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ABSTRACT

Symbolic regression plays a critical role in uncovering interpretable expressions
that elucidate complex phenomena by revealing the underlying mathematical and
physical relationships within data. In this paper, we present an advanced sym-
bolic regression method that incorporates symbol priors from diverse scientific
domains—such as physics, biology, chemistry, and engineering—into the regres-
sion process. By systematically organizing and analyzing domain-specific expres-
sions, we identify the probability distributions of symbols across these fields. We
propose novel tree-structured recurrent neural networks (RNNs) armed with sym-
bol priors to generate expressions, allowing the learning process to be guided by
domain knowledge. Additionally, we introduce a new hierarchical tree structure
to represent expressions, where unary and binary operators are arranged hierar-
chically to facilitate more efficient learning. By analyzing symbol combinations
at different hierarchical levels, our method captures the structural information of
expressions, enriching the regression process. Furthermore, we compile character-
istic expression blocks from each domain and include them in the operator dictio-
nary during training, accelerating learning by providing relevant building blocks.
Experimental results show that leveraging symbol priors from domain knowledge
significantly improves the performance of symbolic regression, leading to faster
convergence and greater accuracy.

1 INTRODUCTION

Symbolic regression is a powerful regression analysis technique that searches the space of mathe-
matical expressions to find the one that best fits a given dataset. Unlike traditional regression models
that fit data to complex models that are difficult to interpret, symbolic regression can discover the in-
terpretable equations or relationships between variables. This ability leads to a deeper understanding
of the inherent structure and dynamics of the data. It is particularly important in fields where the rela-
tionships between variables are complex and not well understood. In the physical sciences(Angelis
et al.l 2023; Miles et al., 2021; Neumann et al.l 2020), it has been used to derive fundamental
equations and understand intricate phenomena. In materials science, symbolic regression aids in
predicting material properties and uncovering underlying mechanisms (Wang et al.,[2019;[2022)). In
the chemical sciences, symbolic regression models physico-chemical laws from experimental data
(Neumann et al.,|2020) and aids in understanding molecular adsorption processes on surfaces, which
is crucial for catalyst design and atmospheric chemistry (Xie & Zhang, [2022; Hu & Zhang, [2023)).
In climate science, symbolic regression helps forecast and model atmospheric phenomena (Feng
et al.,|2016). In neuroscience, it analyzes dynamic time series data to understand neural dynamics
(Nascimento et al., |2020). In ecological science, it reveals complex ecological dynamics and mod-
els ecosystem behaviors, providing valuable tools for conservation and environmental management
(Chen et al.| 2019} Martin et al., 2018}, [Cardoso et al.l2020). In financial markets, symbolic regres-
sion assists in strategy inference and market prediction, extracting meaningful models from large
datasets for investment strategies (Duffy & Engle-Warnick| [2002; Jin et al.l 2019). These exam-
ples highlight symbolic regression’s vast potential and adaptability across scientific and engineering
fields, emphasizing its importance as a tool for discovery and analysis across disciplines.
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Symbolic regression methods are typically divided into two main approaches. The first approach
involves a two-step process: first, generating a “skeleton” of the equation using a parametric function
constructed from a predefined set of operators, such as basic arithmetic operations and elementary
functions (e.g., square roots, exponentials, trigonometric functions). This step defines the overall
structure of the equation. The second step uses optimization techniques like the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm to estimate the constants within this skeleton.

Earlier methods like (Blkadek & Krawiec| 2019; Schmidt & Lipson| [2009) often employed genetic
algorithms (Mirjalili & Mirjalili, [2019) and genetic programming (Langdon & Polil |2013). These
evolutionary techniques generate populations of candidate expressions, selecting and evolving the
fittest individuals based on their data-fitting performance. Recent improvements to genetic program-

ming include integrating neural networks to identify qualitative patterns and reduce search space
(Mundhenk et al.l [2021)).

