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Abstract— In many industrial robotics applications, multiple
robots are working in a shared workspace to complete a set of
tasks as fast as possible. Such settings can be treated as multi-
modal multi-robot multi-goal path planning problems, where
each robot has to reach a set of goals. Existing approaches to this
type of problem are neither optimal nor complete. We tackle
this problem as a single centralized path planning problem
and present planners that are probabilistically complete and
asymptotically optimal. The planners plan in the composite
space of all robots and are modifications of standard sampling-
based planners where we introduce the required changes
to work in our multi-modal, multi-robot, multi-goal setting.
We validate the planners on a diverse range of problems
including scenarios with various robots, planning horizons,
and collaborative tasks such as handovers, and compare the
planners against a suboptimal prioritized planner.

Videos and code for the planners and the bench-
mark is available at https://github.com/vhartman/
multirobot-pathplanning-benchmark.

I. INTRODUCTION

As adoption of robots increases and simple tasks become
more and more automated, it will be more and more impor-
tant to deploy solutions that are not only able to work longer
and cheaper but are also competitive in throughput with hu-
mans. In order to achieve this, in many cases, multiple robots
need to be used and effectively coordinated in the same
workspace: Enabling motion planning for multiple tasks with
multiple robots is crucial in order to maximize the usefulness
of robots in industrial settings. While workcells with multiple
robots exist, the robots typically act independently from each
other in order to simplify the programming and avoid dealing
with robot-robot interactions.

Most work in continuous multi-robot planning is focusing
on single-goal settings where all robots start moving at the
same time and reach their respective goals simultaneously
[1]–[3]. Conversely, in most real use cases, multiple robots
need to do multiple tasks in sequence, e.g., welding multiple
points, or picking and placing multiple things after another
in order to sort objects. Even when only considering a single
pick and place task per robot, each robot needs to reach two
goals: The pick, and the place location. Since the robots
act in the same environment in these scenarios and thus
possibly block each other from doing their tasks, we can
not formulate the problem at hand as a sequence of path
planning problems, but need to solve the multi-robot multi-
goal planning problem if we want to find an optimal solution.

Multi-modal planning can be seen as multi-goal planning
problem: Multi-modal path planning [4]–[7] finds paths
through sequences of modes, i.e., through variations of a
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Fig. 1: Example of a typical problem of four robots cooperating to
stack boxes with (left) initial state and (right) goal state.

TABLE I: Comparison of path planning approaches.

Approach Examples Multi-
Robot

Multi-
Goal

Multi-
Modal

Contin-
uous Complete Opt.

MAPF [8], [9] ✓ ✓ ✓

MAPD [10], [11] ✓ ✓ ✓ ✓

Multi-Robot
Planning [12]–[15] ✓ ✓ ✓ ✓

Multi-Modal
Planning [4], [5] ✓ ✓ ✓ ✓ ✓

Prioritized
planning [16]–[18] ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓

continuous configuration space that occur, e.g., by grasping
an object, or moving an object in the workspace. This means
that in each mode a different set of constraints is active. Most
work on multi-modal path planning for robots only considers
single-robot settings.

On the other hand, multi-agent path finding (MAPF) [8],
[9] deals with high numbers of agents, but typically considers
grid-like 2d environments with a homogeneous group of disk
robots, as found, e.g., in warehouses. MAPF was extended
to consider multiple goals in the multi-agent pickup and
delivery (MAPD) setting [10]. These approaches do not
transfer easily to changing environments and continuous
configuration spaces. We group the different research areas
and their respective focus in Table I.

Our contributions in this paper are

• a formalization of multi-modal, multi-robot, multi-goal
path planning in continuous spaces,

• adaptions of probabilistically complete and almost-
surely asymptotically optimal planners to this setting.

In addition, we open-source an easily accessible multi-modal,
multi-robot, multi-goal motion planning benchmark contain-
ing 21 different base-scenarios with up to 74 subgoals, that
can be further adjusted in difficulty by changing the number
of robots and tasks.

https://github.com/vhartman/multirobot-pathplanning-benchmark
https://github.com/vhartman/multirobot-pathplanning-benchmark


II. MULTI-ROBOT MULTI-GOAL PATH PLANNING

Informally, our objective is to find a collision free path
for each robot that passes through a sequence of goals that
minimizes a cost (e.g., the latest completion time of all
robots). Goals might involve multiple robots: A handover
of an object between two robots implies a constraint on two
robots. A goal could additionally imply a mode transition,
i.e., a robot grasping something and thus changing the
environment for the remaining planning problem.

