTION

We selected datasets from Table [I| based on two main criteria: (i) a focus on patient-based clinical
recordings rather than task-specific paradigms, and (ii) the ability to ensure both biological and
regional diversity while maintaining sufficient EEG channel coverage.

Specifically, we excluded task-oriented datasets, highlighted in brown in Table |1} as they are tai-
lored to narrow cognitive or motor tasks, which can bias representation learning toward predefined
downstream objectives. Although the SHHS dataset (Zhang et al., |2018) offers a large sample size,
it records only two EEG channels in a sleep-specific context, limiting its applicability for general-
purpose pretraining. We also deferred the inclusion of the HEEDB dataset (Sun et al., 2025} due to
its massive scale and the ongoing integration process, reserving it for future work.

As aresult, the unified dataset, P-EEG, comprises three complementary corpora: the Temple Univer-
sity EEG (TUEG) dataset (Obeid & Piconel2016), the NMT Scalp EEG dataset from Pakistan (Khan
et al.l [2022)), and our newly introduced dataset, M-EEG. Together, these datasets span multiple
hospitals, geographic regions, and acquisition protocols, forming a diverse yet clinically grounded
corpus for the training and evaluation of EEG foundation models.

3.2.2 DATA PREPROCESSING AND HARMONIZATION

Our preprocessing largely follows CBraMOD (Wang et al., 2025) to reduce variability and remove
noise. We discard the first and last minute of TUEG recordings, retain 19 common 10-20 channels,
and apply a 0.3-75 Hz band-pass filter plus a 60 Hz notch filter. Signals are resampled at 200 Hz,
segmented into 30 s windows, and normalized to [—1, 1] after excluding samples with amplitudes
above 100, 4V (Yin et al., 2025). For NMT-Scalp (Khan et al., 2022) and M-EEG, we apply the
same pipeline but use a 50 Hz notch filter and Independent Component Analysis (ICA) (Makeig
et al.,[19935)) to further suppress artifacts.

3.3 T-EEG: A TASK-ORIENTED EEG BENCHMARK FOR DOWNSTREAM EVALUATION

Downstream BCI Tasks and Datasets. T-EEG serves as a task-oriented benchmark designed to
systematically evaluate the generalization of EEG foundation models across diverse downstream
applications. We include six representative tasks spanning seven EEG datasets, as summarized in
Table[9} The benchmark covers well-established challenges in brain-computer interface and clinical
EEG analysis: motor imagery (BCIC-2a (Blankertz et al, |2007)), sleep staging (SleepEDF (Kemp
et al., [2000)), seizure detection (TUEV (Obeid & Piconel, [2016)), and abnormal EEG classification
(TUAB (Obeid & Piconel [2016))). To evaluate robustness under regional shifts, we further incorpo-
rate A&MISP (Ma Thi et al., |2025), ALS (Ngo et al.| 2024), and N-FM (Neurought, 2023)), which
introduce distinct recording conditions and subject populations. Finally, to assess multimodal in-
tegration, we include the external PEARL dataset (Dzianok & Kublik, [2024) for Alzheimer’s risk
prediction, where paired EEG and blood biomarkers enable evaluation of multimodal representa-
tion learning. In addition, we curate three neurological disorder prediction tasks (epilepsy, transient
ischemic attack (TIA), and Parkinson’s disease) as multimodal subsets of M-EEG, where EEG is
paired with blood-based biomarkers and/or free-text clinical notes.

Preprocessing pipeline. Given the heterogeneity of real-world EEG collections, the datasets in T-
EEG vary substantially in sampling frequency, number of channels, and segment duration. To ensure
fair comparison, we establish a standardized preprocessing pipeline: linear channel mappings are
applied when necessary to align with the pretrained 19-channel montage, and signals are adaptively
truncated or segmented around task-specific annotations to extract meaningful samples. Table [9]
details the preprocessing setup for each dataset, with further descriptions provided in Appendix [A]

4 EEG FOUNDATION MODEL BENCHMARKING

In this section, using our dataset, we conduct a series of experiments to address three key research
questions: (1) How do state-of-the-art EEG foundation models compare in performance? (Section
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B.2); (2) How effective is the M-EEG dataset for pretraining EEG foundation models? (Section
[4.3); (3) To what extent does incorporating multimodality improve performance on EEG-related
downstream tasks? (Section [4.4).

4.1 EXPERIMENT SETTINGS

Baselines. We include two state-of-the-art EEG foundation models as baselines. (1) CBraMOD
(Wang et al., 2025), a reconstruction-based model was originally pretrained on TUH (TUEG). (2)
EEGPT (Wang et al.| [20244), a multi-corpus model was originally pretrained on laboratory datasets
including PhysioNet MI (Goldberger et al.,|2000), SEED (Zheng & Lul |[2015), M3CV (Huang et al.,
2022), HGD (Schirrmeister et al.,|2017), and TSU (Wang et al., [2016)).

Tasks. We evaluate foundation models on the downstream tasks defined in T-EEG (section [3.3)),
spanning both multiclass and binary classification settings. More details for each task are described

in Appendix

Metrics. To ensure consistent and interpretable evaluation across tasks, we report performance
using metrics tailored to the nature of each dataset. For multiclass classification tasks (BCIC-2a,
SleepEDF, TUEV, A&MISP, ALS, N-FM), we compute Balanced Accuracy, Cohen’s Kappa, and
Weighted F1, which account for class imbalance and provide a comprehensive view of classification
quality. For binary classification tasks (TUAB and PEARL), we report Balanced Accuracy together
with AUROC and AUPR, as these metrics are more informative under skewed class distributions.

4.2 MODEL COMPARISON

We begin by comparing representative EEG foundation model architectures under a unified pretrain-
ing setup. Specifically, all models are pretrained on the P-EEG dataset and then finetuned on the
T-EEG dataset.

We report results on four widely recognized tasks, BCIC-2a, TUEV, TUAB, and SleepEDF, spanning
distinct BCI tasks, including motor imagery, seizure detection, abnormal EEG classification, and
sleep staging. Together, these benchmarks cover both cognitive and clinical applications and provide
complementary perspectives on model generalization. Results are summarized in Table [

Overall, EEGPT tends to outperform CBraMOD across diverse tasks, likely because its auxiliary
alignment loss mitigates mode collapse and yields more discriminative representations, whereas
CBraMOD relies solely on masked prediction

4.3 IMPACTS OF REGIONAL DATA

As illustrated in Fig. 3] on BCIC-2a, which shares characteristics with the pretraining data described
in Table [§] both CBraMOD and EEGPT achieve justifiable performance (balanced accuracy: 0.49
vs. 0.51, Kohen’s kappa: 0.32 vs. 0.34, weighted F1: 0.47 vs. 0.49). In contrast, on A&MISP,
collected under different regional conditions, performance collapses, with balanced accuracy and
F1 reduced by nearly 50% and kappa by more than 95%. To examine regional robustness, we split
P-EEG into two subsets: an out-of-region set collected from the same geographic area as M-EEG,
and an in-region set collected elsewhere. We then design two experiments: (1) adding M-EEG
should not downgrade the performance of models trained on the in-region subset (Table [5), and
(2) adding M-EEG should improve the performance of models trained on the out-of-region subset
(Table [6).

