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Abstract
Foundation models play a central role in recent de-
velopments of artificial intelligence on both vision
and language domains. However, even if a foun-
dation model is powerful enough at the time to be
fine-tuned for various tasks, it will be eventually
outdated due to its old knowledge or inadequate
capability for new tasks, and then a new foun-
dation model will be prepared by re-training the
outdated model with updated data. As a result, the
various fine-tuned models based on the outdated
model also have to keep up with the new foun-
dation model, typically by fine-tuning again the
new foundation model for each task, which should
be costly if the number of fine-tuned models or
the frequency of updates increases. In this paper,
with our simplified theoretical framework, we first
derive a probabilistic formula for the fine-tuned
model of the new foundation model. Then, based
on the formula, we propose a method to avoid the
fine-tuning of new foundation models, by editing
the predictions of the fine-tuned model in direc-
tion to the new foundation model. Compared to
previous methods, which edit the predictions of
the new foundation model instead, our method
consistently keeps or improves accuracy of fine-
tuned model for various tasks.

1. Introduction
Foundation models have been the basis of recent advances
of artificial intelligence in both vision (Radford et al., 2021)
and language domains (Devlin et al., 2018; Brown et al.,
2020). They are pre-trained on a large amount of data, and
enable us to obtain various task-specific models by fine-
tuning with relatively small data for the tasks. However,
in spite of their powerful capability, all foundation models
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Figure 1: An overview of our approach for inference-time
update of fine-tuned models to keep up with update of foun-
dation models. It can be viewed as adjusting the fine-tuned
models to prefer predictions from the new foundation model,
without actual training, so that it does not degrade the accu-
racy for various tasks. (See Section 2.2 and 3 for details.)

may be eventually outdated due to their old knowledge or
inadequate capability for new tasks in future.

When some foundation model becomes outdated, a new
one would be available through re-training or continual
training on updated data. For example, in the recent cases
of the LLAMA series (Touvron et al., 2023a;b), LLAMA 2
follows LLAMA 1 after about a half year with increased
training data, and CODE LLAMA 2 significantly enhances
the coding ability of LLAMA 2. Therefore, the fine-tuned
models based on the outdated foundation model also have to
keep up with the new foundation model, by re-training the
fine-tuned model starting from the new foundation model.
However, it is costly to re-train fine-tuned models each time
the foundation models are updated, and even impossible if
the task-specific data is no longer available at that time.

In this paper, we focus on the research question of how
we can enforce the fine-tuned models to keep up with the
updates of foundation models, without actual re-training.
For this purpose, we first introduce a simplified theoretical
framework for sequential updates of pre-trained models and
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fine-tuning of them, in terms of conditional probabilistic
models. Under this framework with some ideal assumptions,
we derive a probabilistic formula that makes it possible for
the fine-tuned model to keep up with the update of the
foundation model without re-training. By relaxing the for-
mula, we propose a novel method called base-change at
prediction, which modifies the probability output from the
fine-tuned model with the quotient of ones from old and
new pre-trained models.

Both theoretically and empirically, we compare our method
with the only previous method called emulated fine-tuning
(EFT; Mitchell et al. 2024) or an equivalent one called proxy-
tuning (Liu et al., 2024a), which was originally proposed
to fine-tune a large pre-trained model by actually tuning
a small pre-trained model as a proxy. Although these pre-
vious work assume both the large and small models are
pre-trained on the same data, rather than different data as
in our assumption, their method itself can be applied to our
problem. For the theoretical comparison of these methods,
we employ the framework of offline reinforcement learning
(RL) borrowed from the derivation of EFT (Mitchell et al.,
2024). In this RL framework, our base-change method can
be seen as RL for the fine-tuned model so that it prefers
the distribution of the new pre-trained model to the old one,
while EFT or proxy-tuning can be seen as RL for the new
pre-trained model so that it prefers the fine-tuned model to
the old pre-trained model. Experimental results show that
our proposed method consistently improves accuracy of the
fine-tuned model due to the updated pre-trained model, and
outperforms the previous method particularly on the tasks
in which the previous method fails.

