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ABSTRACT

In this paper, we introduce feedback-weight matching, a new method that facil-
itates reliable fine-tuning of fully connected neural networks using Direct Feed-
back Alignment (DFA). Although DFA has demonstrated potential by enabling
efficient and parallel updates of weight parameters through direct propagation of
the network’s output error, its usage has been primarily restricted to training net-
works from scratch. We provide the first analysis showing that existing standard
DFA struggles to fine-tune networks pre-trained via back-propagation. Through
an analysis of weight alignment (WA) and gradient alignment (GA), we show that
the proposed feedback-weight matching enhances DFA’s ability and stability in
fine-tuning pre-trained networks, providing insights into DFA’s behavior and char-
acteristics when applied to fine-tuning. In addition, we find that feedback-weight
matching, when combined with weight decay, not only mitigates over-fitting but
also further reduces the network output error, leading to improved learning per-
formance during DFA-based fine-tuning. Our experimental results show that, for
the first time, feedback-weight matching enables reliable and superior fine-tuning
across various fine-tuning tasks compared to existing standard DFA, e.g., achiev-
ing 7.97% accuracy improvement on image classification tasks (i.e., 82.67% vs.
74.70%) and 0.66 higher correlation score on NLP tasks (i.e., 0.76 vs. 0.10). The
code implementation is available at an anonymous GitHub repository1.

1 INTRODUCTION

Recently, a new training mechanism called Direct Feedback Alignment (DFA) (Nøkland, 2016)
has been proposed for deep neural networks to alleviate the weight transport problem (Grossberg,
1987; Crick, 1989). Based on the concept of Feedback Alignment (FA) (Lillicrap et al., 2016),
DFA passes the error of the output layer directly to each layer of the network to update the weight
parameters without back-propagation (Rumelhart et al., 1986). By using random feedback matrices,
the weight gradient of each layer is independently approximated from the directly passed error,
enabling efficient training of networks through the parallel update of multiple layers. This contrasts
with back-propagation that propagates the network error sequentially from the last to the first layer.

Although Direct Feedback Alignment (DFA) (Nøkland, 2016) has shown its potential in training
primarily for fully connected networks (Garg & Vempala, 2022; Launay et al., 2020), its application
to fine-tuning (Devlin et al., 2018), i.e., adapting a pre-trained network to a new task, has been less
studied until today despite its practical usefulness. In fact, it has been known that fine-tuning net-
works with DFA is challenging (Chu & Bacho, 2024); the performance of networks fine-tuned with
DFA is generally unreliable compared to that of those fine-tuned with back-propagation (Rumelhart
et al., 1986). Given that fine-tuning has become one of the practical and also effective ways of re-
utilizing pre-trained networks for various downstream tasks (Church et al., 2021), investigating how
DFA can be applied to the fine-tuning mechanism both theoretically and empirically is necessary.

Enabling fine-tuning with Direct Feedback Alignment (DFA) (Nøkland, 2016) can not only broaden
DFA’s usability but also introduce an alternative approach to current back-propagation-based fine-
tuning (Rumelhart et al., 1986; Church et al., 2021). Currently, DFA has not yet been estab-
lished as a reliable stand-alone training method that can provide comparable performance to back-
propagation (Launay et al., 2019; Crafton et al., 2019). Thus, taking a wide range of well-pre-trained

1
https://anonymous.4open.science/r/Feedback-Weight-Matching-C7F0
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models, such as Transformer-based foundation models (Kenton & Toutanova, 2019), as the starting
point would be a practical strategy that can complement DFA’s unstable and limited learning capabil-
ities. Additionally, by incorporating DFA’s unique advantages, such as being back-propagation-free
and enabling parallel training, into the widely used fine-tuning scheme, we can explore new possibil-
ities for re-utilizing pre-trained models in a more agile, efficient, and biologically plausible manner,
in contrast to conventional back-propagation, which requires significantly more resources and time.

In this paper, we introduce a DFA-based fine-tuning method, which investigates the feasibility of
Direct Feedback Alignment (DFA) (Nøkland, 2016) for fine-tuning deep neural networks, with the
aim of extending the scope of DFA to embrace various pre-trained networks. We first analyze
the reasons why the existing standard DFA, which updates the pre-trained weights using random
feedback matrices, does not perform well in fine-tuning. This analysis is based on the weight align-
ment (WA) and gradient alignment (GA) (Refinetti et al., 2021), which are two measures proposed to
estimate the state and learning performance of DFA. From this analysis, we propose the feedback-
weight matching, which first reconstructs the feedback matrices by decomposing the pre-trained
weights and then re-initializes the weights based on the reconstructed feedback matrices before
starting fine-tuning. Additionally, we prove that applying weight decay (Krogh & Hertz, 1991) on
top of feedback-weight matching considerably improves and stabilizes the fine-tuning performance
of DFA, beyond the general regularization effect on weight parameters. Together with the simple
yet effective feedback-weight matching, weight decay acts as a key facilitator for fine-tuning fully
connected networks with DFA. To the best of our knowledge, this work is the first attempt to explore
the possibility of applying DFA to fine-tuning of fully connected networks via an in-depth study.

The experiments provide evaluation results consistent with our theoretical analysis; applying
feedback-weight matching enables more effective and reliable fine-tuning of fully connected
networks with DFA over various fine-tuning tasks, when compared to the existing standard
DFA (Nøkland, 2016) that does not apply the proposed feedback-weight matching. For instance, the
image classification accuracy of fully connected networks fine-tuned with feedback-weight match-
ing reaches 82.67%, while that of standard DFA remains 74.70%. Also, it successfully fine-tunes
Transformer models (BERT) (Devlin et al., 2018) on NLP tasks, e.g., achieving 0.76 correlation
score, while the standard DFA barely conducts fine-tuning at all, i.e., achieving mere 0.10 cor-
relation score. The results demonstrate the potential for extending DFA towards the widely used
pre-training and fine-tuning strategy, moving beyond its limited usage in from-scratch training.