Table [5] shows that incorporating M-EEG does not degrade performance on the in-region subset.
Across BCIC-2a, TUAB, and TUEV, most metrics either improve or remain stable. For instance,
CBraMOD gains +17.20% balanced accuracy on TUEV and +4.41% on TUAB, while EEGPT im-
proves by +6.39% on BCIC-2a. The few decreases (e.g., EEGPT on Sleep-EDFx, below 3% on
secondary metrics) are marginal and do not alter the overall trend. These results confirm that adding
M-EEG preserves accuracy on benchmarks that have traditionally anchored EEG foundation model
comparisons, ensuring continuity with prior work and demonstrating that regional diversity does not
harm in-region tasks.
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Figure 3: Performance comparison on 4-class motor imagery tasks under in-region (ID) and out-of-
region (OOD) settings. BCIC-2a serves as the ID dataset, whereas A&MISP represents the OOD
dataset from the region represented in M-EEG.

Table [6] highlights the out-of-region subset, where the benefits of M-EEG pretraining are pro-
nounced. Both CBraMOD and EEGPT consistently improve, with substantial relative gains on
A&MISP (+8.37% balanced accuracy and +190% Cohen’s « for EEGPT) and ALS (+3.74% BA
and +19.43% « for EEGPT). Even on the high-performing N-FM dataset, where baselines approach
ceiling, CBraMOD achieves a +3.92% improvement in balanced accuracy. These findings show that
regional coverage not only maintains comparability on in-region tasks but also directly enhances
robustness when models are transferred to populations and recording conditions absent from US-
centric corpora.

4.4 IMPACTS OF MULTIMODALITY DATA

Multimodal fusion. We integrate blood test results with EEG via a simple cross-attention module:
blood biomarkers are projected into the EEG embedding space and used as queries to attend over
EEG tokens. More details are presented in Appendix [A2] To minimize confounding from lab
availability and test-ordering patterns, we focus on subjects sharing a common set of blood tests

(see Appendix [A.3]and[A.4).

4.4.1 EXPERIMENTS RESULTS ON PEARL FOR ALZHEIMER’S RISK PREDICTION

Experiments results. Table[7|reports Alzheimer’s risk prediction on the PEARL dataset across three
tasks: MSIT, SMT, and RST. Incorporating blood-based biomarkers alongside EEG consistently
improves performance for both CBraMOD and EEGPT. On MSIT, adding BBB yields relative gains
of +27.6% balanced accuracy and +37.4% AUPR for CBraMOD, and comparable improvements
for EEGPT (+25.1% and +37.6%). Importantly, this +27.6% gain is observed in a setting where
the unimodal EEG baseline already achieved balanced accuracy above 0.5, i.e., better than random
guessing, underscoring the substantial added value of multimodal integration.

Our preliminary findings demonstrate clear improvements in risk prediction, motivating future work
on developing foundation models that seamlessly integrate EEG with other minimally invasive
modalities.

4.4.2 EXPERIMENTS RESULTS ON M-EEG FOR NEUROLOGICAL DISORDERS PREDICTION

Experiments results. Table [/| further reports multimodal risk prediction for epilepsy, TIA, and
Parkinson’s disease on the M-EEG dataset. Across all three disorders, augmenting EEG with blood-
based biomarkers consistently improves performance for both CBraMOD and EEGPT. For epilepsy,
multimodal integration yields relative gains of +19.67-22.59% in balanced accuracy, +28.04-40.60%
in AUPR, and +26.36-36.35% in AUROC, indicating that BBB features help the models better re-
cover minority-class seizure cases beyond what is achievable from EEG alone.

For TIA, the effect of BBB is particularly pronounced for CBraMOD in terms of AUPR, with a
relative improvement of +59.51%, alongside gains of +7.86% in balanced accuracy and +18.74% in
AUROC. EEGPT also benefits, though with more moderate improvements, especially in balanced
accuracy (+15.00%), AUPR (+7.31%), and AUROC (+7.67%).

Parkinson’s disease exhibits the strongest overall performance: with BBB, both architectures reach
AUROC values around 0.95 and AUPR above 0.94, together with relative gains of +20.00-24.53%
in balanced accuracy, +22.04-23.32% in AUPR, and +16.58-28.70% in AUROC. In summary, the
M-EEG experiments corroborate the findings, showing that blood-based biomarkers provide robust,
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Table 5: Comparison of EEG foundation models
pretrained on the original datasets versus those
trained on P-EEG, considering datasets from the
different regions with M-EEG.

Table 6: Comparison of EEG foundation models
pretrained on the original datasets versus those
trained on P-EEG, considering datasets from the
same region as M-EEG.

| II || Balanced Acc.t | Kappa/AUPR?T | W.F1/AUROC 1 | | [ || Balanced Acc. | Kappa | W.F1 |
| Tasks || Architectures Perf.  Gain Perf.  Gain Perf.  Gain | Tasks || Architectures || Perf.  Gain | Perf. Gain | Perf.  Gain |
Base 0.4907 0.3210 0.4766 Base 0.2604 0.0136 0.2523
CBraMOD . S 10 . ‘ ‘ CBraMOD
| P-EEG || 04978 +1.45% | 03304 +2.93% | 04856 +1.89% -EEG % _1.14%
BCIC-2a d padl +145 e + e + A&MISP P-EEG || 02715 +4.26% | 0.0286 +110.29% | 0.2494 -1.14
EEGPT ase -5 |03 . - _ G Base 0.2507 0.0100 0.2138
P-EEG | 05374 +639% | 0.3823 +1238% | 0.5138 +5.10% EEGPT P-EEG || 02716  +8.37% | 0.0290 +190.00% | 02234  +4.499%
Base || 0.3796 04734 07162 S
; Bas 0.3706 0.1930 0.4047
TUEV CBraMOD b pEG || 04449 +1720% | 05114 +803% | 07394  +3.24% ‘ CBraMOD P:‘ﬁcFG 03715 +0.24% | 02018 +4.56% 04019 -0.69%
Base || 05431 05361 0.7481 ALS o - - -
EEGPT g - .. - P IS e Base 03448 0.1549 0.3733
P-EEG || 05217 -3.93% | 0.5581 +4.10% | 0.7680 +2.66% ‘ ‘ EEGPT PEEG || 03577 +3.74% | 01850 +10.43% | 03843 +2.05%
Base || 0.5914 0.5685 0.6230
CBraMOD 5% P ' . § Base 0.9192 0.9183 0.9187
TUAB P-EEG || 06175 +4.41% | 0.6167 +8.48% | 0.6527 +4.77% ‘ - H CBraMOD o0 H 09553 43.99% | 00548 +3.07% ‘ 09551 +3.967% ‘
Base || 07891 0.8749 0.8708
EEGPT - Base 0.9979 0.9979 09978
P-EEG || 08018 +1.61% | 0.8800 +0.58% | 0.8826 +1.36% 31
. s s s 02 P * ‘ H EEGPT  pgrG H 09989 +0.10% | 0.9990 +0.11% ‘ 09989 +0.11% ‘
ase . . .
Sleep-EDFx CBraMOD - p ppG || 07512 +165% | 07258 079% | 07978 -0.28%
Base || 0.6356 0.6117 0.7062
‘ H EEGPT P-EEG || 06585 +3.60% | 0.5963 -2.52% | 0.6976 -1.22%

