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Abstract

Similarity choice data occur when humans make
choices among alternatives based on their similar-
ity to a target, e.g., in the context of information
retrieval and in embedding learning settings. Clas-
sical metric-based models of similarity choice as-
sume independence of irrelevant alternatives (IIA),
a property that allows for a simpler formulation.
While IIA violations have been detected in many
discrete choice settings, the similarity choice set-
ting has received scant attention. This is because
the target-dependent nature of the choice compli-
cates IIA testing. We propose two statistical meth-
ods to test for IIA: a classical goodness-of-fit test
and a Bayesian counterpart based on the frame-
work of Posterior Predictive Checks (PPC). This
Bayesian approach, our main technical contribu-
tion, quantifies the degree of IIA violation beyond
its mere significance. We curate two datasets: one
with choice sets designed to elicit IIA violations,
and another with randomly generated choice sets
from the same item universe. Our tests confirmed
significant IIA violations on both datasets, and no-
tably, we find a comparable degree of violation
between them. Further, we devise a new PPC test
for population homogeneity. Results show that the
population is indeed homogenous, suggesting that
the IIA violations are driven by context effects—
specifically, interactions within the choice sets.
These results highlight the need for new similar-
ity choice models that account for such context
effects.

1 INTRODUCTION

Discrete choice models provide a probabilistic framework
for reasoning about how humans make choices when pre-

sented with a set of alternatives [Train, 2009]. They are
widely used in many domains, such as transportation [Mc-
Fadden, 1974] and recommender systems [Rendle et al.,
2009]. In this paper, we focus on a specific class of discrete
choices: similarity judgements. The simplest example of
this class is the triplet comparison: “with respect to an ap-
ple, what is more similar: pear or orange?” More generally,
a similarity choice question asks a user to select from a
choice-set that the item that is most similar to a given tar-
get item. Similarity choice data differs significantly from
other choice data because of the dependency on the target.
Indeed, in the above example, replacing the target apple by
grapefruit might significantly change the choice distribution
between pear and orange.

A key application of similarity choice data is ordinal embed-
ding, where the goal is to learn or refine item embeddings
from ordinal comparisons [Vankadara et al., 2023]. A good
embedding reflects human similarity judgments through
inter-point distances. Many embedding methods fit a simi-
larity choice model to datasets such as Wilber et al. [2014].
Ordinal embedding is particularly valuable when item meta-
data fails to capture user-perceived similarity. For instance,
Magnolfi et al. [2025] show that such embeddings help
predict consumer demand for breakfast cereals. A second
use-case arises in interactive search, where a user provides
a rough textual description of a latent target and is itera-
tively shown item sets to refine their preferences [Biswas
et al., 2019, Chumbalov et al., 2020]. While the target is im-
plicit (in the user’s mind), each selection is still a similarity
choice. In both settings, the effectiveness of algorithms rests
on the ability of the underlying similarity choice model to
faithfully capture human judgments.

Similarity choice models assign a probability distribution
over items in a choice-set given a target. Two popular mod-
els, Crowd Kernel Learning (CKL) [Tamuz et al., 2011] and
t-Stochastic Triplet Embedding (t-STE) [van der Maaten
and Weinberger, 2012], represent items as points in Rd and
define similarity as a decreasing function of Euclidean dis-
tance. Given a choice-set C and target t, the probability that
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item i ∈ C is selected is proportional to its similarity to t.
This simple structure makes these models easy to learn and
interpret, leading to their popularity. Yet, it is this simple
structure that leads to both models adopting the indepen-
dence of irrelevant alternatives (IIA) property [Luce, 1959].
Informally, IIA asserts that the relative odds of choosing
between any two items i and j remain unchanged regard-
less of the presence of other items in the choice-set. The
IIA property is equivalent to assuming that choices are dic-
tated purely by item-specific scores; in the case of similarity
choice models, this score is a measure of the item-target
similarity (see Section 2 for more details).

In this work, we are motivated by the broad question of
whether it is possible to design newer similarity choice
models that are better than the current state-of-the-art mod-
els [Tamuz et al., 2011, van der Maaten and Weinberger,
2012]. Such a model, while continuing to be easy to learn,
should better reflect human judgements of similarity than
current models. It should ultimately lead to better outcomes
for tasks such as ordinal embedding and interactive search.
Broadly, there are two main directions to generalize existing
models. The first is to keep the property that choice prob-
abilities are proportional to some similarity measure (and
consequently IIA is obeyed), but work with a more flexible
distance/similarity metrics than Euclidean spaces allow. The
second is to consider models that include context effects,
where the choice set of items influences the perception of
similarity; such a model would not obey IIA. An important
step, therefore, is to test whether the IIA property indeed
holds in real similarity choice data.

In the literature, testing for IIA is a well-studied topic
[Cheng and Long, 2007, Seshadri and Ugander, 2019].
Nearly all such studies frame the problem as a hypothe-
sis test with the null hypothesis being that the data satisfies
IIA, i.e., it is plausibly generated from a model that satisfies
IIA. This hypothesis is rejected only if there is sufficient
evidence to the contrary. In addition to these tests, many
choice models that violate IIA have been proposed, both
in the psychology literature [Tversky, 1972, Tversky and
Simonson, 1993] as well as the machine learning literature
[Seshadri et al., 2019, Tomlinson and Benson, 2021]. A par-
ticularly popular model that violates IIA is the mixed MNL
model [Train, 2009].

Measuring IIA violations in similarity choice data poses
some challenges that do not arise in the corresponding task
with preference choice data. First, unlike preference choices,
we do not (yet) have any candidate models that account for
context effects. Thus, we cannot perform a likelihood ratio
test of the form used in Seshadri et al. [2019]. Second, tak-
ing existing hypothesis testing methods off-the-shelf would
require splitting the data into different buckets according
to the targets and testing for IIA separately on each bucket.
Not only would this yield a large number of test statistics,
the statistical significance of the test would also be greatly

diminished due to partitioning the dataset.

