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ABSTRACT

Neural circuits produce signals that are complex and nonlinear. To facilitate
the understanding of neural dynamics, a popular approach is to fit state space
models (SSM) to data and analyze the dynamics of the low-dimensional latent
variables. Despite the power of SSM in explaining neural circuit dynamics, it
has been shown that these models merely capture statistical associations in the
data and cannot be causally interpreted. Therefore, an important research problem
is to build models that can predict neural dynamics under causal manipulations.
Here, we propose interventional state space models (iSSM), a class of causal
models that can predict neural responses to novel perturbations. We draw on
recent advances in causal dynamical systems and present theoretical results for
the identifiability of iSSM. In simulations of the motor cortex, we show that
iSSM can recover the true latents and the underlying dynamics. In addition, we
illustrate two applications of iSSM in biological datasets. First, we apply iSSM to a
dataset of calcium recordings from ALM neurons in mice during photostimulation
and uncover dynamical mechanisms underlying short-term memory. Second,
we apply iSSM to a dataset of electrophysiological recordings from macaque
dlPFC recordings during micro-stimulation and show that it successfully predicts
responses to unseen perturbations.

1 INTRODUCTION

Understanding neural data requires identifying dynamics underlying it. The principled way to achieve
this is through causal perturbations. When a perturbation is delivered, the activity of perturbed
neurons is dissociated from their upstream neurons, facilitating the inspection of the circuit dynamics
when certain edges are functionally removed from the circuit. This powerful strategy enables testing
sophisticated neural hypotheses. For example, O’Shea et al. (2022) uses perturbations to understand
whether dynamics in the motor cortex are path-following (driven by an upstream brain region), low-
dimensional, or high-dimensional. Another example by Feulner et al. (2022) uses a similar strategy
to investigate whether feedback drives plasticity for rapid learning in the motor cortex. Another study
by Sanzeni et al. (2023) uses optogenetic perturbations to uncover the degree of coupling in the visual
cortex of mice and monkeys. They show through modeling that under strong network coupling, the
perturbations lead to a reshuffling of responses in the circuit.

The main insight of these works is that in the absence of perturbations (i.e. observational regime),
neural dynamics are confined to low-dimensional spaces, and models that are built upon observational
data are not able to capture neural dynamics outside of the low-dimensional space. However, during
perturbations (i.e. interventional regime), the neural state is driven outside of the task space providing
more information about dynamics in the global neural state space (Jazayeri & Afraz, 2017). This
insight allows us to build sophisticated hypotheses that can only be tested using perturbations (Fig. 1).
Interventional studies are critical for determining the causal contribution of neural dynamics to
behavior and perception. For example, a study by Shahbazi et al. (2022) uses electrical stimulation to
manipulate a monkey’s perception using targeted stimulation.

Here, we rest on these ideas and develop a new class of latent variable models that aim to capture
neural dynamics in both observational and interventional regimes. We base our model on the
framework of Causal Inference (CI) (Pearl et al., 2016). Instead of directly modeling the joint
distribution of the data, CI uses structural equations to describe the generative process of the data. In
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Figure 1: Overview. Neural dynamics in observational (top) and interventional (bottom) regimes.
The observational data is confined to a low-dimensional task space whereas the interventional data
explores the state space enabling the testing of causal neural hypotheses.

this framework, interventions are modeled as changing the structural equations. Equivalently, when
an intervention is performed on a node, it is disconnected from all its parents in the generative model,
and its distribution is set to a new distribution. A major benefit of modeling the interventions in this
way is that having access to interventional data allows us to identify the model parameters as we will
see in section 3.3.

Many of the popular models used in neuroscience suffer from identifiability issues (Maheswaranathan
et al., 2019). In one line of work, researchers have developed similarity metrics that are agnostic to
non-identifiability transformations (see Sucholutsky et al. (2023) for a review). However, in many
cases, the model parameters or latent variables are biologically meaningful, and recovering them is
desired. Therefore, the need for developing identifiable models for neuroscience data analysis is an
overarching goal. For example, Zhou & Wei (2020) use an identifiable VAE as opposed to a vanilla
VAE and infer latent variables that encode the geometry of the task in an unsupervised manner.

When modeling time series, specific challenges are involved. These challenges appear both at the
level of structural equations and in modeling the interventions. We will describe our modeling
framework in section 3.1.

