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Abstract

We propose a novel approach to molecular simulations using neural network
reparametrization, which offers a flexible alternative to traditional coarse-graining
methods. Unlike conventional techniques that strictly reduce degrees of freedom,
the complexity of the system can be adjusted in our model, sometimes increasing
it to simplify the optimization process. Our approach also maintains continuous
access to fine-grained modes and eliminates the need for force-matching, enhanc-
ing both the efficiency and accuracy of energy minimization. Importantly, our
framework allows for the use of potentially arbitrary neural networks (e.g., Graph
Neural Networks (GNN)) to perform the reparametrization, incorporating CG
modes as needed. In fact, our experiments using very weak molecular forces
(Lennard-Jones potential) the GNN-based model is the sole model to find the
correct configuration. Similarly, in protein-folding scenarios, our GNN-based CG
method consistently outperforms traditional optimization methods. It not only
recovers the target structures more accurately but also achieves faster convergence
to the deepest energy states. This work demonstrates significant advancements in
molecular simulations by optimizing energy minimization and convergence speeds,
offering a new, efficient framework for simulating complex molecular systems. 1

Scientific simulations, particularly in molecular dynamics (MD), face fundamental challenges in
finding optimal configurations. The energy landscapes of these systems are characterized by numerous
saddle points and local minima, making it difficult for traditional optimization methods to discover the
most stable states. This complexity stems from the interplay between different scales of interactions,
from strong covalent bonds to weak van der Waals forces, leading to slow convergence in gradient-
based methods and often suboptimal results. For instance, in protein folding, the strong peptide bonds
create steep energy barriers while weak hydrophobic interactions guide the overall folding process,
creating a hierarchy of energy scales that is challenging to optimize simultaneously.

To address these challenges, coarse-graining (CG) methods have emerged as a popular approach,
reducing computational complexity by decreasing the number of degrees of freedom (DOF) and
clustering them into collective modes. While these methods have shown success (Pak & Voth, 2018;
Hollingsworth & Dror, 2018), they face significant limitations. Traditional CG approaches require
cumbersome procedures such as back-mapping (returning to the original DOF) and force-matching
(finding the forces experienced by CG modes) (Jin et al., 2022), which can limit their efficiency and
scalability. Moreover, the strict reduction of DOF in conventional CG can sometimes oversimplify
the system, losing important fine-grained details necessary for accurate energy minimization.

1The code can be found at https://github.com/nimadehmamy/coarse_graining_reparam

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/nimadehmamy/coarse_graining_reparam


In this paper, we introduce an innovative alternative that overcomes these limitations through neural
reparametrization. Instead of strictly reducing DOF as in conventional CG, our approach leverages an
overparametrized neural ansatz to represent fine-grained (FG) modes as functions of CG modes. This
reparametrization concept, similar to techniques such as Deep Image Priors (Ulyanov et al., 2018),
enables the neural network to dynamically represent the FG system while maintaining continuous
access to FG modes and eliminating the need for force-matching. The overparametrization provides
additional flexibility in navigating the energy landscape - while the physical system has n× d degrees
of freedom (n particles in d dimensions), our neural representation can use a higher-dimensional
latent space to find paths around energy barriers that might be difficult to traverse in the original
space.

A key innovation in our approach is the incorporation of Graph Neural Networks (GNN) with a
structure informed by ‘slow modes’–inherently stable collective modes identified through spectral
analysis of the system’s dynamics. We show that these modes arise naturally from the structure of
physical Hessians, which are Laplacian matrices over particle indices for a broad class of potential
energies. By focusing on these slow modes, which typically cause convergence bottlenecks in
traditional optimization, we can significantly accelerate the learning process. The GNN architecture
allows us to safely increase learning rates without stability issues, resulting in both faster dynamics
progression and the discovery of lower energy states compared to direct optimization methods.

The effectiveness of our approach is demonstrated through experiments on both synthetic systems
and real molecular structures. In particular, for protein folding with weak Lennard-Jones interactions,
where traditional methods often struggle with the shallow energy landscape, our GNN-based model
consistently finds deeper energy minima. This success can be attributed to two key factors: the ability
of the overparametrized representation to explore the energy landscape more effectively, and the
incorporation of physically meaningful slow modes into the neural architecture, which helps guide
the optimization toward stable configurations.

The main contributions of this work are:

1. CG via reparametrization: A new paradigm that circumvents traditional challenges like
force-matching and back-mapping.

2. Robust slow modes: Effective identification and utilization of stable modes across various
systems.

3. MD simulations: Demonstrated improvements in efficiency and depth of energy exploration
in protein dynamics.

4. Overparametrization benefits: Evidence that an overparametrized framework can outper-
form traditional DOF reduction in terms of convergence speed and energy minimization.

5. Data-free optimization: Our method modifies the optimization landscape without the need
for training data, enhancing its applicability and efficiency.

1 Background

Traditional optimization in physics-based models, like (MD), faces unique challenges due to the
shallow nature of these models, where physical DOF are the trainable weights. Additionally, the
interactions occur at multiple scales, from strong covalent bonds to weak van der Waals forces,
leading to slow convergence in gradient-based methods.

To address these challenges, conventional strategies include preconditioning with methods like
adaptive gradient (Duchi et al., 2011; Kingma & Ba, 2014) or quasi-Newton (Fletcher, 2013), and
CG, which simplifies the system by truncating DOF to focus on collective modes. However, both
approaches have limitations: preconditioning methods struggle with cost and inefficacy due to non-
diagonal Hessians in physics problems, and CG can be restrictive and require intensive back-mapping
and force-matching steps (Jin et al., 2022).

In contrast, our approach utilizes neural network reparametrization to dynamically adjust system
complexity, which may involve overparametrization. This method allows for flexible system represen-
tation, which can simplify the optimization process. It can help avoid local minima and accelerates
convergence by exploring the configuration space more efficiently.
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Neural Reparametrization in Practice Our neural reparametrization approach is not limited
to reducing DOF but can also increase them when beneficial, offering an adaptive solution to the
specific needs of a simulation. This flexibility is crucial for addressing the hierarchy of interactions
in molecular systems, where different forces operate at vastly different scales.

Implementation and Comparison to CG While CG methods focus on predefined collective modes
and often involve laborious optimization steps like force-matching and back-mapping, our neural
reparametrization approach defines modes based on the spectrum of a canonical Hessian, directly
incorporating these into the neural network’s architecture. This not only bypasses the need for
traditional CG steps but also enhances the adaptability and speed of the optimization process.

Advantages Over Traditional Methods Our method diverges from traditional data-driven ML
approaches that require extensive datasets, which are often unavailable or costly to produce in
molecular and material design. By not relying on training data, our approach provides a robust
framework for tackling complex optimization problems, from molecular dynamics to protein folding,
with improved efficiency and without the constraints of data availability.

1.1 Traditional Coarse-graining

Let X ∈ X ≃ Rn×d represent the degrees of freedom (DOF), such as particle positions or bond
angles, and let L : X → R denote the energy or potential function. The objective is to simulate the
dynamics of the system or to find high-likelihood configurations X∗ that represent deep local minima
of L . Given that n is typically large and L is a steep non-convex function, computations can be
slow. Traditional coarse-graining (CG) maps X to a reduced space of CG variables, Z ≃ Rk×d,
where k ≪ n. Implementing dynamics using CG modes requires determining the inter-mode forces
(“force-matching”) and how to revert to X (“back-mapping”).

Force-matching. The fine-grained (FG) energy function, LFG : X → R, needs an approximate
potential LCG : Z → R such that for X ∈ X ,

CG: ϕ :X → Z, LCG(ϕ(X)) ≈ LFG(X). (1)

The process of finding LCG is called force-matching, traditionally solved analytically but increasingly
with machine learning for enhanced accuracy Jin et al. (2022); Majewski et al. (2023).

