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Abstract

Subseasonal forecasting—predicting temperature
and precipitation 2 to 6 weeks ahead—is critical
for effective water allocation, wildfire manage-
ment, and drought and flood mitigation. Recent
international research efforts have advanced the
subseasonal capabilities of operational dynam-
ical models, yet temperature and precipitation
prediction skills remain poor, partly due to stub-
born errors in representing atmospheric dynam-
ics and physics inside dynamical models. Here,
to counter these errors, we introduce an adap-
tive bias correction (ABC) method that combines
state-of-the-art dynamical forecasts with observa-
tions using machine learning. We show that, when
applied to the leading subseasonal model from
the European Centre for Medium-Range Weather
Forecasts (ECMWF), ABC improves temperature
forecasting skill by 60-90% (over baseline skills
of 0.18-0.25) and precipitation forecasting skill
by 40-69% (over baseline skills of 0.11-0.15) in
the contiguous U.S. We couple these performance
improvements with a practical workflow to ex-
plain ABC skill gains and identify higher-skill
windows of opportunity based on specific climate
conditions.
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Water and fire managers rely on subseasonal forecasts 2-6
weeks in advance to allocate water, manage wildfires, and
prepare for droughts and other weather extremes. However,
skillful forecasts for the subseasonal regime are lacking due
to the complex dependence on both local weather and global
climate variables and the chaotic nature of weather. Bridg-
ing the gap between short-term and seasonal forecasting
has been the focus of several recent large-scale research
efforts which have advanced the subseasonal capabilities
of operational physics-based models (Vitart et al., 2017;
Pegion et al., 2019; Lang et al., 2020). However, despite
these advances, dynamical models still suffer from persis-
tent systematic errors, which limit the skill of temperature
and precipitation forecasts for longer lead times from 2 to 6
weeks ahead.

To overcome observed systematic errors of physics-based
models on the subseasonal timescale, there have been par-
allel efforts in recent years to demonstrate the value of
machine learning and deep learning methods in improv-
ing subseasonal forecasting (Li et al., 2016; Cohen et al.,
2019; Hwang et al., 2019; Arcomano et al., 2020; He et al.,
2020; Yamagami & Matsueda, 2020; Wang et al., 2021;
Kim et al., 2021; Watson-Parris, 2021; Weyn et al., 2021;
Srinivasan et al., 2021). While these works demonstrate the
promise of statistical models for subseasonal forecasting,
they also highlight the complementary strengths of physics-
and learning-based approaches and the opportunity to com-
bine those strengths to improve forecasting skill (Hwang
et al., 2019; Kim et al., 2021).

To harness those complementary strengths, we introduce
a hybrid dynamical-learning framework for improved sub-
seasonal forecasting. In particular, we learn to adaptively
correct the biases of dynamical models and apply our novel
adaptive bias correction (ABC) to improve the skill of sub-
seasonal temperature and precipitation forecasts. ABC can
be applied operationally as a computationally inexpensive
enhancement to any dynamical model forecast, and we use
this property to substantially reduce the forecasting errors
of eight operational dynamical models, including the state-
of-the-art ECMWF model. We couple these performance
improvements with a practical workflow for explaining ABC
skill gains using Cohort Shapley (Mase et al., 2019) and
identifying higher-skill windows of opportunity (Mariotti
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et al., 2020) based on relevant climate variables. To facili-
tate future deployment and benchmarking, we release our
model and workflow code through the Redacted Python
package.

1. Methods
We consider two prediction targets: average temperature
(◦C) and accumulated precipitation (mm) over a two-week
period. These variables are forecasted at two time horizons:
15-28 days ahead (weeks 3-4) and 29-42 days ahead (weeks
5-6). We forecast each variable at G = 376 grid points
on a 1.5◦ × 1.5◦ grid across the contiguous U.S., bounded
by latitudes 25N to 50N and longitudes 125W to 67W. To
provide the most realistic assessment of forecasting skill
(Risbey et al., 2021), all predictions in this study are formed
in a real forecast manner that mimics operational use. In
particular, to produce a forecast for a given target date, all
learning-based models are trained and tuned only on data
observable on the corresponding forecast issuance date. We
evaluate each forecast according using uncentered anomaly
correlation skill. For a collection of target dates, we report
average skill using progressive validation (Blum et al., 1999)
to mimic operational use. All data used in this work was
obtained from the Redacted dataset (Redacted).