The only known work critiquing the IIA assumption in the
context of similarity choice data is by Tversky [1977]. In
this seminal work, Tversky gathers responses to a survey
of handcrafted similarity choice question pairs, where both
questions in a pair differing only in one item in the choice
set. Tversky [1977] shows that the survey answers indicate
statistical significant deviation from IIA. Moreover, these
deviations can be explained in terms of ‘context effects’,
i.e., the changing influence of item features based on their
prevalence in the context set. However, Tversky [1977] does
not propose a probabilistic similarity choice model, let alone
a learnable one. Moreover, the experiments on handcrafted
queries shed no light on the prevalence of context effects
in questions composed of random items. Indeed, learning
similarity choice models would typically take place through
such random data [Wilber et al., 2014]. Finally, his tests are
not suitable for measuring the prevalence of IIA on such a
dataset. Our work aims to address these gaps in the literature.
To this end, we make two significant contributions: a new
method for testing for IIA, and a dataset suitable to apply
such a test.

Our proposed tests for IIA in similarity choice models can
be viewed as a as goodness of fit tests [Lehmann and Ro-
mano, 2022], where the null hypothesis is that the data obeys
IIA. Within this framework, we first design a classical χ2

test, which is commonly used for categorical data. We then
adapt this to a Bayesian setting, using the well-established
Posterior Predictive Check (PPC) framework [Gelman and
Shalizi, 2013]. Both tests yield a single p-value which tell us
the confidence with which we can reject the null hypothesis
(that IIA holds) over any given dataset. We provide more
details of these methods in Section 2. We test both methods
on synthetic data in Section 3, where we find that both tests
have similar power. The main advantage of the Bayesian set-
ting is the added flexibility and interpretability it provides,
which we highlight below.

We apply these tests on two datasets, both collected through
surveys designed by us on the Prolific website. Both
surveys work with a set of hundred food items chosen from
the CROCUFID dataset [Unterfrauner et al., 2018]. The
two surveys differ primarily in the manner in which the
questions were crafted. While one dataset had questions
formed by choosing targets and choice set items at ran-
dom, the other was carefully crafted to highlight context
effects, similar to Tversky [1977]. Notably, both datasets
have the same universe of items. Each survey question was
answered by multiple participants, allowing us to calculate
the statistics of each options’ response. Applying both the
aforementioned tests, we show that there is a strong evi-
dence to suggest that IIA does not hold in these similarity
choice datasets. Similar experiments on synthetic data im-
prove the interpretability of our results. See Section 4 for
more details.

https://www.prolific.com


Beyond establishing that IIA is violated in similarity choice
data, we extend our analysis in two directions, both of which
rest on the Bayesian model we develop for the PPC test.
First, we estimate a parameter that quantifies the extent to
which a dataset deviates from IIA. We find that the strength
of deviation in the random dataset is nearly as strong as in
the handcrafted dataset. Second, we design a test to check
whether the survey respondents we have in our dataset can
be viewed as a single homogenous population. A mixture of
populations, each satisfying IIA, can lead to data that does
not obey IIA (see example in Appendix B). By showing
that our survey respondents are indeed homogenous, we
eliminate a potential confounding factor for IIA violations.
Put together, our results strongly suggest that a similarity
choice model expressing context effects can outperform
current baselines when trained on such data. This remains
an important direction of future work. In this work, we show
the flexibility of Bayesian models in the context of testing
for IIA in similarity choice models. The code and data are
hosted in GitHub1.

2 MODELS AND METHODS

This section presents the statistical tests we use to quantify
IIA violations in data. Before we introduce these methods,
we present some relevant notation.

Consider a scenario where a set of similarity questions is
presented to a set of participants. We formalize this scenario
as follows. Let T be a set of items (photos, people, countries,
etc.) and Q a set of similarity questions. Every question
Q ∈ Q has a target item tQ ∈ T and a choice-set CQ ⊆ T
with cardinality |CQ| ≥ 2. Note that choice-set sizes of
different similarity questions in Q can be different.

Let P denote a set of participants. When presented with a
question Q ∈ Q, a participant p ∈ P must choose the item
in the choice-set CQ that is most similar to the target tQ.
The response of a participant is represented by a random
variable RpQ which follows a categorical distribution πpQ

over the choice-set CQ: RpQ ∼ Cat(πpQ).

Note that the above formulation is very general as it allows
each participant to have a unique response distribution over
the choice-set for every similarity question. However, the
dependence on the participants can be dropped by assuming
a homogeneous population (all participants have the same
response distribution) or by marginalizing the participants.
For the latter, assume participant p is chosen randomly from
P according to some probability distribution. The marginal
response to a question Q is given by RQ ∼ Cat(πQ), where
πQ = Ep[πpQ].

With this notation in place, the Independence of Irrelevant

1https://github.com/correahs/
similarity-uai-2025

Alternatives (IIA) property for similarity choice models can
be defined as follows.

Definition 2.1 (Independence of Irrelevant Alternatives
(IIA)). IIA holds for a question set Q if for any questions
Q,Q′ ∈ Q with tQ = tQ′ ,

k, k′ ∈ CQ ∩ CQ′ =⇒ πQk

πQk′
=

πQ′k

πQ′k′
,

where πQk is the probability that a participant chooses item
k in question Q.

The definition requires questions to have the same target;
it is not reasonable for IIA to hold over choice-sets with
different targets (since the target can significantly influence
the choices).

The IIA assumption implies that πQ, for all questions Q
having the same target can be fully specified with |T | − 1
parameters, one per item not including the target (see further
explanation in Appendix A). Under IIA, it is sufficient to
specify a similarity score sk for every item k ∈ T \ {ℓ}
to a fixed target ℓ, independent of Q. Therefore, without
loss of generality, the response probability vector can be
represented as follows:

πQk(s) =
esk∑

k′∈CQ
esk′

; (1)

that is, the probability of choosing item k from choice-set
CQ is proportional to esk . This implies having a BTL model
for question sets sharing the same target; questions sets with
different targets have different BTL parameters. Thus, IIA
must be assessed in question sets that have the same target.

