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Figure 1. Overview: InvRGB+L takes RGB and LiDAR sequences as input and outputs a 3D scene with high-fidelity geometry, consistent
albedo across RGB and LiDAR spectra, and roughness. Our representation enables photorealistic object insertion and night simulations.

Abstract

We present InvRGB+L, a novel inverse rendering model that001
reconstructs large, relightable, and dynamic scenes from a002
single RGB+LiDAR sequence. Conventional inverse graph-003
ics methods rely primarily on RGB observations and use004
LiDAR mainly for geometric information, often resulting005
in suboptimal material estimates due to visible light inter-006
ference. We find that LiDAR’s intensity values—captured007
with active illumination in a different spectral range—offer008
complementary cues for robust material estimation under009
variable lighting. Inspired by this, InvRGB+L leverages010
LiDAR intensity cues to overcome challenges inherent in011
RGB-centric inverse graphics through two key innovations:012
(1) a novel physics-based LiDAR shading model and (2)013
RGB–LiDAR material consistency losses. The model pro-014
duces novel-view RGB and LiDAR renderings of urban and015
indoor scenes and supports relighting, night simulations,016
and dynamic object insertions—achieving results that sur-017
pass current state-of-the-art methods in both scene-level ur-018
ban inverse rendering and LiDAR simulation.019

1. Introduction 020

Inverse rendering is challenging because image observa- 021
tions are wildly ambiguous. The same image can be inter- 022
preted as a yellow wall lit by white light or as a wall that 023
is half yellow and half white (Fig. 2); a dark region might 024
be interpreted as a wet area or as a cast shadow. Errors like 025
these in material recovery result in scene renderings that can 026
be jarringly bad. Even strong material priors only partially 027
mitigate these ambiguities (Fig. 2, middle). 028

LiDAR intensity provides strong cues for inverse render- 029
ing. LiDAR sensors emit laser pulses that reflect off sur- 030
faces. As is well known, time-of-flight yields geometry. 031
We demonstrate the returned power (analogous to RGB in- 032
tensity, Fig.2) provides rich surface material information. 033
LiDAR derived material cues are extremely robust to wide 034
changes in illumination conditions, because there is very 035
little cross-talk between the narrow-band infrared used by 036
LiDAR and typical illuminants indoors and outdoors. But 037
material properties change very slowly with wavelength. So 038
LiDAR returned power can, for example, tell that the albedo 039
of the wall in Fig 2 is the same in the darker and lighter re- 040
gions. We show that LiDAR intensity is a powerful cue that 041
disentangles material properties and illumination effects in 042
ways that complement SOTA methods for RGB data. 043
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Figure 2. Key insight: LiDAR reflectance is less affected by envi-
ronmental lighting than color images, making it an excellent com-
plement for inverse graphics. Top: Cast shadows in color images
do not appear in LiDAR reflectance; Bottom: an overexposed yel-
low wall shows uniform reflectance in the LiDAR spectrum.

InvRGB+L is a novel inverse rendering framework that044
reconstructs large, relightable, and dynamic scenes from a045
single RGB+LiDAR sequence. InvRGB+L infers geome-046
try, illumination, and materials using LiDAR intensity ob-047
servations with color images together, exploiting two novel048
technical contributions: (1) a physics-based LiDAR re-049
flectance model that—unlike conventional reflectance mod-050
els—explicitly accounts for surface specularity, and (2) a051
joint RGB–LiDAR material consistency loss that models052
the relationship between visible and LiDAR’s infrared ob-053
servations.054

Experiments show that our model produces novel-view055
RGB and LiDAR renderings for both urban and indoor056
scenes accurately while also supporting realistic relight-057
ing, night simulations, and dynamic object insertions. Our058
method surpasses current state-of-the-art approaches in059
scene-level urban inverse rendering and novel-view LiDAR060
simulation in qualitative and quantitative comparisons.061