A. Preliminaries
Before formalizing the problem, we introduce the compo-

nents that are required: The tasks, the concept of a mode,
and the state space that we plan in. We follow the work from
Thomason et al. [4], and generalize it to multiple robots.
Compared to [4], we do not explicitly consider task planning.

1) Task: A task S consists of the robots that are assigned
to the task, and a set of constraints g1 that need to be fulfilled
to consider the task done. A task can have post-conditions
that can alter the scene-graph of the environment, i.e., which
objects are linked to each other. As example, consider the
task ’robot r1 grasps object o1’: Here, the goal constraints
are that the robot is grasping o1, and the post-condition is
that o1 is linked to the end-effector of the robot.

We use s ∈ SR = Sr1 × ... × Srn to denote the task
assignment of all robots, where Sri is the set of tasks that
are assigned to robot ri.

2) Modes: The constraints of a task can be fulfilled by a
set of poses, where the chosen pose might affect the envi-
ronment that we plan in. Consider again the grasping-task:
The robot is able to fulfill a grasping constraint by grasping
from any side, which changes the collision geometry that we
need to consider in the rest of the planning problem and it
might influence how the constraints for follow-up tasks can
be fulfilled. We use mode m ∈ M = S ×Qo to refer to the
combination of the discrete task assignment s (which implies
a scene-graph), and the poses of all movable objects qo ∈ Qo,
defined by the relative transformation to their parent-frames.

3) Task Order Specification: A task sequence is induced
by an oracle O(m) : M → S∗ which maps the current
assignment and state of the environment to the list of possible
task assignments S∗. A (partial) task sequence implies all
possible transitions between task assignments, and thus all
logically valid task assignment sequences. We use T to
denote the set of all logically valid task assignment sequences
that bring us from the start to the goal and obey the
constraints imposed by the oracle.

4) State Space: We describe a path in the composite space
of all robots, all objects, and which tasks are currently active
per robot:

Q = Qr1 × · · · × QrN︸ ︷︷ ︸
QR

×Qo × Sr1 × · · · × SrN︸ ︷︷ ︸
SR

.

Here, Qri is the configuration space of robot ri, and
correspondingly, QR is the composite configuration space

1Typically, the constraint g is a single goal pose or a goal region, but can
also be a more complex constraint such as a grasp constraint.

of all robots; Qo is the composite configuration space of
all objects. We use Qfree ⊆ Q to denote the part of the
configuration space that is collision-free.

Clearly, not all degrees of freedom are actuated. We
assume that we can only plan for the robots’ degrees of free-
dom directly, and all others need to be influenced indirectly.

B. Problem formulation

Bringing everything together, a multi-modal, multi-robot,
multi-goal path planning problem is given by the tuple
(R,QR, qstart,mstart,O), where R is the set of robots, QR

is the configuration space of the robots, qstart is the initial
state, mstart is the start mode, and O is the oracle giving us
the possible next tast assignments from the current mode. In
the following, we will use qri for the pose of robot ri.

We want to find a collision free path π(t) : R → QR and
the task assignment sequence s(t) : R → SR, that minimizes
the cost function c(·). The path π maps time to the composite
robot state QR, and the mode sequence s(t) maps time to the
task assignment SR, which together imply the scene-graph
at a time, and thus the poses of all objects.

Cost functions: We are often interested in finding the mini-
mum makespan plan. However, purely minimizing makespan
can lead to optimal paths that bring undesired side-effects,
e.g., containing unnecessary movement. Thus, we consider
cost functions of the family

c(q1, q2) = (1−w)max
r

||qr1−qr2||2+w
∑

r
||qr1−qr2||2. (1)

where q1 and q2 are two poses, and qr refers to the pose
of robot r. If w is small, we get a minimum makespan
optimization problem (which is ‘regularized’ by the path
length), and if w is 1 the total cost is the sum of all robot
path lengths.