2. Methods
Notations Let L be the set of texts, and p∗(s1, s2, · · · )
be an ideal prior distribution over unordered, deduplicated
sequences of natural texts si ∈ L. Here we assume that
a trained language model can be formulated as a condi-
tional distribution p∗(s|D) with some training data D =
{s1, · · · , sN} ⊂ L, by ignoring the differences stemmed
from the choice of optimization algorithms or model archi-
tectures for the trained model.

Throughout this paper, as discussed in Introduction, we
focus on the situation that there are two pre-trained language
models p1(s), p2(s), where p2(s) is an updated version of
p1(s) with increased training data, and the fine-tuned model
pft1 (s) := p1(s|C) of the older one with a task-specific
data C. In this situation, p1(s), p2(s) can be formulated as
p1(s) := p∗(s|D1), p2(s) := p∗(s|D1, D2).

2.1. Base-Change at Prediction

Our goal is to simulate the fine-tuned model of the up-
dated pre-trained model, pft2 (s) := p2(s|C), without any
additional training, but allowing additional inference cost in-
stead. To achieve this goal, the following proposition plays
a key role:

Proposition 2.1. Assume that D2, C are conditionally inde-
pendent given D1, s under the prior distribution p∗. Then it
follows that

pft2 (s) = pft1 (s)
p2(s)

p1(s)
. (1)

The point of Proposition 2.1 is that we explicitly assume
the relationship between two pre-trained models p1 and p2
as in the previous section. These assumptions enable us to
validate the equation (1) by easy calculation as follows:

(RHS) = pft1 (s)
p2(s)

p1(s)

= p1(s|C)
p1(s|D2)

p1(s)

=
p1(s, C)

p1(C)

p1(s,D2)

p1(s)p1(D2)

= p1(s)
p1(s, C)

p1(s)p1(C)

p1(s,D2)

p1(s)p1(D2)

= p1(s)
p1(C|s)
p1(C)

p1(D2|s)
p1(D2)

= p1(s)
p1(C,D2|s)
p1(C,D2)

= p1(s|D2, C) = pft2 (s) = (LHS)

We can view the equation (1) as calibrating the prediction of
the old fine-tuned model pft1 (s) by the difference between
two pre-trained models p2(s) and p1(s), which can be inter-
preted as changing the base model of the fine-tuned model
from the old one to new one at prediction. In practice, how-
ever, we note that the equation (1) may not work well since
it is valid only when the ideal and simplified assumptions
hold. Also, a recent language model tends to be trained as a
probability of the next-tokens p(y|x) following an incom-
plete text x, rather than the probability of an entire text p(s).
Therefore, for real-world language models, we propose the
following relaxed version of equation (1), which we call
base-change at prediction:

pft2,α(y|x) ∝ pft1 (y|x)
(
p2(y|x)
p1(y|x)

)α

︸ ︷︷ ︸
base-change factor

, (2)

where α ∈ R>0 is an adjusting parameter that controls the
strength of the change of bases.
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Model Source FT Target PT EFT / proxy-tuning Base-change (Ours)

Source PT −→ Target PT GSM: Acc. (scale α)

LLAMA 2-7B

LLAMA 2 CHAT-7B

39.6

8.9 ↓ 28.7 ↓ 36.3
CodeLlama-7B 4.8 ↓ 38.9 ↑ 42.3
LLAMA 2-13B 6.6 ↑ 41.7 ↑ 42.8

CodeLlama-13B 3.3 ↑ 40.5 ↑ 41.8
CodeLlama-34B 6.7 ↑ 42.9 ↑ 43.0

Codex Humaneval: pass@10. (scale α)

LLAMA 2-7B
LLAMA 2 CHAT-7B

68.9
24.9 ↓ 43.9 ↓ 67.9

LLAMA 2-13B 33.7 ↓ 63.5 ↑ 71.8
LLAMA 2 CHAT-13B 31.1 ↓ 48.5 ↑ 70.2

DS1000: pass@10. (scale α)

LLAMA 2-7B
LLAMA 2 CHAT-7B

46.7
15.5 ↓ 32.3 ↓ 46.2

LLAMA 2-13B 25.9 ↓ 43.2 ↑ 47.2
LLAMA 2 CHAT-13B 24.1 ↓ 32.8 ↑ 47.2

Table 1: Performance on NLP tasks. For GSM task, the EFT/proxy-tuning and the base-changed model use LLAMA 2 as
Source PT, and fine-tuning LLAMA 2 on GSM dataset as Source FT. For Humaneval and DS1000, they use LLAMA 2 as
Source PT, and fine-tning CODE LLAMA - PYTHON-7B as Source FT. ↑: Higher than Source FT. ↓ Lower than Source FT.
Bold: Best score.

