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Abstract

When working with 3D facial data, improving fidelity

and avoiding the uncanny valley effect is critically depen-

dent on accurate 3D facial performance capture. Because

such methods are expensive and due to the widespread

availability of 2D videos, recent methods have focused on

how to perform monocular 3D face tracking. However,

these methods often fall short in capturing precise facial

movements due to limitations in their network architecture,

training, and evaluation processes. Addressing these chal-

lenges, we propose a novel face tracker, FlowFace, that in-

troduces an innovative 2D alignment network for dense per-

vertex alignment. Unlike prior work, FlowFace is trained

on high-quality 3D scan annotations rather than weak su-

pervision or synthetic data. Our 3D model fitting module

jointly fits a 3D face model from one or many observa-

tions, integrating existing neutral shape priors for enhanced

identity and expression disentanglement and per-vertex de-

formations for detailed facial feature reconstruction. Ad-

ditionally, we propose a novel metric and benchmark for

assessing tracking accuracy. Our method exhibits superior

performance on both custom and publicly available bench-

marks. We further validate the effectiveness of our tracker

by generating high-quality 3D data from 2D videos, which

leads to performance gains on downstream tasks.

1. Introduction

Access to 3D face tracking data lays the foundation for

many computer graphics tasks such as 3D facial anima-

tion, 3D human avatar reconstruction, and expression trans-

fer. Obtaining high visual fidelity, portraying subtle emo-

tional cues, and preventing the uncanny valley effect in

these downstream tasks is reliant on high motion capture

accuracy. As a result, a common approach to generat-

ing 3D face tracking data is to use 3D scans and visual

markers however, this process is cost-intensive. To alle-

viate this burden, building computational models to ob-

tain 3D faces from monocular 2D videos and images has

cemented its importance in recent years and seen great

progress [10, 14, 19, 24, 37, 42, 57]. Nevertheless, three

issues persist: First, current methods rely heavily on sparse

landmarks and photometric similarity, which is computa-

tionally expensive and ineffective in ensuring accurate face

motion. Second, the monocular face tracking problem is

both ill-posed and contains a large solution space dependent

on camera intrinsics, pose, head shape, and expression [58].

Third, current benchmarks for this task neglect the temporal

aspect of face tracking and do not adequately evaluate facial

motion capture accuracy.

To address the aforementioned issues, we introduce a

novel 3D face tracking model called FlowFace, consisting

of a versatile two-stage pipeline: A 2D alignment network

that predicts the screen-space positions of each vertex of

a 3D morphable model [2] (3DMM) and an optimization

module that jointly fits this model across multiple views

by minimizing an alignment energy function. Unlike tra-

ditional methods that rely on sparse landmarks and photo-

metric consistency, FlowFace uses only 2D alignment as

input signal, similar to recent work [42]. This alleviates

the computational burden of inverse rendering and allows

joint reconstruction using a very large number of observa-

tions. We enhance previous work in four ways: (1) The

2D alignment network features a novel architecture with a

vision-transformer backbone and an iterative, recurrent re-

finement block. (2) In contrast to previous methods that use

weak supervision or synthetic data, the alignment network

is trained using high-quality annotations from 3D scans.

(3) The alignment network predicts dense, per-vertex align-

ment instead of key-points, which enables the reconstruc-

tion of finer details. (4) We integrate an off-the-shelf neutral

shape prediction model to improve identity and expression

disentanglement.

In addition, we present the screen-space motion error

(SSME) as a novel face tracking metric. Based on optical

flow, SSME computes and contrasts screen-space motion,

aiming to resolve the limitation observed in existing evalu-

ation methods. These often rely on sparse key points, syn-

thetic annotations, or RGB/3D reconstruction errors, and

lack a thorough and comprehensive measurement of tem-

poral consistency. Using the Multiface [44] dataset, we de-

velop a 3D face tracking benchmark around this metric.

1

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1227



Finally, through extensive experiments on available

benchmarks, we show that our method significantly outper-

forms the state-of-the-art on various tasks. To round off

our work, we demonstrate how our face tracker can posi-

tively affect the performance of downstream tasks, includ-

ing speech-driven 3D facial animation and 3D head avatar

synthesis. Specifically, we demonstrate how our method

can be used to generate high-quality data — comparable

to studio-captured data — for both these tasks by using it to

augment existing models to achieve state-of-the-art results.