Back-mapping. The map Z ∼ Rk×d is not unique, often resulting in multiple possible X for a
given Z. Back-mapping typically involves sampling or optimization to find physically plausible X
configurations, avoiding scenarios like overlapping atoms or high energies. This can be complex
when many X map to the same Z, with current methods ranging from geometric reconstruction
Lombardi et al. (2016) to refinement with molecular dynamics Badaczewska-Dawid et al. (2020);
Roel-Touris & Bonvin (2020) and data-driven approaches Yang & Gómez-Bombarelli (2023); Wang
et al. (2022).

1.2 Neural Reparametrization as an Alternative to Coarse-graining

Instead of traditional CG, which reduces DOF through a mapping to a reduced space, our approach
reparametrizes the DOF X as a function of CG-like modes. This reparametrization, given by
X = ρ(Z), where ρ : Z → X , offers a flexible, reversible mapping that inherently includes benefits
such as direct access to fine-grained modes and elimination of force-matching and back-mapping
needs:

Reparametrization: X = ρ(Z), ρ : Z → X (2)

1. Flexible parametrization: Leveraging neural overparametrization and architecture design.

2. Direct access to fine-grained modes: X = ρ(Z) avoids the need for back-mapping.

3. Simplified energy computation: The energy for CG-like modes is LCG(Z) = L (ρ(Z)).

While this method can be computationally intensive as LCG(Z) is computed using X , the efficiency
gains in optimization speed and depth of energy minimization can offset the costs.
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Input: Loss L, config X0, modes k
Output: Optimized X
/* 1. Compute Hessian backbone */
H ← ∇∇L(X0)
Samples← {X0 + δX | δX ∼ N (0, σ)} // Perturbed samples
Hij ←

∑
X′

∑
µ,ν(H

µν
ij (X ′))2 // Hessian backbone (xyz norm)

/* 2. Extract slow modes */
L← Lap(H) // Laplacian of backbone graph
λ,Ψ← eigvecs(L)
Ψslow ← Ψ[:, argsort(|λ|)[: k]] // Pick k bottom eigenvectors
/* 3. Construct GNN */
A← ΨslowΨ

T
slow // use slow mode projection as adjacency

gnn← GNN(A, dims = [h, h, 3])

Z ∼ N (0, 1)n×h

/* 4. Optimize */
while not converged do

X ← gnn(Z)
θ ← θ − η∇θL(X) // θ: Z and GNN weights

end
return X

Figure 1: Overview of the neural reparametrization method. Top: Architectures used for
reparametrization. In linear reparametrization, X = ZTΨslow. In the GNN case, we use the
slow modes to construct a graph with adjacency A = ΨslowΨ

T
slow and use it in GCN layers to obtain

X = gnn(Z). Left: Flowchart showing the key steps of the method. Right: Detailed algorithm for
implementation.

Neural Architectures for Reparametrization The reparametrization function ρ can range from
simple linear projections to complex neural networks. Initially, we employ a linear projection onto
identified slow modes:

X = ρ(Z) = ZTΨSlow ≡
∑
i∈Slow

ZTi ψi (3)

More generally, ρ may be a deep neural network (DNN), similar to the approach taken in prior work
suggesting neural priors (e.g. Deep Image Priors Ulyanov et al. (2018)).

Graph Neural Networks (GNN) for Dynamic Reparametrization: Extending beyond linear
models, we explore the use of GNNs, inspired by recent advancements in graph-based optimizations
Both et al. (2023). Here, the GNN reparametrizes node states and was shown to find both lower
energy states and exhibit faster convergence. Our idea is to use a “Hessian backbone” as a graph,
which acts as a weighted graph adjacency matrix for a GNN. In our experiments, we observe this
GNN to have significant advantages over the direct as well as linear reparametrization equation 3.
The details of our GNN architecture are discussed in Section 3. Next, we derive the properties of the
slow modes for a large class of energy functions important in molecular systems.

1.3 The role of the Hessian

The success of optimization in molecular systems is fundamentally limited by the disparity in
evolution rates along different modes of the system. Near any configuration X , the dynamics of
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gradient-based optimization can be understood through the eigendecomposition of the Hessian
H = ∇∇L . The eigenvectors of H define the natural modes of the system, with their eigenvalues
determining how quickly these modes evolve under gradient descent. Modes with large eigenvalues
(fast modes) evolve rapidly but constrain the learning rate to ensure stability, while modes with
eigenvalues close to zero (slow modes) evolve orders of magnitude more slowly, leading to extremely
slow convergence, particularly near saddle points.

This disparity presents a fundamental challenge: To maintain numerical stability, the learning rate
must be small enough to handle the fastest modes, but this makes the slow modes evolve at a glacial
pace. Traditional approaches like adaptive gradient methods attempt to address this by approximating
a diagonal preconditioner, but they struggle with the strongly coupled nature of physical systems
where the Hessian is far from diagonal. While conventional coarse-graining partially addresses this
by eliminating fast modes, it introduces other challenges such as force-matching and back-mapping.

Our approach takes a different perspective: instead of eliminating modes, we seek to identify
and directly incorporate slow modes into our optimization process. However, this raises two key
challenges. First, as the system evolves, the Hessian changes, potentially altering which modes are
slow. Second, even if we can identify slow modes, we need a way to modify the optimization to
preferentially explore these directions. The next section addresses the first challenge by proving that
slow modes of physical Hessians are remarkably robust, arising from fundamental symmetries of
the underlying interactions. We then show how these robust slow modes can be effectively utilized
through neural reparametrization.

2 Properties of Physical Hessians

We will now show that the Hessian of potential energies important in physics and molecular systems
enjoy certain properties that lead to the robustness of slow modes. In short, if we find a stable
backbone for Hessians of different configurations X , then the slow modes of the Hessian at X are
close to the slow modes derived from the backbone.

Invariant potentials. In systems of interacting particles in physics, leading interactions are often
pairwise and involve relative features, rij ≡ Xi −Xj (distance vector, relative angle, etc). These
interactions are invariant under global symmetries, such as Euclidean symmetries (translation and
rotation) or Lorentz symmetry (relativistic particles). These symmetries maintain the invariance of
certain norms, v2 = ∥v∥η ≡ vT ηv, where η may be the Euclidean metric η = diag(1, 1, 1) or the
Minkowski metric η = diag(−1, 1, 1, 1). For example, the Euclidean norm vTv in d dimensions is
invariant under rotations v → gv, where g ∈ SO(d).

Energy function structure. Let r denote the matrix of distances with rij = ∥rij∥η . Any function
of rij is invariant under symmetries that keep ∥ · ∥η invariant. Assuming additivity, the energy
function can be written as:

L (X) =
∑
ij

fij(rij) (4)

where fij(z) = fji(z). For example, the Coulomb potential between particles i and j with charges qi
and qj respectively, is given by fij(z) = kqiqj/z. The Lennard-Jones potential fij(z) = Aij/z

12−
Bij/z

6 in molecular systems is also of this form.

2.1 Hessian of invariant potentials

The Hessian of potentials of the form equation 4 has the special property that it is the graph Laplacian
of a weighted graph which depends on X , as we show now (see appendix E for details). This will
play a crucial role in our argument about the robustness of the slow modes.

Hessian as a graph Laplacian. Recall the Laplacian of an undirected graph with adjacency
matrix A is defined as L = Lap(A) = D − A, where D is the degree matrix with elements
Dij = δij

∑
k Aik. The components of Laplacian can also be written as Lij =

∑
k Aik(δij − δjk).

We show that the Hessian of L in equation 4 is a Laplacian. Let ∂i ≡ ∂/∂Xi and let r̂ = ηr/r
be the dual unit vector of r. First, observe that ∂irjk = r̂jk(δij − δik) where r̂jk is the unit vector

5



of rjk and δij is the Kronecker delta (1 if i = j, 0 otherwise). Let Hes[g] denote the Hessian of a
function g. We find that (app. E)

Hes[L ](X)ij = ∂i∂jL (X) =
∑
k

(δij − δjk)Hik(X) = Lap(H)ij (5)

where Hik(X) = Hes[fik](rik). Note that H has four indices, with components Hµν
ij , having two

particle indices i, j and two spatial indices µ, ν. Thus, for every pair of spatial indices µ, ν, the
Hessian Hµν is a Laplacian over particle indices. The Hessian being Laplacian has an important
effect on its null eigenvectors. To show this we make use of the incidence matrix.