2 BACKGROUND AND RELATED WORK

DFA. It is common to train a neural network using the back-propagation algorithm (Rumelhart et al.,
1986). Given a fully connected network, we denote Wl as the weight of l-th layer of the network,
L(ŷ,y) as the loss function, where ŷ is the ground-truth output, and y is the network output, and
hl = g(al) as the output of the l-th layer, where g(·) is activation function, and al = Wlhl−1. To
update the weight with the gradient descent algorithm (Ruder, 2016), the gradient of the loss L w.r.t.
the weight Wl is obtained using back-propagation (BP) as:

δWBP
l = − ∂L

∂Wl
= −

[(
W⊤

l+1δal+1

)
⊙ g′(al)

]
h⊤
l−1, δal =

∂L
∂al

(1)

where ⊙ is the Hadamard product. However, back-propagation poses some challenges, specifically
the weight transport (Grossberg, 1987; Crick, 1989) and backward locking problems (Lillicrap et al.,
2020; Launay et al., 2019). Direct Feedback Alignment (DFA) (Nøkland, 2016) addresses the weight
transport problem by employing random feedback and mitigates the backward locking problem by
delivering the network’s output error signal to each layer independently. Specifically, 1) the global
error vector e = ŷ − y is transmitted to each layer, and 2) the weight Wl+1 at the l-th layer of the
network is replaced with a random feedback matrix Fl, leading to the following weight gradient:

δWDFA
l = − ∂L

∂Wl
= − [(Fle)⊙ g′(al)]h

⊤
l−1 − λtWl (2)

where λt is the weight-decay hyperparameter at the step t. Equation (2) eliminates the necessity of
sequential layer-wise gradient computations required by back-propagation (Rumelhart et al., 1986).

GA and WA. To better elucidate the dynamics of DFA (Nøkland, 2016), the concept of gradient
alignment (GA) is introduced (Lillicrap et al., 2016). GA quantitatively assesses the similarity be-
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tween the weight gradients obtained through DFA and those derived via back-propagation (Rumel-
hart et al., 1986). This is achieved by comparing the weight updates generated from the identically
initialized weights by both methods. It has been hypothesized that a stronger (higher) GA corre-
sponds to enhanced learning performance in DFA. In addition, the concept of weight alignment
(WA) (Refinetti et al., 2021) has been introduced to evaluate the relationship between the weight
and the feedback matrix in DFA, suggesting that strong WA is associated with strong GA. Although
GA and WA have been instrumental in analyzing the learning efficacy of DFA, prior research has
not explored their utility in the context of fine-tuning. In contrast, this paper pioneers the application
of GA and WA concepts to systematically investigate the fine-tuning process in DFA.

Applicability to Transformers and CNNs. Some studies (Launay et al., 2020) explore the ap-
plicability of DFA (Nøkland, 2016) to various fully connected networks, including neural radiance
fields (NeRF) (Mildenhall et al., 2021; Sitzmann et al., 2019), recommender systems (Guo et al.,
2017), and NLP (Vaswani, 2017; Merity et al., 2016). While they show that DFA can train a wide
range of deep architectures, they also reveal a significant performance gap between DFA and back-
propagation (Rumelhart et al., 1986), particularly in Transformer models (Vaswani, 2017). When
applied to models not based on fully connected networks, such as CNNs, the performance gap be-
tween DFA and back-propagation is even more pronounced. For instance, VGG-16 (Simonyan &
Zisserman, 2014) on CIFAR-100 (Krizhevsky et al., 2009) trained with DFA achieves 1% top-1 ac-
curacy (Launay et al., 2019), while back-propagation achieves 60%. Similarly, in ImageNet (Deng
et al., 2009), it is 6.2% vs. 53% (Crafton et al., 2019). Given that applying DFA to from-scratch
training scenarios 1) consistently underperforms relative to back-propagation, 2) takes a much longer
training time than fine-tuning, and 3) is limited to a narrower range of architectures, we argue that
utilizing DFA for fine-tuning would be a more effective, efficient, practical, and expedient approach.
Thus, in this study, we investigate and analyze the potential of employing DFA in fine-tuning, which
is conducive to the widely-used pre-train-and-fine-tune strategy (Devlin et al., 2018).

Applying DFA to Back-Propagation Weights. As described above, in CNNs, DFA encounters
challenges in effectively learning the necessary spatial information (Crafton et al., 2019). Similarly,
in fully connected networks, DFA is known to produce feature representation clusters that deviate
from those learned via back-propagation (Nøkland, 2016). Moreover, although stable training can
be achieved when transitioning from weights learned through DFA to back-propagation, the reverse
is not true; switching from back-propagation to DFA results in unstable training, and DFA fails to
fully recover its performance even after large training epochs (Chu & Bacho, 2024). These imply
the inherent difficulties in fine-tuning with DFA using weights pre-trained with back-propagation.

DFA with Weight Decay. In the study by Song et al. (2021), it is analyzed that weight decay (Krogh
& Hertz, 1991) can reduce the output error in fully connected networks when used with Feedback
Alignment (FA) (Lillicrap et al., 2016). Nevertheless, the analysis predominantly focuses on the
training of networks from scratch using FA, rather than on the fine-tuning process with DFA. This
work, for the first time, examines the impact of weight decay in the context of fine-tuning with DFA.
Our findings indicate that weight decay can be beneficial in fine-tuning with DFA, as it reduces
network output error and over-fitting, thereby enhancing overall learning performance.

3 FEEDBACK-WEIGHT MATCHING

We first discuss why the existing standard DFA (Nøkland, 2016) does not behave stably in fine-
tuning, based on weight alignment (WA) and gradient alignment (GA) (Refinetti et al., 2021). Then,
we introduce feedback-weight matching, which enables effective and reliable fine-tuning of DFA.

3.1 WHY DOES DFA PERFORM UNRELIABLY IN FINE-TUNING?

Definition 3.1. (Weak Weight Alignment) Given a L-layer fully connected linear network updated
(trained) with DFA (Nøkland, 2016), the weight of the l-th layer at the t-th training step, which is
denoted as W t

1≤1≤L, becomes (Refinetti et al., 2021) as follows:

W t
1 = F1A

t
1, W

t
1<l<L=FlA

t
lF

⊤
l−1, and W t

L=At
LF

⊤
L−1,

where At
1 = −η

∑t−1

t′=0
et

′
(xt′)⊤, and At

l≥2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(Bt′

l x
t′) · (Bt′′

l xt′′)et
′
(et

′′
)⊤

(3)
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Here, Fl is the feedback matrix of the l-th layer, At
1 and At

l≥2 are the alignment matrices, and
Bl = Al−2 · · ·A0 ∈ RnL×nL is defined recursively using the feedback matrices only, with A0 = I
(Refinetti et al., 2021). Equation (3) is referred to as weak weight alignment (WA) (Refinetti et al.,
2021), representing the state where no particular relationship exists between W t

1<l<L and FlF
⊤
l−1

and between W t
L and F⊤

L−1. At the early stage of DFA training, weak WA is naturally induced since
At

l≥2 in Equation (3) starts with arbitrary values. However, as the training proceeds, At
l≥2 becomes

proportional to the identity matrix (Refinetti et al., 2021), i.e., At
l≥2 ∝ I , leading to another state

called strong weight alignment (WA), which is defined as follows.

Definition 3.2. (Strong Weight Alignment) If At
l≥2 ∝ I , Equation (3) becomes the state called

strong weight alignment (WA), which is defined as follows.