Table 7: Neurological disorder prediction across PEARL and M-EEG. Alzheimer’s risk is evaluated
on the PEARL dataset, while epilepsy, TIA, and Parkinson’s disease are evaluated on the M-EEG
dataset. We compare unimodal EEG (w/o BBB) with multimodal EEG plus blood-based biomarkers
(w/ BBB), with teal denoting the relative improvements over the EEG-only baseline.

| I || Balanced Accuracy | AUPR | AUROC |
| Tasks I Architectures || Performance  Gain | Performance  Gain | Performance  Gain |
. w/o BBB || 0.5283 0.5523 0.5877
‘ PEARL_MSIT H CBraMOD /gy H 0.6743 +27.64% ‘ 0.7588 +37.39% ‘ 0.7779 +32.36% ‘
EEGPT w/o BBB || 0.4615 0.4285 0.4063
w/ BBB 0.5774 +25.11% | 0.5895 +37.57% | 0.5976 +47.08%
w/o BBB || 0.5296 0.4692 0.5040
‘ PEARL_SMT H CBraMOD )/ ppp ‘ 0.6288 +18.73% | 0.6774 +4437% | 0.7156 +41.98% ‘
EEGPT w/o BBB || 0.4746 0.4132 0.4222
- w/ BBB 0.5627 +18.56% | 0.6109 +47.85% | 0.5651 +33.85%
w/o BBB || 0.4504 0.4445 0.4580
‘ PEARL_RST H CBraMOD )/ ppp H 0.6960 +54.52% ‘ 0.7772 +74.84% ‘ 0.7783 +69.93% ‘
EEGPT w/o BBB || 0.4366 0.3925 0.3949
w/ BBB 0.5753 +31.77% | 0.5985 +52.48% | 0.5483 +38.85%
w/o BBB || 0.5248 0.4262 0.5142
‘ M.EEG-Epilepsy H CBraMOD ppp H 0.6280 +19.67% ‘ 0.5457 +28.04% ‘ 0.7011 +36.35% ‘
EEGPT w/o BBB || 0.5144 0.4126 0.5494
w/ BBB 0.6306 +22.59% | 0.5801 +40.60% | 0.6942 +26.36%
w/o BBB || 0.5266 0.4003 0.6234
CBraMOD w/BBB 0.5680 +7.86% 0.6385 +59.51% | 0.7402 +18.74%
M-EEG-TIA w/o BBB || 0.5446 0.5269 0.5776
EEGPT w/ BBB 0.6263 +15.00% | 0.5654 +7.31% 0.6219 +7.67%
w/o BBB || 0.5556 0.7850 0.7396
CBraMOD w/BBB 0.6667 +20.00% | 0.9681 +23.32% | 0.9519 +28.70%
M-EEG-Parkinson w/o BBB || 0.6157 0.7755 0.8153
EEGPT w/ BBB 0.7667 +24.53% | 0.9464 +22.04% | 0.9505 +16.58%

architecture-agnostic gains across diverse neurological disorders, particularly on clinically challeng-
ing tasks.

5 CONCLUSION

In this study, we present M-EEG, a novel multimodal EEG dataset collected from two hospitals
outside the United States. To support large-scale modeling, we further curated and standardized
existing public EEG datasets into two complementary resources: P-EEG, designed for pretraining
EEG foundation models, and T-EEG, a suite of task-oriented datasets tailored for finetuning mod-
els on specific applications. Leveraging these datasets, we conducted a comprehensive evaluation
of the two most advanced EEG foundation models to date. Beyond benchmarking, we also inves-
tigate the benefits of pretraining on M-EEG and demonstrate that incorporating multimodal EEG
substantially boosts downstream predictive performance across multiple neurological disorders, in-
cluding Alzheimer’s disease, epilepsy, transient ischemic attack (TIA), and Parkinson’s disease. In
the future, we plan to further enrich M-EEG through larger-scale, longitudinal data collection and to
explore foundation models that integrate EEG with multiple minimally invasive modalities, aiming
toward clinically reliable multimodal foundation models.
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REPRODUCIBILITY STATEMENT

All data used in this study were collected in full compliance with the hospital’s internal regulations
and ethical guidelines for handling patient and participant information. The dataset employed in this
work was provided by the collaborating hospital with explicit authorization for scientific research
purposes. With respect to data sharing, the ownership and governance of the original clinical dataset
rest with the hospital. Consequently, requests for access to this dataset for research purposes can be
directed to the hospital, which will evaluate and share the data in accordance with its regulations,
approval procedures, and confidentiality safeguards. If access is approved, the data will be retrieved
from a secure cloud environment managed by the hospital (or its authorized provider) and made
available only under controlled conditions, ensuring full compliance with data protection, privacy,
and security standards. Upon acceptance, we will additionally upload a controlled-access data re-
quest form for M-EEG, which researchers can use to request access in accordance with our data-use
requirements and the hospital’s regulations.
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A APPENDIX

Table 8: Summary of recent state-of-the-art architectures for EEG Foundation Models and their
original corresponding pretraining data.

| Architectures | Pretraning Datasets \
| CBraMOD | TUEG \
| EEGPT | PhysioNet MI, HGD, TSU, SEED, M3CV \
a subset of TUEG, BCIC IV-1, EmoBrain, Grasp and Lift, Inria BCIC,
LaBraM Resting State, SPIS Resting, SEED, Siena Scalp, Target vs Non-Target,
Raw EEG Data, Private Data
| BIOT | SHHS, a tiny subset from HEEDB \
| BENDR | TUEG \

A.1 FINE-TUNING ON DOWNSTREAM TASKS

We load the pre-trained weights of M-EEG and replace the reconstruction head with a task-specific
head which is composed of multi-layer perceptrons. Here the learned EEG representations are
flattened and fed into the task-specific head for downstream tasks. Then we fine-tune M-EEG
in downstream datasets. We employ binary cross-entropy (BCE) loss for binary classification,
cross-entropy loss for multi-class classification. More hyperparameters for M-EEG fine-tuning
on downstream datasets are shown in Table @ For fair evaluation, we have extensively built a
subject-wise cross-evaluation scheme, in which all subjects are partitioned into /N folds for the
validation set or the test set. For example, we conduct N fine-tunings; in each of them, one fold is
held out as the test set while the remaining folds are used for training and validation.

