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ABSTRACT

Low-light image enhancement (LLIE) improves visibility and restores details in
challenging lighting conditions. It is crucial to fairly evaluate LLIE methods to
foster the development of more effective models. However, quality assessment of
low-light enhanced images proves to be as challenging as the enhancement itself.
From a quantitative perspective, full-reference image quality assessment (FR-IQA)
metrics (e.g., PSNR and SSIM) are commonly employed to assess the perceptual
quality of enhanced images. However, they are not suitable when a pristine refer-
ence image is unavailable, which is often the case in real-world applications. From
a qualitative perspective, the absence of a standardized and reproducible evaluation
pipeline makes it extremely difficult to ensure fair comparisons across different
studies. To confront these challenges, we present the Low-light Image Distortions
and Quality (LIDQ) dataset, featuring both overall quality scores and distortion
distribution annotations collected through formal subjective testing. Leveraging
LIDQ, we propose a no-reference Low-light Enhanced Image Quantitative and
Qualitative Quality Assessment (LIQ3A) method that not only estimates perceptual
quality without requiring a reference, but also provides qualitative assessments of
enhancement-induced distortions. Experiments show that LIQ3A aligns closely
with human perception while accurately identifying distortion patterns. We antici-
pate that the proposed dataset and metric will facilitate future advances in low-light
image enhancement by providing reliable evaluation feedback.

1 INTRODUCTION

Images captured in low-light environments frequently suffer from visual degradations, e.g., poor
visibility, low contrast, and severe noise, which can significantly compromise visual perception
and hinder the performance of computer vision tasks (Yang et al., 2020). Although advancements
in imaging hardware and specialized photographic techniques can partially alleviate these issues,
they often fail to completely eliminate noise due to the limited light available to camera sensors.
Increasing exposure time may reduce noise but frequently introduces motion blur, further deteriorating
image quality (Wang et al., 2023c). As a cost-effective alternative, computational low-light image
enhancement (LLIE) methods have gained considerable attention (Guo et al., 2016). These LLIE
methods focus on improving visibility, enhancing contrast, and suppressing noise, rendering images
with higher perceptual quality, and boosting downstream applications’ performance (Guo et al.,
2020).

Despite recent advances, LLIE methods still produce artifacts such as amplified noise, color dis-
tortions, and over-smoothing that compromise image quality (Wang et al., 2024a). Assessing the
perceptual quality of enhanced images is thus critical for evaluating LLIE performance and guiding
refinement, typically through quantitative and qualitative evaluations (Chen et al., 2023; Zhai et al.,
2021). Quantitative assessment employs image quality assessment (IQA) methods, which assign
scalar values to enhancement performance. Depending on reference availability, IQA methods are
categorized as full-reference, reduced-reference, or no-reference (blind) (Zhang et al., 2023b). Blind
IQA (BIQA) is particularly practical since it does not require pristine references, which are often
unavailable in real-world scenarios (Mittal et al., 2012b). Qualitative assessments, by contrast, rely
on visual inspection to reveal strengths and weaknesses more intuitively than a single score, but they
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Table 1: Summary of the previous IQA datasets for low-light (enhanced) images. 2AFC: Two-
alternative forced choice. SS: Single stimulus. DS: Double stimulus. Con.: Contrast. Alg.: Algorithm.
ACJ: Adjectival categorical judgement. CQR: Continuous quality rating. QSD: Quality semantic
description. DTSR: Distortion types and severity ratings.

Dataset # Reference Enhancement # Enhancement # Image # Subjects Judgment
images types methods type

Chen14 (Chen et al., 2014) 100 Alg. outputs 5 500 - 2AFC
CCID2014 (Gu et al., 2015) 15 Con.-enhanced 5 655 22 SS-CQR
NNID (Xiang et al., 2019) 448 Real-captured - 2240 74 SS-ACJ
LIEQ (Zhai et al., 2021) 100 Alg. outputs 10 1,000 21 SS-CQR
LEISD (Lin et al., 2023) 255 Alg. outputs 8 2,040 20 SS-CQR
EHNQ (Yang et al., 2023b) 100 Alg. outputs 15 1,500 50 DS-ACJ
SQUARE-LOL (Chen et al., 2023) 290 Alg. outputs 10 2,900 30 2AFC
RNTIEQA (Wang et al., 2024b) 200 Alg. outputs 10 2,000 15 2AFC
MLIQ (Wang et al., 2024a) 1,360 Real-captured - 1,360 26 SS-CQR & QSD

LIDQ (Ours) 253 Alg. outputs 22 5,566 34 SS-ACJ & DTSR

are usually limited to a small sample set, leading to sample bias or the so-called cherry-picking issue
(Cao et al., 2021). Existing BIQA metrics further lack support for such qualitative comparisons,
hindering large-scale dataset-level benchmarking.