2 RELATED WORK

State Space Models To understand neural circuits, a popular strategy is to build low-dimensional
state space models (SSM). Driven by the neural manifold hypothesis, neuroscientists often assume that
neural data lies on a low-dimensional manifold. The challenge then becomes discovering the latent
manifold and characterizing how the dynamics evolve in the low-dimensional space. Subsequently, a
suite of SSMs have been developed covering a wide range of assumptions and applications. A typical
SSM follows a dynamic model and an emission model described by the following equations:

xt+1 = gθ(xt) + ϵt, yt = fθ(xt) + δt, ϵt ∼ p(ϵt), δt ∼ p(δt).

With this general formulation, models depart based on the specification of gθ, fθ, p(ϵt), p(δt). Linear
dynamical systems (LDS) assume that both gθ, fθ are linear and p(ϵt), p(δt) are multivariate normal
distributions. A separate line of work assumes that g is switching linear and develops algorithms that
jointly infer switching times as well as latent states (Petreska et al., 2011; Linderman et al., 2017;
Fox et al., 2008). These models have been successful in particular when there are abrupt changes in
the dynamics.

LDS is known to have a limited capacity to express complex datasets. A method known as
PfLDS (Gao et al., 2016) extends the LDS model by replacing its linear emission model with
an arbitrary nonlinear transformation followed by Poisson noise. It has been argued theoretically
that a linear dynamical system (in a latent space with sufficiently large dimension) followed by a
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nonlinear emission is powerful to model any dynamical system (Koopman, 1931). Therefore PfLDS
has the capacity to fit complex datasets.

Although SSMs have been primarily used for fitting observational data, there has been a few attempts
applying them to interventional data as well. However, responses to perturbations are often modeled
as additive which makes the SSM models non-causal. We will elaborate on this further in Section 3.1.
here we extend upon SSM and provide a complementary view from a causal perspective.

Model Identification in Static Data The emerging field of causal representation learning provides
statistical treatments for recovering the true parameters of statistical models. Most of the developments
correspond to static models and can be broadly categorized into identification using observational
or interventional data. (1) Observational: While early theoretical guarantees have been limited to
linear mixing and asymmetric noise (Comon, 1994), these results have been extended to nonlinear
mixing (Locatello et al., 2019; Xi & Bloem-Reddy, 2023), and nonlinear mixing with observation
noise (e.g. VAEs) (Khemakhem et al., 2020), and multi-environment data (Lachapelle et al., 2023). (2)
Interventional: With access to interventional data, identifiability results can be extended to broader
classes of models. Lippe et al. (2022) show that with sparse interventions we can recover latents up
to permutation, scaling, and offset. Ahuja et al. (2023) utilize independent support properties (Wang
& Jordan, 2021) and provide identifiability guarantees. These results have been further extended
to nonparametric latents with linear and nonlinear mixing functions (von Kügelgen et al., 2023;
Buchholz et al., 2023; Varici et al., 2023).

Model Identification in Dynamic Data More recently theoretical results on statistical model
identification have been extended to Markov models and switching linear dynamical systems (Balsells-
Rodas et al., 2023). These results provide the identification of the model parameters up to a class
of nuisance transformations (e.g. affine). Most relevant to our work are Yao et al. (2022; 2021).
The main shortcoming of these works is that they do not incorporate noise in the observation space,
which is crucial for modeling biological datasets. Previous work can be broadly categorized into
two groups. Some studies consider the transient interventional effects while others investigate the
persistent effects in the stationary regime (Schölkopf & von Kügelgen, 2022; Malinsky & Spirtes,
2018; Besserve & Schölkopf, 2022; Benkő et al., 2018; Malinsky & Spirtes, 2018; Peters et al.,
2022). Hansen & Sokol (2014) uses differential equations as structural equations in dynamical
systems. Ahuja et al. (2021) considers (deterministic) linear dynamics (referred to as mechanism)
and nonlinear emissions (referred to as rendering) and proves that the latent space of such a model is
identifiable from observational data up to mechanism invariances. Lippe et al. (2023) show that for
linear dynamics, if we have access to binary interventional data then the latents are identifiable up to
permutation. Yao et al. (2022); Song et al. (2024) focus on the identification of latent non-stationary
dynamics using observational data. Hyvarinen & Morioka (2016; 2017); Hyvarinen et al. (2019);
Hälvä et al. (2021) focus on extending nonlinear ICA and its identifiability results to temporal settings.
They impose constraints on the mixing function and the latent dynamics to achieve identification
using only observational data.

In addition to the statistical literature on model identification, recent work in dynamical systems
theory has utilized the Koopman theory to find conditions such as sampling frequency for the exact
identification of the continuous time dynamical systems from sampled data (Zeng et al., 2022).