2. Related Works062

Inverse Rendering recovers scene properties like geom-063
etry [12, 39], materials [9, 26], and lighting [27, 38, 46]064
from sensor data. Light-surface interactions make the prob-065
lem wildly ambiguous. Data-driven methods use dense066
prediction networks [3, 29, 44, 49] and diffusion models067
[10, 18, 21, 45] to predict intrinsic properties. The absence068
of an explicit physical model can result in unrealistic out-069
comes. Physics-based methods leverage 3D representations070
like NeRF [2, 4, 14, 23, 41, 48] or 3D-GS [11, 22, 30] to071
model geometry, then use differentiable PBR rendering to072
infer materials and lighting. Ambiguities remain, so priors073
are needed to constrain the solution space.074

There exist methods that incorporate LiDAR cues [28,075
41], but these do not exploit LiDAR intensity. All methods076

struggle with dynamic environments. In contrast, we use 077
LiDAR intensity as a powerful cue to material properties 078
and our method operates in dynamic environments. 079

LiDAR Simulation generates synthetic LiDAR data 080
from existing observations to create new views or counter- 081
factual scenarios. Geometry simulation has been tackled 082
using point clouds [20], surfels [25], NeRF [13, 32–34, 42], 083
and 3DGS [1, 5] as scene representations. Intensity sim- 084
ulation methods rely on lookup tables [6, 25] or encoded 085
intensity fields [1, 13]. Many approaches mimic LiDAR 086
ray-drop characteristics, but neglect the physics of LiDAR 087
reflectance. In contrast, we show powerful inferences can 088
be rooted in this physics; further, we show close attention 089
to LiDAR physics produces better simulations. Work that 090
models LiDAR reflection empirically [35–37, 43] assumes 091
Lambertian surfaces. In contrast, we offer a novel formu- 092
lation incorporating a specular term. Current methods pro- 093
duce sparse maps. In contrast we show that joint LiDAR- 094
RGB inference results in dense, accurate maps. 095

3. Physics-based LiDAR Reflectance Model 096

LiDAR follows the rendering equation [16] and we assume 097
no in or out scattering, so the reflected radiance is: 098

Lr(x,ωo) =

∫
Ω

fr(x,ωi,ωo)Li(x,ωi)(n · ωi)dωi, (1) 099

where x is the surface point, n is the surface normal, ωi 100
and ωo are incident and outgoing ray directions, Li is the 101
incident radiance, and fr is the BRDF at x. 102

LiDAR pulses are narrow and directional, so Li(x,ωi) 103
can be modelled as a constant value in a very narrow beam 104
around ω0 (Fig. 3 middle). Energy disperses, so the ra- 105
diance at x will be Li(x,ωi) ∝ Pe

d2 , where Pe is the 106
emitted power and d is the distance to x. The returned 107
beam is narrow and the sensor responds to radiance, so 108
the sensor response is given by I(x,ωo) ∝ Lr(x,ωo) ∝ 109
fr(x,ωo,ωo)

Pe cos θ
d2 , where θ is the angle between ωi and 110

n. 111
Existing models [13, 25, 35, 37] assume Lambertian (dif- 112

fuse) surfaces, where fr(x,ωo,ωo) is constant ρlidar/π, 113
making I ∝ ρlidarPe cos θ

d2 , where ρlidar represents the sur- 114
face reflectance ( LiDAR albedo). However, this model fails 115
to explain many real-world phenomena, such as the spot- 116
light reflectance on metallic surfaces (e.g., cars) and water 117
foundations. 118

We extend the LiDAR reflectance model by incorporat- 119
ing the Cook-Torrance BRDF [8], so fr = fd + fs, where 120
fd = ρlidar

π is the diffuse term, and fs is the specular 121
term. Surface roughness τ and angle θ interact, yielding 122

fs
F0τ

2min(1,2cos2θ)