In this work, we reformulate qualitative assessment as the estimation of distortion distributions in
enhanced images. This approach makes the qualitative assessment process quantifiable, enabling
evaluations on full datasets and ensuring the reproducibility of enhanced images across different
studies. To this end, we introduce the Low-light Image Distortions and Quality (LIDQ) dataset,
comprising (21+1) × 253 = 5,566 images with the most comprehensive quantitative and qualitative
annotations to date. Specifically, we assemble a total of 253 distinct low-light images from existing
paired LLIE datasets to serve as reference inputs for enhancement, each accompanied by 1 normal-
light ground truth. We then enhance these reference images utilizing over 21 state-of-the-art LLIE
methods, resulting in the collection of 5,566 images. A comprehensive subjective quality assessment
is conducted to gather human quantitative mean opinion scores (MOSs) of image quality, alongside
qualitative annotations of enhancement-induced distortions.

We also leverage the LIDQ dataset to develop the blind Low-light Enhanced Image Quantitative
and Qualitative Quality Assessment (LIQ3A) model, a strong baseline that evaluates the quality
of low-light enhanced images from both quantitative and qualitative perspectives, without relying
on pristine ground-truths. Adopting a multitask learning framework, LIQ3A seamlessly integrates
qualitative insights into BIQA learning. The model is trained to simultaneously predict quantitative
quality scores and estimate qualitative distortion patterns. Built on a pretrained vision-language
model, LIQ3A bridges the two tasks using textual templates. By computing a joint probability based
on the cosine similarities between visual and textual embeddings, the model makes predictions for
both tasks and optimizes them through carefully designed loss functions.

Overall, our contributions are threefold:

• We establish LIDQ, a comprehensive quality assessment dataset consisting of 5,566 anno-
tated images. Both quantitative quality ratings and qualitative annotations are collected for
each image through formal subjective testing.

• Based on LIDQ, we propose LIQ3A, a computational quality metric that assesses low-light
enhanced images from both quantitative and qualitative perspectives.

• Extensive experiments on multiple datasets show that LIQ3A achieves closer alignment
with human quantitative annotations than other BIQA methods and effectively identifies
distortion patterns in enhanced images.

2 RELATED WORKS

Low-light Image Enhancement. Classical LLIE methods, such as histogram equalization (Pizer
et al., 1987) and Retinex-based techniques (Wei et al., 2018), rely on handcrafted priors and complex
optimization, often resulting in limited performance or high computational cost (Li et al., 2015; Ying
et al., 2017; Zheng et al., 2022). In contrast, deep neural network (DNN)-based LLIE approaches
automatically learn features from data and enhance brightness, contrast, and detail via end-to-end
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Figure 1: LIDQ comprises enhanced images generated by various LLIE algorithms (see (a)), featuring
diverse algorithm-dependent artifacts (see (b)). Both quality and distortion annotations are obtained
through formal subjective testing using the graphical interface shown in (c).

training (Lore et al., 2017). These models are typically trained on paired datasets—either synthetic or
real—though data collection is often costly (Zheng et al., 2022; Zhang et al., 2019; 2021b). To address
this, alternative learning strategies such as unsupervised (Jiang et al., 2021), semi-supervised (Yang
et al., 2021a), and zero-shot learning (Zhang et al., 2024) have emerged. Despite their effectiveness,
LLIE methods may still introduce distortions like structural artifacts, color shifts, or noise (Zhai et al.,
2021), underscoring the need for reliable quality assessment.