Alternatively, reinforcement learning (RL)-based methods use reward signals during the search pro-
cess. For example, Deep Symbolic Regression (Petersen et al.,|2019) uses a recurrent neural network
(RNN) to generate expression skeletons, optimizing constants through stochastic gradient descent
(SGD) and updating the RNN using risk-seeking policy gradients. Deep Symbolic Optimization
(Mundhenk et al., 2021) combines RNNs with genetic programming to create an enhanced initial
population for the algorithm. FEX (Liang & Yang| |2022) identifies governing equations by exploring
mathematical expressions from binary expression trees with a fixed operator set. Symbolic Physics
Learner (Sun et al.} 2022) frames symbolic regression within the Monte Carlo Tree Search (MCTS)
framework, allowing an agent to generate expressions containing both operators and operands, and
updating the agent with expressions that yield higher rewards.

Inspired by recent advances in language models, a second approach to symbolic regression has
emerged, often referred to as Neural Symbolic Regression (NSR). This line of work treats symbolic
regression as a natural language processing (NLP) task, leveraging large-scale pre-trained models
to map data directly to expressions in an end-to-end fashion, similar to how machine translation
converts text from one language to another (Bendinelli et al., [2023; [Kamienny et al.l 2022} [Vastl
et al., 2024; [Shojaee et al.| 2024} |L1 et al.l 2022} [Merler et al., [2024). These neural approaches are
trained end-to-end, with sampled data points as input and the symbolic representation of the formula
as output, effectively learning to generate mathematical expressions that fit the data.

Symbolic Prior for Symbolic Regression: When we use symbolic regression to learn expressions
that describe dynamical systems across various domains—such as physics, biology, and chem-
istry—we encounter differences in the frequencies of symbols, operators or combinations of op-
erators used in these expressions. Each scientific field tends to employ a unique set of mathematical
symbols and functions due to the underlying principles and commonly used formulations specific to
that domain. For instance, trigonometric functions like sine and cosine are prevalent in physics for
modeling oscillatory systems, while exponential and logistic functions are common in biology for
modeling population growth and decay processes. This intuition leads us to a pivotal question:

How can we extract these symbol priors? Furthermore, how can we efficiently incorporate this
symbol prior knowledge to improve current symbolic regression methods?

Contributions: Our work makes several key contributions:

O Novel Tree Representation of Expressions: We introduce a method for representing
mathematical expressions using general (multi-branch) trees, effectively capturing their hi-
erarchical nature, especially in consecutive additions. By treating linked unary operators as
equivalent nodes, our representation preserves essential local structure, which traditional
binary trees and linear sequences often fail to capture due to increased depth and imbal-
ance. In our method, the output of a leaf node is a linear combination of variables applied
element-wise to the same unary operator, significantly reducing the overall tree depth for
a more compact expression structure. Further details of this representation method are
provided in Section 2.1.

O Collection and Categorization of Domain-Specific Expressions: We systematically col-
lect mathematical expressions from arXiv papers and categorize them into domains such
as physics, biology, chemistry, and engineering. Using our general tree structure repre-
sentation, we analyze symbol relationships specific to each domain, allowing us to extract
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domain-specific symbol priors effectively. Additionally, we identify frequently occurring
operator combinations within certain domains and incorporate them into our operator set
to accelerate the training process.

We classify these priors into horizontal priors, describing the relationships among unary
operators linked to the same parent, and vertical priors, capturing relationships between a
node and its ancestors. Conditional categorical distributions are employed to encode these
intrinsic horizontal and vertical features in domain-specific expressions.

(] Tree-Structured RNN Policy Optimized with KL Regularization: As illustrated in
Figure 1, we develop a novel tree-structured recurrent neural network (RNN) to represent
the policy in our reinforcement learning framework to generate mathematical expressions.
This architecture aligns with the hierarchical nature of mathematical expressions, allowing
for efficient modeling of their structural dependencies with significantly fewer RNN blocks.
To integrate domain-specific symbol priors, we incorporate a Kullback-Leibler (KL) diver-
gence regularization term into the reward to optimize the policy. This regularization mini-
mizes the divergence between the conditional probability distribution learned by our policy
and the prior distribution derived from domain knowledge. The policy network is trained
using policy gradient methods to effectively explore the symbolic expression space. We
maintain a candidate pool comprising high-scoring “Skeletons” of mathematical expres-
sions. During the search process, the expressions within the candidate pool are gradually
optimized to match the target expression, as depicted in Figure 2.
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Figure 1: The reinforcement learning framework to learn important “skeleton” of expressions.
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Figure 2: The optimization process to optimize the parameters (e.g., § = {«, 5,~} as illustrated in
Figure[T)) of expressions in the expression candidates pool.

