
Deep Generative model with Hierarchical Latent
Factors for Timeseries Anomaly Detection

Cristian Challu
CMU

cchallu@cs.cmu.edu

Peihong Jiang
AWS AI Labs

jpeihong@amazon.com

Ying Nian Wu
UCLA

ywu@stat.ucla.edu

Laurent Callot
AWS AI Labs

lcallot@amazon.com

Abstract

Multivariate time-series anomaly detection has become an active area of research
in recent years, with Deep Learning models outperforming previous approaches
on benchmark datasets. Among reconstruction-based models, almost all previous
work has focused on Variational Autoencoders and Generative Adversarial Net-
works. This work presents DGHL, a new family of generative models for time-
series anomaly detection, trained by maximizing the observed likelihood directly
by posterior sampling and alternating gradient-descent. A top-down Convolution
Network maps time-series windows to a novel hierarchical latent space, exploiting
temporal dynamics to encode information efficiently. Despite relying on posterior
sampling, it is computationally more efficient than current approaches, with up
to 10x shorter training times than RNN based models. Our method outperformed
other state-of-the-art models on four popular benchmark datasets. Finally, DGHL
is robust to variable features between entities and accurate even with large propor-
tions of missing values, settings with increasing relevance with IoT. We demon-
strate the superior robustness of DGHL with novel occlusion experiments in this
literature.

1 Introduction

Recent advancements in Deep Learning such as Recurrent Neural Networks (RNN), Temporal Con-
volution Networks (TCN) and Graph Networks (GN) have been successfully incorporated by recent
models to outperform previous approaches such as out-of-limits, clustering-based, distance-based,
and dimensionality reduction. [2] [14] present comprehensive reviews of current state-of-the-art
methods for time-series anomaly detection.

In this work, we propose DGHL, a novel Deep Generative model based on a top-down Convolution
Network (ConvNet), which maps multivariate time-series windows to a novel hierarchical latent
space. The model is trained by maximizing the observed likelihood directly with the Alternating
Back-Propagation algorithm, so it does not rely on auxiliary networks such as encoders or discrim-
inators as VAEs and GANs do. DGHL, therefore, comprehends a separate family of generative
models, previously unexplored for time-series anomaly detection. We perform experiments on sev-
eral popular datasets and show the proposed model outperforms the recent state-of-the-arts while
reducing training times against previous reconstruction-based and generative models.

With IoT, we believe that settings with corrupted or missing data have increasing relevance. For
example, faulty sensors can cause missing values, privacy issues on consumer electronics devices,

NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications

or heterogeneous hardware can lead to variable features. We present the first extensive analysis
on the robustness of current state-of-the-art models on datasets with missing inputs and variable
features with novel occlusion experiments. DGHL achieved superior performance on this setting,
maintaining state-of-the-art performance with up to 90% of missing data, without modification to the
architecture or training procedure. We perform additional qualitative experiments of our model to
assess desirable properties of lower-dimensional representations such as continuity and extrapolation
capabilities. Finally, we show how DGHL can be used as a forecasting model, demonstrating its
versatility on various time-series tasks.

The main contributions of our paper are:

• Short-run MCMC. First time-series anomaly detection generative model based on short-
run MCMC for estimating posterior of latent variables and inferring latent vectors. In par-
ticular, first application of Alternating Back-Propagation algorithm for learning generative
model for time-series data.

• Hierarchical latent factors. We present a novel hierarchical latent space representation to
generate windows of arbitrary length. We demonstrate with ablation studies how DGHL
achieves state-of-the-art performance by leveraging this representation on four benchmark
datasets.

• Robustness to missing data. We present the first experiments on robustness to missing
inputs of state-of-the-art anomaly detection models, and demonstrate DGHL achieves su-
perior performance in this setting.

• Open-source implementation. We publish an open implementation of our model and full
experiments for reproducibility of the results of the paper. 1

2 Related Work

2.1 Reconstruction-based models

Reconstruction-based models learn representations for the time-series by reconstructing the input
based on latent variables. The reconstruction error or the likelihood are commonly used as anomaly
scores. Among these models, variational auto-encoders (VAE) are the most popular. The LSTM-
VAE, proposed in [13], uses LSTM both as encoders and decoders and models the reconstruction
error with support vector regression (SVR) to have a dynamic threshold based on the latent space
vector. OmniAnomaly [17] improves on the LSTM-VAE by adding normalizing planar flows to
increase the expressivity and including a dynamic model for the latent space.