2.1 TESTING FOR IIA

Consider a question set Q where all questions have the same
target, and a set of participants P with |P | = n. Assume
that participants provide responses to these questions, and
let rpQ ∈ {1, . . . , |CQ|} be the response of participant p to
question Q, i.e., a realization of RpQ.

The likelihood of question Q given the similarity vector s is
given by

LQ(s) =
∏

k∈CQ

(πQk(s))
aQk ,

where aQk =
∑

p∈P 1(rpQ = k) is the total number of par-
ticipants whose response is k to question Q. The combined
log-likelihood for all questions in the question set is given
by

logL(s) =
∑
Q∈Q

logLQ(s). (2)

Let ŝ = argmaxs logL(s), namely the Maximum Likeli-
hood Estimator (MLE). Since all questions are being jointly
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considered, the value for ŝ will be a tradeoff between the
questions. If IIA holds then πQk(ŝ) ≈ n−1aQk for all Q
and k, since the probabilities obtained from the MLE should
be sufficiently close to their empirical ratios. However, if
IIA does not hold, the empirical ratios can be far from the
MLE probabilities.

2.1.1 A Classical goodness of fit test

The above intuition can be formalized as a goodness of fit
test (GFT). The null hypothesis is that the data is generated
by a similarity choice model satisfying IIA, i.e., the true
probabilities πQ can be parametrized by s by (1). The al-
ternate hypothesis is that the distributions πQ lie in some
larger parameter space, possibly the unconstrained parame-
ter space defined as the product of |CQ| − 1-simplices, for
each question Q.

Consider Pearson’s χ2 test statistic, which is given by

D(s) =
∑
Q∈Q

∑
k∈CQ

(nπQk(s)− aQk)
2

nπQk(s)
. (3)

Under the null hypothesis, D(ŝ) converges in distribution
to χ2

ν , where ν =
∑

Q∈Q(|CQ| − 1) − (|T | − 2) is the
total number of degrees of freedom. This is because in an
unrestrictive model, each question has |CQ| − 1 parameters,
while under IIA there are |T | − 2 parameters (since one
item in T is the target, and the probability of an item is one
minus the sum of the others). In contrast, if the probabilities
do not follow (1), for some s, D(ŝ) is likely to be large. We
calculate the p-value as the probability of drawing a sample
from χ2

ν equal or larger than D(ŝ). If this p-value is low, the
observed choices are unlikely to have been generated by an
IIA-compliant model.

The described test can be seen as an approximation to a
likelihood-ratio test between the BTL model and an unre-
stricted model [Lehmann and Romano, 2022], having inde-
pendent parameters for each question Q ∈ Q. In the rest of
the paper, we will refer to this test as the goodness of fit test,
or GFT for short.

2.1.2 Combining Multiple statistics

Consider the partition of a general question set Q by targets
such that all questions in the subsets Q1, . . . , Qm of the
partition share the same target. Note that the GFT can be
applied to each question set, and thus each question set will
have a p-value. However, one of our goals is to test for IIA
violations in the dataset as a whole, and therefore these
multiple p-values must by aggregated. One approach is to
consider the minimum p-value to reject the null hypothesis.
Using the minimum, the null hypothesis is rejected when
at least one p-value is below the significance threshold. To
avoid this approach leading to a high chance of a Type 1

error, Bonferroni Correction [Wasserman, 2004] is used to
reduce the significance threshold from α to α/m.

Alternatively, the statistics computed on each question set
can be added into a single value. Let D1, . . . , Dm be the
χ2 statistics for the respective question sets. The joint null
hypothesis is that IIA holds for all question sets. Under
the null, all Di’s are approximately χ2

νi
distributed. With

the additional assumption that D1, . . . , Dm are mutually
independent, the aggregate statistic D =

∑
i Di will also be

approximately χ2
ν distributed, with degrees of freedom ν =∑

i νi where νi is the degrees of freedom for the statistic Di.
Both approaches are considered in the numerical analysis
that follows.

2.2 POSTERIOR PREDICTIVE CHECKS

Posterior Predictive Checks (PPC) is a Bayesian diagnostic
tool for assessing discrepancies between a Bayesian model
and data [Gelman et al., 1996]. PPC is better thought of as
an assessment, rather than a test, which is geared towards
checking usefulness, rather than correctness. This is a rele-
vant distinction given that IIA violations have already been
demonstrated [Tversky, 1977]. Being a Bayesian method,
it is fundamentally different from classic χ2 tests, and thus
serves as an alternative to measure IIA violations in data. In
what follows, a brief introduction to PPC is provided.

Let y be the observable data. A Bayesian generative model
for y is given by

p(y) =

∫
θ

p(y | θ)p(θ)dθ

The factorized model above implies a two step data genera-
tive procedure: First sample θ with density p(θ), then use
it to sample y with p(y | θ). If however, the observed data
yobs is given, Bayes’ rule can be used to infer the likely value
of θ to have generated yobs. In other words, we can calculate
(and sample from) p(θ | yobs). From the sampled values of
θ given yobs, we can then generate replicate datasets yrep

with

p(yrep | yobs) =

∫
θ

p(yrep | θ)p(θ | yobs) dθ. (4)

If yobs has indeed been generated by the assumed model,
then yrep should “look like” yobs. In PPC, this similarity
translates to there being a relevant aspect of the data, repre-
sented by a statistic T (yobs), that any useful model needs to
capture. Thus, under a useful model, T (yrep) ≈ T (yobs). As
shown in Gelman et al. [1996], the Bayesian approach also
allows T to have θ as an extra argument. Finally, posterior
predictive p-value is defined as follows:

pppc = P(T (yrep, θ) ≥ T (yobs, θ) | yobs) (5)

In practice, pppc is approximated by simulation, through
Algorithm 1.