III. PLANNERS

We adapt four sampling-based planners (RRT*, PRM*,
EIT*, AIT*) to plan in the space introduced in the previous
section. The main adaptions that are necessary are the
distance function to connect only within a mode, and how we
sample the space that we previously defined. Put briefly, we
maintain a set of reached modes, and sample a mode from
this set uniformly at random. The continuous configuration
is sampled as in the standard versions of the planner.

IV. EXPERIMENTS

The main contribution of this work is the formulation of
the multi-modal, multi-robot, multi-goal planning problem
and the adoption of standard sampling-based planners to
the formulation. We implement this formulation in a variety
of base scenarios in an open-source benchmark featuring
diverse sets of robots and tasks. The 21 base scenarios
range from simple settings where the optimal solution path
is known to help validate properties of the planner, to
more complex scenarios such as assemblies of architectural
artifacts [18], [19] or long horizon rearrangement problems
with up to 5 robots (with a total of 30 degrees of freedom),
and up to 74 goals. For many of the problems, there are



(a) 2D hallway. (b) Multi waypoints. (c) Rearrangement. (d) Mobile assembly. (e) Architectural artifact. (f) Truss structure.

Fig. 2: The initial states of a selection of problems that are available in the benchmark. The poses that have to be reached by the robots
or objects are drawn with lower opacity or indicated with a marker. All scenarios support different task-specifications.

(a) 2D hallway (*). (b) 4-arm-box stacking (*). (c) Mobile assembly (**). (d) 2-arm rearrangement (***).

RRT* BiRRT* PRM* AIT* EIT* Prioritized

Fig. 3: Evolution of median cost over time along with the 95% non-parametric confidence intervals over 50 runs. We also show the
median initial solution time and cost using the square with error bars. (*) indicates a fully given task sequence, (**) indicates a partial
task ordering, (***) indicates unassigned and unordered tasks. Note that the prioritized planner only acts as anytime planner and improves
its cost in the (**) and (***) settings, where multiple different sequences can be generated and planned for.

versions with a complete task ordering and assignment, and
others that are either unordered, partially ordered, or where
tasks are unassigned. We show a selection of base-scenarios
in Fig. 2.

We provide proof-of-concept implementations of the plan-
ners in Python, while the computationally expensive parts,
i.e., collision checking and forward kinematics use a more
performant backend, which can be easily replaced, allow-
ing for, e.g., GPU parallelization if the backend supports
it. Currently, the benchmark supports implementations of
environments in Pinocchio [20] and RAI2.

A. Experiments

We present a selection of experiments to showcase the dif-
ferent types of scenarios and task sequence specifications and
compare the optimal planners to a prioritized planner [21] on
them3. We report results for four representative scenarios:
(a) A 2D scenario with two robots that is similar to the
classic wall-gap, where the robots have to switch positions
and go back to their start poses (6D conf. space, 3 subgoals,
Fig. 2a), (b) a scenario with 4 robot arms where 8 boxes have
to be stacked (24D conf. space, 17 subgoals, Fig. 1), (c) a
scenario involving 4 mobile manipulators rearranging a wall
(24D conf. space, 17 subgoals, Fig. 2d), and (d) a scenario
with 2 robot arms that have to collaborate with handovers
to rearrange and reorient 9 boxes (12D conf. space, 28
subgoals, Fig. 2c). In these scenarios, the task sequence is
fully determined for scenario (a) and (b), partially given for
scenario (c) and neither assigned nor ordered for scenario

2https://github.com/MarcToussaint/robotic
3Synchronized planners and standard MAPF planners are not applicable

to these problems, and are thus not part of the benchmark.

(d). To deal with partially ordered problems in the prioritized
planner, we generate random sequences, and plan for those
until the time runs out.

We use the cost function with w = 0.01, i.e., the min-
makespan problem with a small path-length regularization
in scenarios (b)-(d), and w = 1 in scenario (a). We report
the median solution costs over 50 runs with different random
seeds along with confidence intervals. We use a greedy mode
sampling strategy until a path is found, and then switch
to uniform mode sampling in all planners if not stated
otherwise.