Generative Adversarial Networks (GANs) were also adapted for anomaly detection as alternatives
to VAE, with models such as AnoGAN [15], MAD-Li [7], and MAD-GAN [8]. For instance, in
MAD-GAN, a GAN is used to generate short windows of time-series with LSTM Generator and
Discriminator networks. The anomaly score considers both the reconstruction error of the recon-
structed window by the Generator network and the score of the Discriminator network.

Most recent models propose to detect anomalies directly on the latent representation and embed-
dings. THOC [16] proposed to use one-class classifiers based on multiple hyperspheres on the
representations on all intermediate layers of a dilated RNN. NCAD [1] uses a TCN to map con-
text windows and suspect windows into a neural representation and detect anomalies in the suspect
window on the latent space with a contextual hypersphere loss.

Virtually all current models, including our proposed approach, rely on mapping the original time-
series input into embeddings or a lower-dimensional latent space. DGHL, however, is trained with
the Alternating Back-Propagation (ABP) algorithm, presented in [4]. ABP maximizes the observed
likelihood directly; it does therefore not rely on variational inference approximations or auxiliar
networks such as discriminators. Instead, our approach uses MCMC sampling methods to sample
from the true posterior to approximate the likelihood gradient. Several generative models which rely
on MCMC sampling, and in particular Langevin Dynamics, have shown state-of-the-art performance
on computer vision [11] and NLP [12] tasks. To our knowledge, this algorithm has not been used

1Available at https://anonymous.4open.science/r/dghl-DE4E

2

https://anonymous.4open.science/r/dghl-DE4E

for time-series forecasting and time-series anomaly detection. We present the ABP algorithm in the
next subsection.

2.2 Alternating Back-Propagation

Let y ∈ RD be a data vector such as a time-series window or an image, and z ∈ Rd a latent vector.
Let {y(i), i = 1, ..., n} be a training set. Consider the following generative model,

y = f(z,θ) + ε (1)

with z ∼ N(0, Id), ε ∼ N(0,σ2ID), D > d and θ the learnable parameters of the Generator
model f . For instance, the classic factor analysis model corresponds to f = θz. In this work,
we consider top-down Convolution Networks (ConvNet), however, this framework allows for other
types of Generator functions such as fully-connected networks (MLP) or Recurrent Neural Networks
(RNN). The proposed Alternating Back-Propagation algorithm learns parameters θ by maximizing
the observed log-likelihood directly, given by,

L(θ) =

n!

i=1

log pθ(y
(i)) =

n!

i=1

log

"
pθ(y

(i), z(i))dz(i) (2)

The observed likelihood L(θ) is analytically intractable. However, the gradients L′(θ) can be sim-
plified to,

∂

∂θ
log pθ(y) =

1

pθ(y)

∂

∂θ

"
pθ(y, z)dz

= Epθ(z|y)

#
∂

∂θ
log pθ(y, z)

$ (3)

where pθ(z|y) = pθ(y, z)/pθ(y) is the posterior. The expectation in the previous equation can
be approximated with the Monte Carlo average by taking samples using MCMC. In particular, Al-
ternating Back-Propagation takes a single sample of the posterior using Langevin Dynamics [9], a
Hamiltonian Monte Carlo algorithm, which iterates,

zt+1 = zt +
s

σz

∂

∂z
log pθ(zt|y) +

√
2sεt

= zt +
s

σz

#
(y − f(zt,θ))

∂

∂z
f(zt,θ)− zt

$
+
√
2sεt

(4)

where εt ∼ N(0, ID), t is the time step of the dynamics, s is the step size, and σz controls the
relative size of the injected noise. This iteration is an explain-away process where latent factors are
chosen such that the current residual on the reconstruction, y − f(zt,θ), is minimized. With large
values of σz , the posterior will be close to the prior, while small σz allows for a richer posterior.
The iterative process is truncated to a predefined number of iterations, and the rejection step is not
considered. As explained in [9], for an observation y(i), the resulting vector is a sample from an
approximated posterior, pθ(z|y(i)). The Monte Carlo approximation of the gradient then becomes,

L′(θ) ≈ ∂

∂θ
log pθ(z

(i),y(i))

=
1

σ2
(y(i) − f(z(i),θ))

∂

∂θ
f(z(i),θ)