Algorithm 1 Posterior Predictive Check

1: Input: Data yobs, posterior p(θ | yobs), model p(y | θ),
and statistic T (y, θ).

2: for i = 1 to N do
3: Sample θ(i) ∼ p(θ | yobs).
4: Sample replicated data yrep,(i) ∼ p(y | θ(i)).
5: Compute statistic for observed data: T (yobs, θ(i)).
6: Compute stat. for replicated data: T (yrep,(i), θ(i)).
7: end for
8: Calculate the posterior predictive p-value:

pppc =
1

N

N∑
i=1

I
(
T (yrep,(i), θ(i)) ≥ T (yobs, θ(i))

)
9: Return: pppc.

2.2.1 PPC applied to choice models

To test IIA with the PPC framework, we define a Bayesian
version of the BTL model. For question sets Q1, . . . , Qm,
with targets t1, . . . , tm, respectively,

σ ∼ HalfNorm(2)

sik ∼ N (0, σ2), i = 1, . . . ,m, k ∈ T \ {ti}
aQ ∼ Mult(n, πQ(si)), i = 1, . . . ,m, Q ∈ Qi,

that is, we define a half-normal hyperprior for the prior
σ, and sample the similarity scores of items k to target ti
through a zero-mean Gaussian with standard deviation σ.
Note that σ is shared across all question sets Qi, making
this a hierarchical model (see graphical representation in
Figure 9 in Appendix D).

When applied to survey data, the posterior distribution of
σ can be interpreted as the general magnitude of similarity
scores. When σ approaches 0, then most questions are an-
swered close to uniformly at random. Conversely, if σ is
large, then one item is likely to stand out in each question.
Having the generative model specified above, and having
calculated the posteriors for all sik’s, we can the use the
same statistic D in Algorithm 1 to obtain a Bayesian version
of the goodness of fit test.

2.3 POPULATION HOMOGENEITY

A common assumption in the study of context effects and
IIA is that of population homogeneity. In essence, partic-
ipants are statistically equivalent in their similarity judge-
ment of the questions they respond. It is also known that
models like the Mixed Multinomial Logit model (MMNL)
can violate IIA just by accounting for population hetero-
geneity [McFadden and Train, 2000, Train, 2009]. Thus,
violations of IIA measured on real data can also be due to
population heterogeneity, and not necessarily context effects

induced by the choice-sets (see Appendix B for a simple
example). Thus, an additional step when quantifying IIA vi-
olations is assessing population homogeneity. If population
is indeed homogeneous and IIA is violated, this provides
stronger evidence of that relative similarity to the target de-
pends on the choice-set. A statistical test based on PPC to
measure population homogeneity is presented in Section 5.

3 ANALYSIS OF SYNTHETIC DATA

Testing for IIA in similarity choices requires data where
multiple questions share the same target. Moreover, the
choice-sets of such questions must also overlap. In what
follows we propose a model for generating synthetic data
with such characteristics. This same data format will also
be used in the user experiments to be presented.

3.1 GENERATIVE MODEL

Let Q0 denote a similarity question with a target tQ0 and
choice-set CQ0 = {c1, c2, c3, c4}. Question Q0 is used to
create four other similarity questions with the same target:
Qi, i = 1, . . . , 4, where the choice-set CQi = CQ0 \ {ci},
namely dropping item ci once from the original choice-
set. For example, the question Q1 has choice-set CQ1 =
{c2, c3, c4}. These five questions form a question set de-
noted by Q. In what follows, three models are presented to
generate πQik, namely the probability that item ck is chosen
by a participant when presented question Qi.

IIA compliant. Recall that under IIA, it is sufficient that
every item has a similarity score to the target. Let sk ∼
N (0, σ2) be a normally distributed and independent random
variable for every k = 1, . . . , 4. Given sk, the following
choice model is considered:

πQik(s) =
esk∑

k′∈CQi
esk′

, k ∈ CQi , i = 0, . . . , 4 (6)

Note that every item ck is associated to a similarity score
sk, independently of the choice-set.

Additive perturbation to IIA. In order to induce IIA vio-
lations, it is sufficient that the similarity scores of items to
the target depend on the choice-set. The following model
adds a perturbation to the baseline similarity scores. Let
εik ∼ N (0, σ2

p) be a normally distributed and independent
random variable for every k = 1, . . . , 4 and i = 1, . . . , 4.
Note that the single parameter controlling εik is σp. Condi-
tioned on εik, the following choice model is considered:

πQik(s) =
esk+εik∑

k′∈CQi
esk′+εi

k′
, k ∈ CQi , i = 1, . . . , 4

(7)

Note that Q0 is not perturbed. Moreover, if σp = 0, the
additive perturbation becomes zero and the IIA compliant
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Figure 1: p-values obtained by the statistical tests for IIA
violations as a function of σp for the additive perturbation
model.

model is recovered; if σp increases to large enough values
the choice probabilities become relatively independent of
each other. Thus, σp is a parameter that controls how strong
the additive model induces IIA violations. The additive per-
turbation model is a general description of IIA violations,
without any particular mechanism for inducing context ef-
fects. In fact, even when an alternative perturbation model
is used for generating data, fitting the additive perturbation
model to the synthetic data results in an estimated positive
σp (see Appendix E.1).

3.2 NUMERICAL EVALUATION

Consider m = 100 different question sets Q, each generated
independently by the generative models previously defined.
Moreover, assume that each question in a question set is
presented to n = 30 simulated participants who all provide
a simulated answer according to the choice probabilities
defined by the respective model. Let σ = 2 for the IIA
compliant model. Last, since p-values are random (since the
dataset is random), the entire experiment is independently
repeated 30 times, and the average of the minimum and
aggregate p-values are presented.