By integrating domain-specific symbol priors into the training of our hierarchical RNN, we guide the
learning process with relevant prior knowledge, enhancing the efficiency and accuracy of symbolic
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regression. Our experiments demonstrate that this approach not only accelerates convergence but
also leads to more accurate and interpretable models across different scientific domains.

Related works Related Works

Bastiani et al.| (2024) employs the Bayesian Information Criterion (BIC) to balance interpretabil-
ity and data fitness, relying solely on general complexity-based constraints. Similarly, [Jin et al.
(2019) sets priors for tree structures and operators based on uniform distributions or user prefer-
ences, but lacks a method for deriving domain-specific priors. In contrast, our approach leverages
domain-specific symbol priors, enhancing both the accuracy and interpretability of the models. By
incorporating KL divergence regularization, we align the learned categorical distribution with the
domain-specific prior, achieving better control and faster convergence than MCMC-based methods.

Other works, such as (Gupta et al., 2016; Bezerra et al., |2019; |Kronberger et al., [2022), incorporate
properties like monotonicity, convexity, and symmetry to limit the search space, thus increasing
efficiency. However, these properties are often difficult to determine solely from data and may not
always hold in practice. Similarly, (Ashok et al., |2021}; |Kubalik et al., 2021) constrain the search
to equations that adhere to fundamental physical laws, like conservation principles, significantly
narrowing the search space. However, this requires detailed prior knowledge of the system, which
may not always be available.

Blkadek & Krawiec| (2022) use genetic algorithms to validate candidate solutions against struc-
tural constraints (e.g., symmetry, monotonicity, convexity) and knowledge constraints (e.g., logical
ranges, slopes, boundary conditions). The main limitation of these methods is their reliance on data
to define and verify constraints, which can be challenging in practice. (Petersen et al., 20195 [2021)
address this by eliminating the probability of certain tokens based on the expression tree’s context,
thereby reducing the generation of invalid symbol combinations and improving search efficiency.

Tenachi et al.| (2023) incorporate physical units as priors, masking the categorical distribution gen-
erated by the RNN based on local unit constraints to prevent unphysical expressions. In our work,
we extend this idea by treating certain priors as “hard constraints,” excluding symbol combinations
that have never appeared in a specific topic. Additionally, we incorporate the probabilities of spe-
cific token combinations to bias the search toward more meaningful expressions, further refining the
search space.

2  SYMBOL PRIORS

In this section, we outline our approach to integrating symbol priors into symbolic regression. We
begin by introducing a tree-structured representation for mathematical expressions, designed to sup-
port the systematic collection and effective utilization of symbol priors. This representation enables
a more compact and organized encoding of expressions, facilitating analysis across scientific do-
mains. Subsequently, we detail the extraction procedure of these symbol priors from mathematical
expressions sourced from domain-specific papers on arXiv. Through this method, we aim to capture
and leverage the unique symbol distributions and operator preferences inherent to each field, thus
refining the symbolic regression model by guiding it with structured domain knowledge.

2.1 REPRESENTATION METHOD

Our proposed structure addresses the limitations of traditional binary expression trees by enabling
a single binary operator to link multiple sequences of unary operators. This approach allows for
a more flexible and expressive hierarchical representation of mathematical expressions. Through
comprehensive analysis of collected expressions, we find that most physically meaningful expres-
sions—particularly those that characterize specific dynamical systems—can be effectively repre-
sented within a two-level tree structure, with some even reducible to a single layer. This observation
indicates that our representation closely aligns with the inherent structure of many real-world ex-
pressions, enhancing both the interpretability and efficiency of symbolic regression tasks.