3 METHODS

3.1 INTERVENTIONAL STATE SPACE MODELS

Consider an experiment with N recorded neurons over T time steps repeated for K trials. We denote
neural responses at time t by yt where yt is a N -vector that concatenates the spike counts or calcium
activities of all neurons. We assume the existence of a time-dependent latent variable xt ∈ RD

where D is the dimension of latent space. We present the interventional model and elaborate on its
difference with the observational model.

The first modeling assumption that distinguishes iSSM from SSM is that we assume perturbing
neurons affects the latent dynamics directly, which will consequently affect neural responses in
the next time point according to the emissions model. The second more critical assumption is
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Figure 2: Results on Models of Motor Dynamics. (A) Flow field underlying dynamic attractor
model of motor cortex. (B,C) True (black) and inferred (red) dynamics of the latents xt (B) and
observations yt (C) in the dynamic attractor model. Blue regions in B and C correspond to stimulation
times. (D,E) True (black) and inferred (red) latent (D) and observation (E) dynamics shown in the 2D
state space. Blue dots represent stimulated trajectories. Notice that the latents correspond to the polar
coordinates of the observed trajectories and the observation model transforms latents from polar to
Cartesian coordinates. (F) A synthetic trajectory generated by traversing a circle with constant speed.
The inferred model captures the polar-to-Cartesian transformation without any prior knowledge only
by using interventional data. (G,H) Comparison between SSM (observational model) and iSSM
(ours). Reconstruction correlation between true and inferred latents (G) and observations (H) with
increasing number of interventions are shown. With more interventions iSSM can better identify the
latents. (I-P) Same as above for the Rotational Dynamics model of the motor cortex.

that whenever a neuron is perturbed, its activity is dissociated from all its upstream neurons. This
assumption is easy to incorporate in a linear model, which is achieved by ignoring the columns in
the dynamics matrix corresponding to the perturbed neuron. Denoting the interventional input to
individual channels at time t by ut ∈ RM , we model x,y,u as

xt+1 = 1{But = 0} ⊗Axt +But + ϵt, yt ∼ P (yt|fθ(xt)).

where ϵt ∼ N (0,Q) and ⊗ denotes element-wise multiplication. A ∈ RD×D captures spontaneous
dynamics, while B ∈ RD×M captures the effect of neural perturbations on latent dynamics. Q ∈
RD×D is the covariance and fθ is a generic nonlinear function mapping latents to observations.
If the intervention ut is zero, the model follows spontaneous dynamics, but in the presence of an
intervention, the model decouples the intervened node from its parents. While a non-interventional
variant of this model was developed in prior work (Gao et al., 2016), our main contribution is to
extend the model to the interventional regime and present theoretical results showcasing intriguing
properties of the model. We term this variant of the model interventional SSM or iSSM for short.

3.2 INFERENCE

Since our model involves a nonlinear emission as well as non-conjugate noise model, we resort to
variational inference techniques. Our goal is to infer the posterior distribution pθ(x1:T |y1:T ,u1:T )
while optimizing the parameters θ. We follow the methodology of reparameterization and amortized
inference but adapt some parts to our specific interventional scheme. For a review on variational
methods for state space models see Archer et al. (2015). Denoting the approximate posterior
distribution by qϕ(x1:T ) the ELBO loss function is presented below:

L(ϕ,θ) = Eϵ∼N (0,I)

[
log pθ(y1:T ,u1:T ,x1:T )− log qϕ(x1:T |y1:T ,u1:T )

]
where x is reparameterized as x(ϵ) = µϕ +σϕϵ. The functions µ,σ are typically parameterized by
neural networks (called recognition network) with an architecture that matches the dataset domain.
Here we choose an LSTM for the recognition network.

Another important addition that makes the inference in our model possible is to apply the interven-
tional structure directly in the approximate posterior during training. To do this, we replace µt with
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1{But = 0} ⊗ µt +But during each iteration of optimization. This ensures that the interventional
data indeed manipulates the causal graph consistently in the approximate posterior.

3.3 THEORETICAL RESULTS: ON THE IDENTIFIABILITY OF ISSM

We provide sufficient conditions for the identifiability of iSSMs. We show that, given a sufficient
set of do-interventions, one can identify both the latent dynamics matrix A and the mixing function
fθ(·) of the iSSM. This identifiability of the latent dynamics enables us to extrapolate to novel unseen
interventions.

To identify the latent dynamics of iSSM, we proceed in three steps: (1) identify P ({fθ(xt)}t∈T ) from
the observed data distribution P ({yt}t∈T ); (2) identify fθ and P ({xt}t∈T ) from P ({fθ(xt)}t∈T )
up to affine transformations; (3) further identify fθ and P ({xt}t∈T ) up to permutation, coordinate-
wise shifting and scaling.