A.1.1 BCIC-2A

Description & Preprocessing. BCIC-2A consists of data from 9 subjects doing trials of 4 different
motor imagery tasks. These tasks are motor imagery of the left hand (Class 1), right hand (Class
2), feet (Class 3), and tongue (Class 4). Each subject performs two sessions on different days, with
each session consisting of 288 trials. We apply a band-pass filter from 0 to 38 Hz, sampling rate at
200 Hz, and 4-second window sample (800 data points).

Evaluation. We adopt a leave-one-subject-out (LOSO) cross-validation protocol. We perform 9
fine-tunings, each involving a different subject as a testing dataset, and the remaining 8 subjects
serve as the training set. We report the test result of the last checkpoint.

A.1.2 TUEV

Description & Preprocessing. TUEV is a seizure detection dataset, which is a subset of TUEG.
This dataset records clinical EEG segments of 6 classes: spike and sharp wave (SPSW), generalized
periodic epileptiform discharges (GPED), periodic lateralized epileptiform discharges (PLED), eye
movement (EYEM), artifact (ARTF), and background (BCKG). We apply a band-pass filter from
0.1 Hz to 75 Hz and a notch filter at 60Hz, sampling rate of 200 Hz, and 5-second window sample
(1000 data points).

Evaluation. As TUEV has its own evaluation set, which we regard as the test set. We adopt the
proposed cross-validation protocol for validation sets by splitting all subjects into 4 folds. We then
conduct 4 fine-tunings, each involving one fold of subjects as a validation set, and the remaining
subjects serve as the training set.

A.1.3 SLEEP-EDFx

Description & Preprocessing. Sleep-EDFx is a sleep stage classification dataset, consisting of
data from 78 healthy subjects. This dataset contains 5 classes, corresponding to 5 stages of sleep:
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Table 9: Summary of T-EEG and its BCI Tasks.

| BCI Task | Dataset | Rate | # Ch. (used) | Duration | # Labels |
BCIC-2a 250 Hz 22 4s 4
Motor Imagery A&MISP | 128 Hz 22 4s 4
ALS 128 Hz 19 4s 4
| Sleep Staging | SleepEDF | 100Hz | 2 | 30s | 5 \
| Seizure / Event Detection | TUEV | 250Hz | 16 | 10s | 4 \
| Abnormal EEG Detection | TUAB | 250Hz | 16 | 10s | 2 \
| Characters Detection | N-FM | 512Hz | 1 | s | 94 \
| Alzheimer’s risk prediction | PEARL | 1000 Hz | 19 | 30s | 2 \

Table 10: Hyperparameters for T-EEG fine-tuning.

| Hyperparameters | Settings |
Epochs 50
Batch size 64
Dropout 0.1
Optimizer AdamW
Learning rate le-4
Adam (0.9, 0.999)
Adam € le-8
Weight decay Se-2
Scheduler CosineAnnealinglL. R
Cosine cycle epochs 50
Minimal learning rate le-6
Clipping gradient norm 1

W, N1, N2, N3, REM. We apply a low-pass filter with a cut-off frequency at 30 Hz, sampling rate:
200 Hz, and 30-second window sample (6000 data points) to Sleep-EDFx.

Evaluation. We adopt the proposed subject-wise cross-validation protocol. We split the total
dataset into 5 folds with the same number of subjects. We perform 5 fine-tunings, each involving a
different fold as a testing dataset, and the remaining 4 folds serve as the training and validation sets.
We randomly select training and validation data from these 4 folds, with a val-train ratio of 1:9.

A.1.4 TUAB

Description & Preprocessing. TUAB consists of 409,455 10-second samples of subjects annotated
as normal or abnormal (2-label classification). We apply a band-pass filter from 0.1 to 75 Hz, a notch
filter at 50 Hz, sampling rate: 200 Hz, and 10-second window sample (2000 data points).

Evaluation. As TUAB has its own evaluation set, which we consider as the test set. We adopt the
proposed cross-validation protocol for validation sets. We split all subjects into 4 folds of subjects.
We then conduct 4 fine-tunings, each involving one fold of subjects as a validation set, and the
remaining subjects serve as the training set. Generally, the train-valid-test ratio is 6:2:2.

A.1.5 A&MISP

Description & Preprocessing. A&MISP consists of 1,881 four-second samples from 30 subjects,
each annotated with one of four motor-imagery labels (4-class classification). We apply a band-pass
filter from 1 to 50 Hz, a 50 Hz notch filter, re-referencing, per-channel standardization, ICA, and
resampling to 200 Hz. Each sample is a 4-second window (800 data points).

Evaluation. We adopt a 5-fold cross-subject validation protocol stratified by gender using the
available metadata. The samples from 30 patients are partitioned into five folds so that each fold
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preserves the male—female ratio. We then conduct 5 fine-tunings, each involving one fold of subjects
as a validation set, and the remaining subjects serve as the training set.

A.1.6 N-FM

Description & Preprocessing. N-FM consists of EEG samples recorded at 512 Hz in a character-
recognition experiment, with each sample annotated with one of 94 character classes (94-class clas-
sification). We first select the Fql channel, then apply a band-pass filter from 1 to 50 Hz, a 50 Hz
notch filter, re-referencing, per-channel standardization, and resample the data to 200 Hz.

Evaluation. We adopt a 5-fold cross-class validation protocol over all 94 character classes, jointly
using both male and female recordings. For each class, we partition them into five folds so that each
fold contains approximately the same number of samples for that class, thereby preserving class
balance across folds and gender. We perform 5 fine-tunings, each involving one fold as a validation
set, and the remaining serve as the training set.

A.1.7 EEGET-ALS

Description & Preprocessing. EEGET-ALS contains EEG recordings from six ALS patients and
170 healthy controls, with 32 channels sampled at 256 Hz across nine scenarios involving imag-
ined/executed limb movements, spelling, and rest. In our experiment, we use four labels (lift left
hand, lift right hand, lift leg, rest). We select 19 channels, apply channel-wise demeaning, a 0.3-50
Hz band-pass filter, a 50 Hz notch filter, 4-second windows, resample to 200 Hz (800 data points),
and perform per-channel normalization.