2. Related Work

Uncalibrated 3D Face Reconstruction. Previous work

reconstructing 3D face shapes from uncalibrated 2D images

or video fall into two broad categories:

Optimization-based methods recover face shape and

motion by jointly optimizing 3D model parameters to fit the

2D observations. They traditionally treat this optimization

as an inverse rendering problem [15, 16, 37, 43, 48, 52, 57],

using sparse key-points as guidance. Typically, they em-

ploy geometric priors such as 3DMMs [2, 6, 22, 26, 47],

texture models, simplified illumination models, and tempo-

ral priors. Some methods use additional constraints such

as depth [37] or optical flow [5]. [58] and [28] present de-

tailed surveys of such methods. Most methods use 3DMMs

to disentangle shape and expression components. MPT [57]

is the first method to integrate metrical head shape priors

predicted by a deep neural network (DNN). However, pho-

tometric and sparse landmark supervision is not sufficient

to obtain consistent and accurate face alignment, especially

in areas not covered by landmarks and or of low visual

saliency. More recently, [42] proposes to use only 2D face

alignment (dense landmarks) as supervision, avoiding the

computationally expensive inverse rendering process. Our

method extends this idea with an improved 2D alignment

module, better shape priors, and per-vertex deformation.

Regression-based methods train DNNs to directly pre-

dict face reconstructions from single images [7, 10, 12, 19,

24, 31, 32, 34, 35]. This reconstruction includes informa-

tion such as pose, 3DMM components, and sometimes tex-

ture. Typically, convolutional networks like image classifi-

cation networks [21, 33] or encoder-decoder networks [41]

are used. Due to the lack of large-scale 2D to 3D anno-

tations, these methods typically rely on photometric super-

vision for their training. Some methods propose complex

multi-step network architectures [24, 32] to improve recon-

struction. [24] use additional handcrafted losses to improve

alignment, whereas [7] use synthetic data and numerous

of landmarks. More recently, [38] proposes to use vision-

transformers to improve face reconstruction.

2D Face Alignment. Traditional 2D face alignment meth-

ods predict a sparse set of manually defined landmarks.

These methods typically involve convolutional DNNs to

predict heat maps for each landmark [4, 30, 54]. Sparse

key-points are not sufficient to describe full face motion,

and heat maps make it computationally infeasible to pre-

dict a larger number of key-points. [42] and [18] achieve

pseudo-dense alignment by using classifier networks to di-

rectly predict a very large number of landmarks. [20] pre-

dict the UV coordinates in image space and then map the

vertices onto the image. Just like [41] and [32], our method

predicts a per-pixel dense mapping between the UV space

of a face model and the image space. However, we set

our method apart by using better network architectures with

vision-transformers and real instead of synthetic data.

Evaluation of Face Trackers. Prior work evaluates face

tracking and reconstruction using key-point accuracy [19,

32, 41, 42, 55], depth [37, 57], photometric [37, 57] or 3D

reconstruction [5, 6, 47] errors. Sparse key-points are usu-

ally manually-annotated, difficult to define without ambi-

guities [54], and insufficient to describe the full motion of

the face. Dense key-points [55] are difficult to compare be-

tween models using different mesh topologies. Photometric

errors [37, 38, 57] are unsuitable since a perfect solution al-

ready exists within the input data, and areas with low visual

saliency are neglected. A fair comparison of depth errors

[37, 57] is only possible for methods using a pre-calibrated,

perspective camera model. Methods that evaluate 3D recon-

struction errors have to rigidly align the target and predicted

mesh to fairly evaluate results [6, 34, 47], which causes

valuable tracking information such as pose and intrinsics to

be lost. Most importantly, depth and 3D reconstruction met-

rics neglect motion tangential to the surface normal. In con-

trast, our proposed metric measures the dense face motion

in screen space, which is topology-independent and elimi-

nates the need for rigid alignment.

3. Method

Our 3D face tracking pipeline consists of two stages: The

first stage is predicting a dense 2D alignment of the face

model, and the second stage is fitting a parametric 3D model

to this alignment.

3.1. Dense 2D Face Alignment Network

3.1.1 Network Architecture

The 2D alignment module is responsible for predicting the

probabilistic location — in image space — of each vertex

of our face model. As in [42], the 2D alignment of each

vertex is represented as a random variable Ai = {µi, σi}.