Blind Image Quality Assessment. BIQA estimates perceptual image quality without reference
images, providing an efficient alternative to subjective testing (Mittal et al., 2012b). Early methods
relied on handcrafted features (Mittal et al., 2012a) but lacked robustness across diverse content
and distortions. Deep learning greatly improved BIQA by modeling complex content–distortion
interactions (Zhang et al., 2021a; Ke et al., 2021), and recent multimodal vision–language approaches
further enhance performance (Zhang et al., 2023b; Wu et al., 2024b). For LLIE, however, BIQA faces
two challenges: (1) methods tuned for synthetic or natural distortions perform poorly on enhanced
low-light images with distinct artifacts (Wang et al., 2024a; 2023d); and (2) they mainly yield scalar
scores without detailed distortion analysis (Wu et al., 2024a). Incorporating qualitative insights is
thus critical for advancing LLIE evaluation and guiding model development.

Low-light IQA Datasets. LLIE methods distinguish themselves from traditional image IQA datasets
by their capability to generate realistic yet artificially enhanced details and textures (Gu et al.,
2020). These characteristics pose unique challenges for quantitative assessment using existing BIQA
methods optimized for traditional image IQA scenarios (Chen et al., 2023). Consequently, there
is a growing interest in developing specialized datasets tailored specifically for evaluating LLIE
performance. Table 1 summarizes commonly used IQA datasets for LLIE, which predominantly
focus on algorithm-enhanced images, with the exception of NNID (Xiang et al., 2019) and MLIQ
(Wang et al., 2024a), which assess real-captured low-light images. While most provide quantitative
scores like MOS, these datasets often lack qualitative analysis of distortions introduced by LLIE,
such as amplified noise, color deviation, and blurriness. To fill this gap, we propose creating a new
dataset dedicated to quantitative and qualitative LLIE assessment.

3
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(a) LOL dataset (b) SDSD dataset

Figure 2: The average MOS scores of enhanced images produced by different LLIE methods on the
LOL and SDSD subsets, sorted in ascending order.

3 PROPOSED DATASET: LIDQ

Reference Image Collection. We compile 253 low-light images for enhancement, including 15 from
the LOL-v1 test set (Wei et al., 2018), 100 from the LOL-v2 test set (Yang et al., 2021b), and 138
frames from the SDSD dataset (Wang et al., 2021), where one representative frame is extracted from
each video. These datasets are selected because they cover diverse indoor and outdoor scenes and are
widely recognized benchmarks in the LLIE literature (Yan et al., 2025), frequently adopted to enable
fair and consistent comparisons. Regarding the overlapping in the LOL datasets, we leverage the
shared samples between LOL-v1 and LOL-v2 to verify the consistency of subjective ratings, ensuring
that no overlapping samples appear simultaneously across the training, validation, or test splits.

Low-Light Enhancement Methods. We employ 21 recent LLIE methods1 (see Figure 1 (a)) for
enhanced image generation. For methods such as Zero-DCE, EnlightenGAN, RUAS, SCI, GDP,
PairLIE, NeRCo, and CLIP-LIT, we adopt the official models released by the authors. For the
remaining methods, we use publicly available models trained on LOL-v2 or retrain them following
the authors’ default configurations. This process produces 5,313 enhanced images, and with the
corresponding ground truth from the source datasets, yields a total of 5,566 annotated images.

Table 2: Min, max, median and mean
SRCC, and PLCC between two random-
ized subgroups with equal size across
100 splits.

Criterion Min Max Median Mean

SRCC ↑ 0.792 0.901 0.870 0.868
PLCC ↑ 0.794 0.898 0.870 0.869

Subjective Testing. We design a graphical user inter-
face (GUI) (see Figure 1(b)) to collect both quantitative
and qualitative annotations of low-light enhanced images.
Prior to the experiment, subjects are instructed to perform
the evaluation on high-resolution monitors and are pro-
vided with detailed guidelines, including the definition of
“technical image quality,” examples of common distortion
types, and reference images of varying quality levels. For
quantitative assessment, we adopt the standard 5-point
ACJ scale (Hosu et al., 2020). For qualitative evaluation,
participants identify the two most prominent distortion
types from nine categories: noise, blurriness, uneven color, overexposure, underexposure, over-
saturation, under-saturation, inaccurate white balance, over-sharpening, and others (Wang et al.,
2024a; Lin et al., 2023), and then rate the severity of each selected distortion using a 5-point ACJ scale.
Compared with LOL-v1/v2 images, SDSD samples typically exhibit more realistic distortions, such
as low-light noise and blurriness. To account for these differences, we conduct separate subjective
evaluations for enhanced images from LOL-v1/v2 and SDSD, resulting in two distinct subsets.

