

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A MULTI-INSTITUTIONAL MULTIMODAL EEG BENCHMARK FOR FOUNDATION MODEL GENER- ALIZATION AND EARLY NEUROLOGICAL DIAGNOSIS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in deep learning have accelerated the development of foundation models (FMs) for electroencephalography (EEG), with significant efforts devoted to assembling EEG datasets and training large-scale models. However, existing EEG datasets remain highly fragmented and non-standardized, with limited regional diversity since most originate from the United States. Similarly, current EEG foundation models are trained on different datasets without consistent protocols, making it difficult to compare architectures fairly. Moreover, **most** existing models are trained exclusively on unimodal EEG signals, limiting their clinical utility, as many downstream diagnostic tasks, such as detecting neurodegenerative diseases, require integration of additional modalities beyond EEG. To address these limitations, we introduce, for the first time M-EEG, a multimodal EEG dataset comprising over 6000 patients collected from two major hospitals outside the US. In parallel, we unify **several key public EEG datasets** into a single standardized corpus, enabling the first rigorous benchmarking of state-of-the-art EEG foundation model architectures under consistent pretraining and fine-tuning pipelines. **Finally, we configure and evaluate multimodal diagnostic models based on existing EEG foundation architectures**, demonstrating that integrating auxiliary modalities (e.g., blood biomarkers and clinical notes) with EEG substantially improves downstream prediction accuracy, for instance, achieving a 27.64% gain in Alzheimer’s disease risk prediction.

1 INTRODUCTION

Background. Recent breakthroughs in deep learning have catalyzed the development of foundation models (FMs) for electroencephalography (EEG) Wang et al. (2025; 2024a;b); Yang et al. (2023); Kostas et al. (2021), with the goal of learning transferable neural representations across diverse clinical and cognitive tasks. In parallel, efforts have been made to assemble large-scale clinical EEG corpora from multiple hospitals (Khan et al., 2022; Zhang et al., 2018; Sun et al., 2025), aiming to broaden regional and clinical diversity and to better capture the inherently non-stationary, low signal-to-noise characteristics of EEG. Despite these encouraging developments, existing EEG datasets and foundation models continue to face significant limitations.

Limitations of existing EEG datasets and foundation models. On the dataset side, available corpora remain fragmented: most are heavily US-centric (Obeid & Picone, 2016; Sun et al., 2025), task-specific (Zhang et al., 2018), or involve relatively few subjects (Khan et al., 2022). Such constraints exacerbate overfitting when applying self-supervised pretraining methods, such as mask prediction (Wang et al., 2024b;a; 2025; Yang et al., 2023) or contrastive learning (Yang et al., 2023; Kostas et al., 2021), which depend critically on a wide subject pool to generate reliable positive and negative pairs. Moreover, most datasets lack integration with minimally invasive modalities such as blood-based biomarkers, which could be combined with EEG to strengthen diagnostic accuracy. The recently introduced Harvard Electroencephalography Database (Sun et al., 2025) partially addresses these limitations by releasing nearly three million hours of data from four hospitals, yet it remains entirely US-based and thus insufficient for studying regional diversity at scale.

Concerning the EEG foundation models, current models (e.g., EEGPT(Wang et al., 2024a), BIOT(Yang et al., 2023), CBraMOD(Wang et al., 2025)) exhibit two fundamental limitations: limited regional diversity and restricted clinical relevance. First, most models are pretrained on only a handful of public datasets—largely from single regions, resulting in poor generalization across demographic, clinical, and recording variations. Performance drops sharply when evaluated on unseen regional datasets, underscoring their vulnerability to distribution shifts (See Fig. 3). Dataset heterogeneity in sampling rates, channel layouts, and annotation protocols further complicates the establishment of standardized pretraining pipelines, reinforcing the need for a harmonized and globally representative corpus. Second, existing foundation models are trained exclusively on unimodal EEG signals, whereas real-world diagnosis of complex brain disorders, such as Alzheimer’s disease, often requires multimodal integration, including minimally invasive biomarkers like blood-based tests. As illustrated in Table 7, incorporating auxiliary signals substantially improves disease prediction performance over EEG alone, reinforcing the need for multimodal foundation modeling. Yet, there remains a scarcity of public EEG datasets that are both regionally diverse and enriched with complementary clinical modalities.

Our approach. To address these gaps, we present **M-EEG**, a large-scale, clinically annotated EEG dataset collected from two major hospitals outside of US, comprising 1,170 hours of EEG recordings from 6,081 patients. To our knowledge, this is the largest non-US clinical EEG corpus to date, offering significant improvements in geographic coverage, subject diversity, and clinical complexity. In addition, a unique subset of **M-EEG** includes paired EEG, blood biomarkers, and clinical notes, enabling the first non-US multimodal benchmark for EEG–lab fusion.

Building on **M-EEG**, we conduct a standardized benchmarking study of state-of-the-art EEG foundation models under identical pretraining and fine-tuning protocols across diverse clinical tasks drawn from both US-based and non-US datasets. Our findings demonstrate that pretraining on **M-EEG** yields stronger generalization across regions and diseases, with clear gains on challenging diagnostic tasks such as early Alzheimer’s risk prediction.

Contributions. Our contributions are summarized as follows:

- **M-EEG: a large-scale multimodal EEG corpus.** We release M-EEG, a large-scale clinical EEG corpus with 1,170 hours from 6,081 patients at two major hospitals, marking the largest non-US EEG dataset by subject count and improving the diversity of EEG pretraining resources. Furthermore, we curate a subset of M-EEG that integrates EEG signals with blood-based biomarkers and clinical notes, establishing the first non-US multimodal EEG benchmark and opening new avenues for research in EEG-laboratory data fusion. In addition, we standardize **multiple** existing EEG datasets to construct a unified large-scale corpus and establish a benchmark to compare state-of-the-art EEG foundation model architectures on this dataset. To the best of our knowledge, this is the first standardized large-scale EEG corpus, and our work represents the first systematic benchmarking of EEG foundation models on a common dataset using consistent pretraining and fine-tuning pipelines, thereby enabling rigorous and dataset-independent comparison.
- **Multimodal benchmarking of EEG foundation models for neurological diagnosis.** We adapt existing EEG foundation architectures to a multimodal setting for neurological disorder diagnosis, enabling **benchmarking of their performance when combined with additional modalities**. Experiments conducted on our **curated** multimodal EEG dataset, **validated through Alzheimer’s risk prediction and the diagnosis of epilepsy, transient ischemic attack (TIA), and Parkinson’s disease**, demonstrate that incorporating additional modalities substantially enhances prediction accuracy.

2 EXISTING DATASETS AND EEG FOUNDATION MODELS

2.1 CURRENT PRETRAINING CORPORA

Table 1 provides an overview of major EEG datasets used for representation learning, emphasizing their scale, geographic coverage, and any multimodal extensions. The field currently relies on a patchwork of hospital-based clinical EEG corpora as the backbone for foundation model pretraining.

108 Foremost among these is the Temple University Hospital (TUH) corpus (Obeid & Picone, 2016),
 109 which at roughly 24,000 hours of recordings from a single US hospital has underpinned much of the
 110 recent progress in self-supervised EEG representation learning (Wang et al., 2025; Han et al., 2025).
 111 More recently, the Harvard Electroencephalography Database (HEEDB) (Sun et al., 2025) intro-
 112 duced an unprecedentedly large corpus on the order of millions of EEG hours, drawn from multiple
 113 US hospitals and enriched with patient metadata and auxiliary modalities, integrating demographics,
 114 medication records, lab values, and free-text clinical notes (including blood-based biomarkers). This
 115 rich multimodal resource significantly expanded data scale and scope; however, it remains entirely
 116 US-based, exacerbating a persistent regional diversity gap in EEG data. Beyond the United States,
 117 only a few smaller clinical corpora have been released. For example, the NMT-Scalp dataset from
 118 Pakistan (Khan et al., 2022) provides valuable clinical EEG data but remains limited in scale, with
 119 relatively few hours and subjects compared to TUH or HEEDB.
 120

121 In addition to clinical datasets, a variety of laboratory or task-specific EEG datasets have been used
 122 for representation learning. Notable examples include SEED (Zheng & Lu, 2015) for emotion recog-
 123 nition, PhysioNet MI (Goldberger et al., 2000) for motor imagery, M3CV (Huang et al., 2022) for
 124 cognitive workload, HGD (Schirrmeister et al., 2017) for brain-computer interface trials, and SHHS
 125 (Zhang et al., 2018) for sleep monitoring. While each contributes valuable data for its specific do-
 126 main, these datasets are relatively small in scale (often involving only tens of subjects or a few dozen
 127 hours) and narrow in clinical scope. Moreover, they are typically single-modality (EEG only) and
 128 collected under disparate protocols.
 129

130 2.2 EXISTING EEG FOUNDATION MODELS

131 2.2.1 UNIMODAL EEG-BASED FOUNDATION MODELS

132 EEG foundation models aim to learn general-purpose neural representations from large corpora
 133 without relying on task-specific labels. Table 8 summarizes representative architectures and their
 134 original pretraining data.

135 Two open-source efforts, **BENDR** (Kostas et al., 2021) and **CBraMOD** (Wang et al., 2025), were
 136 trained exclusively on the TUH clinical corpus, leveraging the breadth of U.S. hospital EEG record-
 137 ings to drive self-supervised learning objectives. These works established TUH as the standard back-
 138 bone for EEG foundation modeling. By contrast, **EEGPT** (Wang et al., 2024a) expanded beyond a
 139 single corpus by pretraining on a composite of multiple laboratory datasets, including PhysioNet MI,
 140 SEED, M3CV, HGD, and TSU to capture a wider spectrum of motor imagery and cognitive tasks.
 141 Similarly, **LaBraM** (Jiang et al., 2024) aggregated a heterogeneous collection of public corpora
 142 (e.g., TUEG subsets, BCIC IV-1, EmoBrain, Inria BCIC, SPIS Resting) together with private data,
 143 aiming to maximize training diversity through scale and variety. Another line of work has drawn
 144 on large-scale clinical cohorts beyond TUH. **BIOT** (Yang et al., 2023), for instance, leverages both
 145 SHHS, a population-level sleep study, and a small subset of HEEDB collected at Massachusetts
 146 General Hospital to pretrain a transformer architecture designed for cross-dataset generalization.
 147 Unlike models tied to narrowly defined tasks, BIOT emphasizes scalability across heterogeneous
 148 clinical EEG corpora, though its training sources remain limited to US-based datasets (with only a
 149 small subset of HEEDB included).

150 Despite their architectural differences and varying objectives, a common limitation is that each foun-
 151 dation model was developed using a distinct, and often narrow, pool of pretraining data. This incon-
 152 sistency makes reported improvements difficult to attribute: performance gains may arise as much
 153 from the scale, scope, or bias of the underlying corpus as from innovations in model design. Con-
 154 sequently, direct comparison across models remains problematic without a unified and standardized
 155 pretraining benchmark.