µi = [xi, yi] ∈ I is the expected vertex position in im-

age space I ∈ [0, Dimg]
2, and σi ∈ R>0 is its uncertainty,

modeled as the standard deviation of a circular 2D Gaussian

density function. As an intermediate step, for each iteration
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Figure 1. An overview of the proposed 2D alignment network architecture. A feature encoder transforms the image into a latent feature

map that is then iteratively aligned with a learned UV positional embedding map by the recurrent update block.

k, the alignment network predicts a dense UV to image cor-

respondence map Fk : U → I and uncertainty map Sk. Fk

maps any point in UV space U ∈ [0, Duv]
2 to a position in

image space through a pixel-wise offset, which we call UV-

image flow. This network consists of three parts (Fig. 1):

1. An image feature encoder producing a latent feature map

of the target image.

2. A positional encoding module that produces learned po-

sitional embeddings in UV space.

3. An iterative, recurrent optical flow module that predicts

the probabilistic UV-image flow.

The image space position and uncertainty of each vertex is

then bi-linearly sampled from the intermediate correspon-

dence and uncertainty map for each iteration:

µi,k = νi + Fk(νi) and σi,k = Sk(νi) (1)

where νi ∈ U denotes the pre-defined UV coordinate of

each vertex. These are manually defined by a 3D artist.

Image feature encoder. To obtain the input to the im-

age encoder F , we use SFD [51] to detect a square face

bounding box from the target image and enlarge it by 20%.

We then crop the image to the bounding box and resize

it to Dimg. We use Segformer [45] as the backbone, and

replace the final classification layer with a linear layer to

produce a 128-dimensional feature encoding. We further

down-sample it to attain a final image feature map Zimg ∈
R

Duv×Duv×128 through average pooling. With image I and

network parameters θF , this is defined as:

Zimg = F(I, θF ) (2)

UV positional encoding module. We use a set of mod-

ules G with identical architecture to generate learned po-

sitional embeddings in UV-space. Each module is com-

prised of a multi-scale texture pyramid and a pixel-wise

linear layer. This pyramid consists of four trainable tex-

tures with 32 channels and squared resolutions of Duv, Duv

2
,

Duv

4
, and Duv

8
respectively. Each texture is upsampled to Duv

through bi-linear interpolation before concatenating them

along the channel dimension. The concatenated textures

are then passed through a pixel-wise linear layer to produce

the UV positional embeddings. The multi-scale setup en-

sures structural consistency in UV space (closer pixels in

UV should have similar features). We use 3 of these mod-

ules: GZuv
to generate a UV feature map Zuv, Gc to generator

a context map c, and Gh0
to generate an initial hidden state

h0. With corresponding network parameters θGZuv
, θGc

and

θGh0
, this is described as:

Zuv = G(θGZuv
); c = G(θGc

); h0 = G(θGh0
) (3)

UV-image flow. The RAFT [36] network is designed to

predict the optical flow between two images. It consists of a

correlation block that maps the latent features encoded from

each image into a 4D correlation volume. A context encoder

initializes the hidden state of a recurrent update block and

provides it with additional context information. The update

block then iteratively refines a flow estimate while sampling

the correlation volume.

We adapt this network to predict the UV-image flow

F ∈ R
Duv×Duv×2. We directly pass Zuv and Zimg to the

correlation block C. We use the context map c and initial

hidden state h0 from the positional encoding modules for

the update module U. We modify the update module to also

predict a per-iteration uncertainty in addition to the flow es-

timate, by duplicating the flow prediction head to predict a

1-channel uncertainty map S ∈ R
Duv×Duv

>0 . An exponential

operation is applied to ensure positive values. The motion

encoder head is adjusted to accept the uncertainty as an in-

put. The modified RAFT network then works as follows:

For each iteration k, the recurrent update module performs

a look-up in the correlation volume, context map c, previous

hidden state hk−1, previous flow Fk−1 and previous uncer-

tainty Sk−1. It outputs the refined flow estimate Fk and un-

certainty Sk and the subsequent hidden state hk. Formally,

Fk,Sk, hk = U(C(Zuv, Zimg), c,Fk−1,Sk−1, hk−1, θU)
(4)

with update module weights θU. For a detailed explanation

of our modified RAFT, we defer to [36] and Appendix B.
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3.1.2 Loss Functions

We supervise our network with Gaussian negative log-

likelihood (GNLL) both on the probabilistic per-vertex po-

sitions and the dense UV-image flow. For each iteration k

of the update module, we apply the per-vertex loss function:

Lvertex
k =

Nv∑

i=1

λi(log(σ
2
i,k) +

∥ µi,k − µ′
i ∥

2

2σ2
i,k

) (5)

where λi is a pre-defined vertex weight and µ′
i is the ground

truth vertex position. We encourage our network to predict

coherent flow and uncertainty maps in areas with no vertices

by applying the GNLL loss for each pixel p in UV space:

Ldense
k =

∑

p∈|U|

λp(log(S
2
k,p) +

∥ Fk,p − F
′
p ∥2

2S2
k,p

) (6)

where λp is a pre-defined per-pixel weight and F
′ is the

ground truth UV-image flow. The final loss is a weighted

sum of these losses, with a decay factor for each iteration of

α = 0.8 and a dense weight of λdense = 0.01:

Loss =

Niter∑

k=1

αNiter−k(Lvertex
k + λdenseLdense

k ) (7)

3.2. 3D Model Fitting

As in [42], the 3D reconstruction is obtained by jointly fit-

ting a 3D head model and camera parameters to the pre-

dicted 2D alignment observations for the entire sequence.

This is done by optimizing the energy function E(Φ;A) w.r.t

to the model parameters Φ and alignment A (see Fig. 2).

These parameters and the energy terms are defined below.

Figure 2. An illustration of the 3D model fitting process.

3.2.1 Tracking Model and Parameters

The tracking model consists of a 3D head model and a cam-

era model. A tracking sequence contains C cameras, F

frames with a total of C × F images.

3D head model. We use FLAME [26] as our 3D head

model M. This model consists of Nv = 5023 vertices,

which are controlled by identity shape parameters β ∈
R

300, expression shape parameters φ ∈ R
100 and K = 5

skeletal joint poses θ ∈ R
3K+3 (including the root trans-

lation) through linear blend skinning [25]. We ignore root,

neck and jaw pose and use the FLAME2023 model, which

includes deformations due to jaw rotation within the expres-

sion blend-shapes. We also introduce additional static per-

vertex deformations δd ∈ R
Nv×3 to enhance identity shape

detail. The local head model vertices can be expressed us-

ing its parameters as follows:

M(β, δd,φ,θ) = FLAME(β,φ,θ) + δd (8)

The rigid transform T
M ∈ R

3×4 represents the head pose,

which transforms head model vertices i into world space for

each frame t:

x
3D
i,t = T

M

t Mi (9)

Camera model. The cameras are described by the world-

to-camera rigid transform Tcam ∈ R
3×4 and the pinhole

camera projection matrix K ∈ R
3×3 defined by a single

focal length f ∈ R parameter. The camera model defines

the image-space projection of the 3D vertices in camera j:

x
2D
i,j,t = KjT

cam
j x

3D
i,t (10)

Parameters. The parameters Ψ consist of the head model

and camera parameters, which are optimized to minimize

E(Φ;A). The camera parameters can be fixed to known

values, if the calibration is available. Expression and poses

vary for each frame t, whereas camera, identity shape, and

deformation parameters are shared over the sequence.

Ψ = {β,ΦF×|φ|,ΘF×|θ|, δd;T
M

F×3×4;T
cam
C×3×4, fC} (11)

3.2.2 Energy Terms

The energy function is defined as:

E(Φ;A) = EA + EFLAME + Etemp + EMICA + Edeform (12)

EA encourages 2D alignment:

EA =

Nv,C,F∑

i,j,t

λi

∥ x
2D
i,j,t − µi,j,t ∥

2

2σ2
i,j,t

(13)

where for vertex i seen by camera j in frame t. µi,j,t

and σi,j,t is the 2D location and uncertainty predicted by

the final iteration of our 2D alignment network, and x
2D
i,j,t

(Eq. (10)) is the 2D camera projection of that vertex.

EFLAME = λFLAME(∥ β ∥2 + ∥ Φ ∥2) encourages the

optimizer to explain the data with smaller identity and ex-

pression parameters. This leads to face shapes that are sta-

tistically more likely [10, 14, 26, 57] and a more accurate

3D reconstruction. We do not penalize joint rotation, face

translation or rotation.

Etemp applies a loss on the acceleration of the 3D position

x
3D
i,t of every vertex of the 3D model to prevent jitter and

encourage a smoother, more natural face motion:

Etemp = λtemp

Nv,C,F−1∑

i,j,t=2

∥ x
3D
j,t−1 − 2x3D

j,t + x
3D
j,t+1 ∥2 (14)
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EMICA = λMICA ∥ MΦ=0,θ=0 − MMICA ∥2 provides a

3D neutral geometry prior for the optimizer to enable a bet-

ter disentanglement between identity and expression com-

ponents. It consists of the L2 distance of the neutral head

model vertices to the MICA [57] template MMICA. This

template is computed by predicting the average neutral head

vertices using the MICA model [57] for all frames of the

sequence. The term also enables a more accurate 3D re-

construction since the model can rely on MICA predictions

where the alignment is uncertain, such as in the depth di-

rection or for occluded vertices. In areas of confident align-

ment, the MICA prediction can be refined.