1These methods include Zero-DCE (Guo et al., 2020), EnlightenGAN (Jiang et al., 2021), RUAS (Risheng
et al., 2021), SCI (Ma et al., 2022), GSAD (Hou et al., 2023), PairLIE (Fu et al., 2023), NeRCo (Yang et al.,
2023a), CLIP-LIT (Liang et al., 2023), AGLLNet (Lv et al., 2021), RQ-LLIE (Liu et al., 2023), MBLLEN
(Lv et al., 2018), RetinexNet (Wei et al., 2018), KinD++ (Zhang et al., 2019), MIRNet (Zamir et al., 2020),
SNR-Net (Xu et al., 2022), IAT (Cui et al., 2022), LLFlow (Wang et al., 2022), Retinexformer (Cai et al., 2023),
RetinexMamba (Bai et al., 2024), LLFormer (Wang et al., 2023b), and SCUNet (Zhang et al., 2023a).
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Figure 3: The distortion distributions of all LLIE methods on the LIDQ dataset.

We recruited 34 subjects with normal or corrected-to-normal vision and verified color perception
using the Ishihara test (Wang et al., 2023e). Each subject evaluated a subset of images, with every
image annotated by at least 15 subjects (Wang et al., 2024a). The evaluation started with qualitative
annotations, followed by overall quality ratings (Fang et al., 2020). In total, we collected 89,454
annotations across 5,566 images.

Subjective Data Processing. We apply rigorous outlier and subject filtering based on the ITU-R
BT.500-13 methodology (BT.500 ITU-R, 2002) to ensure annotation reliability. Annotations deviating
by more than three standard deviations from the mean are marked as outliers, and subjects with
outlier rates above 5% are excluded. After filtering, all subjects remain valid, and 2.61% of ratings
are discarded as outliers. The mean of the remaining valid ratings is used as the ground-truth mean
opinion score (MOS). For qualitative annotations, subjects identify the two most prominent distortion
types from ten predefined categories. The final primary distortions are determined by aggregating
selections across subjects and choosing the top two. We then convert the selected distortion types and
their severity scores into a continuous probability distribution vector over all distortion categories.

Subjective Results and Analysis. To assess annotation reliability, we repeatedly split subjects into
two subgroups and computed the Spearman rank correlation coefficient (SRCC) and Pearson linear
correlation coefficient (PLCC) between their mean MOS ratings. Averaged over 100 trials, both
metrics exceeded 0.85 (see Table 2), indicating strong rating consistency. Fig. 2 shows the average
MOS for each LLIE method, leading to several key observations. First, GT images consistently exhibit
higher perceptual quality than all enhanced versions, indicating significant room for improvement.
Second, the quality gap between GT and enhanced images is notably larger in the SDSD subset than in
LOL, highlighting the greater challenges of enhancing low-light images in the wild. Third, the relative
rankings of different LLIE algorithms vary across the two subsets. For example, SCI (Ma et al., 2022)
ranks highest among all LLIE algorithms on the SDSD subset, but its ranking significantly drops on
the LOL subset. This highlights the limited generalizability of LLIE models and the need for diverse
evaluation to ensure reliable performance across varied scenarios.

We show the distortion distributions of enhanced images corresponding to all LLIE methods in
Fig. 3. It is evident that noise and blurriness are the most common artifacts in enhanced low-light
images, followed by underexposure and white balance (WB) issues, highlighting key challenges
faced by current LLIE methods. Fig. 3 also provides an intuitive overview of the relative strengths
and weaknesses of various LLIE methods, e.g., NeRCo and SNR-Net show stronger resistance to
noise artifacts but are more susceptible to blurriness.
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4 PROPOSED METRIC: LIQ3A
Preliminaries. Given an enhanced image x ∈ RN produced by a specific LLIE algorithm, LIQ3A is
designed to estimate the perceptual quality of x through a mapping q̂ : RN → R, and to characterize
the distortion profile of x by converting the qualitative analysis into a distribution over M candidate
distortion types via a mapping d̂ : RN → RM . For quality prediction, we adopt a five-level Likert
scale C = {1, 2, 3, 4, 5} ({“bad”, “poor”, “fair”, “good”, “perfect”}) and define the predicted quality
score q̂ as