W t
1<l<L ∝ FlF

⊤
l−1, W

t
L ∝ F⊤

L−1 (4)

It is known that the strong WA in Equation (4), given F⊤
l Fl ≡ I , implies strong gradient align-

ment (GA) (Refinetti et al., 2021) defined in Equation (9), causing the gradient direction of the DFA
weight, W t

1<l≤L, aligned to that of back-propagation (Rumelhart et al., 1986). Hence, strong WA
leads the learning trajectory of DFA to be comparable to that of back-propagation with strong GA.

However, if the pre-trained weights are fine-tuned via existing standard DFA using arbitrary random
feedback matrix Fl, it becomes difficult to achieve strong WA in Equation (4), as shown below,
likely to result in sub-optimal fine-tuning performance by inducing weak GA from weak WA.

Proposition 3.3. If the pre-trained weight, denoted as W 0
l , is updated using DFA with arbitrary

random feedback matrices Fl, the strong WA condition in Equation (4) is unlikely to be satisfied.

W t
1<l<L�∝ FlF

⊤
l−1, W

t
L�∝ F⊤

L−1 (5)

where W t
l denotes the weight after t steps of training, starting from the pre-trained weight W 0

l .
Equation (5) shows that the weight trained from the backpropagation pre-trained weight does not
satisfy the strong WA condition. The proof is detailed in Appendix A.

3.2 INDUCING STRONG WEIGHT ALIGNMENT

To enable fine-tuning with DFA by deriving strong GA from strong WA defined in Equation (4), we
propose the feedback-weight matching method, which induces both strong WA and GA as follows.

Definition 3.4. (Feedback Matching) From the pre-trained weight W 0
l , we set the feedback matrix

F̄l such that:

F̄lF̄
⊤
l−1 ≡ W 0

1<l<L and F̄⊤
L−1 ≡ W 0

L. (6)

Equation (6) requires us to decompose the pre-trained weight W 0
1<l<L into F̄l and F̄⊤

l−1. It can be
achieved either through traditional decomposition methods, such as SVD (Singular Value Decom-
position) (Klema & Laub, 1980), or alternatively, by optimizing Equation (23) in Appendix B.

Once the feedback matrix F̄l is reconstructed as Equation (6), we proceed to the weight matching
process to induce strong WA, as described below.

Definition 3.5. (Weight Matching) Given the reconstructed F̄l derived by feedback matching (Equa-
tion (6)), we re-initialize the pre-trained weight W 0

l into W̄ 0
l so that it matches F̄l such that:

W̄ 0
1<l<L ≡ F̄lF̄

⊤
l−1 and W̄ 0

L ≡ F̄⊤
L−1. (7)

The following shows that Equation (6) and (7) lead to strong WA condition in Equation (4).

Proposition 3.6. If the re-initialized weight W̄ 0
l in Equation (7) is updated using DFA with the

feedback matrix F̄l derived by Equation (6), the strong WA condition in Equation (4) is induced.

W̄ t
1<l<L ∝ F̄lF̄

⊤
l−1, W̄

t
L ∝ F̄⊤

L−1 (8)

with W̄ t
l is the weight at step t, initialized from W̄ 0

l . Equation (8) indicates that the weight updated
from the re-initialized weight satisfies the strong WA condition, the proof is detailed in Appendix A.
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Subsequently, strong WA, achieved through Equation (6) and Equation (7), leads to strong GA (Re-
finetti et al., 2021). By matching the feedback matrix to the pre-trained weights, as in Equation (6),
it becomes possible to preserve the knowledge embedded in the pre-trained weights. Additionally,
by re-initializing the pre-trained weights from the matched feedback matrices, as in Equation (7), it
becomes possible to facilitate the attainment of strong WA through DFA in fine-tuning.

3.3 INDUCING STRONG GRADIENT ALIGNMENT

While the previous section (Section 3.2) shows that the proposed feedback-weight matching in Equa-
tion (6) and (7) promotes strong weight alignment (WA), naturally leading to strong gradient align-
ment (GA), we now show that feedback-weight matching also directly induces strong GA.
Definition 3.7. (Gradient Alignment) The gradient alignment (GA) is defined as the cosine simi-
larity between the weight gradient obtained using DFA (Nøkland, 2016), denoted GDFA, and the
weight gradient of back-propagation (Rumelhart et al., 1986), denoted GBP , which is given by:

cos∠(GDFA,GBP ) = GDFA ·GBP /∥GDFA∥∥GBP ∥. (9)

We show that feedback-weight matching, i.e., Equation (6) and (7), also directly induce strong GA
when fine-tuning the first layer of the two-layer fully connected linear network, as follows.
Proposition 3.8. Feedback-weight matching given in Equation (6) and (7) induces strong GA, i.e.,
a higher GA, in the first layer of a fully connected linear network.

cosFWM ∠(F1,W
t
2) ≥ cosDFA ∠(F1,W

t
2) (10)

cosFWM ∠(F1,W
t
2) refers to GA in the first layer using feedback-weight matching, while

cosDFA ∠(F1,W
t
2) refers to GA in the first layer without feedback-weight matching. Equation (10)

shows the GA when feedback-weight matching is used and when it is not. The proof is detailed in
Appendix A. Based on Proposition 3.8, which shows feedback-weight matching induces stronger
GA, we provide the following conjecture, which generalizes it to an arbitraryL-layer fully connected
linear network.
Conjecture 3.9. It is conjectured that Equation (6) and (7) induce strong gradient alignment (GA),
i.e., a higher GA, for all 1 ≤ l ≤ L layers in a fully connected linear network, where L > 2.

4 WEIGHT DECAY

Similar to conventional training using back-propagation (Nøkland, 2016), weight decay (Krogh &
Hertz, 1991) has been shown to mitigate over-fitting of DFA, though its effect in fine-tuning has not
been studied. We discuss how the proposed feedback-weight matching helps weight decay to reduce
the network error (i.e., improving learning performance) during fine-tuning when applied to DFA.
Lemma 4.1. Given the re-initialized weight W̄ 0

1<l≤L in Equation (7) and the pre-trained weight
W 0

1<l≤L, the following terms, r1<l<L and rL, are non-negative with high probability.

r1<l<L = ∥W t
l −W 0

l ∥ − ∥W t
l − W̄ 0

l ∥ = ∥F̄lF̄
⊤
l−1 −W 0

l ∥ − |ctl − 1|∥F̄lF̄
⊤
l−1∥ ≥ 0 (11)

rL = ∥W t
L −W 0

L∥ − |W t
L − W̄ 0

L∥ = ∥F̄⊤
L−1 −W 0

L∥ − |ctL − 1|∥F̄⊤
L−1∥ ≥ 0, (12)

implying that ∥W t
l −W 0

l ∥ ≥ |W t
l − W̄ 0

l ∥ for all 1 < l ≤ L.