Edeform = λdeform ∥ δd ∥2 encourages per-vertex defor-

mations to be small w.r.t. the FLAME model.

3.3. Multiface Face Tracking Benchmark

Our monocular 3D face tracking benchmark focuses on

3D reconstruction and motion capture accuracy. To eval-

uate these, we use our proposed screen space motion error

(SSME) and the scan-to-mesh chamfer distance (CD).

Figure 3. An illustration of the EPE computation for each frame.

Screen Space Motion Error. To define the Screen Space

Motion Error (SSME), we reformulate face tracking as an

optical flow prediction problem over a set of time windows.

First, we project the ground truth mesh and predicted mesh

into screen space using the respective camera model. Then,

we use the screen space coordinates to compute the ground

truth optical flow f′t:t+h and predicted optical flow ft:t+h

from frame t to frame t + h for each frame t ∈ [1, . . . , F ]
and a sequence of frame windows h = [1, ...,NH]. For

each frame and frame window, the average end-point-error

EPEt:t+h is computed by averaging the L2-distance be-

tween ground truth and predicted optical flow for each pixel

(see Fig. 3).

EPEt:t+h =∥ V » (ft:t+h − f′t:t+h) ∥
2 (15)

where V is a mask to separate different face regions and »
is the Hadamard product. See Fig. 3 for a visual reference.

The screen space motion error SSMEh for frame window

h is then defined as the mean of all EPEs over all frames t

where frame t+ h exists:

SSMEh =
1

F − h

t+hfF∑

t=1

EPEt:t+h (16)

Finally, to summarize tracking performance in one value,

we compute the average screen space motion error SSME

over all frame windows as

SSME =

NH∑

h=1

SSMEh (17)

In other words, SSME measures the average trajectory

accuracy of each pixel over a time horizon of NH frames.

We choose a maximum frame window of NH = 30 (1 sec-

ond) since most human expressions are performed within

this time frame. Because the screen space motion is directly

affected by most face-tracking parameters such as intrin-

sics, pose, and face shape, it also measures their precision

in a holistic manner. In contrast to prior works and bench-

marks that use sparse key-points, SSME covers the motion

of all visible face regions and is invariant to mesh topology.

As it operates in screen space, it does not require additional

alignment and works with all camera models, unlike 3D re-

construction or depth errors. In our benchmark, we evaluate

SSME over a set of masks for semantically meaningful face

regions (face, eyes, nose, mouth, and ears) (Fig. 3), permit-

ting a more nuanced analysis of the tracking performance.

3D Reconstruction. To complete our benchmark, we ad-

ditionally measure the chamfer distance (CD) to account for

the depth dimension. Similar to [34], the tracked mesh is

rigidly aligned to the ground truth mesh using 7 key-points

and ICP. Then, the distance of each ground truth vertex with

respect to the predicted mesh is computed and averaged.

For a detailed explanation, we defer to the NoW benchmark

[34]. Just like the SSME, we evaluate the CD for the same

set of face regions to provide a more detailed analysis of

reconstruction accuracy, similar to [6].

Multiface Dataset. We build our benchmark around the

Multiface dataset [44]. Multiface consists of multi-view

videos with high quality topologically consistent 3D reg-

istrations. High-resolution videos are captured at 30 FPS

from a large variety of calibrated views. We limit the eval-

uation data to a manageable size by carefully selecting a

subset of 86 sequences with a diverse set of view directions

and facial performances (see Appendix C).

4. Experiments

Training data. To train the 2D alignment network, we use

a combined dataset made up of FaceScape [47], Stirling [1],
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and FaMoS [3]. Where a FLAME [26] registration is not

available, we fit the FLAME template mesh to the 3D scan

through semi-automatic key-point annotation and commer-

cial topology fitting software. For an accurate capture of

face motion, we auto-annotate expression scans with addi-

tional key-points propagated with optical flow (more infor-

mation in Appendix D). The ground truth image space ver-

tex positions µ′ are obtained by projecting the vertices of

the fitted FLAME mesh into screen space using the avail-

able camera calibrations.

Training strategy for 2D alignment network. We use

Segformer-b5 (pre-trained on ImageNet [11]) as our back-

bone, with Dimg = 512, Duv = 64 and Niter = 3. We use

the RAFT-L configuration for the update module and keep

its hyperparameters when possible [36]. We optimize the

model for 6 epochs using the AdamW optimizer [27], an

initial learning rate of 1 × 10−4 and a decay of 0.1 every 2

epochs. We use image augmentation such as random scal-

ing, rotation, and color corruption [42], synthetic occlusions

[39] and synthetic backgrounds (see Appendix D).