Our proposed adaptive bias correction (ABC) is a uniformly-
weighted ensemble of our three machine learning models,
Climatology++, Dynamical++, and Persistence++. Clima-
tology++ predicts the historical mean or geographic median
over all days in a window around the target day of year.
The number of training years and the size of the observa-
tion window are determined adaptively using an automated
tuning procedure. Dynamical++ is a learned correction
for raw dynamical forecasts. After averaging dynamical
forecasts over a range of issuance dates and lead times, Dy-
namical++ debiases the ensemble forecast by adding the
mean value of the target variable and subtracting the mean
forecast over a learned window of observations around the
target day of year. Unlike standard debiasing strategies,
which employ static ensembling and bias correction, Dy-
namical++ adaptively selects the range of ensembled lead
times, the number of averaged issuance dates, and the size
of the observation window using an automated tuning pro-
cedure. Persistence++ fits a least squares regression per
grid point to optimally combine climatology, recent weather
trends in the form of lagged temperature or precipitation
measurements, and a dynamical ensemble forecast.

2. Results
Figure 1 highlights the advantage of ABC over raw dynami-
cal models when forecasting accumulated precipitation and
averaged temperature in the contiguous U.S. Here, ABC is
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Figure 1. Average model skill for ECWMF and SubX dynamical
models (red) and their ABC-corrected counterparts (blue) across
the contiguous U.S. and the years 2018–2021. For each forecasting
task and dynamical model input, ABC provides a pronounced
improvement in skill.

applied to the leading subseasonal model, ECMWF, and to
each of seven operational models participating in the Subsea-
sonal Experiment (SubX, Pegion et al., 2019). Subseasonal
forecasting skill, measured by uncentered anomaly correla-
tion, is evaluated at two forecast horizons, weeks 3-4 and
weeks 5-6, and averaged over all available forecast dates
in the four-year span 2018–2021. We find that, for each
dynamical model input and forecasting task, ABC leads to
a pronounced improvement in skill. For example, when ap-
plied to the U.S. operational model CFSv2, ABC improves
temperature forecasting skill by 109-289% and precipitation
skill by 165-253%. When applied to the leading ECMWF
model, ABC improves temperature skill by 60-90% and
precipitation skill by 40-69%. Moreover, for precipitation,
even lower-skill models like CCSM4 enjoy skill comparable
to the best after the application of ABC. Overall and despite
significant variability in dynamical model skill, ABC con-
sistently reduces the systematic errors of its input model,
bringing forecasts closer to observations for each target
variable and time horizon.

The results presented so far assess overall model skill, aver-
aged across all forecast dates. However, there is a growing
appreciation that subseasonal forecasts can also benefit from
selective deployment during “windows of opportunity,” pe-
riods defined by observable climate conditions in which spe-
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cific forecasters are likely to have higher skill (Mariotti et al.,
2020). In this section, we propose a practical opportunistic
ABC workflow that uses a candidate set of explanatory vari-
ables to identify windows in which ABC is especially likely
to improve upon a baseline model. The same workflow can
be used to explain the skill improvements achieved by ABC
in terms of the explanatory variables.

The opportunistic ABC workflow is based on the optimal
credit assignment principle (Shapley, 1953) and measures
the impact of explanatory variables on individual forecasts
using Cohort Shapley (Mase et al., 2019) and overall vari-
able importance using Shapley effects (Song et al., 2016).
We use these Shapley measures to interpret the contexts
in which ABC offers improvements in terms of climate
variables with known relevance for subseasonal forecasting
skill.