Evaluation. We adopt a cross-population evaluation protocol that trains on healthy participants
and tests on ALS patients. All healthy subjects are randomly split subject-wise into 85% training
and 15% validation sets, while all ALS subjects are held out exclusively for testing. We perform
5 fine-tunings on data from the healthy training subjects, and use validation dataset used for model
selection.

A.1.8 M-EEG-EPI (EEG + BBB / EEG + TEXT)

Description & Preprocessing. = M-EEG-EPI comprises two modalities-EEG signals and BBB
features-from 168 subjects performing an epilepsy detection task (2-label classification). For EEG,
we apply a 0.3-75 Hz band-pass filter, a 50 Hz notch filter, resample to 200 Hz, and extract 10-
second windows. For blood-based biomarker features, we apply z-score normalization. Each EEG
window is then complemented with a vector of biomarker features.

In the EEG+text configuration, we use a subset of 158 subjects for epilepsy detection. For EEG, we
apply the same preprocessing pipeline as above. Each EEG segment is paired with a same-day non-
contrast brain MRI report. For the text modality, we select each subject’s MRI report and encode it
using the Clinical-T5 model from Google.

Evaluation. For both configurations, we adopt a subject-wise 5-fold cross-validation protocol.
The available subjects (168 for EEG + BBB and 158 for EEG + text) are splited into 5 folds with
(approximately) the same number of subjects. We perform 5 fine-tunings, each involves a different
fold as the test set, while the remaining 4 folds serve as the pool for training and validation. From
these 4 folds, we randomly select training and validation data with a validation-to-training ratio of
2:8.

A.1.9 M-EEG-TIA

Description & Preprocessing. M-EEG-TIA comprises two modalities- EEG signals and BBB
features- from 30 subjects for transient ischemic attack (TTA) detection (2-1abel classification). As
in M-EEG-EPI, for EEG, we apply a 0.3-75 Hz band-pass filter, a 50 Hz notch filter, resample to
200 Hz, and extract 10-second windows (2,000 data points). For blood-based biomarker features, we
apply z-score normalization. Each EEG window is then complemented with a vector of biomarker
features.

Evaluation. We follow the same subject-wise 5-fold cross-validation protocol as for M-EEG-EPI.
For each run, one fold is held out as the test set, while the remaining 4 folds form the pool for
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Table 11: Comparison of EEGPT with linear mapping to the 19 standard channels (w/ map) versus
without linear mapping (w/o map).

I | Balanced Accuracy 1 | Cohen’s Kappa/AUPR 1 | Weighted F1/AUROC 1 |

| Tasks ||  Architectures || Performance  Diff. | Performance Diff. | Performance Diff. |
w/map || 0.8018 0.8808 0.8826

‘ TUAB H BEGPT /o map || 058136 +1.47% | 08946 +1.57% ‘ 0.8916 +1.029% ‘
wimap || 0.6585 0.5963 06976

‘ Sleep-EDFx | EEGPT )0 ap || 0.6009 875% | 05556 -6.83% ‘ 0.6574 -5.76% ‘

training and validation. We randomly split windows from these 4 folds into training and validation
sets using a 2:8 validation-to-training ratio.

A.1.10 M-EEG-PD

Description & Preprocessing (EEG + BBB, PD). M-EEG-PD is a multimodal downstream dataset
extracted from M-EEG, containing two modalities- EEG signal and BBB features- for Parkinson’s
disease diagnosis (2-label classification). As in M-EEG-EPI and M-EEG-TIA, for EEG, we apply a
0.3-75 Hz band-pass filter, a 50 Hz notch filter, resample to 200 Hz, and extract 10-second windows
(2,000 data points). For blood-based biomarker features, we apply z-score normalization. Each EEG
window is then complemented with a vector of biomarker features.

Evaluation. We adopt the proposed subject-wise cross-validation protocol. We split the total
dataset into 3 folds with the same number of subjects. We perform 3 fine-tunings, each involving a
different fold as a testing dataset, and the remaining 2 folds serve as the training sets.

A.1.11 ABLATION STUDY WITH LINEAR MAPPING ON EEGPT

We conducted additional experiments with EEGPT in which all datasets were fed in their native
channel configuration, without any mapping to 19 channels. We used two datasets: Sleep-EDFx (2
channels) and TUAB (23 channels). For Sleep-EDFx, signals were passed directly to the encoder
and use existing channels embeddings; for TUAB, we added 4 extra channel embeddings.

The results in the table[TT] indicate that the impact of linear mapping is minimal. For Sleep-EDFx,
the performance with linear mapping is slightly better than without it; for TUAB, the performance
drop is marginal (approximately 1%).

A.2 DETAILS ON MULTIMODAL FUSION FINETUNING

Motivation. We draw motivation from medical studies indicating that cognitive impairments, such
as Alzheimer’s disease, are often accompanied by measurable alterations in peripheral blood counts,
reflecting changes in both the numbers and proportions of circulating cells (Shad et al.| 2013 [Zhang
et al., 2022; Dzianok & Kublik,2024)). Importantly, blood-based biomarkers provide a low-cost and
minimally invasive means of capturing such physiological signals. Inspired by this, we propose a
multimodal pipeline that integrates blood test results with EEG data to facilitate earlier detection of
cognitive decline and support timely clinical intervention.

Multimodal fusion finetuning. Formally, let » € R™ denote the normalized vector of blood-based
biomarkers. We apply a lightweight projection network MLP(-) that maps r into the EEG token
embedding space:

q = MLP(r) € R%. (1)

Given EEG embedded tokens Z = &(X) € RE*4, we implement late fusion by treating q as a
query attending to the EEG tokens:

(@WQ)(ZWk) "
Vdy

The resulting cross-modal representation h serves as input to a prediction head for downstream
tasks. At a high level, we adopt cross-attention since it enables adaptive alignment between
biomarker information and EEG dynamics: the biomarker query can selectively attend to the most
informative EEG patterns rather than relying on a static combination. This flexibility is particularly
important when the contribution of blood-based signals varies across patients or conditions.

a= softmax< ) , h = a(ZWy)Wo € RY. )
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Table 12: Alzheimer’s risk prediction on the PEARL dataset. We compare unimodal EEG (pre-
trained using P-EEG) with multimodal EEG plus blood-based biomarkers (Concat. and Attention).
Metrics are balanced accuracy, PR-AUC and ROC-AUC. Relative improvements (%) over EEG-only
are shown in the Gain columns, with teal denoting improvements and magenta for drops.

| Task | Architecture | Metric || EEG-Only | BBB-Only | EEG +BBB (Concat.) | EEG + BBB (Attention) |
| | | || Perf. Gain | Perf. Gain | Perf. Gain | Perf. Gain |