2.2. Comparison to existing methods

Previous work proposed a similar but different approach
called emulated fine-tuning, EFT (Mitchell et al., 2024), or
equivalently called proxy-tuning (Liu et al., 2024a), which
is formulated by

pEFT
2,α (y|x) ∝ p2(y|x)

(
pft1 (y|x)
p1(y|x)

)α

︸ ︷︷ ︸
”task-vector” factor

. (3)

Intuitively, by taking the logarithm of this equation, we can
see the previous approach (3) as editing the logits of the
new pre-trained model log p2(y|x) by a logit-level ”task-
vector (Ilharco et al., 2023)”, log pft2 (y|x) − log p2(y|x),
scaled with α. On the other hand, in our approach, we
leverage the gap between new and old pre-trained models
instead of the logit-level task-vector.

For more rigorous comparison of ours (2) and the previous
method (3), we employ a viewpoint of offline reinforcement
learning from the literatures of Reinforcement Learning
from Human Feedback (RLHF; Ziegler et al. 2019) and the
EFT paper (Mitchell et al., 2024). Here we consider the
following reward maximization problem for p(y|x) with KL
constraint to some reference model pref(y|x):

max
p(y|x)

E
x∼pC(x)

[
E

y∼p(y|x)

[
r(x, y)

]
−KL

(
p(y|x) ∥ pref(y|x)

) ]
, (4)

where r(x, y) is some reward function for the next token y
given the task-specific text x, which is sampled from the

true probability pC(x) := p∗(x|C) conditioned by the task
dataset C. It is well-known (Peters & Schaal, 2007; Rafailov
et al., 2024) that the closed solution for equation (4) can be
described as

p(y|x) = 1

Z(x)
pref(y|x) exp (r(x, y)) , (5)

where 1/Z(x) is the normalization factor.

Both our method and the previous method can be seen
as closed solutions (5) with appropriate reference model
pref(y|x) and reward function r(x, y). More specifically,
our method (2) is obtained by setting

pref(y|x) := pft1 (y|x), r(x, y) := α log

(
p2(y|x)
p1(y|x)

)
, (6)

and the previous method (3) is obtained by setting

pref(y|x) := p2(y|x), r(x, y) := α log

(
pft1 (y|x)
p1(y|x)

)
. (7)

In conclusion, while EFT or proxy-tuning can be seen as RL
tuning of the pre-trained model p2(y|x) to prefer pft1 to p1,
our base-change approach as RL tuning of the fine-tuned
model pft1 (y|x) to prefer p2 to p1, which leads to the stable
results of our approach for various tasks in Sec. 3.

3. Experiments
In this section, we compare our method (base-change) with
the previous method (EFT / proxy-tuning) on NLP and
image classification tasks. We denote the source pre-trained
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Acc. (scale α)
CIFAR SVHN RESISC45 SUN397 DTD Cars

Source PT −→ Target PT Method

Source FT 88.66 97.20 95.79 77.84 76.60 89.32

ViT-B16
(LION 400M)

ViT-B16
(LION 2B)

Target PT 76.83 50.05 68.24 19.15 56.60 88.47
EFT / proxy-tuning ↓ 87.60 (0.7) ↓ 96.87 (0.8) ↓ 95.75 (0.9) ↓ 66.58 (0.8) ↑ 76.33 (0.5) ↑ 91.69 (0.5)

Base-change ↑ 88.82 (0.3) – 97.22 (0.1) ↑ 95.87 (0.2) ↑ 78.02 (0.1) ↓ 76.44 (0.4) ↑ 89.93 (0.4)

ViT-B16
(Datacomp 1B)