We are interested in the eigenvalues and eigenvectors of H, as these characterize the slow and fast
modes of the system. First, given a weighted adjacency matrix A of a graph, let Â and L̂ be the
“unweighted” adjacency and Laplacian matrices, where Âij = 1 if Aij ̸= 0 and zero otherwise. It
follows that the null spaces of L and L̂ are shared:
Theorem 2.1 (Null Space of the Laplacian). Let Null[M ] denote the null space of a symmetric real
matrix M . The null space of the unweighted Laplacian L̂ is contained within the null space of the
weighted Laplacian L, i.e., Null[L̂] ⊆ Null[L].

Sketch of proof. For any vector, v ∈ Rn, vTLap(A)v =
∑
ij Aij(vi − vj)

2. Since Âij = 0 yields
Aij = 0, but not necessarily vice versa, null vectors of Null[L̂] ⊆ Null[L]. See appendix for full
proof.

Definition 2.1 (Slow manifold). Let L be a graph Laplacian (undirected, weighted or unweighted),
with spectral expansion L =

∑n
i=1 λiψiψ

T
i . Let ε ≪ 1 and λmax = max{λi} be the largest

eigenvalue of L. We define the slow manifold as

Slowε[L] = Span
{
ψi
∣∣|λi| < ε2λmax

}
(6)

Theorem 2.2 (Slow modes of weighted Laplacians). Let A be the adjacency matrix of a weighted
graph and Â be its unweighted counterpart. Let L = Lap(A) and L̂ = Lap(Â). Then Slowε[L]

overlaps with Slowε[L̂] up to O(ε2) corrections from the rest of the modes.

The sketch of the proof relies on relating the spectra of the weighted and unweighted Laplacians using
the incidence matrix C, as L = 1

2CWCT and L̂ = 1
2CC

T . For a random configuration X the edge
weights W will be random, as they arising from derivatives of fij(rij) in equation 20 (unless fij is
quadratic which makes W constant). Then, using the assumption of randomness on the weights W ,
we can show the slow modes of L are perturbations of order ε2 on slow modes of L̂ . See Appendix
D for proof.

Implications for Coarse-Graining. The identification of slow modes in the Hessian is crucial for
coarse-graining, as these modes capture the essential dynamics of the system at larger scales. By
focusing on these slow modes, we can develop reduced models that retain the key physical properties
while being computationally more efficient.

Coarse-Graining via Slow Modes. The identification of slow modes in the Hessian enables an
effective coarse-graining approach, where fast dynamics are averaged out, retaining only the slow,
relevant dynamics. This method is particularly advantageous in reducing computational complexity
while preserving critical structural information.

2.2 Hessian Backbone and Robust Slow Modes

The slow modes of the Hessian Hes[L ](X) = Lap(H(X)) can dynamically change during
optimization. To ensure the robustness of these modes, we need a proxy for the unweighted
adjacency matrix Â ≡ H. To this end, we aggregate Hessians from perturbed configurations
Samples(X) = {X ′ = X + δX}:

Backbone: Hij =
∑

X′∈Sample(X)

∥Hij(X
′)∥2 (7)
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GD CG Rep GD
Pure LJ loopBond+LJ loop

CG Rep GNNGNN

Figure 2: Synthetic loop experiments. Example runs of the synthetic loop experiments with n = 400
nodes. On the left (Bond+LJ), the potential is the sum of a quadratic bond potential Ebond and a
weak LJ (12,6) ELJ . The bonds form a line graph Abond connecting node i to i + 1, and a 10
weaker Aloop connecting node i to i + 10 via the LJ potential. To the right (Pure LJ) where the
interactions are all LJ, but with a coupling matrix A = Abond + 0.1Aloop. In Bond+LJ, GD already
finds good energies and the configuration is reasonably close to a loop, though flattened. Both linear
CG reparametrization (CG Rep) and GNN also find a good layout. The pure LJ case is much more
tricky. But in most runs, GD almost gets the layout, but some nodes remain far away. The CG Rep
fails to bring all the pieces together. Only GNN succeeds in finding the correct layout.
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Figure 3: Synthetic loop folding (n = 1000). Lower means better for both energy and time. In
Bond+LJ (left), a quadratic potential

∑
i(rii+1 − 1)2 attracts nodes i and i+ 1. A weak LJ potential

attracts nodes i and i+ 10 to form loops. In LJ loop (right) both the backbone i, i+ 1 and the 10x
weaker loop are LJ. Orange crosses denote the baseline GD, green is GNN and blue is CG. The dots
are different hyperparameter settings (LR, Nr. CG modes, stopping criteria, etc.) with error bars over
5 runs. In Bond+LJ, CG yields slightly better energies but takes longer, while GNN can converge
faster to GD energies. In pure LJ, using CG and GNN can yield significantly better energies.

This aggregation helps identify consistently significant components across configurations, aiding in
the extraction of reliable slow modes that remain effective over extended periods of optimization.
In equation 7, i, j ∈ Zn are the particle indices and the Frobenius norm ∥Hij∥2 =

∑
µ,ν(H

µν
ij )2

sums over the feature indices (note that Xµ
i has a particle index i and a feature index µ ∈ {1, . . . d}).

Then, we extract the slow modes of the backbone, by doing a spectral expansion H =
∑
i λiψiψ

T
i

and picking ψi with |λi| < ε2 maxj [λj ], for some small ε < 1. The intuition behind equation 7 is
to identify the components in the sampled Hessians which have consistently high magnitudes. If
we had taken a simple mean we could get very small values, because the components can fluctuate
randomly. Also, if we had taken the variance instead of the norm, we would get zero for quadratic L ,
where H is constant and has no variance. As we discussed above, the slow modes of the backbone H
approximate the slow modes of sampled H(X ′) up to O(ε2) errors.

3 Experiments

We apply our method to protein folding using classical MD forces.
Settings: We use gradient descent to minimize L (X). All experiments (both CG and baseline) use
the Adam optimizer with a learning rate 10−2 and early stopping with |δL | = 10−6 tolerance and 5
steps patience. We ran each experiment four times.
Baseline: we use gradient descent (GD) with Adam optimizer on the MD energy as baseline.

7



2JOF

2WXC 5AWL

3GB1

1UNC

1PLW

b ca

Figure 4: Protein folding simulations Figure (a) shows the energy improvement factor (FG energy /
GNN energy) in the function of the speedup factor (FG time / GNN time) for the six selected proteins
marked with different colors (c). In all cases, the GNN parameterization leads to speed improvement
while it converges higher energy. (b) However, the higher energy in some cases, 2JOF and 1UNC
proteins, results in a slightly lower RMSD value, which measures how close the final layout is to the
PDB layout. The data points are averaged over ten simulations per protein.

Unfolded

GNN

OpenMM

ba

Figure 5: 2JOF (Trp-Cage) protein folding. Figure (a) shows the RMSD value evolution of the 2JOF
protein as it goes from an unfolded to a folded stage. At every step, we calculated the RMSD of the
current layout compared to the PDB layout. We ran the OpenMM simulations at 298K temperature
with 2fs timestep for 800000 steps, while the GNN and GD simulations were performed for 400000
steps with various hidden dimensions (10, 100, 300, 500). The black curves show the stochastic
nature of protein folding using OpenMM. (b) The first figure shows the PDB (red) and unfolded (blue)
layout; the second one is the GNN 500 final layout (blue), while the third is one of the OpenMM
layouts, corresponding to the black curve.

CG model: We use four different choices for the fraction of the eigenvectors to use in CG equation 3:
3 × (#AminoAcids), 30%, 50%, and 70%. We use a two stage process. First, we use CG as in
equation 3 X = ρ(Z) = ZTΨSlow and minimize LCG(Z) = L (ρ(Z)) over Z. After convergence
to X0 = ρ(Z0), we add δX to X0 and optimize the fine-grained δX , starting with δX = 0.