Balanced Accuracy || 0.5283 0.543 0.5515 +4.39% 0.6743 +27.64%

CBraMOD AUPR 0.5523 0.526 0.5609 +1.56% 0.7588 +37.39%

PEARL-MSIT AUROC 0.5877 0.603 0.6148 +4.61% 0.7779 +32.36%
Balanced Accuracy || 0.4615 0.543 0.5505 +19.29% 0.5660 +22.64%

EEGPT AUPR 0.4285 0.526 0.5319 +24.13% 0.5789 +35.10%

AUROC 0.4063 0.603 0.4974 +22.42% 0.5191 +27.76%

Balanced Accuracy || 0.5296 0.543 0.5492 +3.70% 0.6213 +17.32%

CBraMOD AUPR 0.4692 0.526 0.6213 +32.42% 0.6773 +44.35%

PEARL-SMT AUROC 0.5040 0.603 0.6274 +24.48% 0.7156 +41.98%
Balanced Accuracy || 0.4746 0.543 0.4861 +2.42% 0.5627 +18.56%

EEGPT AUPR 0.4132 0.526 0.5375 +30.08% 0.6109 +47.85%

AUROC 0.4222 0.603 0.4855 +14.99% 0.5651 +33.85%

Balanced Accuracy || 0.4375 0.543 0.6472 +47.93% 0.6960 +59.09%

CBraMOD AUPR 0.4445 0.526 0.7095 +59.62% 0.7772 +74.85%

PEARL-RST AUROC 0.4580 0.603 0.6839 +49.32% 0.7783 +69.93%
Balanced Accuracy || 0.4366 0.543 0.4776 +9.39% 0.5753 +31.77%

EEGPT AUPR 0.3925 0.526 0.4127 +5.15% 0.5985 +52.48%

AUROC 0.3949 0.603 0.4165 +5.47% 0.5483 +38.85%

A.3 MORE RESULTS ON ALZHEIMER’S RISK PREDICTION ON THE PEARL DATASET

In this section, we report additional results on Alzheimer’s risk prediction using the PEARL dataset.
Specifically, we investigate the contribution of blood biomarkers when combined with EEG repre-
sentations extracted from two foundation models (CBraMod and EEGPT). The goal is to assess
(1) whether multimodal fusion with blood improves over EEG-only baselines, and (ii)) how EEG
compares to blood-only models in terms of predictive power.

In the PEARL dataset, the BBB includes: leukocytes (white blood cell count), erythrocytes (red
blood cell count), hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscu-
lar hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribu-
tion width (RDW-CV), platelet count, platelet distribution width (PDW), mean platelet volume
(MPV), platelet large cell ratio (P-LCR), absolute counts of neutrophils, lymphocytes, monocytes,
eosinophils, and basophils, as well as their relative percentages (neutrophils%, lymphocytes%,
monocytes%, eosinophils%, basophils%), together with a standard lipid panel comprising total
cholesterol, HDL-cholesterol, non-HDL cholesterol, LDL-cholesterol, and triglycerides.

In addition to evaluating the original checkpoints of EEGPT and CBraMod, we also pretrained
both foundation models on our dataset and repeated the same experiments. This allows us to assess
whether the observed multimodal gains are consistent across both the original and domain-adapted
versions of the foundation models.

Table[I2]reports results obtained with our domain-adapted checkpoints. We compare EEG-only and
Blood-only models with multimodal EEG+Blood models (Concat and Attention fusion). Across
both CBraMod and EEGPT, attention-based fusion consistently achieves the best performance,
indicating that selective modality weighting is more effective than simple concatenation. In this
setting, EEG-only models generally outperform Blood-only models, but combining EEG with blood
further improves performance, confirming that blood biomarkers provide complementary informa-
tion for Alzheimer’s risk prediction when integrated with EEG signals.

Table [T3] presents the corresponding results for the original (with less clinical information) check-
points. Here, Blood-only models consistently outperform EEG-only models, and attention-based
fusion again yields the strongest gains among multimodal strategies. The fact that multimodal
EEG+Blood models improve over both unimodal baselines in both tables confirms that the bene-
fit of incorporating blood biomarkers is robust.
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Table 13: Alzheimer’s risk prediction on the PEARL dataset. We compare unimodal EEG (using the
original checkpoints) with multimodal EEG plus blood-based biomarkers (Concat. and Attention).
Metrics are balanced accuracy, PR-AUC and ROC-AUC. Relative improvements (%) over EEG-only
are shown in the Gain columns, with teal denoting improvements and magenta for drops.

| Task | Architecture | Metric || EEG-Only | BBB-Only | EEG +BBB (Concat.) | EEG + BBB (Attention) |
| | | || Perf. Gain | Perf. Gain | Perf. Gain | Perf. Gain |

Balanced Accuracy || 0.4816 0.543 0.5263 +9.28% 0.6373 +32.33%

CBraMOD | AUPR 0.5597 0.526 0.6013 +7.43% 0.6863 +22.62%

PEARL-MSIT AUROC 0.5818 0.603 0.5979 +2.77% 0.7235 +24.36%
Balanced Accuracy || 0.4550 0.543 0.4968 +9.19% 0.5560 +22.20%

EEGPT AUPR 0.4840 0.526 0.5767 +19.15% 0.6056 +25.12%

AUROC 0.4035 0.603 0.4915 +21.81% 0.5023 +24.49%

Balanced Accuracy || 0.5280 0.543 0.4982 -5.64% 0.6288 +19.09%

CBraMOD AUPR 0.4661 0.526 0.5656 +21.35% 0.6043 +29.65%

PEARL-SMT AUROC 0.4985 0.603 0.5946 +19.28% 0.6554 +31.47%
Balanced Accuracy || 0.4312 0.543 0.4310 -0.05% 0.5226 +21.20%

EEGPT AUPR 0.3982 0.526 0.4462 +12.05% 0.5745 +44.27%

AUROC 0.3805 0.603 0.4072 +7.02% 0.5285 +38.90%

Balanced Accuracy || 0.4504 0.543 0.5606 +24.47% 0.5793 +28.62%

CBraMOD | AUPR 0.3927 0.526 0.6600 +68.07% 0.6666 +69.75%

PEARL-RST AUROC 0.3997 0.603 0.6098 +52.56% 0.6416 +60.52%
Balanced Accuracy || 0.3952 0.543 0.4096 +3.64% 0.5722 +44.79%

EEGPT AUPR 0.3556 0.526 0.3910 +9.96% 0.4856 +36.56%

AUROC 0.3281 0.603 0.3742 +14.05% 0.4310 +31.36%

A.4 MORE DETAILS ON NEUROLOGICAL DISORDERS PREDICTION

Lab values panel. In the M-EEG cohort, the BBB vector is constructed routine blood tests. Specif-
ically, it includes absolute and relative counts of basophils, eosinophils, lymphocytes, monocytes,
and neutrophils; hemoglobin, platelet count, red blood cell count, white blood cell count, hemat-
ocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular
hemoglobin concentration (MCHC), red cell distribution width (RDW), and mean platelet volume
(MPV); serum electrolytes, including sodium (Na+), potassium (K+), and chloride (Cl-); liver en-
zymes alanine aminotransferase (ALT/GPT), aspartate aminotransferase (AST/GOT), and gamma-
glutamyl transferase (GGT); renal and nitrogen-metabolism markers (serum creatinine, blood urea);
uric acid; total calcium; a lipid profile comprising total cholesterol, high-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides; as well as glucose
and glycated hemoglobin (HbA1c) as markers of short- and long-term glycemic status.