Target PT 82.11 62.72 69.14 19.47 57.77 88.86
EFT / proxy-tuning ↑ 89.31 (0.5) ↓ 96.66 (1.5) ↓ 95.71 (0.7) ↓ 64.65 (0.8) ↑ 77.71 (0.5) ↑ 92.29 (0.4)

Base-change ↑ 89.29 (0.6) ↑ 97.21 (0.1) ↓ 95.81 (0.1) ↑ 77.99 (0.1) ↑ 76.91 (0.5) ↑ 89.90 (0.6)

ViT-B16
(LION 400M)

ViT-L14
(LION 400M)

Target PT 77.7 47.2 70.5 17.8 55.3 88.7
EFT / proxy-tuning ↓ 88.00 (0.9) ↓ 96.60 (1.4) ↓ 95.68 (0.8) ↓ 66.69 (1.5) ↑ 77.82 (0.8) ↑ 93.25 (0.5)

Base-change ↑ 89.33 (0.3) ↓ 97.17 (0.4) ↑ 96.13 (0.7) ↑ 78.08 (0.1) ↑ 77.82 (0.5) ↑ 92.03 (0.8)

ViT-L14
(LION 2B)

Target PT 77.42 49.54 68.87 18.34 60.48 89.60
EFT / proxy-tuning ↓ 87.65 (0.7) ↓ 96.20 (1.1) ↑ 95.87 (0.8) ↓ 68.20 (1.0) ↑ 78.56 (0.6) ↑ 93.65 (0.4)

Base-change ↑ 89.13 (0.4) ↑ 97.21 (0.2) ↑ 95.94 (0.2) ↑ 78.25 (0.1) ↑ 77.13 (0.4) ↑ 92.33 (0.8)

Source FT 90.61 97.71 95.95 80.64 81.86 93.69

ViT-L14
(LION 400M)

ViT-L14
(LION 2B)

Target PT 78.33 52.69 71.21 21.64 61.54 91.51
EFT / proxy-tuning ↓ 87.31 (0.5) ↓ 94.69 (0.5) ↓ 95.48 (0.7) ↓ 66.62 (0.8) ↑ 82.13 (0.9) ↑ 94.43 (0.5)

Base-change ↓ 90.52 (0.1) ↓ 97.64 (0.2) ↑ 95.97 (0.1) ↑ 80.73 (0.1) ↑ 82.66 (0.9) ↓ 93.53 (0.9)

ViT-L16
(Datacomp 1B)

Target PT 78.33 52.69 71.21 21.64 61.54 91.51
EFT / proxy-tuning ↑ 91.76 (0.4) ↓ 96.02 (1.2) ↑ 96.24 (0.5) ↓ 65.69 (0.9) ↑ 83.51 (0.9) ↑ 95.17 (0.5)

Base-change ↑ 91.43 (0.4) ↓ 97.70 (0.3) ↑ 95.98 (0.1) ↑ 80.73 (0.1) ↑ 82.82 (1.2) ↑ 94.42 (0.7)

Table 2: Performance on image classification tasks. ↑: Higher than Source FT. ↓ Lower than Source FT. Bold: Best score.

model p1(s) as Source PT, the target pre-trained model
p2(s) as Target PT, the source fine-tuned model pft1 (s) as
Source FT, in the equation 1.

We are mainly interested in the following questions: (1)
Does base-change improve the accuracy of fine-tuned model
due to the improved capability of Target PT over Source PT?
(2) Beyond language models, is the base-change approach
also valid for vision-language models?

3.1. Natural Language Processing

First, we evaluate base-change at prediction for NLP tasks.
We use the LLAMA 2 model family (Touvron et al., 2023b),
including the 7B, 13B, and 34B models, for our evaluation.
The models are tested on the GSM (Cobbe et al., 2021), Hu-
manEval (Chen et al., 2021), and DS1000 (Lai et al., 2023)
datasets. Detailed settings are provided in Appendix B.

Table 1 shows that base-change successfully leverage the
improved capability of Target PT over Source PT for each
expert task. This also suggests that base-change effectively
transfers the knowledge gained from Source FT onto Tar-
get PT model. In particular, on GSM, it is interesting
to see the base-change from the vanilla LLAMA 2-7B to
CODE LLAMA-7B outperforms the Source FT, even though
the model scale does not change. This suggests that the
reasoning capability of CODE LLAMA-7B (Madaan et al.,
2022) helps the base-changed model to solve the math prob-
lems in GSM, while EFT/proxy-tuning fails to leverage it.
The analysis on the effect of the scale parameter α is also
provided in Appendix C.