Figure 1 shows the p-values for data generated by the ad-
ditive perturbation model as a function of σp, for both the
minimum and aggregate p-values. Note that as σp increases,
the p-value for both statistical tests decreases, eventually
cross the significance threshold of 0.0005 or 0.05 for the
minimum and aggregate cases, respectively. However, the
significance threshold for the minimum test requires a larger
perturbation (around σp = 0.35 and σp = 0.45 for GFT
and PPC, respectively) than in the aggregate test (around
σp = 0.2 and σp = 0.3 for GFT and PPC, respectively).
In essence, this is the amount of perturbation required for
IIA to be rejected. Interestingly, the p-values for both tests
decay relatively similar with σp validating one another. Note
that for PPC, when σp ≥ 0.6 the p-value is zero since all
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Figure 2: Number of rejections as a function of the selection
threshold α for different σp.

samples from the posterior in the simulation where rejected.
Last, an interesting phenomenon occurs at σp = 0 in the
aggregate test; here, the p-value for the classical GFT is
slightly larger than PPC, indicating that the null hypothesis
is less likely to be rejected under GFT than PPC.

The GFT and PPC tests can also be used to determine if a
particular question set violates the null hypothesis. A selec-
tion threshold α can be applied to each question set, and
question sets with a p-value below α are rejected under the
null. Figure 2 shows the number of rejections as a function
of α for different σp for both tests. Note that for σp = 0,
the number of rejections under GFT grows linearly with
the threshold α as expected (under the null hypothesis, the
p-values are uniformly distributed in the limit n → ∞).
However, PPC rejects less question sets for smaller values
of α. As σp increases, GFT rejects more with very small α
values and for σp = 0.8 around 60 question sets are rejected
as soon as α is non-zero. PPC is slower to start rejections
but it is faster to terminate rejecting all question sets. PPC
rejects all question sets before α = 1 while GFT requires
α = 1 to reject all. Thus, there is a tradeoff in these two
statistical tests in the context of IIA.

4 EXPERIMENTAL RESULTS

In order to assess for IIA in similarity choices made by
people, two different experiments have been designed in the
form of web surveys. The items appearing in the questions to
judge similarity surveys are images of dishes, fruits, snacks
and food items in general. The set T of 100 items used in the
surveys was selected by manually curating the CROCUFID
dataset [Unterfrauner et al., 2018], so as to achieve the
following properties:

1. Variety: western and eastern food dishes, sweet and
salty snacks, fruits, etc.

2. Compositionality: items have single or multiple ingre-



dients or combinations. For instance, meatball with
mashed potatoes versus meatball alone.

3. Perspective: the same item can appear from different
visual perspectives. For instance, a whole loaf of bread
versus bread slices.

Similarity judgement between the curated items can be
drawn in many ways, such as using ingredients, color, taste,
and even culture associated with the items. Thus, the experi-
ment serves as a prototypical setting for studying complex
similarity judgements, and in particular, for testing for IIA.

The web surveys designed have the same general structure:
A participant provides her responses to 20 similarity ques-
tions; each question is comprised of one target food item
displayed on the top of the screen and a choice-set displayed
on the bottom (with three of four options); we ask “Which
option is most similar to the food item on top?” to which
the participant must respond by selecting exactly one item
from the choice-set, before moving on to the next question
(revising answers by returning to previous questions is also
not allowed). The Prolific2 platform was used to solicit paid
participants for the surveys, and no demographic filters were
used when soliciting participants. On average, a participant
completed the survey in 3 minutes3. We provide as screen-
shot of the survey website in Appendix G.

4.1 HANDCRAFTED DATASET

The first experiment is inspired by Tversky to show IIA
violations and illustrate the diagnosticity principle in sim-
ilarity judgements [Tversky, 1977]. In such experiment,
questions are generated in pairs that have the same target
and a single item difference in their choice-set. More pre-
cisely, Qa and Qb have the same target t and choice-sets
CQa

= {c1, c2, c3} and CQa
= {c1, c2, c4}, respectively.

Moreover, the questions should be designed such that c1 and
c2 are comparatively more similar to t, and item c3 or c4
is more similar to c1 or c2, respectively, but also dissimilar
from t. The general idea is that c3 and c4 change the context
for the question, and can thus change the ratios of responses
between c1 and c2 in the two questions (thus, violating IIA).

A dataset consisting of 20 questions pairs (Qa, Qb) was
manually built by the authors using the 100 curated food
items. Each food item appears at most once in a survey
(either as the target or in the choice-set) in order to minimize
dependencies between question pairs. A participant in the
survey was either presented with Qa or Qb but not both,
for all 20 question pairs (see Appendix H for all twenty
questions). The version Qa or Qb of a question pair was
randomly chosen for each participant, as well as the order in

2Prolific is an online research platform with over 200k regis-
tered participants: https://www.prolific.com/

3Excluding the time to log in the system and read the instruc-
tions.

Figure 3: Example of a question pair from the survey. Ver-
tical red line in the plots indicate number of participants
selecting that item; blue curve shows the distribution of the
(posterior) number of choices.

which the participant answers the 20 questions4. The total
number of participants was 207.

Figure 3 illustrates the question pair with the smallest p-
values for both GFT and PPC. Note that adding a red-
coloured fruit (strawberry) in Qa increases the choices for
the green fruit (kiwi), while adding a green-coloured fruit
(pear) in Qb increases the choices of the red fruit (raspberry).
This is a good example of what Tversky [1977] calls the
diagnosticity principle and a clear violation of IIA. More-
over, note that posterior distribution for the number of times
an item is chosen in that choice-set under IIA is not a good
model, given by the relative distance to the actual number
of choices (red vertical bars).

The minimum p-values for GFT and PPC were 0.00052
and 0.0066, and thus the IIA is rejected by GFT (α =
0.05/19 = 0.0026). The aggregate p-values for GFT and
PPC were 0.000015 and 0.041, and thus IIA is rejected by
both tests.