156 2.2.2 TOWARD MULTIMODAL EEG FOUNDATION MODELS

157 In clinical practice, EEG is rarely interpreted in isolation. Neurologists routinely contextualize EEG
 158 findings with additional information such as blood biomarkers (indicating infection, inflammation,
 159 or metabolic abnormalities), routine laboratory test results, and clinical notes that capture patient
 160 history and diagnostic impressions. In many neurological disorders, further confirmation may re-
 161 quire complex and costly procedures such as MRI, which highlights the value of minimally invasive

162 **Table 1: Existing EEG pretraining corpora.** BBB denotes blood-based biomarkers. Dataset names
 163 are color-coded as follows: **blue** for general clinical EEG corpora, **brown** for task-specific corpora,
 164 and **bold** for our contribution (**M-EEG**).
 165

Dataset name	Region	# Hours	# Subjects	# Sites	# Channels	Sampling (Hz)	Modalities	
							BBB	Clinical notes
HEEDB (Sun et al., 2025)	US	3 000 000	109 178	4	22–57	200–512	✓	✓
TUEG (Obeid & Picone, 2016)	US	24 000	10 874	1	31	250–256	✗	✗
NMT Scalp (Khan et al., 2022)	Pakistan	625	60	1	19	200	✗	✗
M3CV (Huang et al., 2022)	China	90	106	1	64	250	✗	✗
SEED series (Zheng & Lu, 2015)	China	200 (total)	8–20	1	62	1000	✗	✗
PhysioNet MI (Goldberger et al., 2000)	US	47	109	1	64	160	✗	✗
Inria BCIC (Margaux et al., 2012)	France	30	26	1	56	200	✗	✗
BCIC IV-1 (Blankertz et al., 2007)	Europe	8	7	1	59	1000	✗	✗
HGD (Schirrmeister et al., 2017)	China	15	154	1	128	500	✗	✗
Raw EEG Data (Trujillo, 2020)	US	34	48	1	64	256	✗	✗
Grasp and Lift (Luciw et al., 2014)	UK	12	12	1	32	500	✗	✗
EmoBrain (Savran ¹ et al., 2006)	Germany	5	16	1	64	1024	✗	✗
Resting State (Trujillo et al., 2017)	US	3	22	1	72	256	✗	✗
SPIS Resting (Torkamani-Azar et al., 2020)	China	1	10	1	64	2048	✗	✗
Target vs Non-Target (Korczowski et al., 2019)	France	16	43	1	32	512	✗	✗
TSU (Wang et al., 2016)	China	14	35	1	64	250	✗	✗
SHHS (Zhang et al., 2018)	US	43 446	5 804	–	2	125	✗	✗
Siena Scalp (Detti, 2020)	Italy	30	14	1	29	512	✗	✗
M-EEG	Outside of US	1 170	6 081	2	22–44	200, 500	✓	✓

185 signals that can complement EEG in a more accessible way. These auxiliary data sources provide
 186 critical context that can help disambiguate EEG abnormalities and improve diagnostic accuracy.
 187

188 Despite this reality, **most** existing EEG foundation models remain strictly unimodal, trained only on
 189 raw EEG signals without auxiliary modalities. This limitation reduces their clinical utility: a model
 190 that sees only EEG may miss critical disease indicators that would be apparent if combined with
 191 supporting evidence such as blood tests or clinical reports.

192 Extending pretraining corpora beyond EEG is therefore essential for developing foundation models
 193 that generalize across diverse clinical scenarios. Incorporating modalities such as blood-based
 194 biomarkers and textual clinical records into EEG representation learning can capture patterns more
 195 consistent with real-world diagnostic reasoning (Moretti, 2015; Chetty et al., 2024), potentially im-
 196 proving performance on tasks like early detection of neurodegenerative diseases or prognostication
 197 after brain injury.

198 These considerations motivate the collection of multimodal EEG datasets that combine electrophys-
 199 iological signals with complementary clinical information. In the next section, we present **M-EEG**,
 200 a multi-institutional dataset that pairs EEG recordings with blood biomarkers and clinical notes, and
 201 introduce a unified benchmarking framework for evaluation. Together, these contributions expand
 202 regional coverage, integrate multimodal context, and enable fair, standardized assessment of EEG
 203 foundation models.

204 3 MULTI-INSTITUTIONAL MULTIMODAL EEG DATASET

208 In the following, we introduce a multi-institutional EEG dataset that has been systematically com-
 209 piled and meticulously curated to support advanced research in computational neuroscience. The
 210 dataset comprises three main components.

211 **The primary component is M-EEG** (Section 3.1), our in-house multimodal dataset collected outside
 212 the United States, which includes synchronized EEG recordings alongside corresponding blood test
 213 results. This multimodal dataset not only enhances the diversity of existing EEG data populations,
 214 thereby improving the generalizability of EEG foundation models (as demonstrated in Section 4.3),
 215 but also leverages its multimodal nature to boost performance on downstream tasks, as will be further
 216 discussed in Section 4.4.

Figure 1: Overview of M-EEG. (1) **Data construction**: raw EEG, blood biomarkers, and clinical notes collected from two hospitals are anonymized and standardized into BIDS format. (2) **Benchmarking**: M-EEG enables large-scale pretraining and standardized evaluation of EEG foundation models, with downstream results showing that region-specific data improves *regional robustness*. (3) **Multimodal integration**: M-EEG includes paired EEG–blood data, allowing exploration of multimodal foundation models for clinical tasks such as early disease risk prediction.

In order to benchmark existing foundation architectures, we further introduce **P-EEG** and **T-EEG**. The **P-EEG** component (Section 3.2) is a unified public dataset constructed through the aggregation and harmonization of multiple publicly available EEG datasets. It is designed specifically for the pretraining of EEG foundation models. By standardizing data formats and preprocessing pipelines, this unified corpus offers a robust, scalable, and reproducible benchmark for training, evaluating, and comparing foundation models in EEG-based machine learning research. Finally, the **T-EEG** component is derived from publicly available task-oriented datasets and is specifically curated to evaluate the performance of foundation models on a range of targeted downstream tasks.

3.1 M-EEG: AN IN-HOUSE MULTI-INSTITUTIONAL, MULTIMODAL EEG DATASET

We construct M-EEG, a multi-institutional, multimodal EEG dataset, collected from two major hospitals, namely Hospital A and Hospital B, located outside the United States. The primary objective of this dataset is to enhance the diversity of existing EEG datasets, both in terms of geographical representation (regional diversity) and data modality. As illustrated in Table 2 and Figure 2, the multimodal subset exhibits a diverse age and gender distribution. Moreover, all patients in our dataset are recruited from a country geographically distant from the United States, providing regional characteristics that are complementary to existing US-centric EEG corpora. Using this dataset, we demonstrate that regional diversity plays a critical role in improving EEG representation learning for foundation models, while incorporating additional modalities beyond EEG, such as blood biomarkers, significantly boosts the accuracy of brain-related disease prediction.

The construction of M-EEG involved several key steps: (1) raw data acquisition, (2) cross-modality synchronization, and (3) standardized data preprocessing.

Raw data acquisition. M-EEG advances beyond prior corpora by providing the largest non-US clinical EEG cohort to date, comprising 1,170 hours of routine clinical EEG collected from 6,081 patients across two hospitals over multiple years. The detail configurations are presented in Table 3. All recordings were fully de-identified before release, with patient identifiers removed and institution-specific metadata anonymized, thereby preserving clinical fidelity while ensuring compliance with privacy and ethical standards.

Cross-modality synchronization. In addition to raw EEG, the subset from Hospital B includes paired blood-based biomarkers (BBB) and clinical notes, enabling multimodal representation learning. We report the statistics for this subset in Table 2 and Figure 2. Currently, the dataset contains only single-day EEG recordings per patient, without multi-day follow-up sessions. Laboratory re-

270
271 Table 2: Summary of age and gender distribution
272 in the multimodal corpus from Hospital B.
273

274 Year	275 Patients (M, F)	276 Age (years)
277 2019	278 8 (2, 6)	279 62.5 ± 9.77
2020	11 (1, 10)	55.6 ± 16.12
2021	20 (3, 17)	53.5 ± 17.98
2022	35 (3, 32)	73.3 ± 7.94
2024	2235 (497, 1738)	44.09 ± 17.94
2025	2795 (850, 1945)	46.19 ± 17.87
Total	5104 (1356, 3748)	45.88 ± 18.08

283
284 Table 3: Site-specific configurations of
285 2 hospitals in **M-EEG**.
286

	Hospital A	Hospital B
# Patients	947	5,134
# Records	947	5,272
# Hours	290	880
Channels	22	44
Sampling (Hz)	200	500

295 sults and clinical notes are collected on the same calendar day as the EEG. The cohort covers a wide
296 spectrum of neurological conditions such as epilepsy, encephalopathy, sleep disorders, and neurode-
297 generative diseases, reflecting real-world clinical diversity. All routine blood-based biomarkers and
298 de-identified clinical notes are centralized in a dedicated phenotype/ directory. Each patient is
299 linked to two files: `results.tsv`, containing tabular laboratory values, and `results.json`,
300 containing free-text diagnostic notes and impressions.

301 **Standardization.** **M-EEG** is organized following the **Brain Imaging Data Structure (BIDS) spec-302**ification Gorgolewski et al. (2016), version 1.8.0. At the top level, the dataset is structured according
303 to the BIDS hierarchy, which includes:

- 304 • `dataset_description.json`: Contains metadata describing the dataset, its author-
305 ship, and BIDS compliance.
- 306 • `participants.tsv` and `participants.json`: Contain participant-level demo-
307 graphic and group information.
- 308 • `phenotype/`: Contains clinical laboratory test results in `results.tsv` and related
309 metadata in `results.json`.
- 310 • `sub-xxxx/`: Contain subject-specific data, including an `eeg/` subfolder with EEG
311 recordings, associated metadata, channel information, and a `sub-xxxx_scans.tsv` file
312 documenting recording timestamps.
- 313

314 3.2 P-EEG: A UNIFIED EEG CORPUS FOR FOUNDATION MODEL PRETRAINING

315 To establish a fair and comprehensive benchmark for foundation model pretraining, we aggregate
316 multiple publicly available EEG datasets and integrate them with our proprietary **M-EEG** dataset to
317 construct a unified corpus, referred to as **P-EEG**, specifically tailored for the training and evaluation
318 of EEG foundation models.

319 Although a wide range of public EEG datasets exist, each is originally created for distinct research
320 purposes. Therefore, we carefully select only those datasets that align with the objectives and re-
321 quirements of foundation model training. In the following sections, we detail the criteria used for

281 Figure 2: Age distribution of patients in the
282 multimodal corpus from Hospital B
283

284 Table 4: Performance of EEG foundation models pre-
285 trained on the unified corpus P-EEG and finetuned on task-
286 oriented dataset T-EEG.
287

Task	Architecture	Balanced Acc. \uparrow	Kappa / AUPR \uparrow	W. F1 / AUROC \uparrow
BCIC-2a	CBraMOD	0.4978	0.3304	0.4856
	EEGPT	0.5374	0.3823	0.5138
TUEV	CBraMOD	0.4449	0.5114	0.7394
	EEGPT	0.5217	0.5581	0.7680
TUAB	CBraMOD	0.6175	0.4384	0.6897
	EEGPT	0.8018	0.8800	0.8826
Sleep-EDFx	CBraMOD	0.7512	0.7258	0.7978
	EEGPT	0.6585	0.5963	0.6976

324 dataset selection and describe the preprocessing pipeline employed to harmonize and standardize
 325 the selected datasets into a coherent and consistent format.
 326

327 3.2.1 DATASET SELECTION 328

329 We selected datasets from Table 1 based on two main criteria: (i) a focus on patient-based clinical
 330 recordings rather than task-specific paradigms, and (ii) the ability to ensure both biological and
 331 regional diversity while maintaining sufficient EEG channel coverage.

332 Specifically, we excluded task-oriented datasets, highlighted in **brown** in Table 1, as they are tai-
 333 lored to narrow cognitive or motor tasks, which can bias representation learning toward predefined
 334 downstream objectives. Although the SHHS dataset (Zhang et al., 2018) offers a large sample size,
 335 it records only two EEG channels in a sleep-specific context, limiting its applicability for general-
 336 purpose pretraining. We also deferred the inclusion of the HEEDB dataset (Sun et al., 2025) due to
 337 its massive scale and the ongoing integration process, reserving it for future work.

338 As a result, the unified dataset, P-EEG, comprises three complementary corpora: the Temple Univer-
 339 sity EEG (TUEG) dataset (Obeid & Picone, 2016), the NMT Scalp EEG dataset from Pakistan (Khan
 340 et al., 2022), and our newly introduced dataset, M-EEG. Together, these datasets span multiple
 341 hospitals, geographic regions, and acquisition protocols, forming a diverse yet clinically grounded
 342 corpus for the training and evaluation of EEG foundation models.