3.2. Image Classification

Next, we empirically check that base-change at prediction
is also valid for image classification tasks. We use CLIP
ViT-B16/L14 (Radford et al., 2021) models pre-trained on
LION400M (Schuhmann et al., 2021)/LION2B (Schuhmann
et al., 2022)/Datacomp1B (Gadre et al., 2024) datasets for
image classification tasks. For evaluations, we used six
different datasets: CIFAR-100 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011), RESISC45 (Cheng et al., 2017),
SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014) and
Cars (Krause et al., 2013).

Even though our formula 1 is derived for language models,
Table 2 shows that base-change consistently outperforms
Target PT in various vision tasks, which indicates the suc-
cessful knowledge transfer from the fine-tuned source model
to the target model. In particular, although EFT/proxy-
tuning significantly degrades the accuracy on SUN397, base-
change keeps or slightly improves its accuracy even on such
dataset. Even so, since some settings like DTD or Cars
are still suited to EFT/proxy-tuning, we can consider the
base-change and EFT/proxy-tuning complement each other.

4. Conclusion
In this work, we proposed a novel approach called base-
change at prediction, based on our probabilistic formula and
the viewpoint of reinforcement learning. In our experiments,
although the previous method often degrades the accuracy
in multiple tasks, we found that our method can consistently
keep or improve the accuracy of fine-tuned models. Even so,
there remain several limitations both in ours and previous
methods. A major one is the requirement of the shared
vocabulary set, or the shared tokenizer, between source and
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target models. Also,the performance improvement over the
source fine-tuned models seems still limited. Addressing
these limitations is an important direction for future study.
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Base-Change at Prediction

A. Related Work
To achieve our goal of enforcing fine-tuned models to keep up with updates of pre-trained models without actual re-training,
there are three possible approaches as follows:

Tuning by Editing Predictions. Our method falls into this category, as well as prior work of emulated fine-tuning (EFT;
Mitchell et al. 2024) and proxy-tuning (Liu et al., 2024a). EFT shows that the capability of instruction tuning can be
decoupled from instruction-tuned models, by taking the difference between the instruction-tuned and its base (pre-trained)
model in the logit space. Proxy-tuning is essentially same as EFT, but is validated with fine-tuning on various tasks other
than instruction-tuning, like coding and math tasks. Decoding-time realignment (Liu et al., 2024b) shares the same idea
with EFT, but they rather focus on tuning the regularization parameter for instruction-tuning at inference-time. Contrastive
decoding (Li et al., 2023) is also categorized in this approach, which proposes to improve the text generation from a language
model by subtracting a weaker model in the logit space. Also, Krause et al. (2021) proposed to leverage class-conditional
language models in computing next-token distributions for controlled text generation.

Tuning by Editing Parameters. The second possible approach is directly editing parameters of fine-tuned models (Ilharco
et al., 2023; Gueta et al., 2023; Ortiz-Jimenez et al., 2024; Yadav et al., 2024; Chijiwa, 2024; Daheim et al., 2024) with
parameters of their pre-trained models. This approach is preferable because additional inference cost is not needed, in
contrast to the first approach. However, in contrast to our setting, almost all existing methods including task vectors (Ilharco
et al., 2023) assume a single shared pre-trained model. Although Chijiwa (2024) explores how to transfer task vectors or
learning trajectories to the other pre-trained models, it still requires additional training for practical use.

Tuning by Editing Activations. Editing activations or hidden representations (Dathathri et al., 2020; Hernandez et al.,
2023; Chuang et al., 2024; Li et al., 2024), can be seen as an intermediate approach between the above two approaches,
which also enables us to control the fine-tuned models without actual training. Dathathri et al. (2020) proposed to modify
the activation in a language model by the feedback of gradients from small classification models, in the plug-and-play style.
Similarly Hernandez et al. (2023); Li et al. (2024) leverages external classifiers to modify activations. Chuang et al. (2024)
proposed to leverage activations from different layers in a single language model in a contrastive way. One major drawback
in this approach is the requirement of the same dimension for hidden representations between source and target models.