Based on Lemma 4.1, we derive that feedback-weight matching reduces the network output error
et+1 over the train step t when combined with weight decay (Krogh & Hertz, 1991), as follows. The
proof is detailed in Appendix A
Proposition 4.1. Let et denote the output error of a two-layer fully connected non-linear network
(i.e., L=2) at the t-th training step, η is the learning rate, γ ≤ λmin(Ḡ) is a positive constant, where
Ḡ = Ew∼N (0,Ip)ψ(w

⊤xi)ψ(w
⊤xj) with the number of neuron as p and a non-linear function ψ(·),

λt is the weight-decay hyperparameter at the step t, and y is the output of the network. By applying
feedback-weight matching in Equation (6) and (7), the following holds:

∥et+1∥ ≤
(
1− ηγ

4
− ηλt

)
∥et∥+ λt∥y∥ − α2r2 (13)

for all t ≥ 0 and some constants α2, with r2 defined in (11).
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It is shown (Song et al., 2021) that the inequality in Equation (13), i.e., ∥et+1∥ ≤
(
1 − ηγ

4 −
ηλt

)
∥et∥ + λt∥y∥, holds for a two-layer fully connected non-linear network when applying FA

(Feedback Alignment) (Lillicrap et al., 2016) with weight decay (Krogh & Hertz, 1991). Specifi-
cally, the right-hand side of the inequality, i.e.,

(
1− ηγ

4 −ηλt
)
∥et∥+λt∥y∥, consists of the following

term as a linear component in fine-tuning:

∥W t
2 −W 0

2 ∥ s.t. W 0
2 �∝ F⊤

1 (14)

where W 0
2 is the pre-trained weights. By assuming that W 0

2 is replaced with the re-initialized
weights, W̄ 0

2 in Equation (7), ∥et+1∥ in Equation (13) is decreased by α2r2 since ∥W t
2 −W 0

2 ∥ ≥
∥W t

2 − W̄ 0
2 ∥, as in Lemma 4.1.

Conjecture 4.2. Given an L-layer fully connected non-linear network, suppose that the right-hand
side of the inequality in Equation (13), i.e.,

(
1 − ηγ

4 − ηλt
)
∥et∥ + λt∥y∥, contains ∥W t

l −W 0
l ∥

as linear components for some 1 < l ≤ L. Then, based on Proposition 4.1 and Lemma 4.1, it is
conjectured that Equation (13) can be generalized into:

∥et+1∥ ≤
(
1− ηγ

4
− ηλt

)
∥et∥+ λt∥y∥ −

L∑
l=2

αlrl (15)

with constants αl, and rl defined in (11) and (12) for some 1 < l ≤ L and all t ≥ 0.
From Equation (13), and subsequently Equation (15), it can be seen that feedback-weight matching
preserves the weight decay effect by decreasing the network error ∥et+1∥ by the quantity ηλt∥et∥−
λt∥y∥. It is achieved by

∑L
l=2 αlrl, which effectively counteracts the adverse impact of weight

decay, namely, the increase in error ∥et+1∥ when η∥et∥ ≤ ∥y∥, if
∑L

l=2 αlrl ≥ λt∥y∥− ηλt∥et∥.

5 EXPERIMENT

We evaluate the proposed feedback-weight matching on two types of fine-tuning tasks. First, it is
applied to image classification tasks using two fully connected networks with four and six hidden
layers, respectively. These networks are pre-trained with CIFAR-100 (Krizhevsky et al., 2009) and
TinyImageNet (Le & Yang, 2015) using back-propagation (Rumelhart et al., 1986), and then fine-
tuned on CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and STL-10 (Coates
et al., 2011) through DFA applying feedback-weight matching. Next, we apply it to natural lan-
guage processing (NLP) tasks using Transformer models, i.e., BERT-Tiny and Small (Kenton &
Toutanova, 2019; Turc et al., 2019), pre-trained on BookCorpus (Zhu et al., 2015) & Wikipedia,
and then fine-tuned with a set of GLUE tasks (Wang, 2018). For fine-tuning of BERT, feedback-
weight matching is applied to the attention, intermediate, and block outputs of the encoder layers in
a similar way to previous works (Launay et al., 2020) that attempt to apply DFA to Transformer’s
attention architectures (Vaswani, 2017). It is important to highlight that even standard DFA has
rarely been applied to Transformer models for from-scratch training due to its inherent challenges
and difficulties (Launay et al., 2020). Our experiment is the first attempt to apply DFA fine-tuning
to Transformer models (i.e., BERT), which is considered more challenging than from-scratch DFA
training. The detailed experimental setups are provided in Appendix E.

5.1 FINE-TUNING PERFORMANCE

Table 1 summarizes the fine-tuning performance on image classification tasks (i.e., test classification
accuracy) of the proposed feedback-weight matching compared against 1) back-propagation-based
fine-tuning and 2) standard DFA fine-tuning that does not apply feedback-weight matching. As
shown in the table, the proposed feedback-weight matching enables reliable fine-tuning for vari-
ous network architectures and tasks, which consistently outperforms standard DFA with an aver-
age of 2.16% accuracy gap, while underperforming when compared to back-propagation with an
average of 2.32%. For instance, feedback-weight matching achieves 82.67% accuracy when fine-
tuning the 6-layer network from CIFAR-100 to SVHN, which is 7.97% higher than standard DFA
that achieves 74.70%, but 1.67% lower than back-propagation. It also indicates that the proposed
feedback-weight matching maintains more robust performance over network depths, whereas the
performance of standard DFA deteriorates with deeper networks. For instance, in the case of fine-
tuning from CIFAR-100 to SVHN, the accuracy drop between 4-layer and 6-layer networks is only
0.20% with feedback-weight matching, which is 24x smaller than the case not applying it (4.85%).
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Table 1: Image Classification Tasks. The fine-tuning performance of feedback-weight matching (DFAours)
on the 4 and 6-layer fully connected networks, compared with standard DFA fine-tuning (DFAfine) and back-
propagation fine-tuning (BPfine). The pre-trained weights are obtained through back-propagation (BP). For
reference, we also present the from-scratch-training results of back-propagation (BPscratch) and DFA (DFAscratch).
The bold indicates better performance in DFA fine-tuning.