For instance, in cases of consecutive additions, the addition operator connects multiple child nodes,
which are treated as equivalent without the strict parent-child hierarchy typically enforced in tradi-
tional binary expression trees. This approach contrasts with the conventional binary representation
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method, where binary operators impose hierarchical dependencies between nodes, often leading to
deeper and less balanced trees.

To formalize our representation method, we define the following sets:

e Unary Operator Set: Let U/ = {sin, exp,log, Id, (-)?,...}, which includes elementary
functions such as polynomial and trigonometric functions. Here, Id denotes the identity
function.

e Binary Operator Set: Let B = {+, x, +}, representing the set of binary operators used
within the tree structure.

e Variable Set: Let V' = {f,x1,...,2p, fo,, fo,e; | 1 <4, < n}, where f is the primary
function, x1, . .., z, are variables, f,, denotes the first-order partial derivative of f with
respect to x; (i.e., fz, = %), and fmﬂj represents the second-order partial derivative

2
with respect to both x; and z; (i.e., fzﬂj = af- 8];
rare in most physical systems.

). Higher-order derivatives are typically

J

With these sets defined, our representation method, illustrated in Figure 3, integrates unary operators,
compositions of unary operators, and binary operators as follows:

e Root Node (Ug): The root node is a unary operator selected from the set /. It applies to
the output generated by its subtrees, which are connected through a binary operator from
the Binary Operator Set 5.

e Root Node Binary Operator Connection (B): The binary operator, selected from the
set B = {+, x, =}, connects multiple sequences of unary operators. For instance, B!
connects the sequences S} and S? to the root node Ur, combining sub-expressions as
equivalent components without imposing the strict hierarchical parent-child relationships
that are intrinsic to traditional binary expression trees.

e Sequences of Unary Operators (S/): Each S represents a sequence of unary operators
selected from U. Specifically, the notation S} refers to the First level sequences that are
connected to the root node by the binary operator B!, while S? represents the second-level
sequences, which are connected by the binary operator B2.

e Leaf Nodes (U;): The inputs to each leaf nodes I; are from the variable set V', which
includes the function f, its first and second derivatives, and the variables x1,...,z,. A
unary operator is applied element-wise to each variable in V. The output of a leaf node is
a linear combination of these variables after the unary operation, expressed as:

O = yip(vr) +yep(va) + - + Ynp(vn), v; €V,

where 11(v;) denotes the unary operation on each variable v;, and +; are the corresponding
coefficients.

e Linear Transformation in Non-Leaf Unary Operators: Each non-leaf unary operator p
in both Ug and the sequences S undergoes a linear transformation given by:

O = au(I) + B,

where « is a scaling parameter, and [ is a bias parameter.

Remark. The coefficients of the variables in the leaf nodes, represented in linear combinations,
can be treated as parameters to be optimized during the modeling process. This approach effectively
serves as an implicit feature selection mechanism, enabling us to identify the most relevant variables
and uncover the underlying laws within the system.

Within our proposed framework, we define the concepts of subsequences, width, and depth of an
expression. The formal definitions and illustrative examples are provided in appendix [Al

2.2 HIERARCHICAL SYMBOL PRIORS EXTRACTION

We systematically collect mathematical expressions from arXiv, focusing on specific topics within
various scientific disciplines. For each discipline, we select 10,000 highly relevant papers and extract
the embedded expressions, enabling the analysis of structural patterns critical to our methodology.
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Figure 3: The left panel illustrates the fundamental structure of our representation method, while the
right panel presents two example expressions modeled using this structure.

Each extracted expression is represented using our general-tree structure, recording key components
such as subsequences, root node, binary operator connecting to the root, leaf nodes, and the tree’s
width and depth. This structured representation allows for in-depth analysis of symbol relationships
and domain-specific structural patterns.

Upon obtaining a substantial collection of expressions and subsequences, we proceed to extract the
following information:

Hierarchical Symbol Dependency Analysis: Our general-tree structure allows us to efficiently
collect hierarchical information along the vertical direction, i.e., paths from the root node to the leaf
nodes. By analyzing these paths, we estimate the conditional categorical distributions of symbols at
various hierarchical levels. Aggregating these distributions across all paths allows us to derive verti-
cal symbol priors that reflect domain-specific combinations of unary operators and the hierarchical
relationships imposed by binary operators.