343 3.2.2 DATA PREPROCESSING AND HARMONIZATION 344

345 Our preprocessing largely follows CBraMOD (Wang et al., 2025) to reduce variability and remove
 346 noise. We discard the first and last minute of TUEG recordings, retain 19 common 10-20 channels,
 347 and apply a 0.3-75 Hz band-pass filter plus a 60 Hz notch filter. Signals are resampled at 200 Hz,
 348 segmented into 30 s windows, and normalized to $[-1, 1]$ after excluding samples with amplitudes
 349 above $100, \mu V$ (Yin et al., 2025). For NMT-Scalp (Khan et al., 2022) and M-EEG, we apply the
 350 same pipeline but use a 50 Hz notch filter and Independent Component Analysis (ICA) (Makeig
 351 et al., 1995) to further suppress artifacts.

352 3.3 T-EEG: A TASK-ORIENTED EEG BENCHMARK FOR DOWNSTREAM EVALUATION 353

354 **Downstream BCI Tasks and Datasets.** T-EEG serves as a task-oriented benchmark designed to
 355 systematically evaluate the generalization of EEG foundation models across diverse downstream
 356 applications. We include six representative tasks spanning seven EEG datasets, as summarized in
 357 Table 9. The benchmark covers well-established challenges in brain-computer interface and clinical
 358 EEG analysis: motor imagery (BCIC-2a (Blankertz et al., 2007)), sleep staging (SleepEDF (Kemp
 359 et al., 2000)), seizure detection (TUEV (Obeid & Picone, 2016)), and abnormal EEG classification
 360 (TUAB (Obeid & Picone, 2016)). To evaluate robustness under regional shifts, we further incorpo-
 361 rate A&MISP (Ma Thi et al., 2025), ALS (Ngo et al., 2024), and N-FM (NeuroRough, 2023), which
 362 introduce distinct recording conditions and subject populations. Finally, to assess multimodal in-
 363 tegration, we include the external PEARL dataset (Dzianok & Kublik, 2024) for Alzheimer’s risk
 364 prediction, where paired EEG and blood biomarkers enable evaluation of multimodal representa-
 365 tion learning. **In addition, we curate three neurological disorder prediction tasks (epilepsy, transient**
 366 **ischemic attack (TIA), and Parkinson’s disease) as multimodal subsets of M-EEG, where EEG is**
 367 **paired with blood-based biomarkers and/or free-text clinical notes.**

368 **Preprocessing pipeline.** Given the heterogeneity of real-world EEG collections, the datasets in T-
 369 EEG vary substantially in sampling frequency, number of channels, and segment duration. To ensure
 370 fair comparison, we establish a standardized preprocessing pipeline: linear channel mappings are
 371 applied when necessary to align with the pretrained 19-channel montage, and signals are adaptively
 372 truncated or segmented around task-specific annotations to extract meaningful samples. Table 9
 373 details the preprocessing setup for each dataset, with further descriptions provided in Appendix A.

374 4 EEG FOUNDATION MODEL BENCHMARKING 375

376 In this section, using our dataset, we conduct a series of experiments to address three key research
 377 questions: (1) How do state-of-the-art EEG foundation models compare in performance? (Section

378 4.2); (2) How effective is the **M-EEG** dataset for pretraining EEG foundation models? (Section
 379 4.3); (3) To what extent does incorporating multimodality improve performance on EEG-related
 380 downstream tasks? (Section 4.4).

381
 382 **4.1 EXPERIMENT SETTINGS**
 383

384 **Baselines.** We include two state-of-the-art EEG foundation models as baselines. (1) **CBraMOD**
 385 (Wang et al., 2025), a reconstruction-based model was originally pretrained on TUH (TUEG). (2)
 386 **EEGPT** (Wang et al., 2024a), a multi-corpus model was originally pretrained on laboratory datasets
 387 including PhysioNet MI (Goldberger et al., 2000), SEED (Zheng & Lu, 2015), M3CV (Huang et al.,
 388 2022), HGD (Schirrmeister et al., 2017), and TSU (Wang et al., 2016).

389 **Tasks.** We evaluate foundation models on the downstream tasks defined in T-EEG (section 3.3),
 390 spanning both multiclass and binary classification settings. More details for each task are described
 391 in Appendix A.

392 **Metrics.** To ensure consistent and interpretable evaluation across tasks, we report performance
 393 using metrics tailored to the nature of each dataset. For **multiclass classification** tasks (BCIC-2a,
 394 SleepEDF, TUEV, A&MISP, ALS, N-FM), we compute Balanced Accuracy, Cohen’s Kappa, and
 395 Weighted F1, which account for class imbalance and provide a comprehensive view of classification
 396 quality. For **binary classification** tasks (TUAB and PEARL), we report Balanced Accuracy together
 397 with AUROC and AUPR, as these metrics are more informative under skewed class distributions.

398
 399 **4.2 MODEL COMPARISON**
 400

401 We begin by comparing representative EEG foundation model architectures under a unified pretrain-
 402 ing setup. Specifically, all models are pretrained on the P-EEG dataset and then finetuned on the
 403 T-EEG dataset.

404 We report results on four widely recognized tasks, BCIC-2a, TUEV, TUAB, and SleepEDF, spanning
 405 distinct BCI tasks, including motor imagery, seizure detection, abnormal EEG classification, and
 406 sleep staging. Together, these benchmarks cover both cognitive and clinical applications and provide
 407 complementary perspectives on model generalization. Results are summarized in Table 4.

408 Overall, EEGPT tends to outperform CBraMOD across diverse tasks, likely because its auxiliary
 409 alignment loss mitigates mode collapse and yields more discriminative representations, whereas
 410 CBraMOD relies solely on masked prediction

411
 412 **4.3 IMPACTS OF REGIONAL DATA**
 413

414 As illustrated in Fig. 3, on BCIC-2a, which shares characteristics with the pretraining data described
 415 in Table 8, both CBraMOD and EEGPT achieve justifiable performance (balanced accuracy: 0.49
 416 vs. 0.51, Cohen’s kappa: 0.32 vs. 0.34, weighted F1: 0.47 vs. 0.49). In contrast, on A&MISP,
 417 collected under different regional conditions, performance collapses, with balanced accuracy and
 418 F1 reduced by nearly 50% and kappa by more than 95%. To examine regional robustness, we split
 419 P-EEG into two subsets: an out-of-region set collected from the same geographic area as M-EEG,
 420 and an in-region set collected elsewhere. We then design two experiments: (1) adding M-EEG
 421 should not downgrade the performance of models trained on the in-region subset (Table 5), and
 422 (2) adding M-EEG should improve the performance of models trained on the out-of-region subset
 423 (Table 6).

424 Table 5 shows that incorporating M-EEG does not degrade performance on the *in-region* subset.
 425 Across BCIC-2a, TUAB, and TUEV, most metrics either improve or remain stable. For instance,
 426 CBraMOD gains +17.20% balanced accuracy on TUEV and +4.41% on TUAB, while EEGPT im-
 427 proves by +6.39% on BCIC-2a. The few decreases (e.g., EEGPT on Sleep-EDFx, below 3% on
 428 secondary metrics) are marginal and do not alter the overall trend. These results confirm that adding
 429 M-EEG preserves accuracy on benchmarks that have traditionally anchored EEG foundation model
 430 comparisons, ensuring continuity with prior work and demonstrating that regional diversity does not
 431 harm in-region tasks.

Figure 3: Performance comparison on 4-class motor imagery tasks under in-region (ID) and out-of-region (OOD) settings. BCIC-2a serves as the ID dataset, whereas A&MISP represents the OOD dataset from the region represented in M-EEG.

Table 6 highlights the *out-of-region* subset, where the benefits of M-EEG pretraining are pronounced. Both CBraMOD and EEGPT consistently improve, with substantial relative gains on A&MISP (+8.37% balanced accuracy and +190% Cohen’s κ for EEGPT) and ALS (+3.74% BA and +19.43% κ for EEGPT). Even on the high-performing N-FM dataset, where baselines approach ceiling, CBraMOD achieves a +3.92% improvement in balanced accuracy. These findings show that regional coverage not only maintains comparability on in-region tasks but also directly enhances robustness when models are transferred to populations and recording conditions absent from US-centric corpora.

4.4 IMPACTS OF MULTIMODALITY DATA

Multimodal fusion. We integrate blood test results with EEG via a simple cross-attention module: blood biomarkers are projected into the EEG embedding space and used as queries to attend over EEG tokens. More details are presented in Appendix A.2. **To minimize confounding from lab availability and test-ordering patterns, we focus on subjects sharing a common set of blood tests (see Appendix A.3 and A.4).**

4.4.1 EXPERIMENTS RESULTS ON PEARL FOR ALZHEIMER’S RISK PREDICTION

Experiments results. Table 7 reports Alzheimer’s risk prediction on the PEARL dataset across three tasks: MSIT, SMT, and RST. Incorporating blood-based biomarkers alongside EEG consistently improves performance for both CBraMOD and EEGPT. On MSIT, adding BBB yields relative gains of +27.6% balanced accuracy and +37.4% AUPR for CBraMOD, and comparable improvements for EEGPT (+25.1% and +37.6%). Importantly, this +27.6% gain is observed in a setting where the unimodal EEG baseline already achieved balanced accuracy above 0.5, i.e., better than random guessing, underscoring the substantial added value of multimodal integration.

Our preliminary findings demonstrate clear improvements in risk prediction, motivating future work on developing foundation models that seamlessly integrate EEG with other minimally invasive modalities.

4.4.2 EXPERIMENTS RESULTS ON M-EEG FOR NEUROLOGICAL DISORDERS PREDICTION

Experiments results. Table 7 further reports multimodal risk prediction for epilepsy, TIA, and Parkinson’s disease on the M-EEG dataset. Across all three disorders, augmenting EEG with blood-based biomarkers consistently improves performance for both CBraMOD and EEGPT. For epilepsy, multimodal integration yields relative gains of +19.67-22.59% in balanced accuracy, +28.04-40.60% in AUPR, and +26.36-36.35% in AUROC, indicating that BBB features help the models better recover minority-class seizure cases beyond what is achievable from EEG alone.

For TIA, the effect of BBB is particularly pronounced for CBraMOD in terms of AUPR, with a relative improvement of +59.51%, alongside gains of +7.86% in balanced accuracy and +18.74% in AUROC. EEGPT also benefits, though with more moderate improvements, especially in balanced accuracy (+15.00%), AUPR (+7.31%), and AUROC (+7.67%).

Parkinson’s disease exhibits the strongest overall performance: with BBB, both architectures reach AUROC values around 0.95 and AUPR above 0.94, together with relative gains of +20.00-24.53% in balanced accuracy, +22.04-23.32% in AUPR, and +16.58-28.70% in AUROC. In summary, the M-EEG experiments corroborate the findings, showing that blood-based biomarkers provide robust,

486
487
488
489
490
491 Table 5: Comparison of EEG foundation models
492 pretrained on the original datasets versus those
493 trained on **P-EEG**, considering datasets from the
494 different regions with M-EEG.

Tasks	Architectures	Balanced Acc. \uparrow		Kappa / AUPR \uparrow		W. F1 / AUROC \uparrow	
		Perf.	Gain	Perf.	Gain	Perf.	Gain
BCIC-2a	CBraMOD P-EEG	0.4907 0.4978	+1.45% +2.93%	0.3210 0.3304	0.4766 0.4856	+1.89% +1.89%	
	EEGPT P-EEG	0.5051 0.5374	+6.39% +12.38%	0.3402 0.3823	0.4860 0.5138	+5.10% +5.10%	
TUEV	CBraMOD P-EEG	0.3796 0.4449	+17.20% +8.03%	0.4734 0.5114	0.7162 0.7394	+3.24% +3.24%	
	EEGPT P-EEG	0.5431 0.5217	-3.93% +4.10%	0.5361 0.5581	0.7481 0.7680	+2.66% +2.66%	
TUAB	CBraMOD P-EEG	0.5914 0.6175	+4.41% +4.41%	0.5685 0.6167	0.6230 0.6527	+4.77% +4.77%	
	EEGPT P-EEG	0.7891 0.8018	+1.61% +0.58%	0.8749 0.8800	0.8708 0.8826	+1.36% +1.36%	
Sleep-EDF _x	CBraMOD P-EEG	0.7390 0.7512	+1.65% +1.65%	0.7316 0.7258	0.8000 0.7978	-0.28% -0.28%	
	EEGPT P-EEG	0.6356 0.6585	+3.60% +3.60%	0.6117 0.5963	0.7062 0.6976	-1.22% -1.22%	

500
501 Table 7: Neurological disorder prediction across PEARL and M-EEG. Alzheimer’s risk is evaluated
502 on the PEARL dataset, while epilepsy, TIA, and Parkinson’s disease are evaluated on the M-EEG
503 dataset. We compare unimodal EEG (w/o BBB) with multimodal EEG plus blood-based biomarkers
504 (w/ BBB), with teal denoting the relative improvements over the EEG-only baseline.