Ablation study on the impact of free-text clinical notes. We further demonstrate the value of
the added text modality. In our setting, the text corresponds to free-text clinical notes that sum-
marize MRI findings for each patient, for example, ”Chronic small-vessel white-matter changes in
the periventricular region and bilateral centrum semiovale. Right maxillary sinus retention cyst”.
We adopt the same late-fusion finetuning strategy as for the blood modality. Specifically, each text
sentence is fed into a TS encoder, whose outputs are used as query vectors to attend to the EEG
encoder representations. As shown in Table [T4] without textual information, the models perform
only slightly better than random guessing; once text is incorporated, their performance improves
substantially, with CBraMOD gaining 17.66% and EEGPT gaining 31.97% in balanced accuracy.

Table 14: Ablation study for Neurological disorders prediction on the M-EEG dataset. We compare
unimodal EEG (Base) multimodal EEG plus free-text clinical notes (w/ Text), with teal denotes the
relative improvements over the EEG-only baseline.

| I || Balanced Accuracy | AUPR | AUROC |
| Tasks || Architectures || Performance Gain | Performance Gain | Performance Gain |
Base 0.5282 0.4317 0.5550
‘ Epilepsy H CBraMOD ) Text H 0.6215 +17.66% | 0.5846 +35.42% | 0.6233 +1231%
EEGPT Base 0.5120 0.4058 0.5056
w/ Text || 0.6757 +31.97% | 0.6783 +67.15% | 0.7194 +42.29%
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A.5 ANALYSIS OF DISTRIBUTIONAL DIFFERENCES ACROSS INSTITUTIONS

To address potential sampling biases, we analyzed the data characteristics from the two participating
institutions. However, a direct comparison of patient demographics was not feasible. Due to differ-
ing data collection and privacy protocols, demographic information (age, gender) was not available
for Hospital A and was only partially available (2,185 of 5,134 subjects having age label, 5,104 of
5,134 subjects having gender label) for Hospital B.

Our analysis therefore focuses on (1) reporting the available demographic subset from Hospital B,
and (2) quantifying the clear inter-institutional differences in recording statistics and equipment
configurations.

A.5.1 AVAILABLE PATIENT DEMOGRAPHICS (HOSPITAL B)

As stated, demographic data for Hospital A was unavailable. We report the statistics for the available
subset of Hospital B in Table 2] and Figure[2] Due to this limitation, a direct statistical comparison
of demographics between sites could not be performed.

Based on the available records from Hospital B, the age-labeled subset (N = 2, 185) ranges from
1 to 104 years, with a median age of 46. Regarding gender (N = 5,104), the distribution is im-
balanced: female patients constitute the majority (3,748 subjects; 73.0%), compared to 1,356 male
subjects (26.4%).

A.5.2 COMPARISON OF RECORDING STATISTICS AND EQUIPMENT BIAS

While demographics could not be directly compared, our analysis of recording data and equipment
configurations revealed significant inter-institutional differences.

Recording Statistics: We analyzed the yearly and duration distributions for both sites.

« For Hospital A, the distributions are shown in Figure[d]
* For Hospital B, the distributions are shown in Figure 5]

Visually comparing the two, we observe distinct temporal patterns: Hospital A contributed the ma-
jority of its recordings during 2021-2022, whereas Hospital B’s contributions are concentrated in
the more recent 2024-2025 period. This complementary distribution enhances the temporal diver-
sity of the M-EEG dataset. Regarding recording duration, we observe notable differences between
the sites:

* Hospital A: The recordings have a mean duration of 1,043.54 seconds, with the longest
record lasting 7,975 seconds. The majority of recordings (923 of 947) fall within the range
of 0 to 2,000 seconds.

* Hospital B: The recordings are generally shorter, with a mean duration of 163.43 seconds.
However, this site includes significant outliers, with the longest record lasting 48,802 sec-
onds. Similar to Hospital A, the vast majority of records (5,204 of 5,272) have a duration
under 2,000 seconds.

Equipment Bias: The most pronounced difference is the equipment bias, which we explicitly quan-
tify in Table[3] The institutions used entirely different hardware, resulting in a significant domain
shift in sampling rate (200 Hz vs. 500 Hz) and channel count (22 vs. 44). However, this heterogene-
ity enhances the ecological validity of the dataset. It mirrors the reality of multi-center clinical data,
providing a challenging testbed for developing models that are robust to hardware variations.

A.6 DESCRIPTION OF THE BIDS STRUCTURE OF THE DATABASE

In this study, we organized our database following the Brain Imaging Data Structure (BIDS)
specification, version 1.8.0. BIDS is a community-driven standard that provides a uniform way to
arrange neuroimaging and physiological datasets, ensuring consistency, interoperability, and repro-
ducibility across studies.

By adopting BIDS v1.8.0, we gain several advantages:
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Figure 4: Yearly and duration distribution of subjects’ recordings collected from Hospital A in M-
EEG dataset
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Figure 5: Yearly and duration distribution of subjects’ recordings collected from Hospital B in M-
EEG dataset

At the

 Standardization: Data from different acquisition sites and modalities (e.g., EEG signals,
clinical laboratory results) are represented in a consistent format, reducing ambiguity in
interpretation.

» Compatibility: The dataset can be directly integrated with existing BIDS-aware software
tools for preprocessing, quality control, and statistical analysis.

* Reproducibility: Researchers can reuse the dataset with minimal manual curation, which
facilitates replication studies and meta-analyses.

» Extensibility: Beyond EEG recordings, our design includes phenotype-level information
(e.g., laboratory test results), enabling multimodal analysis that links neurophysiological
data with clinical variables.

top level, the dataset is structured according to the BIDS hierarchy, which includes:

* dataset._description. json: Contains metadata describing the dataset, its author-
ship, and BIDS compliance.

* participants.tsv and participants. json: Contain participant-level demo-
graphic and group information.

* phenotype/: Contains clinical laboratory test results in results.tsv and related
metadata in results. json.

* sub-xxxx/: Contain subject-specific data, including an eeg/ subfolder with EEG
recordings, associated metadata, channel information, and a sub—xxxx_scans.tsv file
documenting recording timestamps.
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This organization ensures that the dataset is self-describing and can be recognized by BIDS-
compatible tools without requiring additional documentation.