B. Detailed Experiment Settings
B.1. Settings for NLP

We use the LLAMA 2 model family (Touvron et al., 2023b), including the 7B, 13B, and 34B models, for our evaluation. The
models are tested on the GSM, Codex HumanEval and DS1000 datasets.

For the math task, we use the LLAMA 2 model, fine-tuned on the GSM training dataset, as the Source PT. The scale
parameter α of the base-change for the math task was determined by sampling 119 samples from the GSM test set for
validation.

For the code generation tasks, we use the CODE LLAMA - PYTHON model as the Source PT. The scale parameter α of the
base-change for code generation tasks was determined by sampling 20 samples from the Codex HumanEval test set for
validation.

Using CODE LLAMA - PYTHON-34B as the Target PT, an α = 0.4, which showed the best performance on the validation
set for math task within the range of 0.1 to 1.5, was selected. For the scale parameter α in EFT/proxy-tuning, we adopted
the α = 1.0 as proposed in (Liu et al., 2024a). Unless otherwise specified, the same α will be used in all experiments.

B.2. Settings for Image Classification

For the source model, we use a CLIP ViT pre-trained on the LION 400M dataset (Schuhmann et al., 2021) and then
fine-tuned for specific image classification tasks. For the target model, if the model size is the same as the source model, we
used a version pre-trained on the larger datasets, LION 2B (Schuhmann et al., 2022) and Datacomp 1B (Gadre et al., 2024).
If the target model is larger than the source model, it was pre-trained on the same dataset, LION 400M, or on the LION 2B
dataset as the source model.
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(a) Target PT:CodeLlama-7B
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(b) Target PT:CodeLlama-13B
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Figure 2: Alpha values for each method. Source PT: LLAMA 2-7B, Source FT:LLAMA 2-7B finetuned on GSM, Bule:
Base-change at prediction. Orange: EFT / Proxy-Tuning. Green: Source FT. Red: Target PT (Zero-shot evaluation).

Method Source FT Target PT EFT/proxy-tuning Base-change Direct(LoRA) Direct(Full FT)

GSM 39.6 6.6 42.6 43.2 32.4∗ 51.0∗

Codex HumanEval 68.9 33.7 65.9 71.8 34.3 79.5∗

Table 3: Performance on NLP task. The EFT/proxy-tuning base-changed model use LLAMA 2-7B as Source PT, and
LLAMA 2-13B as Target PT. The scores marked with * are cited from (Liu et al., 2024a)

To determine the optimal scale parameter α for adding logits in EFT/proxy-tuning and base-change, we evaluated each α
ranging from 0.1 to 1.5 in increments of 0.1 on the validation dataset. Then we report the evaluation results on the test
dataset, using the best-performing α on the validation dataset for each downstream task.

C. Analysis of the Effect of the Scale Parameter α.
We examined the effect of the scale parameter alpha. Using CODE LLAMA - PYTHON 7B, 13B, and 34B as the Target PT
models, we evaluated EFT/proxy-tuning and base-change on the GSM dataset, varying alpha from 0.0 to 1.5.

As shown in Figure 2, base-change demonstrated performance equal to or better than Source FT for all model sizes when
alpha ranged from 0 to 1.0. On the other hand, while EFT/proxy-tuning also showed performance exceeding Source FT
around alpha = 1.0, its performance was lower compared to Source FT when alpha was too small or too large.

D. Comparison with Direct Fine-Tuning of the Target Model
We compare the performance of models directly fine-tuned on target tasks with Target PT and base-change. Using the
GSM dataset, we prepare and evaluate two models: one with LoRA tuning, labeled as Direct(LoRA), and one with fully
fine-tuning, labeled as Direct(Full FT).

Table 3 shows that base-change, while not achieving the performance of a fully fine-tuned target pre-trained model, exceeds
the performance of the target model with LoRA tuning. This suggests that base-change is a viable alternative in scenarios
where full fine-tuning is impractical. It should be noted that like EFT/proxy-tuning, base-change increases the inference cost
compared to using the target model alone.
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