3D model fitting. To minimize the energy function and

obtain tracking parameters, we use the AdamW optimizer

with an initial learning rate of 1 × 10−2 and a automatic

learning rate scheduler with a decay factor of 0.5 and pa-

tience of 30 steps, until convergence. We enable δd only for

multi-view reconstruction, and only for the nose region.

Baselines. We implement and test against the most re-

cent publicly available methods for single image regression-

based approaches 3DDFAv2 [19], SADRNet [32], PRNet

[41], DECA (coarse) [14], EMOCA (coarse) [10], and HRN

[24]. We extend the ability of these methods to use tempo-

ral priors by applying a simple temporal Gaussian filter to

the screen-space vertices. We also include the popular pho-

tometric optimization-based approach MPT [57]. Lastly,

we compare against the key-point-only optimization-based

method Dense proposed by [42] on public benchmarks.

4.1. Multiface Benchmark

We divide our Multiface benchmark into two categories:

Without temporal information sharing, where each method

is restricted to operate on single images, and with (both for-

ward and backward) temporal information sharing, where

each method is allowed to use the entire sequence as ob-

servations. Our method significantly outperforms the best

publicly available method by 54% w.r.t. face-region SSME

on both on single-image and by 46% on sequence predic-

tion. This confirms the superior 2D alignment accuracy of

our method. Despite using only 2D alignment as supervi-

sion, our method performs 8% better in terms of 3D recon-

struction (CD) than the photometric optimization approach

MPT [57] (see Tab. 2. To our surprise, MPT performs in-
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Figure 4. SSMEh plotted over all frame horizons for each evalu-

ated tracker for single-image and full sequence tracking (right).

Lower SSMEh in smaller frame horizons h (left in the graph)

means short-term temporal stability while lower SSMEh in larger

frame horizons (right in the graph) means better long-term track-

ing consistency. Our tracker performs significantly better over ev-

ery time horizon.

ferior w.r.t. motion error than some regression-based mod-

els — this is likely due to uniform lighting and texture in

the Multiface dataset. Qualitative results Fig. 5 confirm that

methods using photometric errors (DECA, HRN, MPT) per-

form inferior w.r.t. screen space motion in areas without

key-point supervision such as cheeks and forehead. Plot-

ting the SSMEh over different time windows h (see Fig. 4)

gives a previously unseen overview of temporal stability.

Regression-based methods suffer from high short-term er-

ror (SSME1) which is due to temporal instability and jitter.

As expected, introducing temporal smoothing improves this

issue and the overall SSME for these methods. Our method

achieves very low short-term SSME even with single image

prediction, which indicates the high robustness and accu-

racy of the alignment network. As expected, introducing

temporal priors reduces SSME.

4.2. FaceScape Benchmark

Method CD ↓ (mm) NME ↓ (rad)

MGCNet [35] 4.00 0.093
PRNet [41] 3.56 0.126
SADRNet [32] 6.75 0.133
DECA [14] 4.69 0.108
3DDFAv2 [19] 3.60 0.096
HRN [24] 3.67 0.087

Ours 2.21 0.083

Table 1. Results on the FaceScape benchmark [47].

We also compare our method on the FaceScape bench-

mark [47], which measures 3D reconstruction accuracy

from 2D images under large view (up to 90◦) and expres-

sion variations. On this benchmark, we outperform the best

previous regression-based methods by 38% in terms of CD

and 4.6% in terms of mean normal error (NME) Tab. 1. This

shows that our method can accurately reconstruct faces even
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Image 3D 3D CD SSME 3D CD SSME 3D CD SSME 3D CD SSME

GT DECA HRN MPT Ours

Figure 5. Qualitative results on two sequences (top and bottom 3 rows) of our Multiface benchmark. Warmer colors represent high error,

while colder colors represent low error. DECA [14], HRN [24], and MPT [57] struggle with motion in the cheek and forehead region,

which is visible in the SSME error plot (right columns). Despite using only 2D alignment as supervision, our method achieves a better 3D

reconstruction (CD) (center columns).