A.7 EXTENDED RELATED WORK

This section positions our work within the broader literature on multimodal EEG benchmarks and
standardization. A comprehensive comparison of current state-of-the-art and ours is summarized in
Table

Benchmarks for EEG and time series. There are studies that have already standardized multi-
ple datasets across regions, groups, and conditions [Chevallier et al.| (2024); (Gagnon-Audet et al.
(2023)); [Charest et al] (2025); [Aristimunha et al.| (2025)); [Darvishi-Bayazi et al.| (2024); [Ferrante
et al| (2024), but their objectives and scopes differ substantially from ours. Our work is the first
to standardize multimodal EEG-based clinical datasets for benchmarking foundation models across
diverse EEG-related tasks. We create a unified and standardized framework in which each sam-
ple may include EEG signals alongside zero, one, or multiple clinical modalities (e.g., laboratory
test results), enabling benchmarking across a broad range of EEG-related downstream tasks under
a consistent evaluation protocol. For the multimodal datasets in particular, our benchmarking ef-
fort focuses on neurological disease diagnosis, a clinically meaningful and technically challenging
setting. Among prior works, only [Chevallier et al.|(2024) and |Gagnon-Audet et al|(2023)) qualify
as benchmark efforts: (Chevallier et al.|(2024) focuses on BCI reproducibility using single-modality
EEG for BCI control, while [Gagnon-Audet et al.| (2023) is a cross-domain generalization bench-
mark across heterogeneous time series where EEG appears only as two datasets and the goal is to
benchmark domain generalization methods. Thus, neither the dataset scope nor the benchmarking
objectives overlap with ours.

Multimodal neuroimaging, physiological signals, and cross-domain EEG. We contribute the
first multimodal EEG clinical dataset collected from two hospitals outside the US. Our dataset in-
cludes paired EEG + laboratory test data, enabling multimodal learning for neurological disease
tasks. None of the prior works include such multimodality. While [Charest et al (2025) and [Fer-|
(2024) include EEG/MEG or EEG/fMRI, these modalities come from separate datasets
and are not aligned within the same sample. In contrast, each sample in our dataset contains mul-
tiple synchronized clinical modalities, enabling models to learn richer physiological relationships
that have not been explored in previous benchmarks. The EEG Foundation Challenge
constructs a large-scale cohort of EEG recordings with demographic information and
studies cross-task and cross-subject decoding, including zero-shot cross-domain generalization, but
it is still built around a single dataset and remains essentially unimodal at the signal level.
Bayazi et al.|(2024) studies cross-dataset transfer learning for pathology detection using TUAB and
NMT scalp EEG, but the setting is strictly unimodal (EEG only) and framed as transfer between
two datasets rather than as a general benchmark for EEG foundation models. The Brant series
Zhang et al| (2023); [Yuan et al. (2024); |[Zhang et al.| (2024) further develops foundation models
for intracranial and scalp brain signals and a unified alignment framework between EEG and other
physiological signals (EOG, ECG, EMG). Brant[Zhang et al.| (2023)) scales foundation models to in-
tracranial SEEG by pretraining exclusively on a large private SEEG cohort, targeting invasive neural
recordings rather than scalp EEG. Brant-2 extends this line of work by training
a unified backbone on both SEEG and EEG (private SEEG + TUEG), but still operates within a
single-modality neural signal space and does not explore explicit multimodal alignment. Brant-X
Zhang et al.| (2024) moves toward multimodality by jointly modeling EEG with other physiological
signals (EOG, ECG, EMG) on CAP, ISRUC, and HMC, focusing on cross-signal alignment between
biosignals rather than fusion multiple modalities.

Positioning and novelty of our benchmark. Beyond benchmarking, we propose and validate a new
multimodal EEG model showing significant performance gains for Alzheimer’s disease prediction.
Our multimodal fusion model integrates EEG with additional clinical modalities, and our experi-
ments show that adding complementary modalities yields substantial improvements in Alzheimer’s
prediction accuracy, demonstrating the scientific value of multimodal EEG integration. While prior
works address unimodal EEG, cross-modal reconstruction (e.g., EEG—fMRI), unimodal transfer
learning, or foundation models and alignment frameworks for brain and physiological signals, none
of them provide multimodal clinical data, a unified benchmark specifically designed for EEG foun-
dation models, or evidence that multimodality improves disease prediction. In summary, the key
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added values of our benchmark are: (i) a clinically oriented, multimodal EEG benchmark not present
in prior studies; (ii) a new dataset from two non-US hospitals with paired EEG + lab results per sam-
ple; and (iii) a novel multimodal EEG model validated through extensive experiments.

Table 15: Comparison of our multimodal benchmark and standardization pipeline with prior works.

References| Modalities  of | Datasets Tasks
Each Sample
hevallier| | Only EEG 36 publicly available | Benchmark for BCI repro-
datasets, including motor | ducibility

(2024) imagery (14), P300 (15),
and SSVEP (7)
One type of time | CAP, SEDFx Benchmark for  out-of-
series distribution generalization

Either EEG or | Natural Scenes (7T fMRIre- | EEG-to-fMRI generation
fMRI sponses), NSD-EEG (EEG)

EEG and demo- | 1 Dataset: EEG signals (128 | Zero-shot cross-domain
graphic informa- | channels) recorded from | generalization

>
E'NQ;: g:l>:=c>)
HEEHEBEE

(2025) tion over 3,000 child to young
adult
EEG Temple University Hospital | Pathology classification task
Bayazi Abnormal (TUAB), and
et al. NUST-MH-TUKL (NMT)
2024 scalp EEG
errante Either EEG, | ImageNetEEG dataset, | Multimodal alignment

MEG, or fMRI THINGS-MEG dataset,
Natural Scenes Dataset
(NSD)

Only SEEG a private SEEG dataset Towards foundation models
for intracranial neural signal

either SEEG or | a private SEEG dataset, | Towards foundation models

~ | | I
o) o | NS & o|N 9 g
= ol N S
= =N ) 205 ! 2
@ =2 X =2 EN Z

02 EEG TUEG for brain signals
either EEG, | CAP, ISRUC, and HMC Multimodal alignment
EOG, ECG, or
EMG
EEG, lab values | M-EEG, T-EEG, TUEG, | Multimodal EEG fusion
and clinical notes | NMT Scalp benchmark

A.8 LIMITATIONS

The robustness gains from incorporating regional data are marginal but consistent, indicating steady
benefits even at limited scale. These results provide encouraging evidence that regional coverage can
enhance generalization, though M-EEG remains smaller than corpora such as TUEG or HEEDB. As
we expand data collection to achieve greater balance, future work will more fully explore the role of
regional diversity in building robust EEG foundation models.
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