505
506 Table 6: Comparison of EEG foundation models
507 pretrained on the original datasets versus those
508 trained on **P-EEG**, considering datasets from the
509 same region as M-EEG.

Tasks	Architectures	Balanced Acc.		Kappa		W. F1	
		Perf.	Gain	Perf.	Gain	Perf.	Gain
A&MISP	CBraMOD P-EEG	0.2604 0.2715	+4.26% +11.29%	0.0136 0.0286	0.2523 0.2494	-1.14% -1.14%	
	EEGPT P-EEG	0.2507 0.2716	+8.37% +190.00%	0.0100 0.0290	0.2138 0.2234	+4.49% +4.49%	
ALS	CBraMOD P-EEG	0.3706 0.3715	+0.24% +0.24%	0.1930 0.2018	0.4047 0.4019	-0.69% -0.69%	
	EEGPT P-EEG	0.3577 0.3577	+3.74% +19.43%	0.1850 0.3843	0.3733 0.3843	+2.95% +2.95%	
N-FM	CBraMOD P-EEG	0.9192 0.9553	+3.92% +3.92%	0.9183 0.9548	0.9187 0.9551	+3.96% +3.96%	
	EEGPT P-EEG	0.9979 0.9989	+0.10% +0.10%	0.9979 0.9990	0.9978 0.9989	+0.11% +0.11%	

Tasks	Architectures	Balanced Accuracy		AUPR		AUROC	
		Performance	Gain	Performance	Gain	Performance	Gain
PEARL-MSIT	CBraMOD w/o BBB	0.5283		0.5523		0.5877	
	CBraMOD w/ BBB	0.6743	+27.64%	0.7588	+37.39%	0.7779	+32.36%
PEARL-SMT	EEGPT w/o BBB	0.4615		0.4285		0.4063	
	EEGPT w/ BBB	0.5774	+25.11%	0.5895	+37.57%	0.5976	+47.08%
PEARL-RST	CBraMOD w/o BBB	0.5296		0.4692		0.5040	
	CBraMOD w/ BBB	0.6288	+18.73%	0.6774	+44.37%	0.7156	+41.98%
M-EEG-Epilepsy	EEGPT w/o BBB	0.4746		0.4132		0.4222	
	EEGPT w/ BBB	0.5627	+18.56%	0.6109	+47.85%	0.5651	+33.85%
M-EEG-TIA	CBraMOD w/o BBB	0.4504		0.4445		0.4580	
	CBraMOD w/ BBB	0.6960	+54.52%	0.7772	+74.84%	0.7783	+69.93%
M-EEG-Parkinson	EEGPT w/o BBB	0.4366		0.3925		0.3949	
	EEGPT w/ BBB	0.5753	+31.77%	0.5985	+52.48%	0.5483	+38.85%
M-EEG-Epilepsy	CBraMOD w/o BBB	0.5248		0.4262		0.5142	
	CBraMOD w/ BBB	0.6280	+19.67%	0.5457	+28.04%	0.7011	+36.35%
M-EEG-TIA	EEGPT w/o BBB	0.5144		0.4126		0.5494	
	EEGPT w/ BBB	0.6306	+22.59%	0.5801	+40.60%	0.6942	+26.36%
M-EEG-Parkinson	CBraMOD w/o BBB	0.5266		0.4003		0.6234	
	CBraMOD w/ BBB	0.5680	+7.86%	0.6385	+59.51%	0.7402	+18.74%
M-EEG-TIA	EEGPT w/o BBB	0.5446		0.5269		0.5776	
	EEGPT w/ BBB	0.6263	+15.00%	0.5654	+7.31%	0.6219	+7.67%
M-EEG-Parkinson	CBraMOD w/o BBB	0.5556		0.7850		0.7396	
	CBraMOD w/ BBB	0.6667	+20.00%	0.9681	+23.32%	0.9519	+28.70%
M-EEG-Parkinson	EEGPT w/o BBB	0.6157		0.7755		0.8153	
	EEGPT w/ BBB	0.7667	+24.53%	0.9464	+22.04%	0.9505	+16.58%

523
524 architecture-agnostic gains across diverse neurological disorders, particularly on clinically challenging
525 tasks.

5 CONCLUSION

529 In this study, we present M-EEG, a novel multimodal EEG dataset collected from two hospitals
530 outside the United States. To support large-scale modeling, we further curated and standardized
531 existing public EEG datasets into two complementary resources: P-EEG, designed for pretraining
532 EEG foundation models, and T-EEG, a suite of task-oriented datasets tailored for finetuning models
533 on specific applications. Leveraging these datasets, we conducted a comprehensive evaluation
534 of the two most advanced EEG foundation models to date. Beyond benchmarking, we also investi-
535 giate the benefits of pretraining on M-EEG and demonstrate that incorporating multimodal EEG
536 substantially boosts downstream predictive performance across multiple neurological disorders,
537 including Alzheimer’s disease, epilepsy, transient ischemic attack (TIA), and Parkinson’s disease. In
538 the future, we plan to further enrich M-EEG through larger-scale, longitudinal data collection and to
539 explore foundation models that integrate EEG with multiple minimally invasive modalities, aiming
540 toward clinically reliable multimodal foundation models.

540 REPRODUCIBILITY STATEMENT
541

542 All data used in this study were collected in full compliance with the hospital’s internal regulations
543 and ethical guidelines for handling patient and participant information. The dataset employed in this
544 work was provided by the collaborating hospital with explicit authorization for scientific research
545 purposes. With respect to data sharing, the ownership and governance of the original clinical dataset
546 rest with the hospital. Consequently, requests for access to this dataset for research purposes can be
547 directed to the hospital, which will evaluate and share the data in accordance with its regulations,
548 approval procedures, and confidentiality safeguards. If access is approved, the data will be retrieved
549 from a secure cloud environment managed by the hospital (or its authorized provider) and made
550 available only under controlled conditions, ensuring full compliance with data protection, privacy,
551 and security standards. Upon acceptance, we will additionally upload a controlled-access data re-
552 quest form for M-EEG, which researchers can use to request access in accordance with our data-use
553 requirements and the hospital’s regulations.

554 REFERENCES
555

556 Bruno Aristimunha, Dung Truong, Pierre Guetschel, Seyed Yahya Shirazi, Isabelle Guyon, Alexan-
557 dre R. Franco, Michael P. Milham, Aviv Dotan, Scott Makeig, Alexandre Gramfort, Jean-Remi
558 King, Marie-Constance Corsi, Pedro A. Valdés-Sosa, Amit Majumdar, Alan Evans, Terrence J Se-
559 jnowski, Oren Shriki, Sylvain Chevallier, and Arnaud Delorme. Eeg foundation challenge: From
560 cross-task to cross-subject eeg decoding, 2025. URL <https://arxiv.org/abs/2506.19141>.

561 Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert Müller, and Gabriel Curio.
562 The non-invasive berlin brain–computer interface: fast acquisition of effective performance in
563 untrained subjects. *NeuroImage*, 37(2):539–550, 2007.

564 Ian Charest, Peter Brotherwood, Mathias Salvas-Hebert, Kendrick Kay, and Frédéric Gosselin. Neu-
565 ral activity resolved in space and time through fusion of large-scale eeg and fmri datasets. *Journal
566 of Vision*, 25(9):2653, 2025. doi: 10.1167/jov.25.9.2653.

567 Chowtapalle Anuraag Chetty, Harsha Bhardwaj, G. Pradeep Kumar, T. Devanand, C. S. Aswin
568 Sekhar, Tuba Aktürk, Ilayda Kiyi, Görsev Yener, Bahar Güntekin, Justin Joseph, and Chin-
569 nakkaruppan Adaikan. Eeg biomarkers in alzheimer’s and prodromal alzheimer’s: a com-
570 prehensive analysis of spectral and connectivity features. *Alzheimer’s Research & Therapy*, 16(1):
571 236, 2024. doi: 10.1186/s13195-024-01582-w. URL <https://alzres.biomedcentral.com/articles/10.1186/s13195-024-01582-w>. Open access.

572 Sylvain Chevallier, Igor Carrara, Bruno Aristimunha, Pierre Guetschel, Sara Sedlar, Bruna Lopes,
573 Sébastien Velut, Salim Khazem, and Thomas Moreau. The largest eeg-based bci reproducibility
574 study for open science: the moabb benchmark, 2024. URL <https://arxiv.org/abs/2404.15319>.

575 Mohammad-Javad Darvishi-Bayazi, Mohammad Sajjad Ghaemi, Timothee Lesort, Md. Rifat Are-
576 fin, Jocelyn Faubert, and Irina Rish. Amplifying pathological detection in eeg signaling path-
577 ways through cross-dataset transfer learning. *Computers in Biology and Medicine*, 169:107893,
578 February 2024. ISSN 0010-4825. doi: 10.1016/j.combiomed.2023.107893. URL <http://dx.doi.org/10.1016/j.combiomed.2023.107893>.

579 Paolo Detti. Siena scalp eeg database. *physionet*, 10:493, 2020.

580 Piotr Dzianok and Ewa Kublik. Pearl-neuro database: Eeg, fmri, health and lifestyle data of
581 middle-aged people at risk of dementia. *Scientific Data*, 11(1):276, 2024. doi: 10.1038/s41597-024-03106-5.

582 Matteo Ferrante, Tommaso Boccato, Grigorii Rashkov, and Nicola Toschi. Towards neural founda-
583 tion models for vision: Aligning eeg, meg, and fmri representations for decoding, encoding, and
584 modality conversion, 2024. URL <https://arxiv.org/abs/2411.09723>.

594 Jean-Christophe Gagnon-Audet, Kartik Ahuja, Mohammad-Javad Darvishi-Bayazi, Pooneh
 595 Mousavi, Guillaume Dumas, and Irina Rish. Woods: Benchmarks for out-of-distribution gen-
 596 eralization in time series, 2023. URL <https://arxiv.org/abs/2203.09978>.

597

598 Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
 599 Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
 600 physiobank, and physionet: components of a new research resource for complex physiologic
 601 signals. *Circulation*, 101(23):e215–e220, 2000.

602 Krzysztof J. Gorgolewski, Tibor Auer, Vince D. Calhoun, R. Cameron Craddock, Samir Das, Eu-
 603 gene P. Duff, Guillaume Flandin, Satrajit S. Ghosh, Tristan Glatard, Yaroslav O. Halchenko,
 604 Daniel A. Handwerker, Michael Hanke, David Keator, Xiangrui Li, Zachary Michael, Camille
 605 Maumet, B. Nolan Nichols, Thomas E. Nichols, John Pellman, Jean-Baptiste Poline, Ariel
 606 Rokem, Gunnar Schaefer, Vanessa Sochat, William Triplett, Jessica A. Turner, Gaël Varo-
 607 quaux, and Russell A. Poldrack. The brain imaging data structure, a format for organizing
 608 and describing outputs of neuroimaging experiments. *Scientific Data*, 3:160044, 2016. doi:
 609 10.1038/sdata.2016.44.

610 Danny Dongyeop Han, Ahhyun Lucy Lee, Taeyang Lee, Yonghyeon Gwon, Sebin Lee, Seongjin
 611 Lee, David Keetae Park, Shinjae Yoo, Jiook Cha, and Chun Kee Chung. Diver-0 : A fully channel
 612 equivariant eeg foundation model, 2025. URL <https://arxiv.org/abs/2507.14141>.