GNN model: We use a GNN consisting of a graph convolution (GCN) layer with self-loops and
one node-wise MLP layer, projecting the GNN output to 3D to get particle positions. The GCN takes
Zh0 ∈ Rn×h0 as input, with h0 > 3 and has weights WG ∈ Rh0×h1 . Then, GCN output gets a Tanh
activation and is passed to the MLP layer to yield X . The CG parameters in this case are Zh,WG

and the weights and biases of the MLP.

Synthetic coil: We use quadratic and LJ potentials to make synthetic systems whose minimum
energy state should be a coil (looping every 10 nodes), inspired by MD potentials. Figure 3 shows
many experiments using GD, CG, and GNN. In the quadratic Bond+LJ case, GNN yields a good
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Robustness of GNN results 
a b c

Figure 6: Learning rate and initialization in protein folding for pdb 2JOF: We conducted a sweep
of the learning rate to see how robust the advantage of GNN over direct GD is. In a and b we show
the energy achieved by GD and GNN vs the number of iterations and wallclock time. GNN1 and
GNN2 use one and two GCN layers, respectively. We used early stopping which generally stopped
the runs after 3-5k steps. The grey star shows the OpenMM results after 5k steps, which has a worse
(higher) energy than our GD and GNN runs, but it takes a fraction of the time (it has many efficiency
tricks that our code doesn’t have). The dashed line shows the energy achieved by OpenMM after
10k steps. As we see, some of our GNN models reach energies close to the 10k steps of openMM
in a fraction of the steps. All experiments show the best energy among three runs. c shows the
effect of initialization on the GD runs. We do find the protein converges to significantly different
conformations based on the init.

speedup, while CG yields better energies. The benefit of CG and GNN become more apparent in the
harder pure LJ problem, where GD fails to find good energies, while CG finds much deeper energies,
followed by GNN (Fig. 2).

Protein folding with classical MD: We implement a simplified force-field with implicit solvent
(i.e. water molecules are not modeled and appear as hydrogen-bonding and hydrophobicity terms;
app. A). In protein folding our energy function consists of five potential energies: bond length Ebond,
bond angles Eangle, van der Waals EvdW , hydrophobic Ehp and hydrogen bonding EH Ceci et al.
(2007). Figure 7 shows an example of these coupling matrices for the Enkephalin (1PLW) protein. To
evaluate the effect of our CG model, we run experiments on four small proteins: Chignolin (5AWL),
Trp-Cage (2JOF), Cyclotide (2MGO) and Enkephalin (1PLW).

Protein Folding with Classical MD Using AMBER Force Field In the updated simulation
approach, we incorporate the AMBER force field, known for its accurate representation of molecular
interactions, particularly in proteins. This force field is implemented using the parameters from
OpenMM Eastman et al. (2017), and it comprehensively models the following interactions:

• Bond lengths Ebond and bond angles Eangle
• Torsional angles Etorsion
• Non-bonded interactions including van der Waals EvdW and electrostatic Eelec forces

We utilize the functional forms and parameters specified in the AMBER force field:

Ebond =
∑
bonds

kbond(r − r0)
2 Eangle =

∑
angles

kangle(θ − θ0)
2 (8)

Etorsion =
∑

torsions

Vn [1 + cos(nω − γ)] EvdW =
∑
i<j

Aij
r12ij

− Bij
r6ij

(9)

Eelec =
∑
i<j

qiqj
4πϵ0ϵrrij

(10)

Here, r and θ represent the bond lengths and angles, respectively, with r0 and θ0 as their equilibrium
values. The torsional term Etorsion includes a sum over all torsion angles ω, with periodicity n,
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amplitude Vn, and phase γ. The Lennard-Jones potential in EvdW is characterized by parameters
Aij and Bij , and Eelec is calculated using the Coulombic potential with partial charges qi, qj and the
relative permittivity ϵr.

In this simulation, we exclude the modeling of solvent effects entirely, focusing solely on the protein in
vacuum. This approach simplifies the computational model while emphasizing the direct interactions
within the protein.

The overall energy of the system is then given by:

L(X) = Ebond + Eangle + Etorsion + EvdW + Eelec (11)

Figure 7 shows the interaction matrices for the Enkephalin (1PLW) protein. Our framework has been
extended to efficiently compute these energies and gradients, facilitating the simulation of protein
folding dynamics in our coarse-grained model. We test our model on several small proteins including
Chignolin (5AWL), Trp-Cage (2JOF), Cyclotide (2MGO), and Enkephalin (1PLW) to evaluate the
effectiveness of our approach.

Protein results: Denoting the final energy and run time of the GNN model by EGNN and tGNN ,
and baseline byE0 and t0, we compute the energy improvement factor δÊ = E0/EGNN and speedup
factor δt̂ = t0/tGNN , to plot different proteins together. Figure 4a shows the mean of δÊ vs δt̂ over
the 10 runs for GNN the model with hidden dimensions 300 (error bars are 1 STD). Overall, we find
that all GNN models outperform the baseline in terms of run time and, eventually, also with energy
improvement. To measure the folding quality, we use RMSD, comparing the final layouts to the PDB
structure.

Figure 5 shows the RMSD value evolution using different methods. While, in most cases, OpenMM
reaches a deeper RMSD value, our models could serve as a good initializer for accelerating molecular
dynamics. To evaluate the robustness of these results, we ran sweeps over the learning rate, varied
the number of GNN layers (one or two layers), and varied the initialization.

Figure 6 shows the results of these tests for the protein 2JOF. We used early stopping for switching
from CG to FG in our GNN models and GD, resulting in 3-5k iteration steps. Compared with 5k
steps of OpenMM simulations, both our GNN models and GD with Adam reach significantly deeper
energies with fewer steps (a), with the lowest energies being all GNN. However, OpenMM takes less
wall-clock time (b). Nevertheless, the depth of the energies achieved by GNN at 3-5k steps is close to
10k steps with OpenMM. More efficient implementations of our GNN may further improve these
results.

4 Discussion

We showed preliminary evidence that CG through reparametrization can yield some improvements
over non-CG baseline in protein folding, both in terms of run time as well as energy. This method has
the advantage that it does not require force-matching or back-mapping. However, more experiments
are needed to compare it against traditional CG methods. In fact, using ML to learn force-matching
might provide further advantage by removing the need to evaluate LCG(Z) = L (X) via the fine-
grained modes X . Also, while our canonical slow modes are derived for physical Hessians, the
reparametrization approach to CG is general and could be applied to other ML problems.
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A Protein folding with classical MD

In protein folding our energy function consists of five potential energies for: bond length Ebond, bond
angles Eangle, Van der Waals EvdW , hydrophobic Ehp and hydrogen bonding EH Ceci et al. (2007).
Note that we are ignoring the solvent (e.g. water) and writing using potentials, or force fields. To
calculate the force field, we use distance, r, and angle-based, Θ, potentials. For each amino acid, we
use the rdkit Landrum et al. (2020) package to acquire bond length, r0, and bond angle, θ0 (every
triplet of atoms defining the bond), information that we use to define quadratic energies Ebond and
Eangle. We use Lennard-Jones (LJ) potentials, Vp,q(r) = r−p − r−q , to approximate EvdW between
all pairs of atoms, EH between atoms prone to form a hydrogen bond (certain H and O, in our case),
Ehp between atoms in hydrophobic residues, yielding

L (X) =Ebond + Eangle + EvdW + EH + Ehp

=kbond(r − r0)
2 + kangle(θ − θ0)

2

+ ϵvdWV12,6

(
r

σvdW

)
+ ϵHV6,4

(
r

σH

)
+ ϵhpV6,4

(
r

σhp

)
(12)

Here the coupling matrix [σvdW ]ij = ai + aj where ai is the vdW radius of atom i. For atoms which
form H-bonds, [σH ]ij = (bi · bj)1.5Å (hydrogen bonding radius) with bi = 1 if i forms an H-bond,
and bi = 0 otherwise. [σhp]ij = ci + cj where ci = 2Å if atom i is in a hydrophobic residue and
ci = 0 otherwise.