Figure 4 shows the p-values obtained for both tests for all
questions in the survey (sorted by GFT). As with the syn-
thetic dataset, GFT has smaller values than PPC. Note that
under the joint null hypothesis (IIA), the p-values for GFT
follow a uniform distribution, and thus the empirical CDF
of p-value samples should follow a diagonal line, as indi-
cated in the plot. The measured GFT p-values are below
this diagonal line corroborating the rejection of the null
hypothesis.

Besides testing for the IIA hypothesis, the additive pertur-
bation model was also fitted to the handcrafted dataset. A

4One question was used as a honey pot to flag spurious partici-
pants, and is not considered in the analysis.

https://www.prolific.com/


Figure 4: p-values obtained by PCC and GFT for each ques-
tion set in the handcrafted dataset sorted by GFT value.
Diagonal line corresponds to uniform distribution under IIA
hypothesis.

Figure 5: Posterior distributions for σ and σp given the
handcrafted survey dataset. The mean values for σ and σp

are 2.1 and 0.29, respectively.

p-value of 0.254 was obtained with PPC, thus implying
this model can better represent this dataset (and not be re-
jected). Figure 5 shows the posterior distributions for σ and
σp given the dataset. Interestingly, the posterior for σp falls
within [0.12, 0.48] with high probability indicating it is an
important component of the model. Moreover, the ratio be-
tween the average σp and average σ is 0.29/2.1 = 0.138,
indicating its relative magnitude is not insignificant.

Interestingly, the average σp when fitting the additive model
to IIA compliant simulated data was 0.049, indicating this
parameter plays a small role in this scenario (where IIA is
present) but not on real data (see Figure 11 in the Appendix).

4.2 RANDOMIZED DATASET

The second experiment was designed to have a very differ-
ent flavor. In contrast to manually curating question pairs,
question sets were randomly determined using the curated
food items. In particular, a total of 100 question sets were
generated, each having a different target (thus, every food
item in T served as a target). For every target, a question Q0

was generated by randomly selecting four food items for its
choice-set. From Q0, four questions were created by remov-
ing one of the items in its choice-set at a time, identical to
the procedure described in Section 3. Thus, Qi, i = 1, . . . , 4
have choice-sets with size 3.

Figure 6: p-values obtained by PCC and GFT for each ques-
tion set in the randomized dataset sorted by GFT value.
Diagonal line corresponds to uniform distribution under IIA
hypothesis.

While the total number of questions in this dataset is 500
(100 question sets each with 5 questions), the survey of a
participant had only 20 questions, randomly chosen from
the set of 500. However, in every participant survey, items
in the target or choice-sets only appeared once. Last, every
question received at least 18 responses, and 30 on average.

The minimum p-values for GFT and PPC were 0.0002
and 0.011, and thus the IIA is rejected by GFT (α =
0.05/100 = 0.0005). The aggregate p-values for GFT and
PPC were 0.00002 and 0.0056, and thus IIA is rejected
by both tests. The individual p-values per question set are
shown in Figure 6.

Figure 7: Posterior distributions for σ and σp after fitting
the random survey data. The mean values for σ and σp are
is 1.6 and 0.21, respectively.

The additive perturbation model was also fitted to the ran-
domized dataset and a p-value of 0.518 was obtained with
PPC, implying this model can better represent this dataset
(and not be rejected). Figure 7 shows the posterior distri-
butions for σ and σp given this dataset. Interestingly, the
posterior for σp falls within [0.14, 0.29] with high probabil-
ity indicating its importance in fitting this model. The ratio
between the average σp and average σ is 0.22/1.6 = 0.138.
Notably, this ratio is the same as for the handcrafted dataset.
This result suggests that there is significant deviation from
IIA even among randomly sampled similarity questions.



5 TESTING FOR POPULATION
HOMOGENEITY

In this section, we develop a statistical test for population
homogeneity (PH) based on the PPC framework. The moti-
vation behind this test is to investigate whether a heteroge-
nous population is a significant factor behind the observed
IIA violations (see Section 2.3). Our null hypothesis is that
the respondents form homogenous population, as similarity
comparisons are not too subjective (unlike preferences).

Suppose one has a survey of questions Q. For each ques-
tion Q ∈ Q, one has a baseline distribution πQ specifying
probabilities of responses for each question. Suppose a new
participant takes the survey, and we want to test whether
they follow the baseline distribution in their responses, or
whether they display anomalous behaviour. Let Ip denote
the information content (IC) of participant p, given by the
negative log-probability of its selections, i.e.,

Ip = −
∑
Q∈Q

log πQrpQ . (8)

A participant p that answers according to the distribution πQ,
for all Q ∈ Q will have an Ip whose expected value is the
sum of entropies of each πQ. A participant with a response
distribution that is significantly different would have a much
larger Ip. Therefore Ip is an useful statistic to test whether
a new participant p follows the pre-specified parameters πQ.
The statistical test we propose is an extension of this basic
idea to a set P of participants and unknown parameters
πQ. We use the responses of the participants themselves to
estimate the parameters, and then aggregate the Ips of each
participant into a single statistic, as we will see below.

Consider the experiment using the randomized dataset and a
question set Q composed of all questions with four choices,
Q0. A total of 148 participants provide responses to these
100 questions and each participant answers 20 questions.
Recall that each question has a unique target, and thus the
similarity of items to the target can be treated independently
(each item in each question as a similarity value). Thus, the
MLE will simply be the empirical proportion of each chosen
item πQ0k(ŝ) = n−1aQ0k, for k ∈ CQ0

.

Figure 8: Distribution of the information content of partici-
pants.

Figure 8 shows the distribution of the information content
of the 148 participants. Note that the distribution appears
skewed to the right, as indicated by two Ip’s higher than 25.

We define the test statistic for PPC to be the difference
between the maximum and minimum information content
among participants, namely

T = max
p∈P

Ip −min
p∈P

Ip.