(5)

Algorithm 1 presents the alternating back-propagation algorithm with mini-batches. Analogous to
the EM algorithm [3], it iterates two distinct steps: (1) inferential back-propagation and (2) learning

3

Algorithm 1: Mini-batch Alternating back-propagation

input : training examples {y(i), i = 1, ..., n}, Langevin steps l, learning iterations T
output: learned parameters θ, inferred latent vectors {z(i), i = 1, ..., n}
Let t ← 0, initialize θ
Initialize z(i), for i = 1, ..., n
while t < T do

Take a random mini-batch {y(j), j = 1, ...b}.
Inferential back-propagation: For each j, run l steps of Langevin dynamics to sample
z(j) ∼ p(z|y(j),θ) following equation 4.

Learning back-propagation: Update θ ← θ + γtL
′(θ), following equation 5

t ← t+ 1
end

back-propagation. During (1), the latent vectors {z(i)} are inferred for a sample {y(i), i = 1, ..., bs}.
In step (2), {z(i)} are used as input of the Generator model f and parameters θ are updated with
SGD.

One disadvantage of MCMC methods is the computational cost. Langevin Dynamics, however,
relies on the gradients of the Generator function, which can be efficiently computed with modern
automatic differentiation packages such as Tensorflow and Pytorch. Moreover, back-propagation
on ConvNet is easily parallelizable in GPU. Several recent works, have shown models trained with
alternating back-propagation [4], [20] and short-run MCMC [10] achieved state-of-the-art perfor-
mance in computer vision and NLP tasks while remaining computationally efficient and comparable
in training time to methods relying solely on SGD. We discuss training and inference times on
section 4.

3 DGHL

3.1 Hierarchical Latent Factors

The model described in Equation 1 generates observations independently. We extend this model with
a novel hierarchical latent factor space. Let Y ∈ Rm×sw be a window of size sw of a multivariate
time-series with m features. The window Y is further divided in sub-windows of equal length
Yj ∈ Rm× sw

aL , j = 0, ..., aL. The structure of the hierarchy is specified by a = [a1, ..., aL], where
L is the number of levels, and al determines the number of consecutive sub-windows with shared
latent vector on level l, with al | aL . Our model for each sub-window Yj of Y is given by,

sj = Fα(z
1
⌊ j
a1

⌋, ..., z
L
⌊ j
aL

⌋)

Yj = Gβ(sj) + ej
(6)

where Fα is the Encoder model parametrized by α, Gβ is the Generator model, parametrized by β,
sj ∈ Rd is the state vector, and ej ∼ N(0, ID), and

Z = {zl
⌊ j
Al

⌋ ∈ Rdl}l,j (7)

is the hierarchical latent factor space for window Y . For the Encoder model we used a concatenation
layer. For the Generator model we used a classic top-down Convolution Network (ConvNet), which
maps an input state vector to a multivariate time-series window. The Encoder model for each sub-
window has L latent vectors inputs. On each level l, the latent vectors of al consecutive sub-windows
are tied. For instance, the latent vector on the highest layer, L, is shared by all sub-windows of Y .
Figure 1 shows an example of a hierarchical latent space with a = [1, 3, 6].

The key idea of the hierarchical latent space is to leverage dynamics on the time-series, such as sea-
sonalities, to encode the information on the latent space more efficiently, i.e., with lower-dimensional
vectors. The hierarchical latent space allows generating realistic time-series of arbitrary length while
preserving long-term dynamics of the time-series. The hierarchical structure can be incorporated as

4

hyper-parameters to be tuned or pre-defined based on domain knowledge. For instance, hierarchies
can correspond to the multiple known seasonalities on the time-series.

Figure 1: Example of hierarchical latent factor space for a = [1, 3, 6]. On each level l, the latent
vectors of al consecutive sub-windows are tied. For instance, the latent vector on the highest layer,
L, is shared by all sub-windows of Y .

The hierarchical latent space Z is jointly inferred using Langevin Dynamics. The relative size
of the lowest level state vector and the upper levels controls the flexibility of the model. Larger
lower hierarchy level vectors make the model more flexible, making it robust to normal changes or
randomness in long-term dependencies of the time-series and therefore reducing false positives by
reducing the reconstruction error. Larger tied vectors will make the model more strict, better for
detecting contextual anomalies. The independent model described in the previous subsection can be
seen as a single level hierarchical latent space model, with a = [1], in the current framework.