4π cos2 θ(cos2 θ(τ2−1)+1)2
, with fresnel term F0 = 0.04. 123

This specular component is a special case of the microfacet 124
model, assuming the same incident and outgoing ray angles. 125
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Figure 3. Overall architecture. We represent the scene as a dynamic, relightable 3DGS scene graph, consisting of a static node for the
background, a set of dynamic nodes for movable objects, and a sky node to model illumination. Our scene can generate realistic LiDAR
and camera footage via physically based forward rendering modules. Scene parameters are inferred through an inverse rendering process
using backpropagation, minimizing discrepancies between rendered results and observations (as well as priors) while maximizing self-
consistency. orange arrow: forward rendering process; gray arrow: diffusion-based normal and material prior inference; red arrow:
backpropagation for inverse rendering; green arrow: loss computation.

Substitution yields:126

I ∝

(
ρlidar +

F0τ
2min(1, 2cos2θ)

4 cos2 θ (cos2 θ(τ2 − 1) + 1)
2

)
Pe cos θ

πd2
.

(2)

127

By explicitly modeling specularity, our LiDAR reflectance128
model aligns with commonly used RGB-based shading129
models, enabling a unified framework for joint LiDAR and130
RGB inverse rendering in the following section. Refer to131
the supplementary material for details.132

4. Method133

We recover a relightable 4D scene representation that en-134
codes geometry, color, LiDAR reflectance, and an HDR135
illumination model from an input video sequence {Ct ∈136
RW×H×3}Tt=0, LiDAR sequences {Pt ∈ RN×3}Tt=0 with137
intensity maps {It ∈ RW×H×3}Tt=0, and their correspond-138
ing poses {ξt ∈ SE(3)}Tt=0 captured under a single illumi-139
nation environment. We represent the scene as a dynamic140
scene graph where each node is a 3D Gaussian encoding141
geometry, opacity, and intrinsic material properties for both142
LiDAR and camera modalities (Sec. 4.1). Forward ren-143
dering produces RGB imagery and LiDAR intensity maps144
from a camera pose, a scene graph and a physical model145
(Sec. 4.2). Inference adjusts scene parameters to produce146
renderings that are like observed data; our inference proce-147
dure introduce a novel albedo-consistency loss that syner-148
gizes RGB and LiDAR cues for joint reasoning (Sec. 4.3).149
The architecture is presented in Fig. 3.150

4.1. Relightable Scene Representation 151

Dynamic Scene Graph We use a dynamic scene graph 152
S, where movable objects and backgrounds are explicitly 153
represented as graph nodes. The representation is built out 154
of Gaussian primitives as in 3D-GS. Each primitive g(x) is 155

defined by g(x) = e−
1
2 (x−µ)TΣ−1(x−µ), where x ∈ R3 156

is a 3D coordinate, µ ∈ R3 stands for the mean of the 157
Gaussian, and Σ ∈ R3×3 is the covariance matrix. We 158
initialize the 3D means with LiDAR points for accurate ge- 159
ometry. In contrast, previous work [14, 23, 41] focuses on 160
static scenes. 161

The background (eg roads and buildings) is modelled 162
with a set of static Gaussians Gbg . Moving objects are rep- 163
resented with dynamic nodes {G′

1,G
′
2, ...,G

′
N}, where N 164

is the number of objects. Each object is represented as a 165
3D-GS in its local coordinate system. To place them in the 166
dynamic scene, we apply a pose transformation Tk(t) ∈ 167
SE(3), where k is the object index and t is the times- 168
tamp. The transformed Gaussian set is then formulated as 169
Gk(t) = Tk(t) ·G′

k. 170

Illumination Model We model the sky node with spher- 171
ical harmonic (SH) illumination to approximate the global 172
lighting from the sky dome. We parameterize lighting with 173
SH coefficients up to 3rd-order Lsky ∈ R16×3, and define 174
the sky lighting from incident direction ωi as Lsky(ωi). Sky 175
lighting fails to model sharp shadows. Additionally, we use 176
a learnable sun light Lsun = {ωsun, Isun} to explicitly 177
model directional sunlight, where ωsun is the sunlight di- 178
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rection and Isun is the sunlight intensity.179