We reject the null hypothesis (that the population is homoge-
nous) if the T is larger than what is expected under the null.
We use the same PPC framework as before (Algorithm 1).

PPC returns a p-value of 0.0315, thus rejecting PH. How-
ever, this is not surprising as the distribution of IC indicated
the presence of an outlier. Moreover, when the responses of
the single outlier participant is removed from the dataset,
PPC returns a p-value is 0.27. Therefore, the null hypothesis
cannot be rejected. This analysis suggests that the popula-
tion is fairly homogeneous. Thus, the violations in IIA we
observe are likely to stem from context effects.

6 SUMMARY AND FUTURE WORK

In this paper, we argue that it is important to test for the
validity of the independence of irrelevant alternatives (IIA)
property in similarity choice data. We also discuss that ex-
isting tests are not suitable for this purpose. We propose two
methods for this task, (1) the aggregation of goodness-of-
fit statistics and (2) the application of posterior predictive
checks (PPC) to a hierarchical Bayes model. Both tests give
us a single p-value indicating the prevalence of IIA viola-
tions across the entire dataset. Moreover, an extension of the
Bayesian model (the additive perturbation model) allows us
to measure the strength of the IIA violations over the full
dataset (see Figure 5 and the accompanying discussion). Fi-
nally, we demonstrate the flexibility of the Bayesian model
by using it to develop a test for population homogeneity.

We apply these methods to similarity choice data that we col-
lect through online anonymized surveys. The main findings
of this paper indicate that IIA violations on similarity choice
data are prevalent even under randomly generated questions.
Indeed, this effect is as prominent in randomly generated
questions as it is in handcrafted questions designed specifi-
cally to induce context effects. Further experiments confirm
that population heterogeneity is not a factor causing these
violations. Thus, our work provides convincing evidence
that similarity choice data exhibits context effects. It mo-
tivates the development of richer choice models that can
incorporate such effects, perhaps by modelling known cog-
nitive phenomena. In addition, this work also highlights the
potential pitfalls of collecting similarity choice data with
large choice-sets and breaking them down into triplets, as
commonly done with the artist similarity dataset [Ellis et al.,
2002] and the food similarity dataset [Wilber et al., 2014].
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A IIA IMPLIES MODEL WITH AT MOST T − 1 PARAMETERS

The IIA assumption implies that πQ, for all questions Q having the same target can be fully specified with at most |T | − 1
parameters, one per item in the set T excluding the target. To see this is true, let Q∗ be a question with a choice-set that has
all items except its target tQ∗ = ℓ, thus CQ∗ = T \ {ℓ}. For any question Q with the same target ℓ, we have that

πQk

πQ∗k
=

πQk′

πQ∗k′
, ∀k, k′ ∈ CQ.

These equalities across all item pairs k, k′ ∈ CQ imply that the response probabilities in Q∗ provide the response probabilities
for questions Q as follows

πQk =
πQ∗k∑

l∈CQ
πQ∗l

.

Thus, assuming that IIA holds, it is sufficient to specify a similarity score sk for every item k ∈ T \ {ℓ} to a fixed target ℓ,
independent of the question Q. For instance, on can take sk = log πQ∗k. Therefore, without loss of generality, the response
probability can be represented by the following model parametrized by the similarity vector s:

πQk(s) =
esk∑

k′∈CQ
esk′

, (9)

specifying that the probability of choosing item k from choice-set CQ is proportional to esk .

B VIOLATING IIA WITH POPULATION HETEROGENEITY

In order illustrate how a mixture of two populations can violate IIA, consider a question set with two questions and the
following choice-sets: QC1

= {a, b, c}, and QC2
= {a, b, d}. Consider two participant populations p1 and p2, each of them

homogeneous but with different preferences, as shown in Table 1.

Note that for both p1 and p2 the odd ratios between items a and b are invariant in the two questions (2:3 and 9:1,
respectively). Thus, each population conforms to IIA. However, under an equal mixture of p1 and p2 (i.e., 50% each), the
response probabilities for each question will change, as shown in Table 1. In the mixed population, the ratios between items
a and b in the two questions are no longer equal, violating IIA.

p1 p2 mixt. p1 + p2
(a, b, c) 0.4, 0.6, 0 0.09, 0.01, 0.9 0.25, 0.3, 0.45
(a, b, d) 0.2, 0.3, 0.5 0.9, 0.1, 0 0.55, 0.2, 0.25

Table 1: IIA violation example, due just to population heterogeneity.
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C NUMERICAL METHODS

We used the PyMC (Abril-Pla et al. [2023]) to implement our bayesian models and estimate the model posteriors by MCMC
sampling, using the NUTS algorithm (Homan and Gelman [2014]).

For executing the goodness of fit test with the χ2 statistic, we obtained the MLE executing a simple gradient descent
algorithm. We used a learning rate of 0.005, and a stopping criterion of a less than 10−4 improvement in the log-likelihood of
the parameters. If for a given question set Q with the same target t, some item k was never selected, i.e. aQk = 0,∀Q ∈ Q,
then we excluded item k as an option from the data. That way, we have a bounded optimization problem without the need
for regularization, which was not used.

D GRAPHICAL MODEL DIAGRAMS

First, we show in Figure 9 the plate notation for the Bayesian BTL model. The standard deviation σ of similarity scores s
is sampled from a half-normal distribution with parameter ασ. For each target ti, i = 1, . . . ,m, we sample sik from the
normal with σ. For a given question Q with target ti, The number of participants that selected option k will be sampled
from a multinomial distribution parametrized by the softmax of all similarities sik with k ∈ CQ.