Begin with the first step of identifying P ({fθ(xt)}t∈T ) from P ({yt}t∈T ). We make the following
assumptions on the observation model.
Assumption 3.1 (Bounded completeness of P (yt|zt).). The function P (yt|zt)—where zt =
fθ(xt)—is bounded complete in yt. Specifically, a function f(X,Y ) is bounded complete in
Y if

∫
g(X)f(X,Y )dX = 0 implies g(X) = 0 almost surely for any measurable function g(X)

bounded in L1-metric (Yang et al., 2017).

When the observational model satisfies the bounded completeness assumption, we can identify
P ({fθ(xt)}t∈T ) from P ({yt}t∈T ). (We detail the proof in Appendix A.) Many common functions
P (yt|zt) satisfy the bounded completeness condition, including exponential families (Newey &
Powell, 2003), location-scale families (Hu & Shiu, 2018), and nonparametric regression models
(Darolles et al., 2011). It is a common assumption to guarantee the existence and the uniqueness of
solutions to integral equations, most commonly used in nonparametric causal identification in proxy
variables and instrumental variables (Miao et al., 2018; Yang et al., 2017; D’Haultfoeuille, 2011). We
refer the readers to Chen et al. (2014) for a detailed discussion of completeness.

We next proceed to identifying fθ and P ({xt}t∈T ) up to affine transformations. We require the
following assumption on the mixing function fθ.
Assumption 3.2 (Mixing function). The mixing function fθ(·) is piecewise linear, continuous, and
injective.

While the piecewise linear assumption may appear restrictive, we note that it entails flexible choices
of fθ(·), including (deep) ReLU networks that can approximate complicated functions.

We finally leverage the interventional data to achieve coordinate-wise identification of fθ and
P ({xt}t∈T ). We make the following assumptions on the latent dynamics.
Assumption 3.3 (No orphan latents). There does not exist a non-zero vector V such that
Cov(V ⊤xt+1, V

⊤xt) = 0 for all t.

Loosely, this assumption guarantees that no latent dimension in xt is an orphan node, namely a
node that is never affected by itself nor by other nodes. In other words, each latent has at least one
(non-trivial) causal parent from the previous timestep.

We further describe the requirements of the interventions that needs to be performed for identifying
iSSM.
Assumption 3.4 (do-interventions on each latent node). There is at least one do-intervention (i.e.
non-random ut) being performed on each latent dimension of xt.

Assumption 3.4 requires the interventions be do-interventions, which would break all the connections
between some component—xt+1,j for some j—and its causal parents xt. The do-interventions thus
induce the statistical independence between the intervened variables over time. This independence is
the crucial signature we leverage to identify the latent xt and the mixing function fθ(·).
Under these assumptions, we can achieve the identification of iSSM as follows.
Theorem 3.5 (Identifiability of iSSM). Under Assumptions 3.1 to 3.4, the latent dynamics A and
the mixing function of fθ(·) can be identified up to permutation, and coordinate-wise shifting and
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scaling, namely Â = AΛΠ+ c, where Λ is an invertible diagonal matrix, Π is a permutation matrix,
and c is a constant vector. As a consequence, one can also identify the observations’ distribution
P ({yt}t∈T ) under novel unseen ut interventions.

The proof of Theorem 3.5 is in Appendix A. This result establishes the identifiability of iSSM and its
predictive power for unseen interventions. Moreover, it illustrates how interventions can help identify
latent variables via inducing statistical independence among the latents, revealing latent dynamics in
non-linear state-space models.

4 RESULTS

4.1 IDENTIFYING MOTOR CORTICAL DYNAMICS IN SIMULATIONS

To illustrate how iSSM leads to identification, we take inspiration from models of motor cortex. A
key observation in the motor cortex made by multiple groups is the presence of rotational dynam-
ics (Churchland et al., 2012). From a computational perspective, it has been argued that rotational
dynamics provide a basis for motor neuron activations and muscle movements. It has been argued
that rotational basis provides robustness to noise and interventions (Logiaco et al., 2021). Inspired by
these observations and results, multiple dynamical models for the rotational activities in the motor
cortex have been proposed (Laje & Buonomano, 2013; Sussillo et al., 2015). The first model, called
Rotational Dynamics (RD) proposes that the motor cortex has underlying rotational dynamics. As a
result, in this model the rotational dynamics are generated within the motor cortex independent of
input or feedback activity (Fig. 2I; Sussillo et al. (2015)). Eq. 1 describes the dynamics and emissions
of RD.