Relightable Gaussian Each of our 3D Gaussian primi-180
tives is associated with intrinsic parameters, enabling ge-181
ometry and material estimation during 3D-GS optimization.182
We adopt the Cook-Torrance BRDF for RGB image ren-183
dering (as in the LiDAR reflectance model), so the BRDF184
parametrization is fr(µ,ωi,ωo;n, ρrgb, τ), where parame-185
ters are: n ∈ S2 (surface normal); ρrgb ∈ [0, 1]3 (diffuse186
albedo); and τ ∈ [0, 1] (surface roughness). Surface nor-187
mal and surface roughness will be the same at visible and188
LiDAR wavelengths, but diffuse albedo may not be. We189
denote LiDAR albedo in the physical reflectance model as190
ρlidar ∈ [0, 1]. For each Gaussian primitive g(x), these pa-191
rameters are associated to model the material properties, so:192
g = {µ,Σ, c, α,n, ρrgb, τ, ρlidar}.193

The entire scene representation at timestamp t is then194
S = {Gbg,Gk(t),Lsky,Lsun}.195

4.2. Physics-based Forward Rendering196

Physics-based forward rendering of the scene serves as the197
foundation for inverse modeling to estimate scene parame-198
ters and supports downstream applications such as relight-199
ing and insertion rendering.200

Camera Rendering We adopt a BVH-based ray tracer201
[11], denoted as Tracer(·) to trace the visibility for each202
Gaussian. For an incident direction ωi, the visibility203
v(ωi) = Tracer(ωi;S) indicates whether the Gaussian re-204
ceives direct illumination from the sky. If a ray from205
g toward ωi intersects another object before reaching the206
sky dome, v(ωi) = 0; otherwise, it is directly lit, and207
v(ωi) = 1. However, in urban scenes, restricting ray trac-208
ing to only visible objects can lead to incomplete shadow-209
ing, as occluded objects outside the field of view may also210
cast shadows. To address this, we introduce an sun visi-211
bility parameter vsun for each g, which indicates whether a212
Gaussian is directly lit by sunlight Lsun from direction ωsun.213

The PBR color for each Gaussian primitive can214
be computed using the rendering equation. We em-215
ploy Monte Carlo sampling to generate M incident216
ray directions. Consequently, the estimated PBR217
color ĉ of a Gaussian primitive g for view direc-218
tion ωo is: ĉ(ωo) = 1

M

∑M
i=1[vsunIsun(ωsun · n) +219

v(ωi)fr(µ,ωi,ωo;n, ρrgb, τrough)Lsky(ωi) cos θ]. The first220
term is the sunlight while the second term is the incident221
lighting from the sky dome. We then render the scene222
graph S into the image space through α-blending as Ĉ =223 ∑

j αjĉj
∏

k<j(1 − αk). Additionally, we render all the224
attributes into corresponding maps (e.g., normal map N,225
albedo map Brgb, roughness map R ) using α-blending.226
The camera rendering results of scene graph S are defined227
as: renderrgb(S) = {Ĉ,N,Brgb,R}.228

LiDAR Rendering Given the reflectance parameter 229
ρlidarj and the LiDAR reflectance model in Eq. 2, we com- 230
pute the intensity value for each Gaussian. Since LiDAR 231
sensing involves a single incident ray—the laser itself—no 232
sampling is required. The intensity I for a Gaussian is given 233
by Eq. 2, where d and ωo represent the distance and direc- 234
tion from the LiDAR origin to the Gaussian center µ, and 235
cosθ = n · ωo.We assume that the laser energy of each Li- 236
DAR channel is calibrated, setting Pe = 1. Finally, we ren- 237
der both the intensity map Î and the reflectance map Blidar 238
into image space, defining the LiDAR rendering process as: 239
renderlidar(S) = {Î,Blidar}. 240