Previous work such as OmniAnomaly incorporates transition models to learn dynamics in the latent
space. We believe our proposed hierarchical latent factors structure has several advantages over
transition models. First, the computational cost and training time is lower for the proposed model
since it does not rely on sequential computation and therefore on back-propagation through time
for training parameters. Second, transition models implicitly assume the dynamics are constant
over time, a non-realistic assumption in many settings. Our solution allows the model to share
information across windows to model long-term dynamics without relying on a parametric model
which assumes constant dynamics.

3.2 Training

The parameters α and β of DGHL are learned with the Alternating Back-Propagation algorithm
described in the previous subsection. First, the training multivariate time-series Y ∈ Rm×T with
m features and T timestamps, is divided in consecutive windows of size sw and step size s in a
rolling-window fashion.

In each iteration, the algorithm first randomly samples b windows. During the inference step, the hi-
erarchical latent vectors are inferred simultaneously with Langevin Dynamics. The inferred vectors
are the inputs to the Encoder and Generator models, and parameters are updated during the learning
step. We use Adam optimizer for learning parameters with default parameters [6].

As described in [18], Bayesian posterior sampling provides inbuilt protection against overfitting.
The MCMC sampling allows DGHL to model complex multivariate time-series, while reducing the
risk of overfitting. This is particularly helpful on problems with small training sets.

5

3.3 Online Anomaly Detection

By learning how to generate time-series windows based on the training data Y , DGHL implic-
itly learns normal (non-anomalous) temporal dynamics and correlations between the multiple time-
series. In this subsection, we explain the proposed approach to reconstruct windows on unseen test
data Y test to detect anomalies.

In Online Anomaly Detection we consider the test set Y test ∈ Rm×Ttest to be a stream of m time-
series. The goal is to detect anomalies (the evaluation is equivalent to a supervised setting with two
classes) as soon as possible. As with the training set, Y test is first divided in consecutive windows
with the same parameters sw and s. We propose to reconstruct and compute anomalies scores one
window at a time.

Let Yt∗ be the current window of interest. The latent space Zt∗ is jointly inferred to reconstruct
the target window, namely Ŷt∗ . The anomaly score for a particular timestamp t in the window is
computed as the Mean Square Error (MSE) considering all m time-series, given by 2

st =
1

m

m!

i=1

(yi,t − ŷi,t)
2 (8)

The size of the window sw and step size s control how sooner anomalies can be detected. With
a smaller s, anomaly scores for newer values in the stream are computed sooner. When s < sw,
consecutive windows have overlapping timestamps. In this case, scores are updated by considering
the average reconstruction. In datasets with multiple entities (for instance, machines in SMD), we
divide the scores by the accumulated standard deviation of scores before window t∗.

One main difference with the inference step during training is the removal of the Gaussian noise, εt,
of the Langevin Dynamics update equation. The inferred factors then correspond to the maximum a
posteriori mode, which in turn minimizes the reconstruction error conditional on the learned models
F and G. This novel strategy makes DGHL unique among reconstruction-based models: it avoids
overfitting during training by sampling from the posterior with Langevin Dynamics and minimizes
the reconstruction error to reduce false positives by MAP estimation.

Many previous models rely on complex and unusual specific scores, but DGHL uses the simple
MSE. The anomaly scores of our approach are interpretable, since they can be desegregated by the
m features. Users can rank the contribution to the anomaly score of each feature to gather insights
of the anomaly.

4 Experiments

4.1 Datasets

Server Machine Dataset (SMD) − Introduced in [17], SMD is a multivariate time-series dataset
with 38 features for 28 server machines, monitored during 5 weeks. The time-series include
common activity metrics in servers such as CPU load, network and memory usage, among others.
Both training and testing sets contain around 50k timestamps each, with 5 % of anomalous cases.
We trained separate models for each machine as suggested by the authors but with the same
hyperparameters.

Soil Moisture Active Passive satellite (SMAP) and Mars Science Laboratory rover (MSL)−
Published by NASA in [5], they contain real telemetric data of the SMAP satellite and MSL rover.
SMAP includes 55 multivariate time-series datasets, each containing one anonymized channel and
24 variables encoding information sent to the satellite. MSL includes 27 datasets, each with one
telemetry channel and 54 additional variables. Again, we train separate models for each telemetry
channel, considering additional variables as exogenous, ie. only the anomaly score of the telemetry
channel was used for detecting anomalies.