Rotational Dynamics:
dx

dt
=

[
0

ax1

]
+ ϵt, yt =

[
x1 cos(x2)
x2 sin(x2)

]
+ δt (1)

The second model, called Dynamic Attractor (DA) assumes that the underlying dynamics of the motor
cortex is a rounded attractor. In this model, the rotational dynamics in motor neurons are generated
by some upstream region moving the state along the attractor (Laje & Buonomano, 2013). Eq. 2
describes the dynamics and emissions of DA.

Dynamic Attractor:
dx

dt
=

[
a1x1

a2(1− x2)

]
+ ϵt, yt =

[
(1− x1) cos(x2)
(1− x2) sin(x2)

]
+ δt (2)

While these models have distinct characteristics and propose different underlying circuit mecha-
nisms, Galgali et al. (2023) show that the trial averages of these models can be precisely the same,
limiting our ability to identify the true dynamics of the motor cortex solely from observational data.

O’Shea et al. (2022) refer to these models as low-dimensional vs. path-following dynamical systems
and use an interventional strategy to discover whether the dynamics in the motor cortex follows either
of these regimes. Similarly, here we ask if interventional data can distinguish between these models.
To address this, we generate data from RD and DA. The latent states x(t) in both models follows linear
dynamics, while the observation model in both cases is highly nonlinear. Therefore, recovering the
true latents is not a trivial task. During data generation, We apply repeated interventions interleaved
by resting periods for the network to go back to its stationary state. The dynamics of latents and
observations are shown in Fig. 2B-E,J-M. While in the absence of interventions both models produce
the same trajectories, one can observe that interventional trajectories exhibit distinct characteristics
(Fig. 2E,M).

Consistent with O’Shea et al. (2022) our results suggest that in the presence of interventional data
using the iSSM model one can identify the underlying dynamics and emissions (Fig. 2F,N) and
recover the true latent variables (Fig. 2G,O). This recovery keep improving as we collect more
interventional data emphasizing the importance of perturbation experiments in causal hypothesis
testing (Fig. 2G,O).

4.2 IDENTIFYING DYNAMICS UNDERLYING SHORT-TERM MEMORY IN MICE

Persistent activity is a hallmark of short-term memory across species (Romo et al., 1999; Fuster &
Alexander, 1971). How can a network of neurons produce activities in response to an input stimulus

6
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Figure 3: Results on Mice Dataset. (A) Calcium responses of ALM neurons during stimulation.
The white high-activity band corresponds to the stimulation. (B) Smoothed responses given by the
mean posterior of the model. (C) Latents discovered by the model shown for one trial. The blue bands
correspond to stimulation times. (D) Mean latents for correct vs. incorrect trials. The dynamics of
our identifiable latents distinguish between correct and incorrect trials without any prior knowledge
of the behavior. (E) Flow field inferred by our model shows a slow attractor on the left. When
the state is perturbed to the top right the dynamics quickly push it back to the attractor suggesting
low-dimensional dynamics. (F) Correlation between true and inferred observations for the test (top)
and train (bottom) sessions when with increasing number of latents for both SSM and iSSM models.
(G) The B matrices are consistent across random initializations of the model only for iSSM and not
for SSM. (H) Test (left) and train (right) reconstruction accuracy for iSSM as a function of number of
latents and the sparsity parameter for the B matrix. Both higher sparsity and larger number of latents
improve the accuracy.

that are maintained after the stimulus is removed? Multiple network mechanisms are proposed to
underlie persistent activity. Among those, one popular model is known as Functionally Feedforward
(FF) model (Goldman, 2009). FF assumes that the network constitutes of a few smaller subnetworks
that are connected to each other in feedforward manner. Since these subnetworks do not necessarily
need to form a spatial cluster in the brain, experimentally finding footprints of this type of connectivity
is not feasible. However, theoretical properties of the model has been well-studied. For example, it is
commonly argued that FF results in robustness to structural noise (Qian et al., 2024). An alternative
model for the persistent activity is known as Line Attractor (LA) model (Seung, 1996). Under LA
circuit model, the activity of an upstream region pushes the state of the circuit along the line attractor,
and the dynamics preserves the state until a new input is arrived.

Various sources of non-identifiability make it challenging to recover the true latents and dynamical
mechanisms. We elaborate on two of these sources here.