4.3. Inverse Rendering with RGB+L 241

Problem Formulation We must infer scene parameters 242
– geometry, material properties, illumination, and LiDAR 243
reflectance – from both RGB and LiDAR data. The overall 244
loss function for optimizing the scene graph S is: 245

min
S

Llidar + Lrgb︸ ︷︷ ︸
fidelity

+Lnor + Lmat︸ ︷︷ ︸
diffusion prior

+Lrgb→lidar + Llidar→rgb︸ ︷︷ ︸
rgb−lidar consistency

(3)

246

Fidelity losses for LiDAR and RGB are: 247

Lrgb = ∥Ĉ−C∥22, Llidar = ∥(Î− I) ·Mlidar∥22 (4) 248

where C is the ground-truth image and Mlidar is a mask 249
to account for sparseness in LiDAR intensity observations. 250
The mask is obtained by thresholding. 251

Diffusion-based Prior We mitigate the ambiguity in ma- 252
terial inference by using monocular geometric and mate- 253
rial cues from pre-trained models. We use Geowizard[10] 254
and RGB-X[45] to preprocess multi-view training images, 255
extracting pseudo normal and material labels, written N̂ 256
and M̂ = {B̂rgb, R̂} respectively. These guide inference 257
through losses: 258

Lnor = ∥N− N̂∥22, Lmat = ∥M− M̂∥22. (5) 259

RGB-LiDAR Albedo Consistency Loss Spectral re- 260
flectance (which affects RGB images) and LiDAR albedo 261
are strongly spatially correlated because each is an epiphe- 262
nomenon of material microstructure (see also [19, 24]). Sur- 263
faces with similar spectral reflectance will tend to have 264
similar LiDAR albedo and vice versa. We introduce two 265
consistency constraints that enforce the correlation between 266
albedo and reflectance. 267

LiDAR intensity maps are inherently sparse and incom- 268
plete, but spectral reflectance is a dense signal. We enforce 269
a neighborhood smoothness constraint that propagates the 270
sparse LiDAR albedo values into a dense map Blidar, under 271
the assumption that it should exhibit similar smoothness as 272
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the reflectance map Brgb. Specifically, we adopt a bilateral273
smoothness loss:274

Lrgb→lidar =
∑

q∈N(p)

|Blidarp −Blidarq | · w(Brgbp
,Brgbq

),

(6)

275

Here, p and q denote indexes of neighboring pixels, and276
the weighting function is given by w(Brgbp

,Brgbq
) =277

exp
(
− (Brgbp−Brgbq )

2

σ2

)
. σ is a hyperparameter controlling278

the sensitivity to spectral reflectance differences, ensuring279
smooth propagation of reflectance while preserving mate-280
rial boundaries.281

LiDAR albedo estimates are independent of external282
lighting conditions, so are a powerful cue for correcting er-283
rors in reflectance estimates caused by lighting. Assume284
surfaces with similar albedo will have similar spectral re-285
flectance; then we can impose a regional consistency on286
spectral reflectance by:287

Llidar→rgb =
∑
Ω

var(BrgbΩ
|BlidarΩ), (7)288

where Ω is a set of regions operating as superpixels (ob-289
tained using SAM [17]) within the LiDAR albedo map290
Blidar. BrgbΩ and BlidarΩ denote the sets of spectral re-291
flectance and albedo values within the same region Ω.292

Optimization We use a two-stage optimization process.293
In the first stage, we supervise the scene graph without the294
consistency loss to obtain the initial Gaussians (only geom-295
etry, opacity and non-relightable colors) and scene graph296
topology. In the second stage, we fix the geometry and297
opacity of the Gaussians, and refine the intrinsic material298
properties and lighting through joint optimization. For de-299
tails please refer to the supplementary materials.300

5. Experiment301

5.1. Experiment Protocols302

Datasets We conduct experiments on the Waymo Open303
Dataset [31], which provides RGB images from five cam-304
eras and 64-beam LiDAR data (including intensity). uring305
training, we use only one camera and its corresponding Li-306
DAR sequence. Since each scene is recorded only once, the307
dataset does not support quantitative relighting evaluation.308
To address this, we collected an additional driving scene309
recorded at different times of the day, capturing varying il-310
lumination conditions. We also captured an indoor scene311
under an artificial lighting environment to verify the effec-312
tiveness of our albedo-reflectance consistency.313

