

000
001
002
003

FLOW-DISENTANGLLED FEATURE IMPORTANCE

004 **Anonymous authors**
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Quantifying feature importance with valid statistical uncertainty is central to interpretable machine learning, yet classical model-agnostic methods often fail under feature correlation, producing unreliable attributions and compromising inference. Statistical approaches that address correlation through feature decorrelation have shown promise but remain restricted to ℓ_2 loss, limiting their applicability across diverse machine learning tasks. We introduce Flow-Disenntangled Feature Importance (FDFI), a model-agnostic framework that resolves these limitations by combining principled statistical inference with computational flexibility. FDFI leverages flow matching to learn flexible disentanglement maps that not only handle arbitrary feature distributions but also provide an interpretable pathway for understanding how importance is attributed through the data's correlation structure. The framework generalizes the decorrelation-based attribution to general differentiable loss functions, enabling statistically valid importance assessment for black-box predictors across regression and classification. We establish statistical inference theory, deriving semiparametric efficiency of FDFI estimators, which enables valid confidence intervals and hypothesis testing with Type I error control. Experiments demonstrate that FDFI achieves substantially higher statistical power than removal-based and conditional permutation approaches, while maintaining robust and interpretable attributions even under severe interdependence. These findings hold across synthetic benchmarks and a broad collection of real datasets spanning diverse domains.

1 INTRODUCTION

Quantifying the importance of input features is fundamental to model interpretability and scientific discovery (Murdoch et al., 2019). However, standard model-agnostic methods falter when features are correlated. Removal-based approaches, such as Leave-One-Covariate-Out (LOCO) (Lei et al., 2018) and resample-based approaches such as Conditional Permutation Importance (CPI) (Strobl et al., 2008), can produce ambiguous attributions because they cannot cleanly isolate the unique predictive contribution of a single variable from that of its statistical dependents. This confounding effect of multicollinearity undermines the reliability of explanations derived from complex models (Williamson et al., 2021; Verdinelli & Wasserman, 2024a). Further, many attribution methods provide only point estimates, lacking *uncertainty quantification* necessary for valid statistical inference, such as constructing confidence intervals or performing hypothesis testing (Chamma et al., 2023).

To address the challenge of correlation, Disentangled Feature Importance (DFI) was recently proposed as a principled framework for attribution under dependence (Du et al., 2025). The core idea is to first learn a transformation that maps the original correlated features into a latent space where they become statistically independent (Genizi, 1993). By measuring importance in this disentangled representation and then mapping the scores back to the original feature space, DFI effectively isolates the unique signal attributable to each feature. While powerful, the original DFI framework has two key limitations: (i) its reliance on an optimal transport (OT) map to perform the disentanglement can be computationally intensive and less flexible for complex, high-dimensional distributions **beyond Gaussianity**, and (ii) its formulation is restricted to importance scores evaluated with the ℓ_2 loss.

In this work, we build upon this foundation to introduce Flow-Disenntangled Feature Importance (FDFI), a significant generalization and enhancement of the DFI framework. An overview of the FDFI framework is provided in Figure 1. We replace the restrictive OT map with a more powerful and flexible transformation learned via flow matching, a state-of-the-art technique from generative

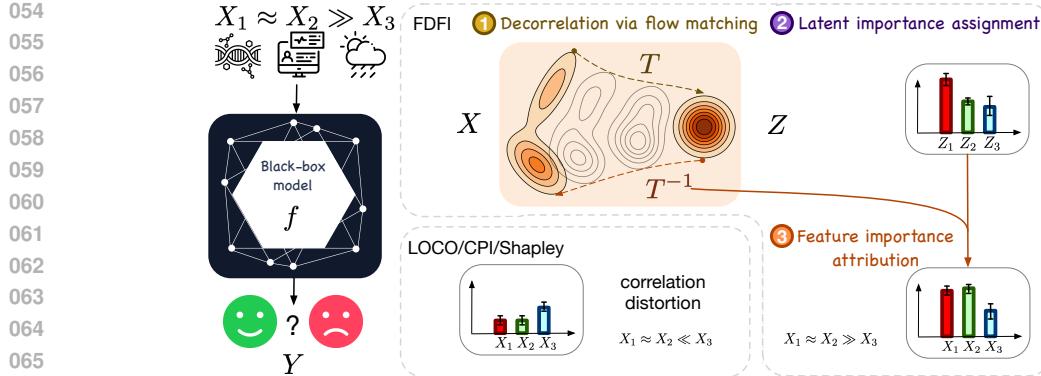


Figure 1: Overview of FDFI. A black-box model takes correlated features X as input to predict Y . Conventional attribution methods (e.g., LOCO, CPI, Shapley) underestimate the importance of correlated features. DFI addresses this issue for Gaussian features under squared-error loss. The proposed FDFI framework generalizes DFI by replacing the linear optimal transport with flexible flow matching and extending to general losses and black-box models. Operationally, FDFI addresses this by (1) decorrelating X into latent variables Z via flow matching, (2) assigning importance scores in the disentangled latent space, and (3) attributing them back to the original features with uncertainty quantification. The latent importance reveals the intrinsic predictive variability, and the disentangled map enables interpretable attributions under correlations.

modeling (Lipman et al., 2022). This allows our method to learn complex, nonlinear disentanglement maps between arbitrary feature distributions. Furthermore, we extend the DFI formulation to accommodate general differentiable loss functions, making it applicable to a broader range of tasks, including regression and classification. FDFI thus provides a unified framework that not only delivers robust *feature importance* under feature dependency but also enables valid statistical inference and *uncertainty quantification* for these importance scores. Moreover, the generative nature of the flow-based map provides a transparent mechanism for understanding how importance is attributed back through the data’s *correlation structure*, providing reliable feature attribution.