Model Target Data
Source Data

Scratch CIFAR-100 TinyImageNet
BPscratch DFAscratch BPfine DFAfine DFAours BPfine DFAfine DFAours

4 layers
CIFAR-10 55.48 52.78 57.16 53.79 55.38 57.66 56.75 55.51

SVHN 85.10 82.93 84.32 79.55 82.87 84.69 80.31 83.16
STL-10 43.15 42.20 47.73 44.83 45.30 50.29 50.62 45.61

6 layers
CIFAR-10 54.93 51.94 58.85 53.04 55.39 55.97 51.08 55.54

SVHN 85.10 81.89 84.34 74.70 82.67 84.72 76.03 81.39
STL-10 43.10 40.48 47.78 43.42 45.28 47.63 43.33 45.21

Table 2 presents the evaluation results of feedback-weight matching applied to BERT-Tiny and
BERT-Small, fine-tuned for NLP tasks, using the same experimental setup in image classification
tasks (Table 1). Similar to image classification tasks, feedback-weight matching enables DFA to
fine-tune BERT for various tasks of the GLUE dataset in a more robust manner compared to standard
DFA. For example, on CoLA, feedback-weight matching achieves a Matthews correlation of 0.53
in BERT-Small, compared to 0.06 with standard DFA. Similarly, on STSB, BERT-Small achieves a
Pearson correlation of 0.76 with feedback-weight matching, while standard DFA yields only 0.10,
demonstrating a significant gap in both learning performance and reliability. In the worst case, stan-
dard DFA fails to learn from the fine-tuning data entirely, achieving 0.00 Matthews correlation for
CoLA with BERT-Tiny, whereas feedback-weight matching achieves 0.29.

Table 2: NLP Tasks. The fine-tuning performance of feedback-weight matching (DFAours) on Transformer
architectures (i.e., BERT-Tiny and BERT-Small), compared with standard DFA fine-tuning (DFAfine) and back-
propagation-based fine-tuning (BPfine). The pre-trained weights are obtained via back-propagation (BP). For
reference, we also present the from-scratch-training results of back-propagation (BPscratch) and DFA (DFAscratch).
The bold indicates better performance in DFA fine-tuning.

Model Training CoLA SST-2 MRPC QQP MNLI QNLI STSB RTE WNLI
(mat-cor) (acc) (acc) (acc) (acc) (acc) (pearson) (acc) (acc)

BERT-Tiny

BPscratch 0.07 96.3 67.4 82.8 63.4 89.2 -0.19 64.1 50.0
BPfine 0.00 93.5 70.7 86.9 73.8 88.2 -0.25 60.3 52.6
DFAscratch 0.00 95.2 67.4 81.2 59.2 84.2 -0.11 50.2 50.0
DFAfine 0.00 92.4 67.4 80.6 60.0 80.2 -0.17 51.2 51.0
DFAours 0.29 95.9 69.7 82.3 60.2 84.3 0.36 55.5 52.6

BERT-Small

BPscratch 0.55 96.3 95.4 91.3 75.3 93.4 0.67 89.8 51.9
BPfine 0.87 98.9 96.7 98.0 93.0 99.1 0.90 94.0 53.3
DFAscratch 0.19 96.5 75.2 86.7 67.4 80.9 0.05 60.0 50.3
DFAfine 0.06 95.6 70.9 86.0 67.0 85.3 0.10 59.0 49.3
DFAours 0.53 97.3 92.5 86.9 65.8 87.2 0.76 59.0 51.0

5.2 WEIGHT ALIGNMENT (WA) AND GRADIENT ALIGNMENT (GA)

Figure 1a and 1b plot the weight alignment (WA) and the gradient alignment (GA), along with the
train and test accuracy, for some fine-tuning setups. As shown in the figures, the proposed feedback-
weight matching (green) induces strong weight alignment (WA) from the outset, subsequently strong
gradient alignment (GA) as analyzed in Section 3.2 and 3.3, leading to both enhanced train and test
accuracy across all experiments with faster and stable convergence. In contrast, standard DFA (yel-
low), not applying feedback-weight matching, achieves significantly lower WA and GA. While they
gradually increase over fine-tuning epochs in some cases, the initially low WA and GA impede
effective fine-tuning. As a result, the train and test accuracy of standard DFA do not improve sub-
stantially from the pre-trained weight parameters, especially for BERT-Small. This suggests that
standard DFA struggles to adapt to the target dataset during fine-tuning, likely due to the mismatch
between its random feedback matrices and the pre-trained weights. In other words, it overly relies
on pre-trained weights in the hope that they will fit and perform well on new target fine-tuning data.
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(a) Fine-tuning the 4-layer network from TinyImageNet to SVHN
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(b) Fine-tuning BERT-Small from BookCorpus & Wikipedia to MRPC (GLUE)

Figure 1: WA, GA, train accuracy, and test accuracy. The green graph indicates DFA fine-tuning with
feedback-weight matching (ours), the yellow indicates DFA fine-tuning without feedback-weight matching, the
blue indicates DFA trained from scratch, and the gray indicates fine-tuning with back-propagation.

Table 3: Ablation experiment. The fine-tuning performance when removing weight matching (DFAweight*),
feedback matching (DFAfeed*), and weight decay (DFAdecay*). ‘DFAours’ denotes applying all of them.

Model Target Data
Source Data

CIFAR-100 TinyImageNet
DFAweight* DFAfeed* DFAdecay* DFAours DFAweight* DFAfeed* DFAdecay* DFAours

4 layers
CIFAR-10 53.92 55.23 48.82 55.38 53.73 55.05 48.66 55.51

SVHN 80.65 81.34 77.99 82.87 79.77 83.13 77.63 83.16
STL-10 44.25 45.20 40.00 45.30 44.05 45.42 40.47 45.61

6 layers
CIFAR-10 53.47 55.03 46.21 55.39 53.50 55.03 45.77 55.54

SVHN 79.70 82.76 76.71 82.67 79.77 82.76 76.76 82.72
STL-10 43.86 45.42 39.17 45.28 43.78 45.43 40.23 45.21

5.3 ABLATION STUDY: FEEDBACK MATCHING, WEIGHT MATCHING, AND WEIGHT DECAY

Table 3 presents the impact of feedback matching, weight matching, and weight decay on fine-tuning
with DFA. To assess their effectiveness, we remove each of them in isolation. Removing feedback
matching results in a marginal performance decline, such as a reduction from 55.54% to 55.03%
when the 6-layer network is fine-tuned from TinyImageNet to CIFAR-10. This marginal drop occurs
because bypassing feedback matching applies random feedback matrices to the re-initialized weights
that are amenable to arbitrary random feedback matrices, resulting in a reasonable level of WA
and GA. In contrast, omitting weight matching leads to a relatively bigger performance drop, e.g.,
classification accuracy decreases from 83.16% to 79.77% when fine-tuning the 4-layer network from
TinyImageNet to SVHN. Similarly, the correlation score drops from 0.76 to -0.06 when fine-tuning
BERT-Small to STSB as shown in Table 5 (Appendix D). It is presumed that excluding weight
matching causes the pre-trained weights obtained by back-propagation, not by DFA, to be fine-tuned
with mismatched feedback matrices, thereby resulting in weak WA and GA.