2The MSE corresponds to the likelihood, since we assume Y has a fixed variance of 1.

6

Secure Water Treatment (SWaT) − Is a public dataset with information of a water treatment
testbed meant for cyber-security and anomaly detection research. It contains network traffic and
data from 51 sensors for 11 days, 7 days of normal operation (train set) and 4 days with cyber
attacks (test set).

4.2 Evaluation

We evaluate the performance of DGHL and benchmark models on the four datasets with the F1-
score, considering the anomaly detection problem as a binary classification task where the positive
class corresponds to anomalies. Anomalies often occur continuously over a period of time creating
anomalous segments. [21] proposed an adjustment approach, where the predicted output is re-
labeled as an anomaly for the whole continuous anomalous segment if the model correctly identifies
the anomaly in at least one timestamp. We use this adjustment technique for SMAP, MSL and SMD
datasets to make results comparable with existing literature. Moreover, we followed the common
practice of comparing the performance using the best F1-score, by choosing the best threshold on
the test set. For SMAP, MSL and SMD we use a single threshold through the entire dataset (not
different thresholds for each machine or channel).

To make our results comparable with previous work, we follow the train, validation and test split
described in [16] for SMAP, MSL and SWaT. For SMD we use the train and test splits described in
[17]. All architecture hyper-parameters of the Generator model, training hyper-parameters such as
batch size and learning rate, and all hyper-parameters of the Langevin Dynamics were kept constant
across the four datasets. We compare DGHL to current state-of-the art models, such as THOC,
NCAD, and MTAD-GAT; and previous widely used models such as OmniAnomaly, MAD-GAN
and LSTM-VAE. Following [19], we add simple one-line and non Deep Learning approaches such
as Mean deviation and Nearest Neighbors.

4.3 Online Anomaly Detection

Table 1 shows the F1 scores for DGHL, and the benchmark models for SMAP, MSL, SWaT, and
SMD datasets. Our methods consistently achieves the Top-2 F1 scores, with overall performance
superior to state-of-the-art such as MTAD-GAT [22], THOC and NCAD. Moreover, our approach
achieved the highest performance between all reconstruction based and generative models on all
datasets.

DGHL significantly outperformed simple baselines in all datasets. The one-line solution ranked
worst consistently. Nearest Neighbors, however, achieved a better performance than several complex
models in all datasets with a fraction of the computational cost, demonstrating how simple models
need to be considered to understand the benefits of recent models as suggested in [19].

DGHL outperforms other pure reconstruction-based models because inferring latent vectors for
computing anomaly scores provides several advantages. First, it provides additional flexibility and
generalization capabilities to prevent false positives, which is instrumental in noisy or non-constant
temporal dynamics datasets. Second, it helps to reduce the lasting impact of anomalies on the re-
construction error over time, reducing false positives once anomalies end.

DGHL took an average of 2 minutes to train for each entity (e.g. one machine of SMD or one chanel
of SMAP) consistently across datasets. For instance, the training time was around 60 minutes for
SMD and MSL, and 100 minutes for SMAP. This is comparable to other state-of-the-art models
self-reported training times such as NCAD and faster than RNN based models. For instance, Omni-
Anomaly took an average of 20 minutes to train each model for each machine on the SMD dataset.
The inference time varies depending on the length of the test set. The average time to infer 3000
timestamps (average downsampled SMD test set), with sw = 32, was lower than 5 seconds.

4.4 Online Anomaly Detection with missing data

All current benchmark datasets in the time-series anomaly detection literature assume perfect data.
However, this is not usually the case in real scenarios, with issues like missing values, corrupted
data, and variable features. This section presents the first experiments to assess the robustness of
current state-of-the-art models to common data issues such as missing values. In particular, we

7

Table 1: F1 scores on benchmark datasets (the larger the better). The benchmark models perfor-
mance was taken from [16], [1] and [22]. First place is marked in bold and second place in bold
and italic. DGHL corresponds to the full model described in previous section, without Hierarchical
factors corresponds to the simpler model with fully independent latent vectors for each window. 4

Model SMAP MSL SWaT SMD
Mean deviation (one-line) 57.61 68.91 85.71 70.55
Nearest Neighbors 75.10 90.01 86.72 79.16