We note that our choices for ϵH , ϵvdW , ϵhp and kbond, kangle, can be a source of error. Additionally,
we “softened” the LJ potential to Vp,q = 1/(rp + ζ)− 1/(rq + ζ) with ζ = 0.65, which is large and
significantly reduces the penalty for overlapping atoms and may reduce accuracy.

B Additional Figures

a b

Figure 7: Enkephalin (1PLW). a) The peptide chain is built by stacking amino acids on each other
using the peptide bond length from the literature, 1.32 Å. b) Van der Waals, hydrogen bond, and
hydrophobic interaction matrix, that we use in the energy optimization.

C Energy minimization

Let X ∈ X ≃ Rn×d be a set of degrees of freedom (e.g. particle positions, bond angles, etc.) and let
L : X → R be the energy (loss) function. We are interested in finding configurations X∗ which are
local minima of L . We can find such X∗ using a gradient descent (GD), or its continuous variant,
gradient flow (GF)

dX

dt
= −ε∇L (X) (13)

where ε is the matrix of learning rates (LR). In simple GD where ε = cI is a single constant times
identity, GD evolves at different rates in different directions, with some being much slower than
others. At a given X , these “slow modes” are the eigenvectors of the Hessian H(X) = ∇∇L (X)
with eigenvalues closest to zero, as we review below. We will first define fast and slow modes in the
simple quadratic case and then generalize them to non-convex cases in the next section.
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Figure 8: Comparison of performance of CG Hessian versus baseline MD. Point sizes correspond to
the number of CG modes used.

Fast and slow modes for quadratic Loss. Consider the case where L (X) = 1
2 Tr

{
XTHX

}
.

Here H is a Hermitian matrix and the Hessian of L , with a spectral expansion given by H =∑
i λiψiψ

T
i , λi ∈ R and ψi ∈ Rn. In this basis we have X(t) =

∑
i ci(t)ψi with ci : R → Rd.

Projecting equation 13 onto one of the eigenmodes we get

dci
dt

= ψT
dX

dt
= −ελiψTX = −ελici (14)

where we assumed dψi/dt = 0. From equation 14 we see that the decay/growth rate along mode
ψi is |ελi|. Hence, modes with λi close to zero are the “slow modes”, evolving very slowly, and
large |λi| defines the “fast modes”. Since ci(t) = ci(0) exp[−t/τi] with time scale τi = 1/(ελi), the
fast modes evolve exponentially faster than slow modes. This disparity in the rates results in slow
convergence, because the fast modes force us to choose smaller ε to avoid numerical instabilities. Two
potential ways to fix the issue with disparity in time scales are: 1) make rates isotropic (second-order
methods and adaptive gradients); 2) mode truncation or compression (CG). We will briefly review the
former here.

Adaptive gradient and second-order methods. Newton’s method uses ε = ηH(X)−1 which
makes GD isotropic along all modes, but it is expensive (O((3n)3) in our case). Quasi-Newton meth-
ods, e.g. BFGS Fletcher (2013), approximate H−1 iteratively, but are generally also slow. Another,
more efficient approach is adaptive gradient methods, such as AdaGrad Duchi et al. (2011) and Adam
Kingma & Ba (2014) which approximate H by

√
gtgTt + η where gt =

∑k
i=1 γ

i∇L (X(t− i)) is
some discounted average over past gradients and η a small constant. For efficiency, in practice we
only use the diagonal part of this matrix to approximate H−1. As we will see in experiments, this
approximation, while being far superior to GD with constant LR, is still very slow for MD tasks.

Most second-order methods are designed to work for generic problem and don’t make strong
assumptions about the spectrum of the Hessian. Recent second-order methods such as K-FAC
Martens & Grosse (2015) and Shampoo Gupta et al. (2018) work with block diagonal approximations
of the Hessian (or the Fisher information matrix), which usually emerges in deep learning models
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Figure 9: The folded structures of the 2JOF protein by using the CG and baseline method. The
numbers in front of the rows are the numbers of eigenvectors used in the CG reparametrization.
Dashed frames show the minimum energy embedding in each case, while the thick line frame
highlights the absolute minimum layout.

due to model architecture. Instead, we will exploit the spectral properties of the Hessian in physics
problems. Fast and slow modes generally arise in physics due to vastly different strengths in forces
(e.g. weak van der Waals vs strong chemical bonds).

C.1 Generalized fast and slow modes

The notion of fast and slow modes is helpful for the analysis of any time slice of the dynamics during
which the Hessian is not changing dramatically. Consider a configuration X(t) and let δt be a small
time interval. We are looking for modes which are almost stationary over δt. To identify these modes,
we can for instance find perturbations δX which would have almost zero dynamics. concretely we
find the dynamics of X + δX as

d

dt
(X + δX) = −ε∇L (X + δX) ≈ −ε∇L (X)− εHδX +O(δX)2 (15)

meaning, a small δX adds εHδX to the dynamics.

Thus if δX is a zero mode of the Hessian, HδX = 0, it won’t change the dynamics of X . To
define slow modes, we can slightly relax this and look for normalized modes ψ = δX/∥δX∥ whose
associated time scale is much longer than a desired time scale δt

τ = |εψTHψ| = |ελ| ≫ δt (16)

which just means that we need to find the approximate zero modes of the Hessian H(X).

CG by projecting to the slow manifold. Because the dynamics of the modes above is very slow
over δt, we can safely increase the time scale and run their dynamics over much longer periods
∆t ≫ δt. The essence of our algorithm is to ignore fast modes and project and evolve the system
on the “slow manifold” spanned by the slow modes of the Hessian. However, the main challenge is
how to deal with the fact that the Hessian is not constant and depends on the configuration X . We
address this point next. We show that for a large class of physical potentials one can find a reliable
set of approximate slow modes.
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D Properties of Physical Hessians

Invariant potentials. In systems of interacting particles in physics, most of the leading interactions
are pairwise and involve relative features, rij ≡ Xi − Xj (distance vector, relative angle, etc).
Moreover, they are often invariant under certain global symmetries, such as Euclidean symmetries
(translation and rotation) or Lorentz symmetry (relativistic particles). These symmetries keep
some 2-norm of vectors, v2 = ∥v∥η ≡ vT ηv invariant. Here η may be the Euclidean metric
η = diag(1, 1, 1) or the Minkowski metric η = diag(−1, 1, 1, 1) for relativistic problems, etc. For
example, the Euclidean norm vTv in d dimensions is invariant under rotations v → gv, where
g ∈ SO(d), and the Minkowski norm is invariant under the Lorentz group SO(1, d− 1).

Let r denote the matrix of distances with rij = ∥rij∥η. Any function of rij is invariant under
symmetries that keep ∥ · ∥η invariant. A general invariant energy function can combine rij for
different i, j in arbitrary ways. Usually in physical systems each pair contributes an additive term in
to the total energy. Assuming additivity, the energy has a form

L (X) =
∑
ij

fij(rij) (17)

where fij(z) = fji(z) (symmetric under i ↔ j). For example, when particle i has electric charge
qi, the Coulomb potential between i, j can be written as in equation 17 using fij(z) = kqiqj/z.
Similarly, weak van der Waals (vdW) forces in molecular systems, which are modeled as Lennard-
Jones potential, are also of the form in equation 17 with

van der Waals: fij(rij) = Vp,q

(
rij
σij

)
, Vp,q(r) =

1

rp
− 1

rq
. (18)

Here σij = ai + aj , where ai is the vdW radius of particle i, and vdW uses p = 12, q = 6. Next, we
show that the Hessian of equation 17 has an important property which aids in finding its slow modes.

D.1 Hessian of invariant potentials

The Hessian of potentials of the form equation 17 has the special property that it is the graph Laplacian
of a weighted graph which depends on X , as we show now (see appendix E for details). This will
play a crucial role in our argument about canonical slow modes.