Our unified representation method reveals that many symbol combinations along the subsequences
have conditional probabilities of zero. Notably, some of these zero-probability combinations cor-
respond to expressions that violate the General formulation rules as decribed in (Petersen et al.|
2019). For instance, expressions should contain no more than two levels of nested trigonometric op-
erations(forbids expressions like cos(x +sin(y +tan))); self-nesting of exponential and logarithmic
functions, such as exp exp” and log(log(+)), is avoided to prevent excessive complexity; and inverse
unary operations in direct succession, such as exp log(+) or log(exp -), are restricted.

Sibling Symbol Combination Analysis: Along the horizontal direction, we analyze the combina-
tions of sibling nodes connected by binary operators across hierarchical levels. Specifically, for each
hierarchical level h, we collect all child nodes linked by the same binary operator B to estimate the
categorical distributions of symbol combinations at that level.

High-Frequency Structural Bricks: Our analysis reveals that certain substructures involving both
unary and binary operators recur frequently across specific domains. For instance, in engineering,
particularly in signal processing, combinations of trigonometric functions like cos(-) + sin(-) are
frequently employed to represent waveforms. In Chemistry expressions that combine exponential
exp(-/-) are prevalent in reaction rate equations, such as the Arrhenius equation, which describes
the temperature dependence of reaction rates.

By identifying and integrating these domain-specific high-frequency “’bricks”, we enhance both the
expressive capacity and efficiency of our symbolic regression framework.

Other Priors: We extract and incorporate essential prior information from the expression trees,
focusing on the distributions of root nodes, leaf nodes, and structural attributes such as depth and
width. The root node shapes the expression’s overall form, while leaf nodes represent variables
or constants that anchor the expression. By analyzing the distributions of symbols at the root and
leaf nodes, we capture domain-specific tendencies for certain functions or operations. Additionally,
studying structural priors like depth and width aids in modeling the inherent complexity of expres-
sions, preventing the generation of forms that are either overly simplistic or excessively complex.
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Remark. It is essential to consider the impact of the number of variables within an expression on
the total count of symbols. Therefore, the combinations within each expression should be normal-
ized. For example, the occurrence of identical unary operators linked by addition(i.ez:?:1 cos(z;))
operator should be counted only once.

Definition of Prior: We define the prior probability P*(s; | S;, sp, h) for anode s; in an expression
tree, where .S; denotes the up to three sibling symbols of s;, s, represents the parent symbol of s;,
h denotes the hierarchical level of the parent node within the tree. Specifically, if s; has fewer than
three siblings, .S; comprises only the existing siblings. The reason we limit the number of siblings to
at most three is twofold. Limiting the number of siblings to at most three serves two purposes: (1)
the variety of unary operators is inherently restricted; (2) when a parent node has more than three
siblings, the structure is often indicative of repetitive operations, such as consecutive additions or
multiplications, making the recording of additional siblings unnecessary.

We define S; as follows:

(Si—1, Si—2,Si—3) if node s; has at least three siblings,

Si—1,8i—2) if node s; has two siblings,
S; = . o
(si—1) if node s; has one sibling,
0 if node s; has no siblings.

The prior probability P*(s; | S;, sp, h) is estimated using frequency counts from a large collection
of expression subsequences:

count(s;, S;, Sp, h)

P(s; | Si,sp,h) =
(si | Siysp,h) count(S;, sp, h)

Where count(s;, S;, sp, h) represents the number of occurrences of symbol s; within the specific
context defined by S;, parent symbol s,, and parent’s level h across all collected subsequences.
Similarly, count(S;, Sp, h) is the total count of occurrences for the context S;, parent symbol Sp, and
parent’s level h across all subsequences.