AnoGAN 74.59 86.39 86.64 -
DeepSVDD 71.71 88.12 82.82 -
DAGMM 82.04 86.08 85.37 70.93
LSTM-VAE 75.73 73.79 86.39 76.72
MAD-GAN 81.31 87.47 86.89 -
MSCRED 85.97 77.45 86.84 -
OmniAnomaly 85.35 90.14 86.67 80.15
MTAD-GAT 90.13 90.84 - -
THOC 95.18 93.67 88.09 -
NCAD 94.45 95.60 - 80.84
DGHL 96.38 ± 0.72 94.08 ± 0.35 87.47 ± 0.22 86.18 ± 0.66
without Hierarchical factors 94.87 ± 0.71 91.26 ± 0.71 87.08 ± 0.12 80.84 ± 0.40

adapt the popular occlusion experiments from computer vision literature for training models with
incomplete data.

As detailed in section 2, the first step of the ABP algorithm is to infer latent vectors with Langevin
Dynamics. This is an explain-away process where latent factors are chosen such that the current
residual on the reconstruction, Y − f(Zt,θ), is minimized. The model can intrinsically deal with
missing data by inferring Z computing the residuals only on the observed signal Yo. The inferred
vectors then correspond to samples from the posterior distribution conditional on the available signal,
pθ(Z|Yo). Since no explicit learnable parameters map inputs to the latent space, the model is more
robust to missing values and outliers (masked as missing data). Generative models trained with ABP
algorithm outperformed VAEs and GANs on experiments with missing information on computer
vision and NLP tasks [4].

We define the occlusion experiments with two parameters. First, the original time-series Y ∈
Rm×T , is divided in r segments of equal length, Yi ∈ Rm×T

r . Second, each feature m in each
segment is occluded for model training or inference with probability p. Figure 3 shows an exam-
ple of occluded data, for a subset of features of one machine of the SMD dataset, with r = 5 and
p = 0.5. Occluded segments are marked in gray. First, DGHL is able to precisely reconstruct the
observed data (white region), even when most features are missing. This is most relevant for the
anomaly detection task, since only the observed features are used to compute the anomaly score.
Second, the model is able to recover missing data with great precision, which can be helpful in
complete pipelines with downstream applications.

We assess the robustness of models to incomplete training data with occluding experiments on the
SMD dataset, for different levels of r and p, and using F1 scores to evaluate performance. Figure
4 shows the F1 score for DGHL , LSTM-VAE, and OmniAnomaly. DGHL achieves the highest
scores consistently, with an increasing relative performance on higher data occlusion probability.
Moreover, DGHL maintained high F1 scores even with up to 90% of missing information, without
any changes to the hyperparameters, architecture or training procedure.

4.5 Time-series generation

DGHL is trained to generate time-series windows from a latent space representation. We examine
how DGHL learns the representation by interpolating and extrapolating between two latent vectors,

4MTAD-GAT authors do not provide public implementation of the model nor evaluation on SWaT. NCAD
results on SWaT is not comparable since they use segment adjustment.

8

Figure 2: Occlusion experiment on machine-1-1 of the SMD with r = 5 and p = 0.5. Blue lines
correspond to the actual values and orange lines present the reconstructed time-series with DGHL.
Gray areas correspond to the occluded information during training.

Figure 3: F1 scores for DGHL and LSTM-VAE benchmark for occlusion experiments on SMD for
three levels of occlusion probability p, 0, 0.5, 0.9 and r = 5.

Zl and Zu, inferred from two windows of a real time-series from the SMD. The trained Generator
network is then used to generate new windows across the interpolation subspace.

Figure 5 presents the generated windows for interpolated and extrapolated vectors for a subset of
the original features. The generated time-series smoothly transition between clear patterns on both
shape and scale. Moreover, DGHL is able to generate meaningful time-series on the extrapolation
region. This experiment shows how our approach maps similar time-series windows into close points
of the latent space, which is a desirable property of latent representations.

4.6 Time-series forecasting

This subsection shows how DGHL can be used as a forecasting model without any changes to the
training procedure or architecture. We will perform quantitative analysis on forecasting datasets
in future work. DGHL can forecast future values by masking them during the inference of latent
vectors, analogous to how the model handles missing data. The observed timestamps (left to the
forecasting starting timestamp as represented with the vertical line of Figure 6) are used to infer the
current latent vector, which then is used to generate the whole window, producing the forecasts.