Evaluation Metrics For image comparisons, we use314
PSNR, SSIM [40], and LPIPS [47]. For LiDAR intensity315
simulation, we evaluate using RMSE.316

Input RGBX Ours

Figure 4. Our estimated spectral reflectance vs RGB↔X. Com-
pared to the latest generative diffusion prior [45], our estimated
spectral reflectance better reflects the vehicle’s paint color and is
more robust to cast shadows.

Input w/o Consistency Loss w/ Consistency Loss

Figure 5. The RGB-LiDAR consistency loss corrects significant
errors. Our proposed RGB-LiDAR consistency loss improves the
robustness of surface reflectance estimation. In each pair of rows,
top is spectral reflectance, bottom is LiDAR albedo. The cast
shadow in the top pair is fixed, as is the color error around the
laser printer in the second pair.

5.2. Comparison with SOTA methods 317

Inverse Rendering We compare our method against Ur- 318
banIR [23] and FEGR [41], two state-of-the-art approaches 319
for urban scene inverse rendering. Since the Waymo 320
dataset does not provide ground-truth intrinsic labels, we 321
present only qualitative comparisons in Fig. 6, using 322
baseline results provided by the authors of UrbanIR. Our 323
method achieves superior inverse rendering by leveraging 324
reflectance to effectively disentangle shading from albedo, 325
resulting in smoother albedo estimates. In contrast, both 326
UrbanIR and FEGR struggle to separate shadows cast by 327
lighting poles and those beneath vehicles from the albedo, 328
resulting in unrealistic shadows beside the car in the relight- 329
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Figure 6. Qualitative comparison for inverse rendering with FEGR and UrbanIR on Waymo dataset. FEGR produces unrealistic
normal estimates and bakes hard shadows into the albedo. UrbanIR’s has no dense roughness estimation, and its radiance-based shadows
cause relighting artifacts (see row 2, column 5). In contrast, our method achieves accurate and plausible material and geometry estimates,
yielding superior relighting. Notice also the improved qualitative “realism” in relighting figures; surfaces tend to look more like actual
object surfaces, and less like computer graphics items, likely a consequence of our roughness model. Both FEGR and our method use
LiDAR, while UrbanIR relies solely on video input.

Method PSNR↑ SSIM↑ LPIPS↓

UrbanIR [23] 28.84 0.67 0.49

w/o Llidar→rgb 29.97 0.73 0.34
Ours 30.42 0.72 0.30

Table 1. Quantitative results for relighting.

ing results of the first scene. Additionally, we compare our330
albedo estimation with RGB-X [45] in Fig. 4, which serves331
as the diffusion-based prior for our framework. RGB-X suf-332
fers from multi-view inconsistency and fails to recover the333
albedo of cars. In contrast, our intrinsic 3D Gaussian repre-334
sentation is inherently multi-view and time-consistent, en-335
abling it to correct erroneous predictions during training.336

Relighting For quantitative evaluation, we use data cap-337
tured under different lighting conditions. Specifically, we338
record a scene at 9 AM and 1 PM on the same day, train both339
sequences independently using our framework, and then re-340

place the illumination parameters of the 9 AM scene with 341
those from the 1 PM scene. Table 1 presents the quanti- 342
tative results, where our method significantly outperforms 343
UrbanIR. Additionally, incorporating the consistency loss 344
further enhances performance, primarily due to more accu- 345
rate material estimation. Fig. 7 shows the qualitative results, 346
highlighting noticeable light and shadow shifts on road 347
signs and distant buildings. In contrast, UrbanIR struggles 348
to adjust the lighting. This demonstrates that our frame- 349
work effectively disentangles illumination from albedo, en- 350
abling accurate modeling of shading variations under differ- 351
ent lighting. 352