First, neural recordings are undersampled, meaning that from a large pool of neurons involved in the
computation only a small fraction are recorded. Undersampling (also known as partial observation)
is indeed a significant origin of non-identifiability discussed in the literature (Beiran & Litwin-
Kumar, 2024). A recent theoretical study investigates the effect of undersampling specifically in the
context of persistent activity (Qian et al., 2024). They show that when the network is undersampled,
observational models have a built-in bias for characterizing the model as FF regardless of the
underlying mechanism (Qian et al., 2024).

Second, non-identifiability can be caused by the mixing of input-driven and recurrent activity in
the network (see Galgali et al. (2023) for a more detailed discussion). Lipshutz et al. show that
noise correlations can be used to disentangle input-driven and recurrent activity. Note that noise

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

correlations can be considered as small perturbations around the mean trajectory. Hence, consistent
with Lipshutz et al. our results suggest that interventions are necessary to distinguish between these
hypotheses.

We applied iSSM to a public dataset of targeted photostimulation in the anterior lateral motor cortex
(ALM) of mice during a short-term memory task (Daie et al., 2021). The task included a sample
epoch where an auditory cue guided the mice for a left vs right cue to get water reward. The sample
epoch was followed by a delay epoch of 3 seconds where the mice needed to engage working memory
to keep track of the guided cue. Finally during the response period the mice received the reward if
the lick direction was correct. The photostimulation was delivered during the delay period for a short
amount of time started simultaneously with the delay period or after 1 or 2 seconds.

Calcium recordings were done in 179 identified neurons for 77 repeated trials 3A. There were 8
photostimulation channels targeted to stimulate neurons according to their response selectivity. We
run the model using a latent dimension of 3 for visualization purposes. We set the dimension of
interventional inputs ut to the number of photostimulation channels and fitted the stimulation matrix
B with a sparsity penalty. The smoothed and denoised neural activities are shown in Fig. 3B. The
reconstruction accuracy of the data for both training and testing trials (Fig. 3F) were larger than the
baseline SSM model across a range of hyperparameters (Fig. 3F,H). Furthermore, the latents learned
by the model show distinct mean trajectories for correct vs. incorrect trials suggesting that they
capture behaviorally meaningful dynamics (Fig. 3C,D). Finally, we present the flow-field fitted by
the model which shows a slow mode for observational data and a fast mode for interventional data
pushing the state back towards the attractor (Fig. 3G).

A hallmark of identification is robustness to initialization. To test whether iSSM results in identifiable
latents, we ran the model several times with different random initializations and inferred the latents
as well as the stimulation matrix B. In Fig. 3G we show the consistency of the inferred B matrix
across different seeds. The consistency is computed by first aligning the columns of the B matrix
to account for permutation invariance of the latents, followed by computing the Euclidean distance
between aligned B matrices. The aligned distances are considerably smaller for iSSM compared to
SSM providing evidence for the identifiability.

4.3 GENERALIZING TO NEW INTERVENTIONS IN MACAQUE MONKEYS

Understanding network dynamics to control behavior has been a longstanding challenge in neuro-
science. The overarching goal is to deliver targeted stimulation to a network of neurons to steer
the dynamics or the behavior towards a pre-determined outcome (Haimerl et al., 2023; Jou et al.,
2023). A first step towards understanding the circuit effects or behavioral influences of network
manipulations is to build models that can predict the response to interventions. The space of possible
interventions is combinatorial and intractable to cover. Therefore, an alternative approach is to build
models that can generalize to unseen interventions.

We showed theoretically in section 3.3 that iSSM has this property. Concretely, if we fit the iSSM
model to a interventional data, where the dataset consists of a small set of canonical interventions,
the model is able to generalize to unobserved interventions. To validate this empirically, we showed
results on a synthetic datasets (Fig. 2). Here we want to test whether these results hold in a real
biological dataset.

The dataset consisted of electrophysiological recordings using electrode arrays implanted on the
prefrontal cortex of macaque monkeys during quiet wakefulness (resting) while the animals were
sitting awake in the dark. The electrode array included 96 electrodes that were also used for delivering
micro-circuit electrical stimulations (Nejatbakhsh et al., 2023). We analyzed 6 datasets, 3 with only
observational data and 3 with a combination of observational and interventional data.