q̂(x) =

C∑
c=1

p̂(c | x)× c, (1)

where C = 5 and p̂(c | x) denote the estimated marginal probability of level c. As for distortion
analysis, we consider M = 11 distortion types as specified in Sec. 3. To build LIQ3A, we leverage
the strong representational power of a CLIP-style (Radford et al., 2021) vision-language model,
SigLIP-2 (Tschannen et al., 2025), pre-trained on 12 billion image-text pairs. We utilize the built-in
language module of SigLIP-2 to bridge the two tasks by constructing a textual template that combines
labels from both: “a photo with {d} artifacts, which is of {c} quality”, yielding 5× 11 = 55 textual
descriptions.

Model Specification. We use the NaFlex variant of SigLIP-2, which inherently supports multi-
resolution inputs while preserving aspect ratios. Given a patch size and a target sequence length,
NaFlex resizes input images to dimensions that are multiples of the patch size, minimizing aspect
ratio distortion while ensuring the sequence length remains within bounds. The model comprises
a visual encoder fϕ : RN → RK and a language encoder gφ : T → RK , parameterized by ϕ and
φ, respectively, where T denotes the text prompt set. Thanks to the NaFlex mechanism, we can
efficiently extract multi-scale visual representations. Each input image x is resized to U different
resolutions, from which we derive the visual embedding matrix F (x) ∈ RU×K . In parallel, we
encode V = 55 candidate text prompts to obtain the textual embedding matrix G(x) ∈ RV×K .

We then compute the cosine similarity between the visual embedding of the u-th image Fu• (as a
row vector and for 1 ≤ u ≤ U ) and the v-th candidate textual embedding Gv• (corresponding to a
particular set of {c, d}), averaging across U sub-images to obtain the image-level correspondence
score:

logit(c, d|x) = 1

U

U∑
u=1

Fu•(x)G
⊺
v•(x)

∥Fu•(x)∥2∥Gv•(x)∥2
. (2)

After matching the image with all candidate descriptions, we apply a softmax with learnable tempera-
ture τ and bias β to compute the joint probability:

p̂(c, d | x) = exp (logit(c, d | x)/τ + β)∑
c,d exp (logit(c, d | x)/τ + β)

. (3)

Loss for Quantitative Assessment. We marginalize p̂(c, d|x) to compute p̂(c|x), from which we
obtain the quality estimate q̂(x) ∈ R by Eq. equation 1. During training, we sample a mini-batch
B = {xi, q(xi)}|B|

i=1 at each iteration, where q(xi) is the MOS of xi. We compute a binary label
indicating the relative quality ranking of two images within B:

p(xi,xj) =

{
1 if q(xi) ≥ q(xj)

0 otherwise
, (4)

Following Thurstone’s model (Thurstone, 1927), we estimate the probability that xi is perceived as
better than xj by:

p̂(xi,xj) = Φ

(
q̂(xi)− q̂(xj)√

2

)
, (5)

where Φ(·) is the cumulative distribution function of a standard normal distribution. We adopt the
fidelity loss (Tsai et al., 2007) as the statistical distance measure:

ℓf (B) =
1

|B|
∑

{(xi,xj),p}∈B

(
1−

√
p(xi,xj)p̂(xi,xj)−

√
(1− p(xi,xj))(1− p̂(xi,xj))

)
. (6)
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Table 3: Performance comparison of different IQA algorithms on Subset 1 and Subset 2 (↑ means
higher is better, ↓ means lower is better).