When weight decay is not applied, the fine-tuning of feedback-weight matching performance also
exhibits some declines, e.g., classification accuracy decreases from 55.38% to 48.82% when fine-
tuning the 4-layer network from CIFAR-100 to CIFAR-10. It should be noted that weight decay
appears to have minimal impact on fine-tuning of standard DFA when feedback-weight matching is
not applied; in our experiment, the classification accuracy even increases, such as from 54.38% to
56.75% when fine-tuning the 4-layer network from TinyImageNet to CIFAR-10. This demonstrates
the synergistic effect of feedback-weight matching and weight decay, i.e., reducing network output
error as shown in Section 4.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 FEEDBACK-WEIGHT MATCHING AND WEIGHT DECAY

To evaluate the impact of feedback-weight matching on weight decay, we measure the fine-tuning
performance with weight decay, with and without applying feedback-weight matching, which is
shown in Table 4. The results indicate that weight decay enhances fine-tuning accuracy (reducing
network output error) when used in conjunction with feedback-weight matching, with an average im-
provement of 8.35%. This demonstrates that feedback-weight matching facilitates weight decay in
reducing network output error, thereby improving fine-tuning accuracy, as provided in Equation (15).
In contrast, weight decay is less likely to improve fine-tuning performance without feedback-weight
matching. In fact, when applied to the standard DFA (not applying feedback-weight matching),
weight decay results in fine-tuning accuracy with minimal variation (providing similar accuracy).

Table 4: Feedback-weight matching and weight decay . ‘DFAfine’ applies weight decay without feedback-
weight matching, compared with ‘DFAours’ applying both weight decay and feedback-weight matching.

(a) Fine-tuning image classification tasks (fully connected networks)

Target Data
4 layers 6 layers

CIFAR-100 TinyImageNet CIFAR-100 TinyImageNet
DFAfine DFAours DFAfine DFAours DFAfine DFAours DFAfine DFAours

CIFAR-10 54.39 55.38 54.38 55.51 54.08 55.39 53.50 55.54
SVHN 80.77 82.87 80.74 83.16 78.73 82.67 79.57 82.72
STL-10 45.00 45.30 50.40 45.61 43.56 45.28 45.28 45.21

(b) Fine-tuning NLP tasks (BERT)

Model Training CoLA SST-2 MRPC QQP MNLI QNLI STSB RTE WNLI
(mat-cor) (acc) (acc) (acc) (acc) (acc) (pearson) (acc) (acc)

BERT-Tiny DFAfine 0.00 92.4 67.4 80.6 60.0 80.2 -0.17 51.2 51.0
DFAours 0.29 95.9 69.7 82.3 60.2 84.3 0.36 55.5 52.6

BERT-Small DFAfine 0.06 95.6 70.9 86.0 67.0 85.3 0.10 59.0 49.3
DFAours 0.53 97.3 92.5 86.9 65.8 87.2 0.76 59.0 51.0

Figure 2 plots the weight alignment (WA), gradient alignment (GA), training accuracy, and test
accuracy across varying strengths of weight decay during the fine-tuning of 4-layer network from
CIFAR-100 to CIFAR-10. The proposed feedback-weight matching ensures strong WA and GA
as discussed in Section 3.2 and 3.3 from the beginning, which helps mitigate alignment degrada-
tion (Song et al., 2021), while exhibiting varying behaviors depending on different levels of weight
decay. In the absence of weight decay (black curve), GA declines and exhibits significant oscilla-
tions, ultimately causing a decrease in test accuracy. Conversely, when a strong weight decay is
applied (blue curve), both WA and GA decrease sharply, followed by substantial reductions in both
training and test accuracy. These observations suggest that an appropriate weight decay strength is
crucial for effective fine-tuning (green curve) when applied with feedback-weight matching.
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Figure 2: WA, GA, train accuracy, and test accuracy over different weight decays (0, 5e-4, 1e-3, and 1e-2).
A 4-layer fully connected network is fine-tuned from CIFAR-100 to CIFAR-10 by feedback-weight matching.

6 LIMITATIONS AND FUTURE WORKS

We discuss the limitations and future works of this paper in Appendix C.
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7 CONCLUSION

We propose feedback-weight matching, a method that enhances the fine-tuning capability and sta-
bility of Direct Feedback Alignment (DFA) for pre-trained networks. While standard DFA strug-
gles in fine-tuning networks trained via back-propagation, the proposed feedback-weight matching
improves weight and gradient alignment, boosting stability and performance of DFA fine-tuning.
Combined with weight decay, it also reduces over-fitting and network errors. Our experiments show
significant improvements in both image classification and NLP tasks compared to standard DFA.

8 REPRODUCIBILITY STATEMENT

For reproduction of the experimental results presented in this paper, we provide access to an anony-
mous GitHub repository1 containing the code implementation and reproduction instructions. The
detailed experimental setups are provided in Appendix E.
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A PROOF

A.1 PROOF OF PROPOSITION 3.3

Proof. We prove Proposition 3.3 for W t
1<l<L in Equation (16), and the same reasoning applies to

W t
L in (17). Since At

l≥2 in Equation (3) becomes such that At
l≥2 ∝ I as the training proceeds (Re-

finetti et al., 2021), the weight newly updated with DFA, which is denoted as W̄ t
1<l<L, comes to

satisfy Equation (4), i.e., W̄ t
1<l<L = ctlFlF

⊤
l−1 with some constant ctl . Given that we take the pre-

trained weight W 0
1<l<L as the initial point in our fine-tuning, the overall weight W t

1<l<L obtained
by DFA is expressed as the sum of W 0

1<l<L and W̄ t
1<l<L, which is given by:

W t
1<l<L = W 0

1<l<L + W̄ t
1<l<L = W 0

1<l<L + ctlFlF
⊤
l−1�∝ FlF

⊤
l−1 (16)

W t
L = W 0

L + W̄ t
L = W 0

L + ctLF
⊤
L−1�∝ F⊤

L−1 (17)

where ct1<l≤L is a constant. In Equation (16), since W 0
1<l<L is unlikely to be proportional to

FlF
⊤
l−1, i.e., W 0

1<l<L �∝ FlF
⊤
l−1, the overall weight W t

1<l<L, which includes W 0
1<l<L, is also

unlikely to be proportional to FlF
⊤
l−1, i.e., W t

1<l<L �∝ FlF
⊤
l−1, though W̄ t

1<l<L = ctlFlF
⊤
l−1 ∝

FlF
⊤
l−1. Hence, Equation (16) can hardly induce strong WA in Equation (4).

A.2 PROOF OF PROPOSITION 3.6

Proof. Similar to (16) and (17), the overall weight W t
l obtained by DFA is the sum of W 0

l and W̄ t
l .