As a running example, we use our workflow to explain
the skill differences between ABC-ECMWF and debiased
ECMWF when predicting precipitation in weeks 3-4. As
our candidate explanatory variables we use Northern Hemi-
sphere geopotential heights (HGT) at 500 and 10 hPa, the
phase of the Madden-Julian Oscillation (MJO), Northern
Hemisphere sea ice concentration (ICEC), global sea sur-
face temperatures (SST), the multivariate El Niño-Southern
Oscillation index (MEI.v2, Wolter & Timlin, 1993), and
the target month. All variables are lagged appropriately to
ensure that they are observable on the forecast issuance date.

We first use Shapley effects to determine the overall im-
portance of each variable in explaining the precipitation
skill improvements of ABC-ECMWF. We find the most
important explanatory variables to be the first two principal
components (PCs) of 500 hPa geopotential height, the MJO
phase, the second PC of 10 hPa geopotential height, and the
first PC of sea ice concentration. These variables are consis-
tent with the literature exploring the dominant contributions
to subseasonal precipitation (Chevallier et al., 2019).

We next use Cohort Shapley to identify the contexts in which
each variable has the greatest impact on skill. For example,
Figure 2 summarizes the impact of the first 500 hPa geopo-
tential heights PC (hgt 500 pc1) on ABC-ECMWF skill
improvement. This display divides our forecasts into 10
bins, determined by the deciles of hgt 500 pc1, and com-
putes the probability of positive impact in each bin. We find
that hgt 500 pc1 is most likely to have a positive impact
impact on skill improvement in decile 1, which features
a positive Arctic Oscillation (AO) pattern, and least likely
in decile 9, which features AO in the opposite phase. The
ABC-ECMWF forecast most impacted by hgt 500 pc1
in decile 1 is also preceded by a positive AO pattern and
replaces the wet debiased ECMWF forecast with a more
skillful dry pattern in the west.

Finally, we use the identified contexts to define windows of
opportunity for operational deployment. Indeed, since all
explanatory variables are observable on the forecast issuance
date, one can selectively apply ABC when multiple variables
are likely to have a positive impact on skill and otherwise
issue a default, standard forecast (e.g., debiased ECMWF).
We call this selective forecasting model opportunistic ABC.
How many high-impact variables should we require when
defining these windows of opportunity? Requiring a larger
number of high-impact variables will tend to increase the
skill gains of ABC but simultaneously reduce the number
of dates on which ABC is deployed. Figure 3 illustrates this
trade-off for ABC-ECMWF and shows that opportunistic
ABC skill is maximized when two or more high-impact
variables are required. With this choice, ABC is used for
approximately 81% of forecasts and debiased ECMWF is
used for the remainder.

3. Discussion and Conclusion
Dynamical models have shown increasing skill in accu-
rately forecasting the weather (Bauer et al., 2015), but they
still contain systematic biases that compound on subsea-
sonal time scales and suppress forecast skill. ABC learns
to correct these biases by adaptively integrating dynamical
forecasts, historical observations, and recent weather trends.
Our approach substantially reduces the forecasting errors
of the leading subseasonal model from ECMWF and seven
additional operational subseasonal forecasting models, with
less skillful input models performing nearly as well as the
ECMWF model after applying the ABC correction. This
finding suggests that systematic errors in dynamical models
are a primary contributor to observed skill differences and
that ABC provides an effective mechanism for reducing
these heterogeneous errors. Because ABC is also simple
to implement and deploy in real-time operational settings,
adaptive bias correction represents a computationally inex-
pensive strategy for upgrading operational models, while
conserving valuable human resources.

While the learned correction of systematic errors can play
an important role in skill improvement, it is no substitute for
scientific improvements in our understanding and represen-
tation of the processes underlying subseasonal predictability.
As such, we view ABC as a complement for improved dy-
namical model development. Fortunately, ABC is designed
to be adaptive to model changes. As operational models
are upgraded, process models improve, and systematic bi-
ases evolve, our ABC training protocol is designed to ingest
the upgraded model forecasts and hindcasts reflecting those
changes.