The experiments were run with Python 3.10 on a Ryzen
7 5800X (8-core, 4’491 MHz) and 32 GB RAM.

B. Results

Figure 3 shows the resulting cost evolution plots. Com-
paring the optimal planners introduced in this work and
the prioritized planner shows that the suboptimal planner
finds competitive solutions quickly, particularly in the robotic
problems. As expected, the optimal planners converge to
solutions with lower cost, but do so at a later time. Sur-
prisingly, the planners that plan in composite space find
initial solutions faster than the suboptimal planner in some
settings. We explain this mainly with the fact that treating
the previously planned paths as fixed sometimes constrains
the planning space such that the planning problem becomes
considerably harder compared to the setting where all agents
can be moved around freely.

Convergence in complex problems: In scenarios (c) and (d)
the planners do not reliably converge to the same solution
at the end of their runtime, showing that the found solutions
are often not optimal. This is because the problem space is

https://github.com/MarcToussaint/robotic


Fig. 4: The optimal paths when using a max (left) or sum (right)
cost function in the 2D hallway scenario, where the robots have to
reach a goal on the other side and return. Color indicates time from
purple (start) to yellow (end).

extremely large due to the discrete choice of task assignment
and ordering in addition to the high dimensionality of the
continuous space. Thus, while the planners are theoretically
optimal, in practice, we find that the planners tend to get
stuck in a local optimum and do not switch the discrete
assignment and ordering often. We also want to note here that
in scenario (c), the median final cost of the prioritized planner
is lower than the median final cost of some of the composite
space planners. This is due to the better exploration of
different sequences.

Influence of the cost function: We illustrate the difference
of the sum-cost and the max-cost on the hallway example
in Fig. 4: Both robots go through the wall gap twice when
using the sum-cost, and do not make use of the passage at
the top, compared to the (regularized) max-cost, where they
make use of the passage at the top.

V. DISCUSSION & LIMITATIONS

We presented a formalization of the multi-modal, multi-
robot, multi-goal motion planning problem, and open-source
the benchmark we developed, containing diverse problems
reaching from simple environments with short goal se-
quences, to relatively long horizon problems requiring co-
ordination of multiple robots. We adapt multiple standard
sampling-based planners that are probabilistically complete
and asymptotically optimal to this type of problem. We also
benchmarked a prioritized planner against optimal planners
and show that the solutions found by such a suboptimal
planner can be competitive in some settings.

Due to planning in the composite space and treating the
problem as a single big planning problem, the planners
do not scale well with the number of robots (due to the
increase in state-space dimensions) and they do not scale
well with the number of goals, as can be seen in the slower
convergence in the high dimensional problems. However,
we believe that formulating the problem in composite space
helps understand how choices such as prioritization affect the
continuous space, and this deeper understanding can enable
the design of better planners.

There are many extensions to the chosen problem formu-
lation: The formulation and planners we propose supports
extension of the transition logic to full multi-robot task and
motion planning by changing the task-assignment-oracle. In

the future, we also want to support constrained multi-robot
planning, or kinodynamic planning.

REFERENCES

[1] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artif. intell., vol. 219, pp. 1–24, 2015.

[2] R. Shome and L. E. Kavraki, “Asymptotically optimal kinodynamic
planning using bundles of edges,” in Proc. of the IEEE Int. Conf.
Robot. Automat. (ICRA). IEEE, 2021, pp. 9988–9994.

[3] S. Lin, A. Liu, J. Wang, and X. Kong, “A review of path-planning
approaches for multiple mobile robots,” Machines, vol. 10, no. 9, p.
773, 2022.

[4] W. Thomason, M. P. Strub, and J. D. Gammell, “Task and Motion
Informed Trees (TMIT*): Almost-surely asymptotically optimal inte-
grated task and motion planning,” IEEE Robot. and Automat. Lett.
(R-AL), vol. 7, no. 4, pp. 11 370–11 377, 2022.

[5] K. Hauser, “Task planning with continuous actions and nondeterminis-
tic motion planning queries,” in Proc. of AAAI Workshop on Bridging
the Gap between Task and Motion Planning, 2010.