No temporal information sharing (single image) With temporal information sharing (sequence)

Method
CD (mm) ↓ SSME (px) ↓ CD (mm) ↓ SSME (px) ↓

face mouth nose eyes ears face mouth nose eyes ears face mouth nose eyes ears face mouth nose eyes ears

DECA [14] 1.37 1.29 1.32 1.08 2.68 5.66 6.16 3.60 4.25 8.34 1.37 1.29 1.32 1.08 2.68 5.26 6.12 3.22 3.87 7.10
EMOCA [10] 1.47 1.46 1.49 1.10 2.71 6.14 7.32 3.99 4.26 8.55 1.47 1.46 1.49 1.10 2.71 5.63 6.95 3.56 3.87 7.28
HRN [24] 1.49 1.39 1.24 1.09 - 5.75 6.04 4.20 4.84 - 1.49 1.39 1.24 1.09 - 4.63 5.39 3.02 3.68 -
3DDFAv2 [19] 1.53 1.52 1.59 1.24 - 7.91 9.47 6.65 6.55 - 1.53 1.52 1.59 1.24 - 6.71 8.43 5.43 5.44 -
PRNet [41] 1.55 1.59 1.50 1.28 - 8.45 10.66 5.98 6.03 - 1.55 1.59 1.50 1.28 - 7.54 9.80 5.25 5.35 -
SADRNet [32] 1.49 1.52 1.49 1.22 - 7.11 8.21 5.15 5.53 - 1.49 1.52 1.49 1.22 - 6.18 7.46 4.31 4.72 -
MPT [57] - - - - - - - - - - 1.30 1.47 1.11 0.96 - 5.74 7.34 4.64 4.01 -

Ours 1.20 1.3 1.05 0.97 2.34 2.58 3.14 1.33 2.07 1.72 1.19 1.31 1.04 0.96 2.34 2.50 3.16 1.27 2.03 1.68

Table 2. Results on our Multiface tracking benchmark with and without temporal information sharing. Our method consistently outper-

forms previous methods on every single category, metric and face region.

Single-view Multi-view

Method
Error (mm) ↓ Error (mm) ↓

Median Mean Std Median Mean Std

MGCNet [35] 1.31 1.87 2.63 - - -
PRNet [41] 1.50 1.98 1.88 - - -
DECA [14] 1.09 1.38 1.18 - - -
Deep3D [12] 1.11 1.41 1.21 1.08 1.35 1.15
Dense [42] 1.02 1.28 1.08 0.81 1.01 0.84
MICA [57] 0.90 1.11 0.92 - - -
TokenFace [38] 0.76 0.95 0.82 - - -

Ours 0.87 1.07 0.88 0.71 0.88 0.73

Table 3. Results on the NoW Challenge [34]. Multi-view evalu-

ation is done as in [42]. Multi-view results for [12] and [42] are

reported by [42].

under large view deviations.

4.3. Now Challenge

The NoW benchmark is a public benchmark for evaluat-

ing neutral head reconstruction from 2D images captured

indoors and outdoors, with different expressions, and un-

der variations in lighting conditions and occlusions. We

evaluate our method on the non-metrical challenge (Tab. 3).

For single-view reconstruction, our model outperforms our

neutral shape predictor MICA [57] by 4% on mean scan-

to-mesh distance. For the multi-view case, we outperform

the baseline Dense [42] by 13%, likely due to our method’s

high 2D alignment accuracy, better neutral shape priors, and

per-vertex deformations. TokenFace [38] performs better

for the single-view case, however, their predictions could

be integrated into our pipeline since they use the FLAME

topology. Importantly, our network is able to generalize to

these in-the-wild images despite being trained only on in-

the-lab data captured under controlled lighting conditions.

An important sub-task for 3D face trackers is to disentangle

the identity and expression components of the face shape.

The outstanding results on the NoW benchmark indicate the

ability of our tracker to accomplish this.

4.4. Downstream Tasks

In the following, we show how we enhance downstream

models using our face tracker.
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3D Head Avatar Synthesis. Recent head avatar synthe-

sis methods heavily rely on photometric head trackers to

generate face alignment priors [17, 53, 56]. INSTA [56], a

top-performing model, uses MPT [57]. We modify INSTA

by replacing their tracker with ours. We compare our en-

hanced FlowFace-INSTA to the baseline MPT-INSTA. On

their publicly available dataset, we outperform MPT-INSTA

by 10.5% on perceptual visual fidelity (LPIPS). On our

Multiface benchmark videos, we outperform MPT-INSTA

by 20.3% on LPIPS. Detailed results can be viewed in Ap-

pendix G. These results demonstrate how better face track-

ers can directly improve performance on down-stream tasks

which highlights the importance of our research.