In Fig. 4A,D we show firing rates recorded from each of the 96 electrodes for an interventional
(Fig. 4A; the vertical white bars correspond to stimulation times) and observational (Fig. 4D) session.
In each interventional session, two electrodes were repeatedly stimulated while recordings were
performed from all other electrodes. We fit the iSSM model with a latent dimension of D = 2 and
use it to denoise the data (Fig. 4B,E). The inferred flow fields for an interventional and observational
session are shown in Fig. 4D,F respectively. The stimulation matrix B is depicted in Fig. 4I showing
that some electrodes have excitatory and other electrodes have inhibitory causal effects on the latents.
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Figure 4: Results on Monkey Dataset. (A) Unit responses for a training interventional session. (B)
Inferred smooth responses for the same trial in A. (C) Flow field inferred by the model shows attractor
like structure. (D-F) Same as (A-C) for a test observational trial. (G) Comparison between SSM and
iSSM with increasing number of latents for train (left) and test (right) reconstruction accuracy. Both
SSM and iSSM benefit from larger number of latents with iSSM consistently outperforming SSM.
(H) Train (left) and test (right) reconstruction accuracy is shown with varying number of latents and
sparsity parameter for B matrix. In this dataset and intermediate number of latents is desired. (I)
Matrix B inferred by the model showing the effect of stimulating each unit (rows) on each latent
(columns). Some neurons have inhibitory effect on the latent and some have excitatory effect. (J)
Consistency of the inferred B matrix across random initializations only for iSSM and not for SSM.

The reconstruction accuracy on the training and testing session are larger for iSSM compared to
baseline SSM across a range of hyperparameters, suggesting that the model can better generalize to
unseen sessions (Fig. 4G,H).

5 DISCUSSION

5.1 SUMMARY

Here we proposed iSSM, a framework for joint modeling of observational and interventional data.
We provided theoretical results showing that iSSM model when fitted on interventional data leads to
identifiability of latents as well as dynamics and emissions.

To illustrate iSSM’s applicability, we showed results on 3 different examples covering a range
of assumptions. The first example was a synthetic dataset with linear dynamics and nonlinear
emissions. The second example was calcium recordings from mouse ALM region with targeted
photostimulation delivered by channels that did targeted groups of neurons. The third example was
electrophysiological recordings from macaque monkey prefrontal cortex with micro-stimulation
delivered by the same recording electrodes. In all cases, our results show impressive generalization
capabilities and parameter recovery suggesting that when models that are theoretically grounded are
applied to interventional data they are capable of testing sophisticated causal hypotheses.

5.2 LIMITATIONS

In this work, we focused on a generative model that has linear dynamics. While the inference model
can still capture nonlinearities through its recognition network, explicitly modeling nonlinearities
and providing theoretical results is an important limitation of this work. In addition, our results on
biological datasets are mostly exploratory and further validation experiments are required to confirm
these results. We leave these for future work.
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A PROOF OF THEOREM 3.5

We consider the interventional state space model (iSSM),
yt ∼ P (yt|fθ(xt)), (3)

xt+1 = 1{But = 0} ⊗Axt +But + ϵt. (4)

Step I: Identifying the distribution of zt ≜ fθ(xt). We begin with identifying the marginal distri-
bution of P (zt) from P (yt). The core assumption we rely on in this step is bounded completeness,
which we define in Assumption 3.1

The bounded completeness of P (yt|zt) implies that P (zt) is identifiable from P (yt). It is
because P (zt) must be the unique solution to the integral equation

∫
P (yt|zt)P (zt)dzt =

P (yt). Specifically, if there are two solutions to this equation P̂1(zt), P̂2(zt), then they must
be equal. It is due to the bounded completeness of P (yt|zt): the two solutions must satisfy
intP (yt|zt)[P̂1(zt)− P̂2(zt)]dzt = 0, which implies P̂1(zt) = P̂2(zt).

Step 2: Affine identification of fθ(·) and P ({x̂t}t∈T ). In this step, we establish the affine
identification of the mixing function fθ(·) by invoking Theorem 3.5 of Balsells-Rodas et al. (2023):
identifying fθ(·) from P (fθ(xt)) is a special case of identifying the mixing function in a switching
dynamical system.

To enable identification, we require Assumption 3.2. In particular, the mixing function should be a
piece-wise linear function.
Lemma A.1 (Theorem 3.5 of Balsells-Rodas et al. (2023)). Under Assumption 3.2, the mixing
function fθ(·) and the latent distribution P ({x̂t}t∈T ) can be identified from P (fθ(xt)) up to affine
transformation.

This lemma is an instantiation of Theorem 3.5 in Balsells-Rodas et al. (2023) in the special case of
linear transition dynamics.

Step 3: Identification of xt via interventions. The previous step shows that we can identify xt up
to affine transformation. In this step, we show that, if two solutions of xt are affine transformations of
each other, they must coincide if they agree on the interventional distributions, under Assumptions 3.3
and 3.4. This argument implies that the interventional distributions can identify xt (up to permutation,
and coordinate-wise shifting and scaling.)