Specifically, now that W̄ 0
1<l<L = F̄lF̄

⊤
l−1 and W̄ 0

L = F̄⊤
L−1, these become proportional to F̄lF̄

⊤
l−1

and F̄L−1, respectively, as follows:

W t
1<l<L = W̄ 0

1<l<L + W̄ t
1<l<L = F̄lF̄

⊤
l−1 + ctlF̄lF̄

⊤
l−1 = (1 + ctl)F̄lF̄

⊤
l−1 ∝ F̄lF̄

⊤
l−1 (18)

W t
L = W̄ 0

L + W̄ t
L = F̄⊤

L−1 + ctLF̄
⊤
L−1 = (1 + ctL)F̄

⊤
L−1 ∝ F̄⊤

L−1 (19)

with constants ct1<l≤L, which aligns with the strong WA condition in Equation (4).

A.3 PROOF OF PROPOSITION 3.8

Proof. The weight at the second layer of the network, W t
2 , can be expressed with the pre-trained

weight, W 0
2 , with the learning rate η , the number of neurons as p, F1 ∈ Rp, and W t

2 ∈ Rp as
follows (Song et al., 2021).

W t
2 = W t−1

2 − η
1
√
p
W t−1

1 X⊤et−1 = W 0
2 − η

√
p

t′−1∑
t=0

W t
1X

⊤et (20)

For the standard DFA that does not apply feedback-weight matching in Equation (6) and (7), we
have GDFA = F1 and GBP = W t

2 . By using Equation (20), the gradient alignment (GA) defined
in Equation (9) between them, which is denoted as cosDFA ∠(F1,W

t
2), is at least as follows.

cosDFA ∠(F1,W
t
2) =

F⊤
1 W t

2

∥F1∥∥W t
2∥

=

F⊤
1

∥F1∥W
t
2

∥W t
2∥

=

F⊤
1

∥F1∥ (W
0
2 − η√

p

∑t′−1
t=0 W t

1X
⊤et)

∥W 0
2 − η√

p

∑t′−1
t=0 W t

1X
⊤et∥

≥
F⊤

1

∥F1∥ (W
0
2 − η√

p

∑t′−1
t=0 W t

1X
⊤et)

∥W 0
2 ∥+ ∥ η√

p

∑t′−1
t=0 W t

1X
⊤et∥

(21)

Conversely, when applying feedback-weight matching in Equation (6) and (7), we have F1 = W 0
2

for L=2. Using Equation (20) again, GA between them, cosFWM ∠(F1,W
t
2), is at least as follows.

cosFWM ∠(F1,W
t
2) =

F⊤
1

∥F1∥ (W
0
2 − η√

p

∑t′−1
t=0 W t

1X
⊤et)

∥W 0
2 − η√

p

∑t′−1
t=0 W t

1X
⊤et∥

≥
F⊤

1

∥F1∥ (F1 − η√
p

∑t′−1
t=0 W t

1X
⊤et)

∥F1∥+ ∥ η√
p

∑t′−1
t=0 W t

1X
⊤et∥

.

(22)
If we assume that both F1 and W 0

2 follow the standard Gaussian distribution, we have ∥F⊤
1 W 0

2 ∥ ≤
∥F1∥2 (Song et al., 2021). Thus, cosFWM ∠(F1,W

t
2) exhibits a higher lower bound compared to

cosDFA ∠(F1,W
t
2), i.e., cosFWM ∠(F1,W

t
2) ≥ cosDFA ∠(F1,W

t
2), implying a higher GA.
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A.4 PROOF OF LEMMA 4.1

Proof. We show that r1<l<L ≥ 0 in Equation (11), and the same reasoning extends to rL in (12).
Given that W̄ 0

l = F̄lF̄
⊤
l−1 ∝ W t

l = ctlF̄lF̄
⊤
l−1, we can interpret W t

l as a scaled version of W̄ 0
l ,

which implies that ∥W t
l − W̄ 0

l ∥ is small. Conversely, since W 0
l is not proportional to W t

l , i.e.,
W 0

l �∝W t
l = ctlF̄lF̄

⊤
l−1, it follows that ∥W t

l −W 0
l ∥ is generally larger than∥W t

l −W̄ 0
l ∥. Therefore,

∥W t
l − W̄ 0

l ∥ is likely smaller than ∥W t
l −W 0

l ∥.

B DECOMPOSITION OF WEIGHT INTO FEEDBACK MATRICES

One way of finding feedback matrices F̄l and F̄⊤
l−1 in Equation (6) from W 0

1<l<L, other than SVD
(Singular Value Decomposition) (Klema & Laub, 1980), is to optimize the following objective LFM .

LFM =
1

2

∑L−1

l=2
(W 0

l hl−1−F̄lF̄
⊤
l−1hl−1)

2+
1

2
(W 0

LhL−1−F̄L−1hL−1)
2+

1

2

∑L−1

l=1
(I−F̄⊤

l F̄l)
2

(23)
Here, LFM is minimized to ensure that the layer output, when replaced by the feedback matrix
F̄lF̄

⊤
l−1hl−1, matches the output obtained using the pre-trained weight W 0

l hl−1, while F̄l is to be
orthogonal to itself in accordance with the regular DFA condition (Lillicrap et al., 2016).

C LIMITATIONS AND FUTURE WORKS

Extending to Different Architectures. Although this study presents the significant potential of fine-
tuning with DFA, its current application is restricted to fully connected networks. This limitation
arises because, at present, DFA is predominantly effective for fully connected architectures, and
further research is needed to extend its applicability to other network types. In our future work, we
plan to explore the application of DFA fine-tuning to various network architectures, such as CNNs.
Meanwhile, we anticipate the development of more generalized methods that will enable DFA to be
applied across a broader range of network types, thereby enhancing the applicability of our work.

Improving Learning Performance. The learning performance of the proposed feedback-weight
matching is shown to surpass both 1) training networks with DFA from scratch and 2) fine-tuning
networks with DFA using random feedback matrices. While fine-tuning with DFA applying the
proposed method achieves superior and more stable performance compared to them, it still falls
short of the performance achieved with fine-tuning using back-propagation (Rumelhart et al., 1986).
We plan to explore how to achieve fine-tuning performance comparable to that of back-propagation
by investigating DFA from its fundamental mechanism, along with the proposed method.

Proving Hypotheses. This work provides some hypotheses regarding fine-tuning and weight decay
in the context of DFA. For example, Conjecture 3.9 suggests that applying the proposed feedback-
weight matching can achieve strong weight alignment (WA) for fully connected networks of arbi-
trary depth. Additionally, Conjecture 4.2 posits that applying the proposed method to weight decay
enhances fine-tuning performance of DFA for fully connected networks of arbitrary layers. How-
ever, formal proofs are necessary to substantiate these hypotheses and validate the efficacy of the
proposed approach. In future research, we intend to generalize the propositions presented in this
study to encompass various types of fully connected network architectures.