Method Subset 1 (LOL-v1 & LOL-v2) Subset 2 (SDSD)

SRCC (↑) PLCC (↑) EMD (↓) SRCC (↑) PLCC (↑) EMD (↓)

MUSIQ (Ke et al., 2021) 0.6871 0.7017 – 0.4643 0.5517 –
CLIPIQA (Wang et al., 2023a) 0.1748 0.2190 – 0.3929 0.4124 –
QualiCLIP+ (Agnolucci et al., 2024a) 0.5788 0.6060 – 0.5952 0.7132 –
UNIQUE (Zhang et al., 2021a) 0.5881 0.6109 – 0.4004 0.5409 –
VisualQuality-R1 (Wu et al., 2025) 0.6897 0.7052 – 0.6346 0.6314 –
DBCNN (Zhang et al., 2018) 0.8072 0.8267 – 0.9284 0.9078 –
HyperIQA (Su et al., 2020) 0.7201 0.7385 – 0.9100 0.9231 –
MANIQA (Yang et al., 2022) 0.8047 0.8260 – 0.9213 0.9354 –
ARNIQA (Agnolucci et al., 2024b) 0.7335 0.7472 – 0.9159 0.9260 –
TOPIQ (Chen et al., 2024) 0.7563 0.7659 – 0.9210 0.9355 –
Q-Align Wu et al. (2024c) 0.8410 0.8512 – 0.9062 0.9047 –
LIQE (Zhang et al., 2023b) 0.8532 0.8657 0.0681 0.9211 0.8888 0.0699
LIQ2A 0.8660 0.8730 0.1742 0.9304 0.8800 0.2853
LIQ3A (Ours) 0.8753 0.8836 0.0740 0.9322 0.9068 0.0664

To improve the precision of quantitative quality prediction, we incorporate an additional loss term
based on the PLCC:

ℓp = 1−
∑|B|

i=1

(
q̂(xi)− q̂

)
(q(xi)− q)√∑|B|

i=1

(
q̂(xi)− q̂

)2√∑|B|
i=1 (q(xi)− q)

2
. (7)

where q = 1
|B|
∑|B|

i=1 q(xi) and q̂ = 1
|B|
∑|B|

i=1 q̂(xi).

Loss for Qualitative Assessment. Given p̂(c, d|x), we marginalize it to obtain p̂(d|x). We again use
the fidelity loss to measure the distance between the predicted and ground-truth distortion distributions
p(d|x) ∈ RM :

ℓd(x) =
1

|B|
∑
x∈B

(
1−

√
p(d|x) p̂(d|x)−

√
(1− p(d|x))(1− p̂(d|x))

)
. (8)

Finally, we compute the overall loss as: ℓ = λ1ℓf +λ2ℓp+λ3ℓd, where λ1, λ2, and λ3 are weighting
factors that balance the contribution of each loss term.

5 EXPERIMENTS AND RESULTS

Experimental Setups. We conduct experiments on both subsets of the LIDQ dataset. To ensure
meaningful supervision, we perform joint training on both subsets using a pairwise learning-to-rank
strategy (Zhang et al., 2021a) restricted to within-subset comparisons. Each of Subset 1 and Subset
2 is partitioned into training, validation, and testing splits in a 7:1:2 ratio, ensuring that visually
similar content is confined to a single split to avoid content leakage. Our model is instantiated
using the SigLIP-2-base-NaFlex variant (Tschannen et al., 2025), which employs a shared ViT-B/16
architecture (Dosovitskiy et al., 2021) for both visual and language encoders. The visual encoder
leverages the NaFlex mechanism to preprocess inputs in an aspect-ratio-preserving manner, based on
a preset maximum patch count. We adopt three such settings (U = 3): 196, 529, and 1024 patches.
The language encoder processes tokenized text truncated to the first 64 tokens, using the Gemma
tokenizer (Team et al., 2024). Training is conducted using the AdamW optimizer (Loshchilov &
Hutter, 2019) with a weight decay of 10−3 and an initial learning rate of 5× 10−6, scheduled via
cosine annealing (Loshchilov & Hutter, 2017). We train LIQ3A for 8 epochs with a mini-batch size
of 16 for each subset. All loss weights, i.e., λ1, λ2, and λ3, are set to 1. We use SRCC and PLCC
as prediction monotonicity and precision measures, respectively. Additionally, the Earth Mover’s
Distance (EMD) (Levina & Bickel, 2001) is utilized to measure the closeness between the predicted
and ground-truth distortion distributions.