Hessian as a graph Laplacian. Let ∂i ≡ ∂/∂Xi and let r̂ = ηr/r be the dual unit vector of r.
First, observe that ∂irjk = r̂jk(δij − δik) where r̂jk is the unit vector of rjk and δij is the Kronecker
delta (1 if i = j, 0 otherwise). Let Hes[g] denote the Hessian of a function g. We find that (app. E)

Hes[L ](X)ij = ∂i∂jL (X) =
∑
k

(δij − δjk)Hik(X) (19)

where Hik(X) = Hes[fik](rik) and given by

Hik(X) =

[(
f ′′ik(v)−

f ′ik(v)

v

)
v̂ ⊗ v̂ +

f ′ik(v)

v
η

]
v=rik

(20)

Note that H has four indices, with components Hµν
ij , having two particle indices i, j and two spatial

indices µ, ν. Recall the Laplacian of an undirected graph with adjacency matrix A is defined as
L = Lap(A) = D − A, where D is the degree matrix with elements Dij = δij

∑
k Aik. The

components of Laplacian can also be written as Lij =
∑
k Aik(δij − δjk). Thus, we see that the

Hessian of L is indeed the Laplacian of H

Hes[L ](X)ij =
∑
k

(δij − δjk)Hik = Lap(H)ij (21)

where for every pair of spatial indices the Hessian is a Laplacian over particle indices. The Hessian
being Laplacian has an important effect on its null eigenvectors. To show this we make use of the
incidence matrix.
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D.2 Canonical backbone for the Hessian

As the Hessian depends on X , it is not clear whether slow modes found at a given X would be
applicable to other X . We need some guarantee that a set of modes exist which are approximately
slow modes for the Hessian at a range of different X . We could use multiple perturbed configurations
X + δX with random δX ∼ N (0, T ) to get an ensemble of Hessians H = {H(X + δX)} and find
the overlap of the slow modes of the Hessians in H. However, this is expensive, roughly O(mkn2)
for m = |H| and k slow modes. We cannot recompute the Hessian slow modes often. We also want a
method which is more efficient than quasi-Newton methods such as BFGS. Our solution is to find a
backbone for the sampled Hessians whose slow modes are guaranteed to be approximate slow modes
of the actual Hessians. The key observation is that the Hessian in equation 21 is a Laplacian of a
weighted graph. We show that the slow modes of weighted Laplacians overlap significantly with their
unweighted counterparts.

We want to extract a set of slow modes from the sampled Hessians H(X ′). We then compute a
backbone from these Hessians of the form

Backbone: Hij =
∑

X′∈Sample(X)

∥Hij(X
′)∥2 (22)

Here i, j ∈ Zn are the particle indices and the Frobenius norm ∥Hij∥2 =
∑
µ,ν(H

µν
ij )2 sums over

the feature indices (note that Xµ
i has a particle index i and a feature index µ ∈ {1, . . . d}). Then, we

extract the slow modes of the backbone, by doing a spectral expansion H =
∑
i λiψiψ

T
i and picking

ψi with |λi| < ε2 maxj [λj ], for some small ε < 1.

The intuition behind equation 22 is to identify the components in the sampled Hessians which have
consistently high magnitudes. If we had taken a simple mean we could get very small values, because
the components can fluctuate randomly. Also, if we had taken the variance instead of the norm, we
would get zero for quadratic L , where H is constant and has no variance. However, these intuitions
do not show that there would be any connection between the modes of the backbone H and the actual
Hessians H(X ′). Importantly, entries in H(X ′) have signs, which affects the spectrum, whereas
all entries in H are positive. So why should the spectra of H and H be related? This is where the
structure of L comes into play. Indeed, as we show below, for many physical L , the slow modes of
the backbone H approximate the slow modes of sampled H(X ′) up to O(ε2) errors.

Definition D.1 (weighted graph). Let Ĝ = (V, E) be a graph with vertices V = Zn, edges E ⊆ V×V .
Let Â ∈ Rn×n denote the adjacency matrix Âij = 1 if (i, j) ∈ E and 0 otherwise. We denote a
weighted graph as G = (V, E ,W) where W : E → R are the weights of the edges. Let A denote the
adjacency matrix of G, where Aij = W(i, j) or zero if (i, j) ̸∈ E . The Laplacian L = Lap(A) of an
undirected weighted graph is defined analogous to the unweighted graph as L = D −A with degree
matrix elements Dij = δik

∑
k Aik.

Definition D.2 (Slow manifold). Let L be a graph Laplacian (undirected, weighted or unweighted),
with spectral expansion L =

∑n
i=1 λiψiψ

T
i . Let ε ≪ 1 and λmax = max{λi} be the largest

eigenvalue of L. We define the slow manifold as
Slowε[L] = Span

{
ψi
∣∣|λi| < ε2λmax

}
(23)

Theorem D.1 (Slow modes of weighted Laplacians). Let A be the adjacency matrix of a weighted
graph and Â be its unweighted counterpart. Let L = Lap(A) and L̂ = Lap(Â). Then Slowε[L]

overlaps with Slowε[L̂] up to O(ε2) corrections from the rest of the modes.

To prove this we will make use of the incidence matrix representation of the Laplacian.
Definition D.3 (Incidence matrix). Given a weighted graph G = (V, E ,W), define its incidence
matrix as C : V × E → {±1}, where for any edge e = (i→ j) ∈ E , Ci,e = −1 and Cj,e = 1, and
zero for other components.
Lemma D.2 (Laplacian in terms of the incidence matrix). Let w = vec(W(E)) be the vector of all
weights indexed in the same order as the columns of C, with we = Aij , for e = (i, j) and let W
be a diagonal matrix with w on its diagonal. Then, the Laplacian L = Lap(A) can be written as
L = 1

2CWCT (proof in app. E.1).

Because G and Ĝ share the same vertices and edges, their incidence matrix C is the same. From
Lemma D.2, L = 1

2CWCT and L̂ = 1
2CC

T as Ĝ is unweighted. Using SVD, C = USV T and
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defining R = US/
√
2 and Q = V TWV , we have

L̂ = RRT L = RQRT . (24)

Note that for a random configuration X the edge weights W will be random, as they arising from
derivatives of fij(rij) in equation 20 (unless fij is quadratic which makes W constant). Therefore,
we will assume Q has a uniform Gaussian distribution. Assuming W is also Gaussian, the spectrum
of such a Q = V TWV is somewhere between the distribution of W (for sparse graphs with
|E| ∼ O(|V|)) and a Wigner Semi-circle (for dense graphs with |E| ∼ O(|V|2)). See appendix E.2
for more discussion. We also assume Q has no particular block structure and that the spectrum of
any diagonal block of Q should also follows a distribution similar to all of Q.

Slow subspace. We now sketch the proof for Theorem D.1. For details, refer to appendix E.4. From
the SVD, C = USV T , the slow subspace is

Slowε[L̂] =
{
i
∣∣Sii < εmax[S]

}
(25)

Normalize Ŝ = S/max[S] and make them all positive (e.g. absorb their sign into U ). For some
ε < 1 sort the SV such that Ŝ = diag(Sε, S1) where the diagonal matrices Sε < ε and S1 ≥ ε.
Now, the problem of finding Slowε[L] becomes finding eigenvectors of the matrix M̂ = ŜQŜT with
eigenvalues O(ε2). Using Sε ∼ O(ε) and S1 ∼ O(1), we can pull factors of ε out from M̂ and write
it as

M̂ =M0 + ε̂δM, M0 =

(
ε̂2Â 0
0 C

)
, δM =

(
0 B̂

B̂T 0

)
. (26)

where ε̂2 ≡ ε2
√
nA/nC is rescaled so that the random matrices Â ∈ RnA×nA and C ∈ RnC×nC

have a similar range of eigenvalues. Next, using a perturbative ansatz for eigenvectors ψ′ = ψ + ε̂δψ

and eigenvalues λ′ = λ+ ε̂δλ, we solve M̂ψ′ = λ′ψ′ up to O(ε̂2) corrections.