Figure 6 shows an example of the forecasts produced for a subset of machine-1-1 of the SMD dataset.
In this example, the model is trained to reconstruct and generate windows of size 128. The first 64
timestamps are available during the inference of the latent vector, and the last 64 corresponds to the
forecasted region.

9

Figure 4: Generated time-series windows from interpolation and extrapolation of latent vectors using
DGHL trained on machine-1-1 of the SMD.

Figure 5: Example of forecasts produced by DGHL on a window of machine-1-1 test set of SMD.
The model is trained to generate windows of size 128, the first 64 timestamps are available during
inference of latent vectors, and the last 64 correspond to the forecasts.

5 Conclusion

In this paper, we introduced DGHL, a state-of-the-art Deep Generative model for time-series
anomaly detection. The proposed model maps time-series windows to a novel hierarchical latent
space representation, which leverages the time-series dynamics to encode information more effi-
ciently. A classic ConvNet is used as the Generator. DGHL does not rely on auxiliary networks,
such as encoders or discriminators; instead, it is trained by maximizing the likelihood directly with
the Alternating Back-Propagation algorithm. Our model has several advantages over existing meth-
ods: i. shorter training times, ii. demonstrated superior performance on several benchmark datasets,
and iii. better robustness to missing values and variable features. We will explore how our model
performs on the time-series forecasting task in future work.

We do not believe the paper’s contribution can be directly misused to have a negative societal impact.
We recommend performing additional thorough experiments on healthcare before using the pro-
posed approach in applications in this domain. DGHL required significantly less computational re-
sources and training time than most current state-of-the-art models, but it still uses high-performance
hardware and more resources than simple non-Deep Learning models. These additional costs should
be considered on applications compared to the improved performance benefits.

10

References
[1] Chris U Carmona, François-Xavier Aubet, Valentin Flunkert, and Jan Gasthaus. Neural con-

textual anomaly detection for time series. arXiv preprint arXiv:2107.07702, 2021.

[2] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection: A survey.
arXiv preprint arXiv:1901.03407, 2019.

[3] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977.

[4] Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation for gen-
erator network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

[5] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soder-
strom. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding.
In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 387–395, 2018.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[7] Dan Li, Dacheng Chen, Jonathan Goh, and See-kiong Ng. Anomaly detection with generative
adversarial networks for multivariate time series. arXiv preprint arXiv:1809.04758, 2018.

[8] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan:
Multivariate anomaly detection for time series data with generative adversarial networks. In
International Conference on Artificial Neural Networks, pages 703–716. Springer, 2019.

[9] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

[10] E Nijkamp, B Pang, T Han, L Zhou, SC Zhu, and YN Wu. Learning multi-layer latent variable
model with short run mcmc inference dynamics. In European Conference on Computer Vision,
2021.

[11] Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space
energy-based prior model. arXiv preprint arXiv:2006.08205, 2020.

[12] Bo Pang, Erik Nijkamp, Tian Han, and Ying Nian Wu. Generative text modeling through short
run inference. arXiv preprint arXiv:2106.02513, 2021.

[13] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. A multimodal anomaly detector for robot-
assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation
Letters, 3(3):1544–1551, 2018.

[14] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech
Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A unifying review
of deep and shallow anomaly detection. Proceedings of the IEEE, 2021.

[15] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In International conference on information processing in medical imaging, pages
146–157. Springer, 2017.

[16] Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hi-
erarchical one-class network. Advances in Neural Information Processing Systems, 33:13016–
13026, 2020.

[17] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detec-
tion for multivariate time series through stochastic recurrent neural network. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2828–2837, 2019.

11

[18] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688. Citeseer, 2011.

[19] Renjie Wu and Eamonn J Keogh. Current time series anomaly detection benchmarks are flawed
and are creating the illusion of progress. arXiv preprint arXiv:2009.13807, 2020.

[20] Jianwen Xie, Ruiqi Gao, Zilong Zheng, Song-Chun Zhu, and Ying Nian Wu. Learning dy-
namic generator model by alternating back-propagation through time. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 5498–5507, 2019.

[21] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, You-
jian Zhao, Dan Pei, Yang Feng, et al. Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications. In Proceedings of the 2018 World Wide Web
Conference, pages 187–196, 2018.

[22] Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph
attention network. In 2020 IEEE International Conference on Data Mining (ICDM), pages
841–850. IEEE, 2020.

12