613

614 Gan Huang, Zhenxing Hu, Weize Chen, Shaorong Zhang, Zhen Liang, Linling Li, Li Zhang, and
 615 Zhiguo Zhang. M3cv: A multi-subject, multi-session, and multi-task database for eeg-based
 616 biometrics challenge. *NeuroImage*, 264:119666, 2022.

617 Weibang Jiang, Liming Zhao, and Bao liang Lu. Large brain model for learning generic represen-
 618 tations with tremendous EEG data in BCI. In *The Twelfth International Conference on Learning
 619 Representations*, 2024. URL <https://openreview.net/forum?id=QzTpTRVtrP>.

620

621 B. Kemp, A.H. Zwinderman, B. Tuk, H.A.C. Kamphuisen, and J.J.L. Oberye. Analysis of a sleep-
 622 dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg. *IEEE Transactions
 623 on Biomedical Engineering*, 47(9):1185–1194, 2000. doi: 10.1109/10.867928.

624 Hassan Aqeel Khan, Rahat Ul Ain, Awais Mehmood Kamboh, Hammad Tanveer Butt, Saima
 625 Shafait, Wasim Alamgir, Didier Stricker, and Faisal Shafait. The nmt scalp eeg dataset: an
 626 open-source annotated dataset of healthy and pathological eeg recordings for predictive modeling.
Frontiers in neuroscience, 15:755817, 2022.

627

628 Louis Korczowski, Martine Cederhout, Anton Andreev, Grégoire Cattan, Pedro Luiz Coelho Ro-
 629 drigues, Violette Gautheret, and Marco Congedo. *Brain Invaders calibration-less P300-based
 630 BCI with modulation of flash duration Dataset (bi2015a)*. PhD thesis, GIPSA-lab, 2019.

631

632 Demetres Kostas, Stephane Aroca-Ouellette, and Frank Rudzicz. Bendl: using transformers and a
 633 contrastive self-supervised learning task to learn from massive amounts of eeg data. *Frontiers in
 634 Human Neuroscience*, 15:653659, 2021.

635

636 Matthew D Luciw, Ewa Jarocka, and Benoni B Edin. Multi-channel EEG recordings during 3,936
 637 grasp and lift trials with varying weight and friction. *Scientific Data*, 1(1):1–11, 2014.

638

639 Chau Ma Thi, Hoang-Anh Nguyen The, Kien Nguyen Minh, Long Vu Thanh, Hieu Nguyen Dinh,
 640 Nhu-Y Huynh Thi, Thanh-Huong Ha Thi, Trong-Nghia Hoang Tien, Doan-Truc Au Dao, Kim-
 641 Long Nguyen Hoang, Vy Huynh Kha, and Tuyet-Linh Le Hoang. Uet175: Eeg dataset of motor
 642 imagery tasks in vietnamese stroke patients. *Frontiers in Neuroscience*, Volume 19 - 2025, 2025.
 643 ISSN 1662-453X. doi: 10.3389/fnins.2025.1580931. URL <https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1580931>.

644

645 Scott Makeig, Anthony Bell, Tzyy-Ping Jung, and Terrence J Sejnowski. Independent compo-
 646 nent analysis of electroencephalographic data. In D. Touretzky, M.C. Mozer, and M. Has-
 647 selmo (eds.), *Advances in Neural Information Processing Systems*, volume 8. MIT Press,
 1995. URL https://proceedings.neurips.cc/paper_files/paper/1995_file/754dda4b1ba34c6fa89716b85d68532b-Paper.pdf.

648 Perrin Margaux, Maby Emmanuel, Daligault Sébastien, Bertrand Olivier, and Mattout Jérémie. Ob-
 649 jective and subjective evaluation of online error correction during p300-based spelling. *Advances*
 650 in *Human-Computer Interaction*, 2012(1):578295, 2012.

651

652 Davide Vito Moretti. Association of eeg, mri, and regional blood flow biomarkers is predictive of
 653 prodromal alzheimer's disease. *Neuropsychiatric Disease and Treatment*, 11:2779–2791, 2015.
 654 doi: 10.2147/NDT.S93253. URL <https://doi.org/10.2147/NDT.S93253>.

655 Neurogught. 94 vietnamese characters eeg dataset (female). <https://www.kaggle.com/datasets/neurogught/94-vietnamese-characters-eeg-dataset-female>,
 656 2023. Accessed: 2025-09-25.

657

658 Thi Duyen Ngo, Hai Dang Kieu, Minh Hoa Nguyen, The Hoang-Anh Nguyen, Van Mao Can,
 659 Ba Hung Nguyen, and Thanh Ha Le. An eeg & eye-tracking dataset of als patients & healthy
 660 people during eye-tracking-based spelling system usage. *Scientific Data*, 11(1):664, 2024.
 661 ISSN 2052-4463. doi: 10.1038/s41597-024-03501-y. URL <https://doi.org/10.1038/s41597-024-03501-y>.

662

663 Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. *Frontiers in neuro-
 664 science*, 10:196, 2016.

665

666 Arman Savran¹, Koray Ciftci¹, Guillame Chanel, Javier Cruz Mota, Luong Hong Viet, Bülent
 667 Sankur¹, Lale Akarun¹, Alice Caplier, and Michele Rombaut. Emotiondetection in the loop from
 668 brain signals and facial images. *Proceedings of the eINTERFACE 2006 Workshop*, 2006.

669

670 Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin
 671 Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and
 672 Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualiza-
 673 tion. *Human Brain Mapping*, aug 2017. ISSN 1097-0193. doi: 10.1002/hbm.23730. URL
<http://dx.doi.org/10.1002/hbm.23730>.

674

675 Khalid F Shad, Yadollah Aghazadeh, Sajjad Ahmad, and Bernard Kress. Peripheral markers of
 676 alzheimer's disease: Surveillance of white blood cells. *Synapse*, 67(9):541–543, 2013. doi:
 10.1002/syn.21667.

677

678 Chenxi Sun, Jin Jing, Niels Turley, Callison Alcott, Wan-Yee Kang, Andrew J. Cole, Daniel M.
 679 Goldenholz, Alice Lam, Edilberto Amorim, Catherine Chu, Sydney Cash, Valdery Moura Ju-
 680 nior, Aditya Gupta, Manohar Ghanta, Bruce Nearing, Fábio A. Nascimento, Aaron Struck, Jen-
 681 nifer Kim, Shadi Sartipi, Alexandra-Maria Tauton, Marta Fernandes, Haoqi Sun, Grace Bayas,
 682 Kaileigh Gallagher, Joost B. Wagenaar, Nishant Sinha, Christopher Lee-Messer, Christine Tsien
 683 Silvers, Bharath Gunapati, Jonathan Rosand, Jurriaan Peters, Tobias Loddenkemper, Jong Woo
 684 Lee, Sahar Zafar, and M. Brandon Westover. Harvard electroencephalography database: A com-
 685 prehensive clinical electroencephalographic resource from four boston hospitals. *Epilepsia*, 2025.

686

687 Mastaneh Torkamani-Azar, Sumeyra Demir Kanik, Serap Aydin, and Mujdat Cetin. Prediction of
 688 reaction time and vigilance variability from spatio-spectral features of resting-state eeg in a long
 689 sustained attention task. *IEEE journal of biomedical and health informatics*, 24(9):2550–2558,
 2020.

690

691 Logan Trujillo. Raw EEG Data, 2020. URL <https://doi.org/10.18738/T8/SS2NHB>.
 Dataset.

692

693 Logan T Trujillo, Candice T Stanfield, and Ruben D Vela. The effect of electroencephalogram
 694 (eeg) reference choice on information-theoretic measures of the complexity and integration of
 695 eeg signals. *Frontiers in neuroscience*, 11:425, 2017.

696

697 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. EEGPT: Pretrained
 698 transformer for universal and reliable representation of EEG signals. In *The Thirty-eighth Annual
 699 Conference on Neural Information Processing Systems*, 2024a. URL <https://openreview.net/forum?id=lvS2b8CjG5>.

700

701 Jiquan Wang, Sha Zhao, Haiteng Jiang, Shijian Li, Tao Li, and Gang Pan. Generalizable sleep
 702 staging via multi-level domain alignment. In *Proceedings of the AAAI Conference on Artificial
 Intelligence*, volume 38, pp. 265–273, 2024b.

702 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and Gang
 703 Pan. CBramod: A criss-cross brain foundation model for EEG decoding. In *The International
 704 Conference on Learning Representations*, 2025. URL [https://openreview.net/forum?
 705 id=NPNUHgHF2w](https://openreview.net/forum?id=NPNUHgHF2w).

706 Yijun Wang, Xiaogang Chen, Xiaorong Gao, and Shangkai Gao. A benchmark dataset for ssvep-
 707 based brain-computer interfaces. *IEEE Transactions on Neural Systems and Rehabilitation En-
 708 gineering*, 25(10):1746–1752, 2016.

709

710 Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
 711 the wild. In *Advances in Neural Information Processing Systems*, volume 36, pp. 78240–78260,
 712 2023.

713 Jin Yin, Aiping Liu, Chang Li, Ruobing Qian, and Xun Chen. A gan guided parallel cnn and
 714 transformer network for eeg denoising. *IEEE Journal of Biomedical and Health Informatics*, 29
 715 (6):3930–3941, 2025. doi: 10.1109/JBHI.2023.3277596.

716

717 Zhizhang Yuan, Fanqi Shen, Meng Li, Yuguo Yu, Chenhao Tan, and Yang Yang. Brainwave: A
 718 brain signal foundation model for clinical applications, 2024. URL [https://arxiv.org/
 719 abs/2402.10251](https://arxiv.org/abs/2402.10251).

720 Daoze Zhang, Zhizhang Yuan, YANG YANG, Junru Chen, Jingjing Wang, and Yafeng
 721 Li. Brant: Foundation model for intracranial neural signal. In A. Oh, T. Nau-
 722 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural
 723 Information Processing Systems*, volume 36, pp. 26304–26321. Curran Associates, Inc.,
 724 2023. URL [https://proceedings.neurips.cc/paper_files/paper/2023/
 725 file/535915d26859036410b0533804cee788-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/535915d26859036410b0533804cee788-Paper-Conference.pdf).

726 Daoze Zhang, Zhizhang Yuan, Junru Chen, Kerui Chen, and Yang Yang. Brant-x: A unified physio-
 727 logical signal alignment framework, 2024. URL <https://arxiv.org/abs/2409.00122>.

728

729 Guo-Qiang Zhang, Licong Cui, Remo Mueller, Shiqiang Tao, Matthew Kim, Michael Rueschman,
 730 Sara Mariani, Daniel Mobley, and Susan Redline. The national sleep research resource: towards
 731 a sleep data commons. *Journal of the American Medical Informatics Association*, 25(10):1351–
 732 1358, 2018.

733 Pengfei Zhang, Qian Wang, Shu-Dong Chen, Qihao-Hua Guo, Xia-Pheng Cao, Lan Tan, and Jin-Tai
 734 Yu. Peripheral immune cells and cerebrospinal fluid biomarkers of alzheimer’s disease pathology
 735 in cognitively intact older adults: The cable study. *Journal of Alzheimer’s Disease*, 87(3):721–
 736 730, 2022. doi: 10.3233/JAD-220236.