Comparison Methods. We compare the performance of the proposed LIQ3A with eleven BIQA
methods, including five pre-trained models—MUSIQ (Ke et al., 2021), CLIPIQA (Wang et al.,
2023a), QualiCLIP+ (Agnolucci et al., 2024a), UNIQUE (Zhang et al., 2021a), and VisualQuality-
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(a) CLIP-LIT
Quality: 1.438
Underexposure: 0.385
Noise: 0.268
Blurriness: 0.112

(b) LLFlow
Quality: 4.955
None: 0.529
Blurriness: 0.196
Underexposure: 0.106

(c) MIRNet
Quality: 1.478
Under-saturation: 0.421
Noise: 0.218
Blurriness: 0.153

(d) RUAS
Quality: 2.793
Overexposure: 0.453
None: 0.126
Blurriness: 0.111

(e) MBLLEN
Quality: 2.101
Over-saturation: 0.399
None: 0.144
Uneven color: 0.121

(f) KinD++
Quality: 1.177
Noise: 0.425
Over-sharpening: 0.307
Blurriness: 0.117

(g) Retinextformer
Quality: 1.662
Noise: 0.474
Blurriness: 0.278
Others: 0.101

(h) RetinexNet
Quality: 1.000
Noise: 0.522
Inaccurate WB: 0.156
Uneven color: 0.088

Figure 4: Quality scores and probabilities of primary distortions predicted by LIQ3A for enhanced
images produced by different LLIE methods.

R1 (Wu et al., 2025)—as well as seven models re-trained on LIDQ2: DBCNN (Zhang et al., 2018),
HyperIQA (Su et al., 2020), MANIQA (Yang et al., 2022), ARNIQA (Agnolucci et al., 2024b),
TOPIQ (Chen et al., 2024), LIQE (Zhang et al., 2023b), and Q-Align Wu et al. (2024c). We also
evaluate a degenerated variant of our model, referred to as LIQ2A, which is trained solely using MOSs.
Among all competing methods, only LIQE and the proposed LIQ3A are capable of performing both
quantitative quality prediction and qualitative distortion distribution estimation.

Quantitative Results. We list the quantitative results in Table 3, from which we have several
insightful observations. First, by leveraging strong prior knowledge from an advanced multi-modal
large language model (MLLM), VisualQuality-R1 outperforms other pre-trained methods across
both subsets. Second, all re-trained BIQA models outperform pre-trained ones, highlighting a clear
domain shift between low-light enhanced images and standard IQA datasets, and underscoring
the need for task-specific fine-tuning. Third, sharing a similar design, LIQ3A outperforms LIQE,
validating the superiority of the SigLIP-2 backbone over CLIP and the effectiveness of the NaFlex
mechanism in enabling multi-scale representations that better capture quality-aware image features.
Fourth, compared to LIQ2A, LIQ3A enables both qualitative distortion pattern estimation and slightly
improved quantitative performance, suggesting effective knowledge transfer between the two tasks.

Qualitative Results. We present qualitative examples in Fig. 4 to intuitively demonstrate LIQ3A’s
ability to perform both quantitative and qualitative evaluations of low-light enhanced images. Thanks
to our pairwise learning-to-rank training scheme across both subsets, LIQ3A effectively learns a
common perceptual space in which images from Subset 1 (Fig.4(a)–(e)) and Subset 2 (Fig.4(f)–(h)) are
well aligned, even though their MOSs are not directly comparable. In addition, LIQ3A’s predictions
clearly indicate that Noise and Blurriness are the most dominant distortion types, which are consistent
with the overall distortion distribution illustrated in Fig. 3.