LiDAR Simulation To validate the effectiveness of our 353
LiDAR intensity formulation and the accuracy of the gener- 354
ated intensity, we evaluate novel view synthesis for LiDAR 355
intensity on the Waymo Dataset. We compare our approach 356
against a series of LiDAR simulation works including Li- 357
DARSim [25], PCGEN [20], AlignMiF [33] and NFL [13]. 358
Following [13], we conduct experiments on four scenes, us- 359
ing 50 frames from each sequence for training and selecting 360
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Input at 9am GT target at 1pm UrbanIR Ours UrbanIR Ours

NVS at 9am Relighting at 1pm

Figure 7. Qualitative results for relighting. By replacing the illumination of the 9 AM scene with that of the 1 PM, we can successfully
shade the tree and buildings.

Intensity-RMSE ↓
Scene ID AverageMethod 1 2 3 4

LiDARsim [25] 0.12 0.13 0.09 0.14 0.120
PCGEN [20] 0.11 0.15 0.09 0.15 0.125
AlignMiF [33] 0.05 0.10 0.05 0.09 0.073
NFL [13] 0.06 0.13 0.05 0.08 0.080

Ours 0.06 0.08 0.05 0.06 0.063

Table 2. Quantitative results for novel view synthesis of LiDAR
intensity on the Waymo Open Dataset. The highlighted metrics
denote Best and Second Best. The proposed method achieves the
best results overall.

every 5th frame for validation. We use RMSE as the evalu-361
ation metric for intensity. Table 2 presents the quantitative362
results, where our method achieves the lowest RMSE, out-363
performing all baselines. This demonstrates that our formu-364
lation effectively captures the underlying physical phenom-365
ena, leading to more accurate LiDAR intensity modeling.366

5.3. Ablation Studies367

RGB-LiDAR Consistency Loss Fig. 5 shows qualitative368
comparison of inferred spectral reflectance with and with-369
out consistency loss. Consistency removes shadows: The370
shadows of the light pole are incorrectly embedded into371
the spectral reflectance (first row) when consistency is not372
applied. The consistency loss recovers the road correctly.373
Consistency improves LiDAR albedo: The upper part of374
the images in the second row is missing LiDAR albedo es-375
timates when consistency is not applied, because the ele-376
vation range of the sensor is limited. The consistency loss377
propagates information from the spectral reflectance effec-378
tively propagated, filling in the missing bits. Consistency379
fixes lighting induced errors: The indoor scene of the third380
row shows a standard problem with estimating RGB spec-381
tral reflectance from images: spatially fast changes in illu-382
minant baffle all intrinsic image methods, so some lighting383
effects get “baked” into results. The consistency loss sig-384
nificantly improves the accuracy of the albedo estimation.385

Method PSNR↑ SSIM↑ LPIPs↓
w/o LiDAR 33.35 0.89 0.13
w/o Dynamic 29.13 0.83 0.21

Ours 34.76 0.91 0.11

Table 3. Ablation studies on rendering quality. The highlighted
metrics denote Best. Both LiDAR reflectance and dynamic mod-
eling improve reconstruction quality.

Dynamic Scene Graph We conduct an ablation study to 386
assess the effectiveness of the dynamic scene graph by re- 387
moving the dynamic nodes and training a static set of Gaus- 388
sians on dynamic video input. Tab. 3 presents the quan- 389
titative results for the reconstruction of PBR images on a 390
dynamic scene in the Waymo Dataset. Besides, Fig. 8 391
presents the estimated albedo and roughness. As shown in 392
the figure, without the dynamic scene graph, the moving 393
car exhibits aliasing artifacts due to the inability to model 394
motion. In contrast, our approach effectively captures time- 395
varying intrinsic properties and handles the changing shad- 396
ows beneath the car, enabling robust inverse rendering from 397
dynamic video input. 398