737 Wei-Long Zheng and Bao-Liang Lu. Investigating critical frequency bands and channels for eeg-
 738 based emotion recognition with deep neural networks. *IEEE Transactions on autonomous mental
 739 development*, 7(3):162–175, 2015.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 Table 8: Summary of recent state-of-the-art architectures for EEG Foundation Models and their
759 original corresponding pretraining data.
760

761 Architectures	762 Pretraning Datasets
763 CBraMOD	764 TUEG
765 EEGPT	766 PhysioNet MI, HGD, TSU, SEED, M3CV
767 LaBraM	768 a subset of TUEG, BCIC IV-1, EmoBrain, Grasp and Lift, Inria BCIC, Resting State, SPIS Resting, SEED, Siena Scalp, Target vs Non-Target, Raw EEG Data, Private Data
769 BIOT	770 SHHS, a tiny subset from HEEDB
771 BENDR	772 TUEG

773 **A.1 FINE-TUNING ON DOWNSTREAM TASKS**
774

775 We load the pre-trained weights of **M-EEG** and replace the reconstruction head with a task-specific
776 head which is composed of multi-layer perceptrons. Here the learned EEG representations are
777 flattened and fed into the task-specific head for downstream tasks. Then we fine-tune **M-EEG**
778 in downstream datasets. **We employ binary cross-entropy (BCE) loss for binary classification,**
779 **cross-entropy loss for multi-class classification.** More hyperparameters for **M-EEG** fine-tuning
780 on downstream datasets are shown in Table 10. **For fair evaluation, we have extensively built a**
781 **subject-wise cross-evaluation scheme, in which all subjects are partitioned into N folds for the**
782 **validation set or the test set.** For example, we conduct N fine-tunings; in each of them, one fold is
783 **held out as the test set while the remaining folds are used for training and validation.**

784 **A.1.1 BCIC-2A**
785

786 **Description & Preprocessing.** BCIC-2A consists of data from 9 subjects doing trials of 4 different
787 motor imagery tasks. These tasks are motor imagery of the left hand (Class 1), right hand (Class
788 2), feet (Class 3), and tongue (Class 4). Each subject performs two sessions on different days, with
789 each session consisting of 288 trials. We apply a band-pass filter from 0 to 38 Hz, sampling rate at
790 200 Hz, and 4-second window sample (800 data points).

791 **Evaluation.** We adopt a leave-one-subject-out (LOSO) cross-validation protocol. We perform 9
792 fine-tunings, each involving a different subject as a testing dataset, and the remaining 8 subjects
793 serve as the training set. We report the test result of the last checkpoint.

794 **A.1.2 TUEV**
795

796 **Description & Preprocessing.** TUEV is a seizure detection dataset, which is a subset of TUEG.
797 This dataset records clinical EEG segments of 6 classes: spike and sharp wave (SPSW), generalized
798 periodic epileptiform discharges (GPED), periodic lateralized epileptiform discharges (PLED), eye
799 movement (EYEM), artifact (ARTF), and background (BCKG). We apply a band-pass filter from
800 0.1 Hz to 75 Hz and a notch filter at 60Hz, sampling rate of 200 Hz, and 5-second window sample
801 (1000 data points).

802 **Evaluation.** As TUEV has its own evaluation set, which we regard as the test set. We adopt the
803 proposed cross-validation protocol for validation sets by splitting all subjects into 4 folds. We then
804 conduct 4 fine-tunings, each involving one fold of subjects as a validation set, and the remaining
805 subjects serve as the training set.

806 **A.1.3 SLEEP-EDFx**
807

808 **Description & Preprocessing.** Sleep-EDFx is a sleep stage classification dataset, consisting of
809 data from 78 healthy subjects. This dataset contains 5 classes, corresponding to 5 stages of sleep:

Table 9: Summary of T-EEG and its BCI Tasks.

BCI Task	Dataset	Rate	# Ch. (used)	Duration	# Labels
Motor Imagery	BCIC-2a	250 Hz	22	4s	4
	A&MISP	128 Hz	22	4s	4
	ALS	128 Hz	19	4s	4
Sleep Staging	SleepEDF	100 Hz	2	30s	5
Seizure / Event Detection	TUEV	250 Hz	16	10s	4
Abnormal EEG Detection	TUAB	250 Hz	16	10s	2
Characters Detection	N-FM	512 Hz	1	1s	94
Alzheimer's risk prediction	PEARL	1000 Hz	19	30s	2

Table 10: Hyperparameters for T-EEG fine-tuning

Hyperparameters	Settings
Epochs	50
Batch size	64
Dropout	0.1
Optimizer	AdamW
Learning rate	1e-4
Adam β	(0.9, 0.999)
Adam ϵ	1e-8
Weight decay	5e-2
Scheduler	CosineAnnealingLR
Cosine cycle epochs	50
Minimal learning rate	1e-6
Clipping gradient norm	1

W, N1, N2, N3, REM. We apply a low-pass filter with a cut-off frequency at 30 Hz, sampling rate: 200 Hz, and 30-second window sample (6000 data points) to Sleep-EDFx.

Evaluation. We adopt the proposed subject-wise cross-validation protocol. We split the total dataset into 5 folds with the same number of subjects. We perform 5 fine-tunings, each involving a different fold as a testing dataset, and the remaining 4 folds serve as the training and validation sets. We randomly select training and validation data from these 4 folds, with a val-train ratio of 1:9.

A.1.4 TUAB

Description & Preprocessing. TUAB consists of 409,455 10-second samples of subjects annotated as normal or abnormal (2-label classification). We apply a band-pass filter from 0.1 to 75 Hz, a notch filter at 50 Hz, sampling rate: 200 Hz, and 10-second window sample (2000 data points).

Evaluation. As TUAB has its own evaluation set, which we consider as the test set. We adopt the proposed cross-validation protocol for validation sets. We split all subjects into 4 folds of subjects. We then conduct 4 fine-tunings, each involving one fold of subjects as a validation set, and the remaining subjects serve as the training set. Generally, the train-valid-test ratio is 6:2:2.

A.1.5 A&MISP

Description & Preprocessing. A&MISP consists of 1,881 four-second samples from 30 subjects, each annotated with one of four motor-imagery labels (4-class classification). We apply a band-pass filter from 1 to 50 Hz, a 50 Hz notch filter, re-referencing, per-channel standardization, ICA, and resampling to 200 Hz. Each sample is a 4-second window (800 data points).

Evaluation. We adopt a 5-fold cross-subject validation protocol stratified by gender using the available metadata. The samples from 30 patients are partitioned into five folds so that each fold

864 preserves the male–female ratio. We then conduct 5 fine-tunings, each involving one fold of subjects
 865 as a validation set, and the remaining subjects serve as the training set.
 866

867 **A.1.6 N-FM**
 868

869 **Description & Preprocessing.** N-FM consists of EEG samples recorded at 512 Hz in a character-
 870 recognition experiment, with each sample annotated with one of 94 character classes (94-class clas-
 871 sification). We first select the Fq1 channel, then apply a band-pass filter from 1 to 50 Hz, a 50 Hz
 872 notch filter, re-referencing, per-channel standardization, and resample the data to 200 Hz.

873 **Evaluation.** We adopt a 5-fold cross-class validation protocol over all 94 character classes, jointly
 874 using both male and female recordings. For each class, we partition them into five folds so that each
 875 fold contains approximately the same number of samples for that class, thereby preserving class
 876 balance across folds and gender. We perform 5 fine-tunings, each involving one fold as a validation
 877 set, and the remaining serve as the training set.

878 **A.1.7 EEGET-ALS**
 879

880 **Description & Preprocessing.** EEEGET-ALS contains EEG recordings from six ALS patients and
 881 170 healthy controls, with 32 channels sampled at 256 Hz across nine scenarios involving imagined/execute-
 882 d limb movements, spelling, and rest. In our experiment, we use four labels (lift left
 883 hand, lift right hand, lift leg, rest). We select 19 channels, apply channel-wise demeaning, a 0.3-50
 884 Hz band-pass filter, a 50 Hz notch filter, 4-second windows, resample to 200 Hz (800 data points),
 885 and perform per-channel normalization.

886 **Evaluation.** We adopt a cross-population evaluation protocol that trains on healthy participants
 887 and tests on ALS patients. All healthy subjects are randomly split subject-wise into 85% training
 888 and 15% validation sets, while all ALS subjects are held out exclusively for testing. We perform
 889 5 fine-tunings on data from the healthy training subjects, and use validation dataset used for model
 890 selection.

891 **A.1.8 M-EEG-EPI (EEG + BBB / EEG + TEXT)**
 892

893 **Description & Preprocessing.** M-EEG-EPI comprises two modalities-EEG signals and BBB
 894 features-from 168 subjects performing an epilepsy detection task (2-label classification). For EEG,
 895 we apply a 0.3-75 Hz band-pass filter, a 50 Hz notch filter, resample to 200 Hz, and extract 10-
 896 second windows. For blood-based biomarker features, we apply z-score normalization. Each EEG
 897 window is then complemented with a vector of biomarker features.

898 In the EEG+text configuration, we use a subset of 158 subjects for epilepsy detection. For EEG, we
 899 apply the same preprocessing pipeline as above. Each EEG segment is paired with a same-day non-
 900 contrast brain MRI report. For the text modality, we select each subject’s MRI report and encode it
 901 using the Clinical-T5 model from Google.

902 **Evaluation.** For both configurations, we adopt a subject-wise 5-fold cross-validation protocol.
 903 The available subjects (168 for EEG + BBB and 158 for EEG + text) are split into 5 folds with
 904 (approximately) the same number of subjects. We perform 5 fine-tunings, each involves a different
 905 fold as the test set, while the remaining 4 folds serve as the pool for training and validation. From
 906 these 4 folds, we randomly select training and validation data with a validation-to-training ratio of
 907 2:8.

908 **A.1.9 M-EEG-TIA**
 909

910 **Description & Preprocessing.** M-EEG-TIA comprises two modalities- EEG signals and BBB
 911 features- from 30 subjects for transient ischemic attack (TIA) detection (2-label classification). As
 912 in M-EEG-EPI, for EEG, we apply a 0.3-75 Hz band-pass filter, a 50 Hz notch filter, resample to
 913 200 Hz, and extract 10-second windows (2,000 data points). For blood-based biomarker features, we
 914 apply z-score normalization. Each EEG window is then complemented with a vector of biomarker
 915 features.

916 **Evaluation.** We follow the same subject-wise 5-fold cross-validation protocol as for M-EEG-EPI.
 917 For each run, one fold is held out as the test set, while the remaining 4 folds form the pool for

918
919 Table 11: Comparison of EEGPT with linear mapping to the 19 standard channels (w/ map) versus
920 without linear mapping (w/o map).

Tasks	Architectures	Balanced Accuracy \uparrow		Cohen's Kappa / AUPR \uparrow		Weighted F1 / AUROC \uparrow	
		Performance	Diff.	Performance	Diff.	Performance	Diff.
TUAB	EEGPT	0.8018		0.8808		0.8826	
	w/o map	0.8136	+1.47%	0.8946	+1.57%	0.8916	+1.02%
Sleep-EDFx	EEGPT	0.6585		0.5963		0.6976	
	w/o map	0.6009	-8.75%	0.5556	-6.83%	0.6574	-5.76%

926
927 training and validation. We randomly split windows from these 4 folds into training and validation
928 sets using a 2:8 validation-to-training ratio.

929 A.1.10 M-EEG-PD

931 **Description & Preprocessing (EEG + BBB, PD).** M-EEG-PD is a multimodal downstream dataset
932 extracted from M-EEG, containing two modalities- EEG signal and BBB features- for Parkinson's
933 disease diagnosis (2-label classification). As in M-EEG-EPI and M-EEG-TIA, for EEG, we apply a
934 0.3-75 Hz band-pass filter, a 50 Hz notch filter, resample to 200 Hz, and extract 10-second windows
935 (2,000 data points). For blood-based biomarker features, we apply z-score normalization. Each EEG
936 window is then complemented with a vector of biomarker features.

937 **Evaluation.** We adopt the proposed subject-wise cross-validation protocol. We split the total
938 dataset into 3 folds with the same number of subjects. We perform 3 fine-tunings, each involving a
939 different fold as a testing dataset, and the remaining 2 folds serve as the training sets.

941 A.1.11 ABLATION STUDY WITH LINEAR MAPPING ON EEGPT

943 We conducted additional experiments with EEGPT in which all datasets were fed in their native
944 channel configuration, without any mapping to 19 channels. We used two datasets: Sleep-EDFx (2
945 channels) and TUAB (23 channels). For Sleep-EDFx, signals were passed directly to the encoder
946 and use existing channels embeddings; for TUAB, we added 4 extra channel embeddings.

947 The results in the table 11, indicate that the impact of linear mapping is minimal. For Sleep-EDFx,
948 the performance with linear mapping is slightly better than without it; for TUAB, the performance
949 drop is marginal (approximately 1%).