To find slow modes for L we start from ψ ∈ Slowε[L̂]. Specifically, we start with an eigenvector ψA
of Â and concatenate it with zeros to get ψ = (ψA, 0). We have M0ψ = λψ with λ = ε̂2λA. Using
first-order perturbation theory, we find the corrections δλ to the eigenvalues and eigenvectors to be

δλ = ψT δMψ = 0, δψ = −(M0 − λ)−1δMψ =

(
0

(C − λ)−1B̂TψA

)
. (27)

Putting all together we find the slow eigenvector ψ′ = ψ + ε̂δψ up to order O(ε2) to be

Slowε[L] ∋ ψ′ =

(
ψA

ε̂(C − ε̂2λA)
−1B̂TψA

)
, M̂ψ′ = ε̂2λψ′ +O(ε̂2) = O(ε̂2) (28)

meaning to first order in ε̂ the corrections to eigenvalues of slow modes vanishes. This is desired
because the slow mode eigenvalues are O(ε̂2). We also observe that slow modes of L are mostly
confined to Slowε[L̂] and only get O(ε) contributions from the fast subspace of L̂.

As a side, it follows that all weighted graphs share the null space of the unweighted Laplacian.
Proposition D.3 (Shared null space). Let Null[M ] = Span{v|v ∈ Rn,Mv = 0} denote the null
space of a matrix M ∈ Rn×n. The null space of the Laplacian L̂ (unweighted) is contained in the
null space of Laplacian L (weighted), meaning Null[L̂] ⊆ Null[L].

Lemma D.4. Null[L̂] = Null[RT ]

Proof. ∀v ∈ Null[L̂], 0 = vT L̂v = ∥RT v∥2 and ∀v ∈ Null[RT ], L̂v = RRT v = 0.

Proof of proposition D.3. ∀v ∈ Null[L̂], Lv = RQRT v = 0 hence, Null[L̂] ⊆ Null[L].

Note that Null[L̂] and ⊆ Null[L] are not necessarily the same because weights can be zero, which
could make the null space of the weighted graph larger than the unweighted one. Next, we present
our method for coarse-graining using a set of canonical slow modes.
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E Invariant additive dyadic potentials

We want to Compute the Hessian of equation 17, L (X) =
∑
ij(rij). Let r̂ = ηr/r be the dual unit

vector of r. First, note that

∂irjk ≡ ∂rjk
∂Xi

= ∂i

√
∥Xj −Xk∥η

= η
rjk
rjk

(δij − δik) = r̂jk(δij − δik) (29)

Then the gradient becomes

∂iL (X) =
∑
j,k

f ′jk(rjk)
∂rjk
∂xi

=
∑
j,k

f ′jk(rjk)ηr̂jk(δij − δik)

= 2
∑
j

f ′ij(rij)ηr̂ij . (30)

where we used r̂jk = −r̂kj to show both terms in (δij − δik) yield the same output. Finally, the
Hessian becomes

[H(X)]ij =∂i∂jL (X) = 2∂j
∑
k

f ′ik(rik)r̂ik

=2
∑
k

[f ′′ik(rik)∂jrik ⊗ r̂ik + f ′ik(rik)∂j r̂ik]

=2
∑
k

[
(δji − δjk)f

′′
ik(rik)r̂ik ⊗ r̂ik

+ f ′ik(rik)

(
η
δji − δjk
rik

− r̂ik
r2ik

∂jrik

)]
=2

∑
k

(δji − δjk)

[
f ′′ik(rik)r̂ik ⊗ r̂ik + f ′ik(rik)

(
η

rik
− r̂ik
r2ik

⊗ r̂ik

)]
=2

∑
k

[
f ′′ik(v)v̂ ⊗ v̂ +

f ′ik(v)

v
(η − v̂ ⊗ v̂)

]
v=rik

(δij − δjk)

=2
∑
k

[(
f ′′ik(v)−

f ′ik(v)

v

)
v̂ ⊗ v̂ +

f ′ik(v)

v
η

]
v=rik

(δij − δjk)

=
∑
k

Hik(x) (δij − δjk) = Lap(H)ij (31)

This is because the components of Laplacian can be be written

Lij = Lap(A)ij = (D −A)ij

= δij
∑
k

Aik −Aij =
∑
k

Aik(δij − δjk) (32)
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E.1 Incidence matrix

The Laplacian L = D−A of an undirected graph with adjacencyA can be written as L = CWCT /2
using the incidence matrix C and the edge weights W . This can be shown as follows

[CWCT ]ij =
∑
e

CeiWeeC
e
j

=
∑
k,l

C
(k→l)
i AklC

(k→l)
j

=
∑
k,l

(δil − δik)Akl(δjl − δjk)

=
∑
k,l

(δilδjl − δikδjl − δilδjk + δikδjk)Akl

= 2
∑
k,l

(δilδjl − δikδjl)Akl

= 2
∑
k

δijAkj − 2Aij = 2(D −A)ij = 2Lij (33)

where we assumed Akl = Alk (undirected graph).

So the same derivation of the backbone also holds for this case. The idea is that using the incidence
matrix C and edge weights W (as a diagonal matrix), any Laplacian L can be decomposed as
L = CWCT . Then, doing SVD C = USV T we have

L = USV TWV STUT = UMUT (34)

Where the matrix M = SV TWV ST has an interesting property, namely that its null space includes
the null space of the unweighted Laplacian L0 = CCT . To see this note that L0 = USSTST , which
means columns Ui are the eigenvectors of L0 with eigenvalues S2

i . The null eigenspace of L0 are the
Ui for which Si = 0. This subspace will also be a null subspace for L, because that block is also zero
in M , because Mij =

∑
c SiVikWkkVjkSj . So, whenever Si = 0 or Sj = 0, Mij = 0, meaning

that whole block in M is zero and MUi = 0 ( write it better).

Example: power law. Let f(r) = rp. We have f ′ = prp−1 and f ′′ = p(p− 1)rp−2, yielding the
Hessian

H = ∇∇f(r) = rp−2
[(
p2 − 2p

)
r̂ ⊗ r̂ + pη

]
(35)

Bik = Aikr
p−2
ik

[(
p2 − 2p

)
r̂ik ⊗ r̂ik + pη

]
(36)

Example: Lennard-Jones. This potential has the form

f(r) = 4ε
[(σ
r

)p
−
(σ
r

)q]
(37)

where for classic van-der Waals potential p = 2q = 12. The Hessian for this potential is given by

H(r) = ∇∇f(r) = ε

[(σ
r

)p+2 [(
p2 + 2p

)
r̂ ⊗ r̂ − pη

]
−
(σ
r

)q+2 [(
q2 + 2q

)
r̂ ⊗ r̂ − qη

]]
(38)

and Bik = AikH(rik)

E.2 Structure and spectrum of of Q = V TWV

To consider only the relevant subspace of SVD, we have U, S ∈ Rn×n, and V ∈ Rm×n, with n = |V|
and m = |E|. For a connected undirected graph m ≥ 2(n − 1) and V is full rank (V TV = In).
Note the edge weights W come from the forces fij(rij) in equation 20, which for an arbitrary X
will be random. Assuming a Gaussian distribution Wee ∼ N (0, σ) for all edges e, the matrix Q
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will also have random Gaussian entries. When m = n, V defines the eigenbasis of Q and Wee

are the eigenvalues of Q. Similarly, in sparse graphs, where m ∼ O(n), V is approximately the
eigenbasis and the spectrum of Q should have a distribution similar to Wee. For dense graphs, where
m ∼ O(n2), every entry of Q will involve a weighted sum over multiple Wee. Then, from central
limit theorem, entries of Q will asymptotically have a Gaussian distribution. From random matrix
theory, we know that such Q will have a spectrum which follows the Wigner-semi-circle law. In both
cases (sparse and dense graphs) the spectrum of Q has a finite variance and sits somewhere between
a Gaussian and a semi-circle.