LiDAR Input To evaluate the impact of LiDAR data on 399
our framework, we conduct an ablation study where only 400
RGB images are used. Specifically, we disable the LiDAR- 401
based initialization of 3D-GS and exclude the albedo con- 402
sistency loss term from the optimization. The reconstruc- 403
tion performance is reported in Table 3. While inverse ren- 404
dering can still be performed without LiDAR sequence as 405
inputs, the quality of physically based rendering (PBR) im- 406
ages exhibits a notable decrease. This study highlights the 407
crucial role of LiDAR in enhancing both geometric fidelity 408
and inverse rendering accuracy. 409

5.4. Downstream Applications 410

Scene Editing Fig. 9 presents the scene editing results, 411
showing the versatility of our method in both relighting and 412
object insertion. In the first row, we demonstrate night- 413
time simulation with streetlight and headlight illumination 414
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Input w/o Dynamic Scene Graph w/ Dynamic Scene Graph 

Figure 8. Ablation study on dynamic scene graph Explicitly modeling dynamic objects improves albedo and roughness estimation;
otherwise, motion-blurred artifacts will be baked into the scene.

Input Streetlight Headlight

Input Insertion w/o Relighting Insertion w/ Relighting

Input Insertion Insertion + Scene Relighting

Figure 9. Downstream applications of our method Top: night
simulation with controllable lights; middle: insertion with/without
relighting; bottom: insertion rendering with/without changing the
time of day.

to an input daytime scene. Additionally, we present object415
insertion results. Unlike previous approaches [23], which416
rely on off-the-shelf rendering engines like Blender [7], we417
can directly transfer a trained dynamic node from one scene418
to another and relight the node using our framework. The419
second row shows the result without relighting the inserted420
node: the inserted car appears mismatched with the scene.421
In contrast, with relighting, the car blends seamlessly into422
the environment. The third row shows the results of relight-423
ing both the scene and the inserted object simultaneously.424

Nighttime Data Augmentation for Object Detection To425
evaluate the applicability of our method in autonomous426
driving perception, we conduct an experiment leveraging427
our method for nighttime data augmentation. Specifically,428
we transform daytime image sequences into nighttime con-429
ditions using our framework while preserving the origi-430

Method Precision↑ Recall↑ mAP@50↑

w/o Night Aug. 0.537 0.281 0.236
w/ Night Aug. 0.674 0.312 0.321

Table 4. Data augmentation for nighttime object detection.
Off-the-shelf object detection [15] does not perform well on
Waymo nighttime sequences. Our night simulation generates
nighttime logs from daytime labeled logs at no additional cost.

nal object detection labels. This enables the generation of 431
nighttime training data without additional manual annota- 432
tions. We generate 100 nighttime images with a total of 433
121 car labels which are then used to fine-tune a YOLO-v5 434
object detection model [15]. We evaluate the model using 435
50 real nighttime images from Waymo Dataset. Compar- 436
ing its performance against the baseline without fine-tuning 437
in Tab. 4, we demonstrate the potential to enhance night- 438
time perception for autonomous driving, particularly in low- 439
visibility conditions, without the costly process of collect- 440
ing and labeling nighttime data. 441

6. Limitation and Discussion 442

In this work, we integrate LiDAR into inverse rendering 443
and introduce InvRGB+L, novel model capable of recon- 444
structing large-scale, relightable, and dynamic scenes from 445
a single RGB+LiDAR sequence. By leveraging the consis- 446
tency between LiDAR and RGB albedo, our approach en- 447
hances material estimation and enables a variety of scene 448
editing applications, including relighting, object insertion, 449
and nighttime simulation. However, there are still limita- 450
tions. First, we adopt a BVH-based ray tracer for 3D Gaus- 451
sian ray tracing, which can produce inaccurate shadows due 452
to the opacity properties of Gaussian primitives. Addition- 453
ally, our illumination model, which accounts for only sky- 454
light and sunlight, is not sufficient for inverse rendering on 455
complex environments such as nighttime scenes, which we 456
will try to address in the future. 457
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