950 A.2 DETAILS ON MULTIMODAL FUSION FINETUNING

952 **Motivation.** We draw motivation from medical studies indicating that cognitive impairments, such
953 as Alzheimer's disease, are often accompanied by measurable alterations in peripheral blood counts,
954 reflecting changes in both the numbers and proportions of circulating cells (Shad et al., 2013; Zhang
955 et al., 2022; Dzianok & Kublik, 2024). Importantly, blood-based biomarkers provide a low-cost and
956 minimally invasive means of capturing such physiological signals. Inspired by this, we propose a
957 multimodal pipeline that integrates blood test results with EEG data to facilitate earlier detection of
958 cognitive decline and support timely clinical intervention.

959 **Multimodal fusion finetuning.** Formally, let $r \in \mathbb{R}^m$ denote the normalized vector of blood-based
960 biomarkers. We apply a lightweight projection network $MLP(\cdot)$ that maps r into the EEG token
961 embedding space:

$$q = MLP(r) \in \mathbb{R}^d. \quad (1)$$

963 Given EEG embedded tokens $Z = \mathcal{E}_\theta(X) \in \mathbb{R}^{L \times d}$, we implement late fusion by treating q as a
964 query attending to the EEG tokens:

$$\alpha = \text{softmax}\left(\frac{(qW_Q)(ZW_K)^\top}{\sqrt{d_k}}\right), \quad h = \alpha(ZW_V)W_O \in \mathbb{R}^d. \quad (2)$$

965 The resulting cross-modal representation h serves as input to a prediction head for downstream
966 tasks. At a high level, we adopt cross-attention since it enables *adaptive alignment* between
967 biomarker information and EEG dynamics: the biomarker query can selectively attend to the most
968 informative EEG patterns rather than relying on a static combination. This flexibility is particularly
969 important when the contribution of blood-based signals varies across patients or conditions.

972
 973 Table 12: Alzheimer’s risk prediction on the PEARL dataset. We compare unimodal EEG (pre-
 974 trained using P-EEG) with multimodal EEG plus blood-based biomarkers (Concat. and Attention).
 975 Metrics are balanced accuracy, PR-AUC and ROC-AUC. Relative improvements (%) over EEG-only
 976 are shown in the **Gain** columns, with **teal** denoting improvements and **magenta** for drops.
 977

977	Task	Architecture	Metric	978 EEG-Only		979 BBB-Only		980 EEG + BBB (Concat.)		981 EEG + BBB (Attention)	
				982 Perf.	983 Gain	984 Perf.	985 Gain	986 Perf.	987 Gain	988 Perf.	989 Gain
992	PEARL-MSIT	CBraMOD	Balanced Accuracy	0.5283	0.543	0.5515	+4.39%	0.6743	+27.64%		
			AUPR	0.5523	0.526	0.5609	+1.56%	0.7588	+37.39%		
			AUROC	0.5877	0.603	0.6148	+4.61%	0.7779	+32.36%		
		EEGPT	Balanced Accuracy	0.4615	0.543	0.5505	+19.29%	0.5660	+22.64%		
			AUPR	0.4285	0.526	0.5319	+24.13%	0.5789	+35.10%		
			AUROC	0.4063	0.603	0.4974	+22.42%	0.5191	+27.76%		
993	PEARL-SMT	CBraMOD	Balanced Accuracy	0.5296	0.543	0.5492	+3.70%	0.6213	+17.32%		
			AUPR	0.4692	0.526	0.6213	+32.42%	0.6773	+44.35%		
			AUROC	0.5040	0.603	0.6274	+24.48%	0.7156	+41.98%		
		EEGPT	Balanced Accuracy	0.4746	0.543	0.4861	+2.42%	0.5627	+18.56%		
			AUPR	0.4132	0.526	0.5375	+30.08%	0.6109	+47.85%		
			AUROC	0.4222	0.603	0.4855	+14.99%	0.5651	+33.85%		
994	PEARL-RST	CBraMOD	Balanced Accuracy	0.4375	0.543	0.6472	+47.93%	0.6960	+59.09%		
			AUPR	0.4445	0.526	0.7095	+59.62%	0.7772	+74.85%		
			AUROC	0.4580	0.603	0.6839	+49.32%	0.7783	+69.93%		
		EEGPT	Balanced Accuracy	0.4366	0.543	0.4776	+9.39%	0.5753	+31.77%		
			AUPR	0.3925	0.526	0.4127	+5.15%	0.5985	+52.48%		
			AUROC	0.3949	0.603	0.4165	+5.47%	0.5483	+38.85%		

995 A.3 MORE RESULTS ON ALZHEIMER’S RISK PREDICTION ON THE PEARL DATASET

996
 997 In this section, we report additional results on Alzheimer’s risk prediction using the PEARL dataset.
 998 Specifically, we investigate the contribution of blood biomarkers when combined with EEG repre-
 999 sentations extracted from two foundation models (**CBraMod** and **EEGPT**). The goal is to assess
 1000 (i) whether multimodal fusion with blood improves over EEG-only baselines, and (ii) how EEG
 1001 compares to blood-only models in terms of predictive power.

1002 In the PEARL dataset, the BBB includes: leukocytes (white blood cell count), erythrocytes (red
 1003 blood cell count), hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscu-
 1004 lar hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribu-
 1005 tion width (RDW-CV), platelet count, platelet distribution width (PDW), mean platelet volume
 1006 (MPV), platelet large cell ratio (P-LCR), absolute counts of neutrophils, lymphocytes, monocytes,
 1007 eosinophils, and basophils, as well as their relative percentages (neutrophils%, lymphocytes%,
 1008 monocytes%, eosinophils%, basophils%), together with a standard lipid panel comprising total
 1009 cholesterol, HDL-cholesterol, non-HDL cholesterol, LDL-cholesterol, and triglycerides.

1010 In addition to evaluating the original checkpoints of **EEGPT** and **CBraMod**, we also pretrained
 1011 both foundation models on our dataset and repeated the same experiments. This allows us to assess
 1012 whether the observed multimodal gains are consistent across both the original and domain-adapted
 1013 versions of the foundation models.

1014 Table 12 reports results obtained with our domain-adapted checkpoints. We compare EEG-only and
 1015 Blood-only models with multimodal EEG+Blood models (Concat and Attention fusion). Across
 1016 both **CBraMod** and **EEGPT**, attention-based fusion consistently achieves the best performance,
 1017 indicating that selective modality weighting is more effective than simple concatenation. In this
 1018 setting, EEG-only models generally outperform Blood-only models, but combining EEG with blood
 1019 further improves performance, confirming that blood biomarkers provide complementary infor-
 1020 mation for Alzheimer’s risk prediction when integrated with EEG signals.

1021 Table 13 presents the corresponding results for the original (with less clinical information) check-
 1022 points. Here, Blood-only models consistently outperform EEG-only models, and attention-based
 1023 fusion again yields the strongest gains among multimodal strategies. The fact that multimodal
 1024 EEG+Blood models improve over both unimodal baselines in both tables confirms that the ben-
 1025 efit of incorporating blood biomarkers is robust.

1026 Table 13: Alzheimer’s risk prediction on the PEARL dataset. We compare unimodal EEG (using the
 1027 original checkpoints) with multimodal EEG plus blood-based biomarkers (Concat. and Attention).
 1028 Metrics are balanced accuracy, PR-AUC and ROC-AUC. Relative improvements (%) over EEG-only
 1029 are shown in the **Gain** columns, with **teal** denoting improvements and **magenta** for drops.
 1030

1031	Task	Architecture	Metric	1032 EEG-Only		1032 BBB-Only		1032 EEG + BBB (Concat.)		1032 EEG + BBB (Attention)	
				1033 Perf.	1033 Gain	1034 Perf.	1034 Gain	1035 Perf.	1035 Gain	1036 Perf.	1036 Gain
1031	PEARL-MSIT	CBraMOD	Balanced Accuracy	0.4816	0.543	0.5263	+9.28%	0.6373	+32.33%		
			AUPR	0.5597	0.526	0.6013	+7.43%	0.6863	+22.62%		
			AUROC	0.5818	0.603	0.5979	+2.77%	0.7235	+24.36%		
		EEGPT	Balanced Accuracy	0.4550	0.543	0.4968	+9.19%	0.5560	+22.20%		
			AUPR	0.4840	0.526	0.5767	+19.15%	0.6056	+25.12%		
			AUROC	0.4035	0.603	0.4915	+21.81%	0.5023	+24.49%		
1031	PEARL-SMT	CBraMOD	Balanced Accuracy	0.5280	0.543	0.4982	-5.64%	0.6288	+19.09%		
			AUPR	0.4661	0.526	0.5656	+21.35%	0.6043	+29.65%		
			AUROC	0.4985	0.603	0.5946	+19.28%	0.6554	+31.47%		
		EEGPT	Balanced Accuracy	0.4312	0.543	0.4310	-0.05%	0.5226	+21.20%		
			AUPR	0.3982	0.526	0.4462	+12.05%	0.5745	+44.27%		
			AUROC	0.3805	0.603	0.4072	+7.02%	0.5285	+38.90%		
1041	PEARL-RST	CBraMOD	Balanced Accuracy	0.4504	0.543	0.5606	+24.47%	0.5793	+28.62%		
			AUPR	0.3927	0.526	0.6600	+68.07%	0.6666	+69.75%		
			AUROC	0.3997	0.603	0.6098	+52.56%	0.6416	+60.52%		
		EEGPT	Balanced Accuracy	0.3952	0.543	0.4096	+3.64%	0.5722	+44.79%		
			AUPR	0.3556	0.526	0.3910	+9.96%	0.4856	+36.56%		
			AUROC	0.3281	0.603	0.3742	+14.05%	0.4310	+31.36%		

1046 A.4 MORE DETAILS ON NEUROLOGICAL DISORDERS PREDICTION

1047 **1049 Lab values panel.** In the M-EEG cohort, the BBB vector is constructed routine blood tests. Specifically, it includes absolute and relative counts of basophils, eosinophils, lymphocytes, monocytes, and neutrophils; hemoglobin, platelet count, red blood cell count, white blood cell count, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), and mean platelet volume (MPV); serum electrolytes, including sodium (Na⁺), potassium (K⁺), and chloride (Cl⁻); liver enzymes alanine aminotransferase (ALT/GPT), aspartate aminotransferase (AST/GOT), and gamma-glutamyl transferase (GGT); renal and nitrogen-metabolism markers (serum creatinine, blood urea); uric acid; total calcium; a lipid profile comprising total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides; as well as glucose and glycated hemoglobin (HbA1c) as markers of short- and long-term glycemic status.

1050 **1060 Ablation study on the impact of free-text clinical notes.** We further demonstrate the value of the added text modality. In our setting, the text corresponds to free-text clinical notes that summarize MRI findings for each patient, for example, “Chronic small-vessel white-matter changes in the periventricular region and bilateral centrum semiovale. Right maxillary sinus retention cyst”. We adopt the same late-fusion finetuning strategy as for the blood modality. Specifically, each text sentence is fed into a T5 encoder, whose outputs are used as query vectors to attend to the EEG encoder representations. As shown in Table 14, without textual information, the models perform only slightly better than random guessing; once text is incorporated, their performance improves substantially, with CBraMOD gaining 17.66% and EEGPT gaining 31.97% in balanced accuracy.

1069 Table 14: **1070 Ablation study for Neurological disorders prediction on the M-EEG dataset.** We compare 1071 unimodal EEG (Base) multimodal EEG plus free-text clinical notes (w/ Text), with teal denotes the 1072 relative improvements over the EEG-only baseline.