1.1 SUMMARY OF CONTRIBUTIONS

A general feature importance framework. We analyze the relationship between three foundational feature importance measures under general differentiable loss functions (Theorem 2.1). We establish their formal equivalence under the ℓ_2 loss (Lemma 2.2), a result that underscores their shared fundamental limitation: a vulnerability to correlation distortion when features are dependent. To address this, we propose a new framework, Flow-Disentangled Feature Importance (FDFI), which makes two key advances: (i) it replaces restrictive Gaussian transport map (Du et al., 2025; Genizi, 1993) with a more flexible and powerful transformation learned via flow matching (Lipman et al., 2022), enabling it to handle arbitrary feature distributions; and (ii) it extends the attribution framework beyond the ℓ_2 loss to any differentiable loss function (4), broadening its applicability to classification and other machine learning tasks.

Semiparametric statistical inference. We establish valid statistical inference to quantify the uncertainty of estimated importance based on semiparametric efficiency theory. We derive the efficient influence functions and formally prove the asymptotic normality of our FDFI estimators for both the latent importance scores (Theorem 3.1) and the final original feature importance scores (Proposition 3.2). This theoretical foundation provides a principled basis for valid statistical inference, enabling the construction of confidence intervals and hypothesis testing.

Extensive empirical validation. We conduct extensive experiments on both synthetic and real-world data, covering regression and classification tasks. Synthetic experiments systematically vary correlation strength, sample size, and data-generating processes (Section 4.1 and appendix E.1). Across nine real-world datasets spanning multiple domains and tasks (Section 4.3 and appendix E.2), FDFI produces robust and clinically interpretable importance profiles, consistently outperforming existing methods in identifying influential features under complex dependency structures.

108 1.2 RELATED WORK
109

110 **Model-agnostic feature attributions.** A central goal of explainable AI is to develop model-agnostic
111 methods for quantifying feature importance. Permutation approaches (Breiman, 2001; Janitzka et al.,
112 2018) remove information by randomly shuffling a variable, but were originally introduced as algo-
113 rithmic heuristics without statistical guarantees. One refinement is Conditional Permutation Impor-
114 tance (CPI) (Strobl et al., 2008; Hooker et al., 2021) that improves robustness through conditional
115 resampling, and recent works (Chamma et al., 2023; Lobo et al., 2025) further explore the statistical
116 inference problem. In parallel, Leave-One-Covariate-Out (LOCO) defines importance as the change
117 in predictive risk when a variable is removed, which naturally supports statistical inference (Lei
118 et al., 2018; Rinaldo et al., 2019; Verdinelli & Wasserman, 2024b). In contrast, Shapley-value meth-
119 ods, originating from cooperative game theory (Shapley, 1953) and popularized in machine learning
120 through SHAP (Lundberg & Lee, 2017), provide an axiomatic framework that ensures fairness and
121 additivity; however, exact computation and statistical inference remain challenging. Subsequent
122 work shows that SHAP values can be expressed as weighted averages of LOCO estimands under
123 squared-error loss, thereby linking the two paradigms (Williamson & Feng, 2020). Despite these
124 methodological advances, all approaches remain sensitive to collinearity, often underestimate the
125 importance of correlated features (Verdinelli & Wasserman, 2024a).

126 **Feature importance under correlated predictors.** A growing body of work has sought to address
127 the correlation distortion that undermines classical feature importance measures (Iooss & Prieur,
128 2019; Williamson & Feng, 2020; Williamson et al., 2021; Verdinelli & Wasserman, 2024b). Be-
129 yond conditional resampling strategies, a complementary line of work leverages knockoff construc-
130 tions and conditional randomization tests to control the false discovery rate of variable selection
131 (Candes et al., 2018; Gimenez et al., 2019; Mason & Fei, 2025); however, this differs from our
132 objective of quantifying the marginal importance of features. A conceptually distinct direction is
133 Disentangled Feature Importance (DFI) (Du et al., 2025), as a nonparametric extension of classic
134 R^2 -decomposition under linear models with correlated features (Genizi, 1993). It maps correlated
135 predictors into an independent latent space via OT, computes importance in this disentangled repre-
136 sentation, and attributes the results back to the original variables. However, DFI is less flexible for
137 mapping between complex high-dimensional distributions and is also restricted to the square loss.
138