We present a case study in appendix

3 METHODS

In this section, we present a reinforcement learning-based approach to identify the structural skeleton
of mathematical expressions and subsequently optimize the associated coefficients. Given a fixed
tree structure 7 with ny nodes, FEX(Liang & Yang, [2022) can identifies expressions from finite
space. For a given data { X, y} and the tree 7, we aim to solve min, ¢ £(g(X; 7T, e,6)) where L is
a functional, e is the sequence of operators, and § = {«, /3, v} represents the learnable parameters
in 7. The expression g(X; 7T, e, 0) is formed by the chosen operators and parameters within the
tree structure. This problem is addressed by alternating between optimizing e using reinforcement
learning (e.g., policy gradients) and optimizing 6 using gradient-based methods (e.g., Adam, BFGS).

3.1 AGENT

In this section, we introduce a novel tree-structured recurrent neural network (RNN) designed to
function as our agent. As illustrated in Figure 4, this structure enables efficient exploration and
representation of complex expressions by capturing hierarchical relationships within the expression
tree. In this tree-structured RNN, each output y* represents a categorical probability distribution,
indicating the likelihood of selecting various operators for the i—th node. The operators x* are
then sampled based on the probabilities provided by 3'~!, the output from the preceding node.
The activations a’ propagate through the structure, passing from parent nodes to all child nodes,
or horizontally between sibling nodes. This setup allows the model to capture and learn hierar-
chical dependencies among nodes, reflecting the structured relationships inherent in mathematical
expressions.

The key advantage of this structure:
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Figure 4: Tree-structured RNNs for Symbolic regression

O Preservation of Structured Information: This tree-structured RNN is designed to main-
tain the hierarchical relationships inherent in mathematical expressions. By allowing acti-
vations to flow from parent nodes to child nodes and horizontally between sibling nodes,
the model preserves the natural structure of expressions. Each node not only receives in-
formation from its parent but also shares information with its siblings, enabling the RNN
to capture dependencies at multiple levels. This structure aligns closely with the nested
and layered nature of mathematical expressions, ensuring that important contextual rela-
tionships are retained throughout the network.

U] Efficient Information Flow: The hidden layer output of a parent node is propagated to
all its child nodes, reducing the number of RNN blocks required compared to traditional
binary tree methods.

Remark. Intuitively, when a parent node has multiple child nodes, the distribution Pr(child|parent)
is initially assumed to be equal across all children. However, each child is sampled sequentially, with
the symbol chosen for one child influencing the conditional distribution for the next. This results in
a conditional probability of the form Pr(i-th child|(i-1)-th child, parent). In other words, the symbol
sampled for the current child affects the distribution of symbols for the next child. This sequential
sampling ensures that the RNN captures dependencies between sibling nodes, maintaining a more
structured and realistic representation of the expression.

3.2 KL-DIVERGENCE: SOFT CONSTRAINT

In our tree-structured recurrent neural network (RNN) architecture, each node s; outputs a cate-
gorical distribution y; over the set of possible symbols S, which includes unary operators, binary
operators, and variables. To ensure that the learned distributions y; align with our predefined priors
P*(s; | S;, sp, h), we compute the Kullback-Leibler (KL) divergence between the RNN-generated
distribution y; and the prior distribution P*(s; | S;, sp, h) for each node s;.

The KL divergence for node s; is defined as:

. . P*(s S’ivs 7h
KL (P (Si | Si7 Sp? h) || yz) = Z P (5 ‘ Sia Sp; h) log <(|y(8)p>>
s€S '

To aggregate the KL divergences computed for each node within the expression tree, we calculate
the average KL divergence over all nodes:

1 N—-1

KLavg = N Z KL (P*(SZ | Sivspvh) || yl)
=0
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Where N is the total number of nodes in the expression tree.

3.3 FORMULA RULE: HARD CONSTRAINT

We define a set of operator combinations that are prohibited from appearing along the same path
within an expression tree. As discussed in Section 2, we observe that many operator combinations
are absent from the collected subsequences. This absence may result from various factors: these
combinations might violate established symbol rules (Petersen et al.,|2019)), lead to numerical insta-
bility, or simply be uncommon in the specific domain or due to insufficient data.