1073	Tasks	Architectures	1074 Balanced Accuracy		1074 AUPR		1074 AUROC	
			1075 Performance	1075 Gain	1076 Performance	1076 Gain	1077 Performance	1077 Gain
1073	Epilepsy	CBraMOD	Base	0.5282	0.4317	0.5550		
			w/ Text	0.6215	+17.66%	0.5846	+35.42%	0.6233
		EEGPT	Base	0.5120	0.4058	0.5056		
			w/ Text	0.6757	+31.97%	0.6783	+67.15%	0.7194

1080 A.5 ANALYSIS OF DISTRIBUTIONAL DIFFERENCES ACROSS INSTITUTIONS
10811082 To address potential sampling biases, we analyzed the data characteristics from the two participating
1083 institutions. However, a direct comparison of patient demographics was not feasible. Due to differ-
1084 ing data collection and privacy protocols, demographic information (age, gender) was not available
1085 for Hospital A and was only partially available (2,185 of 5,134 subjects having age label, 5,104 of
1086 5,134 subjects having gender label) for Hospital B.1087 Our analysis therefore focuses on (1) reporting the available demographic subset from Hospital B,
1088 and (2) quantifying the clear inter-institutional differences in recording statistics and equipment
1089 configurations.1090 1091 A.5.1 AVAILABLE PATIENT DEMOGRAPHICS (HOSPITAL B)
10921093 As stated, demographic data for Hospital A was unavailable. We report the statistics for the available
1094 subset of Hospital B in Table 2 and Figure 2. Due to this limitation, a direct statistical comparison of
1095 demographics between sites could not be performed.1096 Based on the available records from Hospital B, the age-labeled subset ($N = 2,185$) ranges from
1097 1 to 104 years, with a median age of 46. Regarding gender ($N = 5,104$), the distribution is im-
1098 balanced: female patients constitute the majority (3,748 subjects; 73.0%), compared to 1,356 male
1099 subjects (26.4%).1100 1101 A.5.2 COMPARISON OF RECORDING STATISTICS AND EQUIPMENT BIAS
11021103 While demographics could not be directly compared, our analysis of recording data and equipment
1104 configurations revealed significant inter-institutional differences.1105 **Recording Statistics:** We analyzed the yearly and duration distributions for both sites.1106 • For Hospital A, the distributions are shown in Figure 4.
1107 • For Hospital B, the distributions are shown in Figure 5.1108 Visually comparing the two, we observe distinct temporal patterns: Hospital A contributed the
1109 majority of its recordings during 2021–2022, whereas Hospital B’s contributions are concentrated in
1110 the more recent 2024–2025 period. This complementary distribution enhances the temporal diver-
1111 sity of the M-EEG dataset. Regarding recording duration, we observe notable differences between
1112 the sites:1113 • **Hospital A:** The recordings have a mean duration of 1,043.54 seconds, with the longest
1114 record lasting 7,975 seconds. The majority of recordings (923 of 947) fall within the range
1115 of 0 to 2,000 seconds.
1116 • **Hospital B:** The recordings are generally shorter, with a mean duration of 163.43 seconds.
1117 However, this site includes significant outliers, with the longest record lasting 48,802 sec-
1118 onds. Similar to Hospital A, the vast majority of records (5,204 of 5,272) have a duration
1119 under 2,000 seconds.1120 **Equipment Bias:** The most pronounced difference is the equipment bias, which we explicitly quan-
1121 tify in Table 3. The institutions used entirely different hardware, resulting in a significant domain
1122 shift in sampling rate (200 Hz vs. 500 Hz) and channel count (22 vs. 44). However, this heterogene-
1123 ity enhances the ecological validity of the dataset. It mirrors the reality of multi-center clinical data,
1124 providing a challenging testbed for developing models that are robust to hardware variations.1125 1126 A.6 DESCRIPTION OF THE BIDS STRUCTURE OF THE DATABASE
11271128 In this study, we organized our database following the **Brain Imaging Data Structure (BIDS)**
1129 **specification**, version 1.8.0. BIDS is a community-driven standard that provides a uniform way to
1130 arrange neuroimaging and physiological datasets, ensuring consistency, interoperability, and repro-
1131 ducibility across studies.

1132 By adopting BIDS v1.8.0, we gain several advantages:

1164

1165

- **Standardization:** Data from different acquisition sites and modalities (e.g., EEG signals, clinical laboratory results) are represented in a consistent format, reducing ambiguity in interpretation.
- **Compatibility:** The dataset can be directly integrated with existing BIDS-aware software tools for preprocessing, quality control, and statistical analysis.
- **Reproducibility:** Researchers can reuse the dataset with minimal manual curation, which facilitates replication studies and meta-analyses.
- **Extensibility:** Beyond EEG recordings, our design includes phenotype-level information (e.g., laboratory test results), enabling multimodal analysis that links neurophysiological data with clinical variables.

1176

1177 At the top level, the dataset is structured according to the BIDS hierarchy, which includes:

1178

- `dataset_description.json`: Contains metadata describing the dataset, its authorship, and BIDS compliance.
- `participants.tsv` and `participants.json`: Contain participant-level demographic and group information.
- `phenotype/`: Contains clinical laboratory test results in `results.tsv` and related metadata in `results.json`.
- `sub-xxxx/`: Contain subject-specific data, including an `eeg/` subfolder with EEG recordings, associated metadata, channel information, and a `sub-xxxx_scans.tsv` file documenting recording timestamps.

1188 This organization ensures that the dataset is self-describing and can be recognized by BIDS-
 1189 compatible tools without requiring additional documentation.
 1190

1191 **A.7 EXTENDED RELATED WORK**

1193 This section positions our work within the broader literature on multimodal EEG benchmarks and
 1194 standardization. A comprehensive comparison of current state-of-the-art and ours is summarized in
 1195 Table 15.

1197 **Benchmarks for EEG and time series.** There are studies that have already standardized multiple
 1198 datasets across regions, groups, and conditions Chevallier et al. (2024); Gagnon-Audet et al.
 1199 (2023); Charest et al. (2025); Aristimunha et al. (2025); Darvishi-Bayazi et al. (2024); Ferrante
 1200 et al. (2024), but their objectives and scopes differ substantially from ours. Our work is the first
 1201 to standardize *multimodal* EEG-based clinical datasets for benchmarking foundation models across
 1202 diverse EEG-related tasks. We create a unified and standardized framework in which each sample
 1203 may include EEG signals alongside zero, one, or multiple clinical modalities (e.g., laboratory
 1204 test results), enabling benchmarking across a broad range of EEG-related downstream tasks under
 1205 a consistent evaluation protocol. For the multimodal datasets in particular, our benchmarking ef-
 1206 fort focuses on *neurological disease diagnosis*, a clinically meaningful and technically challenging
 1207 setting. Among prior works, only Chevallier et al. (2024) and Gagnon-Audet et al. (2023) qualify
 1208 as benchmark efforts: Chevallier et al. (2024) focuses on BCI reproducibility using single-modality
 1209 EEG for BCI control, while Gagnon-Audet et al. (2023) is a cross-domain generalization bench-
 1210 mark across heterogeneous time series where EEG appears only as two datasets and the goal is to
 1211 benchmark domain generalization methods. Thus, neither the dataset scope nor the benchmarking
 1212 objectives overlap with ours.

1212 **Multimodal neuroimaging, physiological signals, and cross-domain EEG.** We contribute the
 1213 first multimodal EEG clinical dataset collected from two hospitals outside the US. Our dataset in-
 1214 cludes paired EEG + laboratory test data, enabling multimodal learning for neurological disease
 1215 tasks. None of the prior works include such multimodality. While Charest et al. (2025) and Fer-
 1216 rante et al. (2024) include EEG/MEG or EEG/fMRI, these modalities come from separate datasets
 1217 and are not aligned within the same sample. In contrast, each sample in our dataset contains mul-
 1218 tiple synchronized clinical modalities, enabling models to learn richer physiological relationships
 1219 that have not been explored in previous benchmarks. The EEG Foundation Challenge Aristimunha
 1220 et al. (2025) constructs a large-scale cohort of EEG recordings with demographic information and
 1221 studies cross-task and cross-subject decoding, including zero-shot cross-domain generalization, but
 1222 it is still built around a single dataset and remains essentially unimodal at the signal level. Darvishi-
 1223 Bayazi et al. (2024) studies cross-dataset transfer learning for pathology detection using TUAB and
 1224 NMT scalp EEG, but the setting is strictly unimodal (EEG only) and framed as transfer between
 1225 two datasets rather than as a general benchmark for EEG foundation models. The Brant series
 1226 Zhang et al. (2023); Yuan et al. (2024); Zhang et al. (2024) further develops foundation models
 1227 for intracranial and scalp brain signals and a unified alignment framework between EEG and other
 1228 physiological signals (EOG, ECG, EMG). Brant Zhang et al. (2023) scales foundation models to in-
 1229 tracranial SEEG by pretraining exclusively on a large private SEEG cohort, targeting invasive neural
 1230 recordings rather than scalp EEG. Brant-2 Yuan et al. (2024) extends this line of work by training
 1231 a unified backbone on both SEEG and EEG (private SEEG + TUEG), but still operates within a
 1232 single-modality neural signal space and does not explore explicit multimodal alignment. Brant-X
 1233 Zhang et al. (2024) moves toward multimodality by jointly modeling EEG with other physiological
 1234 signals (EOG, ECG, EMG) on CAP, ISRUC, and HMC, focusing on cross-signal alignment between
 1235 biosignals rather than fusion multiple modalities.

1234 **Positioning and novelty of our benchmark.** Beyond benchmarking, we propose and validate a new
 1235 multimodal EEG model showing significant performance gains for Alzheimer’s disease prediction.
 1236 Our multimodal fusion model integrates EEG with additional clinical modalities, and our experi-
 1237 ments show that adding complementary modalities yields substantial improvements in Alzheimer’s
 1238 prediction accuracy, demonstrating the scientific value of multimodal EEG integration. While prior
 1239 works address unimodal EEG, cross-modal reconstruction (e.g., EEG→fMRI), unimodal transfer
 1240 learning, or foundation models and alignment frameworks for brain and physiological signals, none
 1241 of them provide multimodal clinical data, a unified benchmark specifically designed for EEG foun-
 1242 dation models, or evidence that multimodality improves disease prediction. In summary, the key

added values of our benchmark are: (i) a clinically oriented, multimodal EEG benchmark not present in prior studies; (ii) a new dataset from two non-US hospitals with paired EEG + lab results per sample; and (iii) a novel multimodal EEG model validated through extensive experiments.

Table 15: Comparison of our multimodal benchmark and standardization pipeline with prior works.

References	Modalities of Each Sample	Datasets	Tasks
Chevallier et al. (2024)	Only EEG	36 publicly available datasets, including motor imagery (14), P300 (15), and SSVEP (7)	Benchmark for BCI reproducibility
Gagnon-Audet et al. (2023)	One type of time series	CAP, SEDFx	Benchmark for out-of-distribution generalization
Charest et al. (2025)	Either EEG or fMRI	Natural Scenes (7T fMRI responses), NSD-EEG (EEG)	EEG-to-fMRI generation
Aristimunha et al. (2025)	EEG and demographic information	1 Dataset: EEG signals (128 channels) recorded from over 3,000 child to young adult	Zero-shot cross-domain generalization
Darvishi-Bayazi et al. (2024)	EEG	Temple University Hospital Abnormal (TUAB), and NUST-MH-TUKL (NMT) scalp EEG	Pathology classification task
Ferrante et al. (2024)	Either EEG, MEG, or fMRI	ImageNetEEG dataset, THINGS-MEG dataset, Natural Scenes Dataset (NSD)	Multimodal alignment
Zhang et al. (2023)	Only SEEG	a private SEEG dataset	Towards foundation models for intracranial neural signal
Yuan et al. (2024)	either SEEG or EEG	a private SEEG dataset, TUEG	Towards foundation models for brain signals
Zhang et al. (2024)	either EEG, EOG, ECG, or EMG	CAP, ISRUC, and HMC	Multimodal alignment
Ours	EEG, lab values and clinical notes	M-EEG, T-EEG, TUEG, NMT Scalp	Multimodal EEG fusion benchmark

A.8 LIMITATIONS

The robustness gains from incorporating regional data are marginal but consistent, indicating steady benefits even at limited scale. These results provide encouraging evidence that regional coverage can enhance generalization, though M-EEG remains smaller than corpora such as TUEG or HEEDB. As we expand data collection to achieve greater balance, future work will more fully explore the role of regional diversity in building robust EEG foundation models.