E.3 Generalization to nonzero but small SV

We want to know how much the slow modes of weighted and unweighted graphs to overlaps. With
the spectral expansion L̂ =

∑
i λiψiψ

T
i Define the slow subspace as in equation 23

Slowε[L̂] = Span
{
ψi
∣∣|λi| < ε2λmax(L̂)

}
(39)

where λmax(L̂) = max{λi} = maxψ[ψ
TLψ/∥ψ∥2] is the largest eigenvalue of L and ε ≪ 1. In

terms of the singular values (SV) of the incidence matrix C = USV T , the slow subspace becomes

Slowε[L̂] =
{
i
∣∣Sii < εmax[S]

}
(40)

We will show that the slow modes in weighted L = CWCT are perturbations to the slow modes of
L̂. Define

M = SV TWV ST = SQST (41)

Normalize Ŝ = S/max[S]. Break the space down to the slow and fast subspaces, based on whether
Ŝii < ε or not. First, since L is positive semi-definite, we can make all Sii ≥ 0. Let Ŝ = S/maxS.
We sort the dimensions in Ŝ to have the small SVs appear first. Denote the block in Ŝ where Sii < ε
by Sε. We have

Ŝ2 =

(
S2
ε 0
0 S2

1

)
<

(
ε2 0
0 1

)
(42)

We know the null space of L̂, where Sii = 0, is shared with L. First, we remove the null space from
L and L̂, calling the remainder L0 and L̂0 and the remaining SVs Ŝ. Then in this remainder subspace
we need to find parts which are O(ε). We sort the dimensions in Ŝ to have the small SVs appear first.
We denote the block in Ŝ where S2

ii < εmax[S2] by Sε. We have

M = max[S]2ŜQŜT =

(
SεQεεSε SεQε1S1

S1Q
T
ε1Sε S1Q11S1

)
=

(
Mεε Mε1

MT
ε1 M11

)
(43)

Because Sε is O(ε) and S1 is O(1), we will factor out the factors of ε from blocks in M and write

M = max[S]2
(
ε2A εB
εBT C

)
(44)

Here A and C are random matrices built from their corresponding blocks in Q and sandwiched
between Sε/ε (for A), and S1 (for C), which have O(1) values. The spectrum of Q has a distribution
between a Gaussian with mean zero and a Wigner semi-circle, also centered around zero. We expect
spectra of A and C to be similar to Q. Denote the spectral expansion of Q as

Q = ΨΛΨT , Λ = diag(λi)
n
i=1, Ψ = [ψi]

n
i=1. (45)

This is because when Qij ∼ N (0, σ) we have (ignoring Bessel’s correction for k ≫ 1).

σ2 = Var(Qij) ≈
1

n
∥Q∥2 =

1

n

∑
i

λ2i = Var(Λ) (46)

where we assumed Tr{Q}/n ≈ mean(Q) = 0. Since a block Qk of size k is k2 entries sampled
from the same distribution as Q, we expect

∥Qk∥2

k2
≈ ∥Ql∥2

l2
⇒ 1

k
Var(Qk) ≈

1

l
Var(Ql) (47)

Thus, rescaling A ∈ RnA×nA and C ∈ RnC×nC we get

Â =
A

√
nA

, Ĉ =
C

√
nC

, Var(Â) ≈ Var(Ĉ) (48)
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E.4 Approximate slow modes of L

If M did not have the off-diagonal blocks B, then Slowε[L] and Slowε[L̂] would coincide, as the
Sε block and the S1 block would not mix when B = 0. Define M0 as the block matrix of M with
B = 0.

M0 ≡
(
ε2A 0
0 C

)
(49)

Using spectral expansions

A = ΨAΛAΨ
T
A, C = ΨCΛCΨ

T
C (50)

the eigenvectors of M0 consist of

M0

(
ψAi
0

)
= ε2λAi

(
ψAi
0

)
, M0

(
0
ψCi

)
= λCi

(
0
ψCi

)
. (51)

Since we are looking for slow modes, we must also consider the magnitudes of λAi and λCi. Since
A and C entries are random samples from Q, we expect them to have a semi-circle or Gaussian
distribution similar to Q. Thus, we can use the variances of eigenvalues of A and C as a proxy for
the how the magnitudes of λAi and λCi compare. From equation 48 we have

1

nA
E[Λ2

A] ≈
1

nA
Var(A) ≈ 1

nC
E[Λ2

C ] (52)

Based on this we define a rescaled ε̂ such that ε2λAi still has a smaller magnitude than λCi on
average, meaning we want

ε4E[Λ2
A] < E[Λ2

C ] ⇒ ε4nA < nC ⇒ ε̂2 ≡ ε2
√
nA
nC

< 1 (53)

We choose ε such that the condition in equation 53 is satisfied. We can express M in terms of ε̂ by
rescaling A and B to ε̂2Â = ε2A and ε̂B̂ = εB. Now eigenvalues of Â have the same variance as
eigenvalues of C. For brevity, denote M̂ = max[S]2M . We have

M̂ =

(
ε̂2Â ε̂B̂

ε̂B̂T C

)
. (54)

To find how slow modes of M̂ = SQST /max[S]2 differ from slow modes of SST , we break M̂
into a block diagonal part and an O(ε̂) off-diagonal perturbation

M̂ =M0 + ε̂δM, M0 =

(
ε̂2Â 0
0 C

)
δM =

(
0 B̂

B̂T 0

)
. (55)

As in equation 51, eigenvectors of A =
√
nC/nAÂ and C are eigenvectors of M0. Now we want to

find eigenvectors of M̂ with small O(ε2) eigenvalues up to order ε̂ corrections by treating δM as a
perturbation.

(M0 + ε̂δM)(ψ + ε̂δψ) = (λ+ ε̂δλ)(ψ + ε̂δψ)

M0ψ + ε̂(δMψ +M0δψ) +O(ε̂2) = λψ + ε̂(δλψ + λδψ) +O(ε̂2)

⇒ δMψ +M0δψ = δλψ + λδψ (56)

We only need the components of δψ orthogonal to ψ, so we can assume δψTψ = 0. From this we
have

δλ = ψT δMψ + ψTM0δψ = ψT δMψ, (57)

where we used ψTM0δψ = λψT δψ = 0. Plugging equation 57 into equation 56 we can solve for
δψ by inverting the matrices

(M0 − λ)δψ = (δλ− δM)ψ

⇒ δψ = (M0 − λ+ iη)−1(δλ− δM)ψ (58)
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where we added a small η to make the matrix M0 − λ invertible, as λ is one of its eigenvalues.

To find slow modes, we start from slow modes of M0 which are in the A subspace. Let ψA be an
eigenvector of A with ÂψA = λAψA. Concatenating ψA with zeros in the C subspace we have

ψ =

(
ψA
0

)
, M0ψ = ε̂2λAψ. (59)

Using this ψ to compute δλ in equation 57 we have

δλ = ψT δMψ =
(
ψTA 0

)( 0

B̂TψA

)
= 0 (60)

meaning to first order in ε̂ the corrections to eigenvalues of slow modes vanishes. This is desired
because the slow mode eigenvalues are O(ε̂2) and we find that with this ψ ansatz the corrections it
will get are also at least O(ε̂2). Next, we compute the corrections δψ to the eigenvectors. Plugging ψ
into equation 58 with λ = ε̂2λA and δλ = 0 we have

(M0 − λ+ iη)−1 =

(
(ε̂2Â− λ+ iη)−1 0

0 (C − λ)−1

)
δψ = −(M0 − λ+ iη)−1δMψ

=

(
0

(C − λ)−1B̂TψA

)
(61)

where we dropped iη in the lower block because ε̂2λA is unlikely to be also an eigenvalue of C, as A
and C are random matrices.

Using the relation ε̂B̂ = εB with the original ε and putting all together we find the eigenvector
ψ′ = ψ + ε̂δψ up to order O(ε2) to be

ψ′ =

(
ψA

ε̂(C − ε̂2λA)
−1B̂T

)
(62)

M̂ψ′ = ε̂2λψ′ +O(ε̂2) = O(ε̂2) (63)
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [TODO]
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Most experiments are uploaded in supplemental. Rest will be provided upon
request.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Most code in supplement.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: in code and text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In most cases, multiple runs and their statistics are provided in figures and text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [TODO]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

26



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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