[6] P. Englert, I. M. R. Fernández, R. K. Ramachandran, and G. S.
Sukhatme, “Sampling-Based Motion Planning on Sequenced Mani-
folds,” in Proc. of Robotics: Science and Systems (R:SS), 2021.

[7] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert,
and W. Burgard, “Optimal, sampling-based manipulation planning,” in
Proc. of the IEEE Int. Conf. Robot. Automat. (ICRA). IEEE, 2017,
pp. 3426–3432.

[8] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Trans. Robot.,
vol. 32, no. 5, pp. 1163–1177, 2016.

[9] R. Stern, “Multi-agent path finding–an overview,” Artificial Intelli-
gence: 5th RAAI Summer School, Tutorial Lectures, pp. 96–115, 2019.

[10] H. Ma, J. Li, T. S. Kumar, and S. Koenig, “Lifelong multi-agent path
finding for online pickup and delivery tasks,” in Conf. on Autonomous
Agents and MultiAgent Systems, 2017, p. 837–845.

[11] F. Grenouilleau, W.-J. Van Hoeve, and J. N. Hooker, “A multi-label
A* algorithm for multi-agent pathfinding,” in Int. Conf. on Autom.
Plan. and Sched., vol. 29, 2019, pp. 181–185.

[12] A. Moldagalieva, J. Ortiz-Haro, M. Toussaint, and W. Hönig, “db-
cbs: Discontinuity-bounded conflict-based search for multi-robot kin-
odynamic motion planning,” in Proc. of the IEEE Int. Conf. Robot.
Automat. (ICRA). IEEE, 2024, pp. 14 569–14 575.

[13] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris,
“dRRT*: Scalable and informed asymptotically-optimal multi-robot
motion planning,” Autonomous Robots, vol. 44, no. 3-4, pp. 443–467,
2020.

[14] G. Sanchez and J.-C. Latombe, “Using a PRM planner to compare
centralized and decoupled planning for multi-robot systems,” in Proc.
of the IEEE Int. Conf. Robot. Automat. (ICRA), vol. 2, 2002, pp. 2112–
2119 vol.2.

[15] A. Orthey, S. Akbar, and M. Toussaint, “Multilevel motion planning:
A fiber bundle formulation,” Int. J. of Robot. Research, vol. 43, no. 1,
pp. 3–33, 2024.

[16] V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint,
“Long-horizon multi-robot rearrangement planning for construction
assembly,” IEEE Trans. Robot., 2022.

[17] A. Solano, A. Sieverling, R. Gieselmann, and A. Orthey, “Fast-dRRT*:
Efficient Multi-Robot Motion Planning for Automated Industrial Man-
ufacturing,” arXiv preprint arXiv:2309.10665, 2023.

[18] J. Chen, J. Li, Y. Huang, C. Garrett, D. Sun, C. Fan, A. Hofmann,
C. Mueller, S. Koenig, and B. C. Williams, “Cooperative task and
motion planning for multi-arm assembly systems,” arXiv preprint
arXiv:2203.02475, 2022.

[19] E. M. Skevaki, M. Kladeftira, Z. Wang, and S. Parascho, “Human-
robot interaction - workshop at design modeling symposium 2024,”
sep 2024. [Online]. Available: https://infoscience.epfl.ch/handle/20.
500.14299/253264

[20] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The Pinocchio C++ library – A fast
and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives,” in IEEE Int. Symp. on Syst. Integrations
(SII), 2019.

[21] V. N. Hartmann and M. Toussaint, “Towards computing low-makespan
solutions for multi-arm multi-task planning problems,” in Int. Conf. on
Autom. Plan. and Sched.: Planning and Robotics Workshop (RobPlan),
2023. [Online]. Available: https://arxiv.org/abs/2305.17527

https://infoscience.epfl.ch/handle/20.500.14299/253264
https://infoscience.epfl.ch/handle/20.500.14299/253264
https://arxiv.org/abs/2305.17527

	Introduction
	Multi-Robot Multi-Goal Path Planning
	Preliminaries
	Task
	Modes
	Task Order Specification
	State Space

	Problem formulation

	Planners
	Experiments
	Experiments
	Results

	Discussion & Limitations
	References