To capitalize on higher-skill forecasts of opportunity, we
have also introduced an opportunistic ABC workflow that ex-
plains the skill improvements of ABC in terms of a candidate
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Figure 2. Top: To summarize the impact of hgt 500 pc1on ABC-ECMWF skill improvement for precipitation weeks 3-4, we divide
our forecasts into 10 bins, determined by the deciles of hgt 500 pc1, and compute the probability of positive impact in each bin, as
shown above each bin map. The highest probabilities of positive impact are shown in blue and the lowest probabilities of positive impact
are shown in red. We find that hgt 500 pc1is most likely to have a positive impact on skill improvement in decile 1, which features a
positive Arctic Oscillation (AO) pattern, and least likely in decile 9, which features AO in the opposite phase. Bottom: The forecast most
impacted by hgt 500 pc1in decile 1 is also preceded by a positive AO pattern and replaces the wet debiased ECMWF forecast with a
more skillful dry pattern in the west.

# High-impact % Forecasts High-impact skill (%)
variables using ABC ABC Debiased

0 or more 100.00 20.94 15.28
1 or more 95.93 20.99 14.84
2 or more 80.62 22.29 13.12
3 or more 58.61 23.56 12.00
4 or more 31.82 24.72 8.18
5 or more 14.59 26.51 8.35
6 or more 6.46 29.72 10.55
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Figure 3. Defining windows of opportunity for opportunistic ABC forecasting of precipitation weeks 3-4. Left: When more explanatory
variables fall into high-impact deciles or bins (e.g., the blue bins of Figure 2), the mean skill of ABC-ECMWF improves, but the percentage
of forecasts using ABC declines. Right: The overall skill of opportunistic ABC is maximized when ABC-ECMWF is deployed for target
dates with two or more high-impact variables and standard debiased ECMWF is deployed otherwise.
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set of environmental variables, identifies high-probability
windows of opportunity based on those variables, and selec-
tively deploys either ABC or a baseline forecast to maximize
expected skill. The same workflow can be applied to explain
the skill improvements of any forecasting model and, unlike
other popular explanation tools (e.g., Ribeiro et al., 2016;
Lundberg & Lee, 2017), avoids expensive model retraining,
requires no generation of additional forecasts beyond those
routinely generated for operational or hindcast use, and al-
lows for explanations in terms of variables that were not
explicitly used in training the model.

Overall, we find that correcting dynamical forecasts using
ABC yields an effective and scalable strategy to optimize
the skill of the next generation of subseasonal forecasting
models. We anticipate that our hybrid dynamical-learning
framework will benefit both research and operations, and
we release our open-source code to facilitate future adoption
and development.

Broader impact
In the past decade, extreme weather events such as heat-
waves, drought and floods, have affected millions and cost
billions (Zhongming et al., 2021). Now, more than ever,
improving our ability to forecast the weather and predict
the climate is of major interest to all sectors of the economy
and government agencies from the local to the national level.
Weather forecasts span intervals 0-to-10 days ahead, and
climate forecasts span intervals seasons-to-decades ahead;
both are currently used operationally in decision-making,
and their accuracy and reliability have improved consistently
in recent decades. However, many critical applications, such
as water allocation, wildfire management, and drought and
flood mitigation, require subseasonal forecasts whose span
intervals lie between these two extremes. Yet, skillful fore-
casts for the subseasonal regime are lacking due to the com-
plex dependence on both local weather and global climate
variables, as well as the chaotic nature of the weather. To
address this need, we introduce the machine learning ap-
proach of adaptive bias correction (ABC) that combines
state-of-the-art dynamical forecasts with observations. We
anticipate that our hybrid dynamical-learning paradigm for
subseasonal forecasting will benefit both research and oper-
ations. We additionally release our open-source ABC code
to facilitate widespread adoption and future development.
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