Concretely, consider two sets of latent variables {xt}t∈T and {x̂t}t∈T where they are affine transfor-
mations of each other

x̂t = Mxt + c, ∀t. (5)
Suppose both sets satisfy Equation (4) across all intervention environments, namely,

xt+1 =1{But = 0} ⊗Axt +But + ϵt, (6)

x̂t+1 =1{B̂ut = 0} ⊗ Âx̂t + B̂ut + ϵ̂t, (7)
where both ϵt, ϵ̂t are i.i.d over time. Then we will prove that M = ΛΠ, where Λ is an invertible
diagonal matrix, and Π is a permutation matrix.

We achieve identification using the following observation. Suppose the jth latent xt,j was intervened
in an environment, namely 1{(But)j = 0} = 0. Then we have

xt,j = (But)j + ϵt,j ∀t, (8)
and thus xt+1,j ⊥ xt for all t. The reason is that the intervention set xt+1,j to be (But)j plus a
random noise component, hence independent of all components of xt.

Below we argue that, if we also find a component j′ of x̂t+1 such that x̂t+1,j′ ⊥ x̂t, then Mj′,−j = 0,
i.e. x̂t+1,j′ must be an affine transformation of xt+1,j .

To make this argument, we write

x̂t+1,j′ = M⊤
j′,−jxt+1,−j +Mj′,jxt+1,j + cj′ , (9)

x̂t,j′ = M⊤
j′,−jxt,−j +Mj′,jxt,j + cj′ . (10)
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Then since x̂t+1,j′ ⊥ x̂t, we have that

Cov(x̂t+1,j′ , x̂t) = 0. (11)

This implies

0 =Cov(x̂t+1,j′ , x̂t) (12)

=Cov(M⊤
j′,−jxt+1,−j +Mj′,jxt+1,j ,M

⊤
j′,−jxt,−j +Mj′,jxt,j) (13)

=Cov(M⊤
j′,−jxt+1,−j ,M

⊤
j′,−jxt,−j) + Cov(M⊤

j′,−jxt+1,−j ,Mj′,jxt,j)

+ Cov(Mj′,jxt+1,j ,M
⊤
j′,−jxt,−j) + Cov(Mj′,jxt+1,j ,Mj′,jxt,j) (14)

=Cov(M⊤
j′,−jxt+1,−j ,M

⊤
j′,−jxt,−j). (15)

The last equation is due to Equation (8). It implies that Mj′,−j = 0 due to Assumption 3.3. In
other words, the j′th dimension of x̂t that achieves the independence property is mapped to the
jth dimension of xt up to scaling and shifting; one can separate out the intervened latent from the
unintervened ones up to permutation, and coordinate-wise shifting and scaling.

Repeating this argument with intervention data on all other latents (Assumption 3.4), we can identify
the whole set of latents up to permutation, and coordinate-wise shifting and scaling, namely M = ΛΠ.

Identifying the latents up to permutation, and coordinate-wise shifting and scaling implies that one
can identify the latent dynamics matrix A also up to permutation, and coordinate-wise shifting and
scaling.

Finally, as a consequence of identifying all parameters of the iSSM, we can predict the observation
distributions for novel unseen interventions ut.
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Figure 5: Supplementary Results on Models of Motor Dynamics. (A) True (left) vs. inferred
(right) flow fields for DA and RT models of the motor system. (B) Latent samples from the generative
model. While the generative samples possess the qualitative features of the models samples from the
recognition model better capture the data. (C) Observation samples from the generative model.
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Figure 6: Testing Between the Two Models. To test whether the iSSM model enables testing
between DA and RD we input both recognition models with the signal shown in blue and generate
trajectories (we only show the second dimension of the input and observations for clarity). We expect
the DA model to generate a sinusoidal while we expect RD to stay close to zero. This result shows
that the recognition models are indeed sufficient for testing the two hypotheses.

B EXPERIMENTAL DETAILS

In this section we present additional detail on the models of motor dynamics (Fig.5,6). Furthermore,
present a new application of iSSM in uncovering mechanisms of working memory in simulations
(Fig. 7).
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Figure 7: Models of Working Memory. Following Qian et al. (2024) here we generate data from
feedforward (FF) and low-rank (LR) models of working memory to test whether iSSM can recover the
true underlying flow field parameterized by the structural connectivity matrix. (A) Signals generated
from FF (top) and LR (bottom) in 5 dimensions. (B) Same data shown in the top 2 PC space. (C)
True dynamics matrix (or structural connectivity) of the models are shown on the left. iSSM recovers
the main characteristic features of these matrices and enables distinguishing between the two models
of working memory.
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