Speech-driven 3D facial animation. The field of speech-

driven facial animation often suffers from data sparsity [9,

13, 46]. To alleviate this issue, we generate 3D face meshes

using the multi-view video dataset MEAD [40]. In using

this generated dataset to augment the training of the state-

of-the-art model CodeTalker [46] (see Appendix H), we are

able to improve from a lip vertex error of 3.13 × 10−5 to

2.85 × 10−5 on the VOCASET benchmark [9], an 8.8%

improvement. This underlines the benefit of high-accuracy

video face trackers for large-scale data generation.

4.5. 2D Alignment

To show the benefit of our 2D alignment model architecture,

we conduct an evaluation on our validation set, which con-

sists of 84 subjects of our dataset. We implement the dense

landmark model of [42] (ResNet-101 backbone) and adapt

it to output FLAME vertex alignment and uncertainty. We

also implement PRNet [41] and modify it in the same way.

We retrain each method on our training set. In evaluate the

2D alignment accuracy with respect to normalized mean er-

ror (NME) of every vertex in the face area (Fig. 14, green

vertices). With an NME of 1.30, our method performs sign-

ficantly better than the ResNet architecture of Dense [42]

(NME = 1.63), and PRNet (NME = 2.52). We note that

the accuracy of uncertainty cannot be evaluated with NME.

A qualitative comparison can be viewed in Fig. 17.

4.6. Ablation Studies

2D alignment network. To analyze the effect of differ-

ent feature encoder backbones, we replace our backbone

with different variations of the Segformer model and also

test the CNN-based backbone BiSeNet-v2 [49] (see Tab. 4).

As expected, vision-transformer-based networks show bet-

ter performance. Experimenting with the number of itera-

tions Niter for the update module, we find that multiple iter-

ations instead of one improves the performance. Finally, we

confirm the superior performance of our 2D alignment net-

work compared to the ResNet-101-based network of [42]

mentioned in Sec. 4.5.

Backbone Niter #Param latency (ms) CD↓ SSME↓

ResNet-101 — 73.4M 9 1.54 3.90
BiSeNet-v2 3 17.6M 23 1.21 3.52
MiT-b1 3 17.3M 29 1.22 3.21
MiT-b2 3 31.0M 46 1.20 2.78
MiT-b5 1 88.2M 66 1.25 2.70
MiT-b5 2 88.2M 71 1.21 2.61
MiT-b5 3 88.2M 75 1.18 2.58
MiT-b5 4 88.2M 80 1.23 2.62

Table 4. Ablations for backbone architectures and hyper-

parameters of the 2D alignment network on our Multiface bench-

mark. Latency is evaluated on a Quadro RTX 5000 GPU.

3D model fitting. We show in Tab. 5 the benefit of in-

tegrating the MICA neutral shape prediction on the NoW

Challenge validation set. The significant performance gain

on single-image predictions shows that our 3D tracking

pipeline can integrate MICA predictions very well, even

improving them. We also show the benefit of predicting

a dense face alignment in conjunction with per-vertex de-

formations in multi-view settings. This shows that our 2D

alignment is precise enough to predict face shapes that lie

outside of the FLAME blend-shape space, which previous

optimization-based methods [42, 57] cannot achieve. For a

qualitative analysis, see Appendix E.

Single-view Multi-view

Method
Error (mm) ↓ Error (mm) ↓

Median Mean Std Median Mean Std

Ours w/o MICA 0.99 1.23 1.03 0.71 0.88 0.76
MICA only 0.91 1.13 0.94 - - -
Ours w/o δd - - - 0.68 0.84 0.72
Ours 0.82 1.02 0.85 0.67 0.83 0.71

Table 5. Ablations for the 3D model fitting module on single and

multi-view reconstruction on the NoW validation set.

5. Conclusion and Future Work

This paper presents a state-of-the-art face tracking pipeline

with a highly robust and accurate 2D alignment module. Its

performance is thoroughly validated on a variety of bench-

marks and downstream tasks. However, the proposed two-

stage pipeline is not fully differentiable, which prevents

end-to-end learning. Furthermore, our training data is lim-

ited to data captured in-the-lab. In future work, we intend

to extend the alignment network to directly predict depth

as well, obviating the need for the 3D model fitting step.

Synthetic datasets [42] could alleviate the data issue.

We’re confident that our tracker will accelerate research

in downstream tasks by generating large-scale face capture

data using readily available video datasets [8, 29, 50]. We

also believe that our novel motion capture evaluation bench-

mark will focus and align future research efforts to create

even more accurate methods.
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