Generalizability Testing. To evaluate the generalizability of LIQ3A, we perform cross-dataset
testing on LIEQ Zhai et al. (2021) and LEISD Lin et al. (2023), corresponding to diverse contents and
LLIE algorithms. In addition, we select five low-light images from each of DICM (Lee et al., 2013),
MEF (Ma et al., 2015), LIME (Guo et al., 2016), NPE (Wang et al., 2013), and VV (Vonikakis et al.,
2018), and enhance them with the same 21 algorithms used in LIDQ, resulting in 550 images. We
perform formal subjective testing to annotate their perceptual quality. The resulting dataset, termed
Hybrid-LLIE, is used to evaluate the cross-scene generalizability of IQA methods. The results are
reported in Table 4, from which we have two primary observations. First, VisualQuality-R1 and

2These models are re-trained and evaluated using the same data splits as LIQ3A.
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(a) MIRNet (b) MAP-refined (c) RUAS (d) MAP-refined

(e) RetinexNet (f) MAP-refined (g) EnlightenGAN (h) MAP-refined

Figure 5: Visual examples of MAP-refined images from outputs generated by different LLIE methods,
where LIQ3A is employed to guide the perceptual optimization.

Table 4: SRCC and PLCC results on three datasets under the cross-dataset setup. The top two
performances are highlighted in bold.

Method LIEQ LEISD Hybrid-LLIE

SRCC PLCC SRCC PLCC SRCC PLCC

MUSIQ (Ke et al., 2021) 0.7434 0.7411 0.4512 0.4346 0.4689 0.4566
CLIPIQA (Wang et al., 2023a) 0.4500 0.4664 0.1864 0.1942 0.4306 0.4486
QualiCLIP+ (Agnolucci et al., 2024a) 0.7348 0.7273 0.4849 0.4554 0.5984 0.5789
UNIQUE (Zhang et al., 2021a) 0.7809 0.7770 0.5346 0.5472 0.5371 0.5415
VisualQuality-R1 (Wu et al., 2025) 0.8487 0.8479 0.7005 0.7100 0.7120 0.7095
DBCNN (Zhang et al., 2018) 0.6233 0.6298 0.6136 0.6580 0.4747 0.4948
HyperIQA (Su et al., 2020) 0.5485 0.5570 0.5594 0.6247 0.4664 0.4743
MANIQA (Yang et al., 2022) 0.7247 0.7308 0.6333 0.6779 0.6400 0.6424
ARNIQA (Agnolucci et al., 2024b) 0.4563 0.4829 0.5569 0.6148 0.4744 0.4786
TOPIQ (Chen et al., 2024) 0.7130 0.7237 0.6606 0.6967 0.5052 0.5117
Q-Align Wu et al. (2024c) 0.8133 0.8007 0.7329 0.7460 0.6864 0.6898
LIQE (Zhang et al., 2023b) 0.7549 0.7680 0.7506 0.7919 0.6231 0.6406
LIQ3A (Ours) 0.8165 0.8121 0.7729 0.7979 0.7470 0.7398

Q-Align demonstrate strong performance across all three datasets, highlighting the generalizability
of MLLM-based IQA models. Second, with far fewer parameters, LIQ3A attains comparable or
superior cross-dataset performance to MLLM-based methods, validating the soundness of our design.

Perceptual Optimization. Beyond serving as a performance measure for LLIE, it is also highly
beneficial to explore the use of a quality metric for perceptual optimization. We plug LIQ3A into
the maximum a posteriori (MAP) estimation within the diffusion latents framework (Zhang et al.,
2025) to perform post-enhancement on the outputs generated by LLIE methods. To evaluate this, we
show in Fig. 5 image pairs, consisting of the outputs from different LLIE methods and our MAP-
refined results. It is evident that LIQ3A performs effectively within the MAP estimation framework,
removing distortions introduced by various LLIE methods and showcasing its reliable understanding
of degradation factors through an analysis-by-synthesis manner (Grenander & Miller, 2007).

6 CONCLUSION

In this work, we conduct a comprehensive quality assessment study for low-light enhanced images.
We first present LIDQ, a new dataset containing 5,566 enhanced images produced by 21 modern LLIE
methods. Both quantitative and qualitative quality annotations, in the form of MOSs and distortion
distributions, respectively, are obtained via well-controlled subjective testing. Building on LIDQ,
we develop LIQ3A, a quality metric that effectively quantifies overall image quality and estimates
distortion distributions in low-light enhanced images. We believe our dataset and metric will drive
progress in both the development of LLIE methods and the advancement of LLIE evaluation metrics.
A key limitation of this study is the small volume of annotated data, highlighting the need for larger
and more diverse datasets. Methodologically, integrating MLLMs to enhance both quantitative and
qualitative LLIE assessments remains an open direction.
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