σ

sik aQ

ασ

HalfNormal

Normal

Multinomial

k ∈ T \ {ti} Q ∈ Qi

i = 1, . . . ,m

Figure 9: Graphical model representation for the IIA model

σ σp

sik εQk

aQ

ασ βσ

HalfNormal

Normal

HalfNormal

Normal

Multinomial

k ∈ T \ {ti} Q ∈ Qi, k ∈ CQ

Q ∈ Qi

i = 1, . . . ,m

Figure 10: Graphical model representation for the additive perturbation model

In Figure 10, we show the plate notation for the additive perturbation model. In addition to σ and the subsequent sik’s, we



also have per question/item perturbation terms ε. Similar to sik, the noises εQk are sampled from a normal distribution,
whose standard deviation σp is sampled from a half-normal hyper-prior controlled by βσ . For a given target ti, all questions
containing a certain item k will attribute to it the same similarity score sik, but every question Q ∈ Qi will have a distinct
perturbation term εQk added to that similarity. The perturbed similarities will then be put through a softmax to determine
the parameters of the multinomial distribution generating outcomes aQ.

E MODEL POSTERIORS

E.1 ADDITIVE PERTURBATION MODEL APPLIED TO SIMULATED DATASETS

We fitted the additive perturbation model to IIA-compliant simulated data with ground truth σ = 2. We set the σ hyper-prior
parameter at ασ = 1.5 and the σp hyper-prior parameter at βσ = 1. The posterior distribution was estimated by executing
the NUTS algorithm with 4 chains and 40000 samples each (burn-in of 20000). By applying PPC, we obtained a p-value
of 0.5001, thus implying the model to be a good fit to the data. Moreover, the posterior σp average was 0.058, while the
ground-truth of σ was recovered. This simulation shows that the additive perturbation model is well-behaved and identifies
the lack IIA violations. See Figure 11.

Figure 11: Posterior distributions for σ and σp after fitting the additive perturbation model to the IIA compliant simulated
data.

Figure 12: Posterior distributions for σ and σp after fitting the additive perturbation model to the additive perturbation
simulated data.

We fitted the additive perturbation model to IIA-violating (from additive perturbation) simulated data, with ground truths
σ = 2 and σp = 0.2. Again, we set the σ hyper-prior parameter at ασ = 1.5 and the σp hyper-prior parameter at βσ = 1.
The posterior distribution was estimated by executing the NUTS algorithm with 4 chains and 20000 samples each (burn-in
of 10000). Through PPC we obtained a p-value of 0.6, thus implying the model to be a good fit to the data, unsurprisingly.
Moreover, the posterior averages of σ and σp matched the ground truths. See Figure 12.



We also fitted the additive perturbation model to data generated with the multiplicative perturbation model (defined in
Appendix F) and found that when σm is high, we get an estimated positive σp. More precisely, we generated 100 questions,
with 30 responses each, following the logic described in Section 3. With σm = 0.1, the posterior distribution of σp had a
2.5th percentile of 0.027 (averaged over 10 runs), which is close to 0, however, when we increased σm to 0.2 and 0.3, we
obtained 2.5th percentiles of 0.08 and 0.24, respectively, which are more distant from 0. In all cases, σ = 2 was used.

F MULTIPLICATIVE PERTURBATION MODEL

Multiplicative perturbation to IIA. Similar to the additive above, this model also adds perturbations to the the original
similarity scores. However, it does so using a single noise parameter per question in a multiplicative fashion. Thus, it is a
simpler alternative model to induce IIA violations. Let εi ∼ N (1, σm) be a normally distributed and independent random
variable for every i = 1, . . . , 4. Assuming εi, the following Bayesian choice model is considered:

πQik(s) =
eskε

i∑
k′∈CQi

esk′εi
, k ∈ CQi , i = 1, . . . , 4 (10)

Note that Q0 is not perturbed. Moreover, if σm = 0, the multiplicative perturbation variable becomes one and the IIA
compliant model is recovered; note that a large and positive εi will magnify the similarity score differences, and thus violate
IIA, but will preserve the preference ordering among the choice-set; a negative εi will invert the ordering. Thus, σm is a knob
that controls how strong the multiplicative perturbation model induces IIA violations. Last, note that the two perturbation
models (additive and multiplicative) are relatively different in their mechanism to induce IIA violations.

Figure 13: p-values obtained by the statistical tests for IIA violations as a function of σp for the multiplicative perturbation
model.

Figure 13 shows the p-values for the multiplicative perturbation model as a function of σp, for both the minimum and
aggregate p-values. Again, note that that as σp increases the p-values decrease, eventually crossing the significance threshold.



Interestingly, for both minimum and aggregate cases, a smaller value for σp is required to cross the significance threshold, in
comparison to the additive model (see Fig. 1). This suggests that the multiplicative model introduces stronger violations of
IIA for the same σp (although the two models are not directly comparable). Again, both GFT and PPC behave relatively
similar in both cases.

F.1 MULTIPLICATIVE PERTURBATION MODEL APPLIED TO RANDOMIZED DATASET

We fitted the multiplicative perturbation model to the randomized survey dataset, and obtained a p-value of 0.066 with PPC,
failing to reject the model. The p-value is however, low enough for us to infer that the multiplicative model is unlikely to
explain the range of context effects in the data. Figure 14 shows the posterior distribution for both σ and σp. Note that their
mean values are 1.6 and 0.16, respectively, indicating that σp contributes to explaining the dataset, as is the case for the
additive perturbation model.

Figure 14: Posterior distributions for σ and σp after fitting the randomized dataset to the multiplicative pertubation model.

G THE SURVEY WEBSITE

Figure 15: Screenshot of a typical survey question asked to participants on Prolific.

H QUESTION PAIRS IN THE HANDCRAFTED DATASET

The following figures, Combined with Figure 3, display the question pairs (and the response statistics) that were asked in the
handcrafted dataset.



Figure 16: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 17: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 18: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 19: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 20: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 21: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 22: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 23: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 24: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 25: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 26: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 27: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 28: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 29: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 30: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 31: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 32: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.

Figure 33: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.



Figure 34: Example of a question pair from the survey. Vertical red line in the plots indicate number of participants selecting
that item; blue curve shows the distribution of the (posterior) predicted counts.
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