D ABLATION EXPERIMENT ON BERT

Table 5 presents the fine-tuning performance of BERT models when weight matching, feedback
matching, and weight decay are individually removed. It is important to note that DFA is not applied
to all fully connected layers in BERT, which limits the ability to properly assess the effectiveness of
feedback-weight matching. Thus, this experimental setup may not provide an accurate evaluation.

E EXPERIMENTAL SETUPS

In this section, we offer an explanation of the experimental setup utilized throughout our research.
Appendix E.1 outlines the training details of the feedback matrix used for feedback matching in all
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Table 5: Ablation experiment. The fine-tuning performance when removing weight matching (DFAweight*),
feedback matching (DFAfeed*), and weight decay (DFAdecay*). ‘DFAours’ denotes applying all of them.

Model Training CoLA SST-2 MRPC QQP MNLI QNLI STSB RTE WNLI
(mat-cor) (acc) (acc) (acc) (acc) (acc) (pearson) (acc) (acc)

BERT-Tiny

DFAweight* 0.00 94.7 67.4 81.4 59.2 88.4 -0.15 50.3 50.9
DFAfeed* 0.00 95.8 68.9 82.4 60.8 86.9 0.35 55.5 50.0
DFAdecay* 0.31 95.9 71.4 81.9 61.0 83.3 0.36 53.3 51.9
DFAours 0.29 95.9 69.7 82.3 60.2 84.3 0.36 50.8 52.6

BERT-Small

DFAweight* 0.08 96.0 75.1 85.0 66,7 79.7 -0.06 61.8 50.1
DFAfeed* 0.54 97.0 91.5 87.4 65.2 85.3 0.75 62.0 50.2
DFAdecay* 0.53 97.2 91.2 87.1 64.7 85.4 0.78 68.7 50.9
DFAours 0.53 97.3 92.5 86.9 65.8 87.2 0.76 59.0 51.0

models. Appendix E.2 covers the configuration settings required for the fully connected network
experiments. Appendix E.3 describes the setup necessary for experiments involving BERT, which
employs a transformer architecture. To ensure the robustness of our findings, we report the average
results over three different random seeds.

E.1 FEEDBACK MATRIX

We train feedback matrices to reconstruct pre-trained weights that were trained using back-
propagation (Rumelhart et al., 1986). The loss function, in Equation (23), is used to guide the
feedback matching process. The two learned feedbacks are then combined and re-initialized into a
single weight matrix for each layer. We use the Adam optimizer (Kingma, 2014) without weight
decay or any scheduler. In fully connected networks, a learning rate of 1e-5 is applied, while in
transformers (BERT) (Kenton & Toutanova, 2019; Turc et al., 2019), a learning rate of 1e-3 is used.
For all experiments on the model and dataset, training is conducted for 3 epochs with a batch size of
64.

E.2 FULLY CONNECTED NETWORKS

We pre-train two fully connected networks with four and six layers on the CIFAR-100 (Krizhevsky
et al., 2009) and TinyImageNet (Le & Yang, 2015) datasets utilizing weights obtained through
back-propagation (BP). These pre-trained weights are subsequently fine-tuned on the CIFAR-
10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and STL-10 (Coates et al., 2011) datasets.
During the pre-processing phase, we apply image resizing and normalization, without any augmen-
tations. For Dynamic Feedback Alignment (DFA) (Nøkland, 2016), the weights are initialized with
a uniform distribution within the range of (-0.01, 0.01). Conversely, for back-propagation (Rumel-
hart et al., 1986), we employ the He initialization (He et al., 2015). The optimization process is
carried out using Stochastic Gradient Descent, and ReLU (Agarap, 2018) is employed as the activa-
tion function. The hyperparameters for both the 4-layer and 6-layer architectures remain consistent.
A comprehensive description of each hyperparameter under various training conditions is presented
in Table 6.

Table 6: Hyperparameters for fully connected networks training.

Target Data Hyperparmeters BPscratch BPfine DFAscratch DFAfine DFAfeed DFAweight DFAours

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Batch size 64 64 64 64 64 64 64
Hidden Dim 1000 1000 1000 1000 1000 1000 1000
Input size 3072 3072 3072 3072 3072 3072 3072

CIFAR-10
Epochs 5000 5000 5000 5000 5000 5000 5000
Weight Decay 5e-4 5e-4 0 0 5e-4 5e-4 5e-4
Dropout 0.1 0.1 0 0 0 0 0

SVHN
Epochs 5000 5000 5000 5000 5000 5000 5000
Weight Decay 5e-4 5e-4 0 0 5e-4 5e-4 5e-4
Dropout 0.1 0.1 0 0 0 0 0

STL-10
Epochs 5000 5000 5000 5000 30000 30000 30000
Weight Decay 5e-4 5e-4 0 0 1e-3 1e-3 1e-3
Dropout 0.1 0.1 0 0 0.1 0.1 0.1
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E.3 BERT

We train BERT-Tiny and Small models (Kenton & Toutanova, 2019; Turc et al., 2019) on the
GLUE (Wang, 2018) dataset using the AdamW (Loshchilov, 2017) optimizer with a fixed learn-
ing rate and no scheduler. We apply weight decay and dropout techniques. GeLU (Hendrycks &
Gimpel, 2016) is used for the activation function, which is commonly employed in BERT. Layers
such as the encoder block outputs, intermediate outputs, and attention outputs are optimized using
Dynamic Feedback Alignment (DFA) (Nøkland, 2016), while the projection layers for key, query,
and value are trained using back-propagation (BP) (Rumelhart et al., 1986). The weights are initial-
ized using a uniform distribution, and the feedback matrix is specifically designed to satisfy the left
orthogonality condition. A comprehensive description of the hyperparameter values is presented in
Table 7.

Table 7: Hyperparameters for BERT training.

Model Hyperparmeters Target Data BPscratch BPfine DFAscratch DFAfine DFAfeed DFAweight DFAours

Batch size 64 64 64 64 64 64 64
Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Epochs 6 6 6 6 6 6 6
Max length 512 512 512 512 512 512 512

BERT-Tiny

Num of heads 2 2 2 2 2 2 2
Num of layers 2 2 2 2 2 2 2
Hidden dim 128 128 128 128 128 128 128
Intermediate dim 512 512 512 512 512 512 512

Learning Rate

CoLA 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
SST-2 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
MRPC 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
QQP 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

MNLI 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
QNLI 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
STSB 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
RTE 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

WNLI 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5

BERT-Small

Num of heads 8 8 8 8 8 8 8
Num of layers 4 4 4 4 4 4 4
Hidden of dim 512 512 512 512 512 512 512
Intermediate dim 2048 2048 2048 2048 2048 2048 2048

Learning Rate

CoLA 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
SST-2 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
MRPC 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
QQP 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

MNLI 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
QNLI 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
STSB 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
RTE 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

WNLI 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
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