We formalize this set as HConstraint = {HC4, HC}:

O HC(Cp: Represents combinations that violate symbolic rules or result in numerical insta-
bility, as identified in prior research. These combinations are strictly prohibited and are
excluded from the sampling process.

O HC5: Represents combinations that rarely occur. Although they are not commonly ob-
served, we assign them a very small probability, ¢, and include them in the set of soft
constraints. This design promotes model exploration, enabling the potential discovery of
novel physical laws.

For the operators combinations in hard constraint, we simply use the method in (Petersen et al.,
2019), zero-out the probability during sampling.

By categorizing constraints in this way, we ensure that our model adheres to known rules while
still allowing flexibility for exploration. This approach balances enforcing known constraints with
maintaining a level of uncertainty, enabling the model to explore new combinations that might reveal
novel insights.

3.4 REWARD

The reward for an operator sequence e = {sg, $1, ..., SN—1}, denoted as R(e), is defined as:

1
R(e) i= ——,
©) =Tz
L(e) = ming NRMSE. This reward R(e) ranges between 0 and 1, where lower values of R(e) result
in rewards closer to 1, indicating a better fit to the target equation. Conversely, higher £(e) values
lead to lower reward.

3.5 AGENT UPDATE

The agent is updated using a basic policy gradient method with a KL-divergence regularization term
to regulate the exploration. This regularization controls the distance between the learned policy and
the domain-specific prior distribution. Detailed implementation procedures including algorithmic
steps and optimization strategies, are provided in appendix [C|

4 EXPERIMENTS

In this section, we choose four expressions from four distinct domains to conduct a comparative
analysis of the following methods: FEX, FEX with priors, RL + RNN, RL + RNN with priors, RL
+ tree-structured RNN, and RL + tree-structured RNN with priors. The detailed descriptions of the
six expressions utilized in this experiment are provided in appendix D}

Learning parameters for the first two problems are: learning rate 0.003, batch size 1000, risk factor
is 0.05, KL divergence parameter is 0.5. For the other two: learning rate 0.001, batch size 1000, risk
factor is 0.05, KL divergence parameter is 0.35.

Based on experiments, we can draw several important conclusions about the effectiveness of using
prior knowledge and tree-structured RNNs:
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Figure 5: Average Reward

o Effectiveness of Priors and Tree-Structured RNNs: The incorporation of domain-
specific priors and tree-structured RNNs significantly enhances learning efficiency. Both
”Tree-RNN with prior” and "RNN-prior” converge more quickly to optimal policies com-
pared to other methods, demonstrating the advantage of leveraging prior knowledge and
hierarchical architectures. For instance, the Hamiltonian expression, characterized by nu-
merous additive terms, poses challenges for traditional RNNs. The tree-structured RNN
reduces the required network depth for such additive structures, while the prior categorical
distribution equips the model with domain-specific insights. This combination accelerates
convergence and enables efficient identification of high-quality solutions.

e Variability in Prior Impact: The fourth figure (Fluid Dynamics) reveals a potential
drawback of using priors. Here, the methods incorporating prior knowledge (“Tree-RNN
with prior” and "RNN-prior”’) do not outperform the other methods by a large margin.
This suggests that priors can introduce biases that may not always align well with certain
complex expressions, thereby limiting their effectiveness.

In general, our results demonstrate that combining domain-specific priors with a tree-structured
RNN agent can significantly enhance the learning of complex functions. However, as illustrated in
the fourth figure, the incorporation of priors may sometimes introduce biases, leading to subopti-
mal performance in certain cases. This variability in effectiveness highlights the need for careful
consideration and selection of priors to match the characteristics of the problem domain.

5 CONCLUSION

We found that combining domain-specific priors with our tree-structured RNN agent quickly results
in an effective policy. Learning from expressions across various fields has provided valuable insights
for future research. However, our approach is sensitive to the prior categorical distribution, making
bias a challenge despite careful data collection.

The prior for each domain consists of two parts: a “behavior prior” shared across all fields, and a
domain-specific component. This is similar to the multitask problem in reinforcement learning. In
future work, we plan to optimize both the domain-specific and “behavior” priors during training,
aiming to uncover intriguing and interesting results.
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