139 2 PRELIMINARIES
140141 2.1 FOUNDATIONAL FEATURE IMPORTANCE MEASURES
142

143 Let $(X, Y) \in \mathbb{X} \times \mathbb{Y} \subseteq \mathbb{R}^d \times \mathbb{R}$ be a random vector representing features and a target variable. For a
144 loss function $\ell : \mathbb{Y} \times \mathbb{Y} \rightarrow \mathbb{R}_+$, the risk of the model is defined as $R(f; X, Y) = \mathbb{E}[\ell(Y, f(X))]$. For
145 any $j \in \{1, \dots, d\}$, we denote by $X_{-j} = (X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_d)$ the feature vector except
146 X_j and $X^{(j)} = (X_1, \dots, X_{j-1}, \tilde{X}_j, X_{j+1}, \dots, X_d)$ the feature vector with j th feature replaced by
147 $\tilde{X}_j \sim p(X_j | X_{-j})$ independent of Y and X_j conditional on X_{-j} . For a given loss function ℓ , we
148 study the behavior of a prediction model $f : \mathbb{X} \rightarrow \mathbb{Y}$. In particular, we focus on the analysis of the
149 Bayes optimal predictors whose prediction values are defined as
150

$$f(x) = \operatorname{argmin}_{y \in \mathbb{Y}} \mathbb{E}[\ell(Y, y) | X = x] \quad \text{and} \quad f_{-j}(x_{-j}) = \operatorname{argmin}_{y \in \mathbb{Y}} \mathbb{E}[\ell(Y, y) | X_{-j} = x_{-j}].$$

151 There are various types of importance measures. Below, we restrict our analysis to three basic ones.
152

- 153 • Leave-One-Covariate-Out Importance (LOCO) (Lei et al., 2018) that measures the increase in risk
154 when the model is retrained without feature j :

$$\phi_{X_j}^{\text{LOCO}} = R(f_{-j}; X_{-j}, Y) - R(f; X, Y).$$

155 In particular, the Shapley value with prediction error as the value function can be expressed as a
156 weighted average of LOCO estimators over all subsets (Verdinelli & Wasserman, 2024b).
157

- 158 • Conditional Permutation Importance (CPI) (Hooker et al., 2021; Lobo et al., 2025) that measures
159 the increase in error when a feature is replaced by a random draw from its conditional distribution:

$$\phi_{X_j}^{\text{CPI}} = \frac{1}{2} [R(f; X^{(j)}, Y) - R(f; X, Y)].$$

162 • Sobol-Conditional Permutation Importance (SCPI) (Lobo et al., 2025) that measures the portion
 163 of the model’s prediction variance attributable to a feature, conditional on other features:
 164

165 $\phi_{X_j}^{\text{SCPI}} = R(g_j; X_{-j}, Y) - R(f; X, Y),$
 166

167 where $g_j(X_{-j}) = \mathbb{E}[f(X^{(j)}) \mid X_{-j}]$ is the condition mean of prediction through f given X_{-j} .
 168

169 For a general function, $f_{-j}(X_{-j})$ and $g_j(X_{-j})$ may not be identical. Their difference gives rise
 170 to the distinction between LOCO and CPI. We first establish an exact identity that decomposes the
 171 difference $|\phi_{X_j}^{\text{LOCO}} - \phi_{X_j}^{\text{CPI}}|$ into interpretable components, which requires Assumption A1.
 172

173 **Assumption A1** (Loss function). *Let the loss function $\ell : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_+$ be a function of the true
 174 label y and the prediction \hat{y} . We assume the function $\ell(y, \cdot)$ is convex and differentiable with respect
 175 to its second argument for any fixed y . Furthermore, $\ell(y, \cdot)$ is M -smooth, i.e., $|\partial^2 \ell(y, \hat{y}) / \partial \hat{y}^2| \leq M$.*
 176

177 This assumption imposes standard regularity conditions for analyzing the risk functional. Convexity
 178 and differentiability ensure that the Bayes predictors are well-defined minimizers of the expected
 179 loss. The smoothness condition controls the second-order variability and holds for loss functions
 180 (e.g., the ℓ_2 loss $\ell(y, \hat{y}) = (y - \hat{y})^2$, the binary cross-entropy loss defined on the logit scale); **though
 181 it is not needed for the FDFI framework we introduce in the next section**. Under this assumption, an
 182 identity involving LOCO and CPI is given in the following theorem.

183 **Theorem 2.1** (Bound on LOCO and CPI Discrepancy). *Under Assumption A1, the difference be-
 184 tween LOCO and CPI can be decomposed into two components:*

185
$$\phi_{X_j}^{\text{LOCO}} - \phi_{X_j}^{\text{CPI}} = E_{\text{MIE}} - E_{\text{approx}}, \quad (1)$$

186 where $E_{\text{MIE}} := \frac{1}{2}(\phi_{X_j}^{\text{SCPI}} - J_g)$ is the model interaction effect and $E_{\text{approx}} := R(g_j) - R(f_{-j})$ is the
 187 approximation error, and $J_g := \mathbb{E}[\ell(Y, f(X^{(j)}))] - R(g_j)$ is the Jensen gap. The absolute difference
 188 is bounded by:

189
$$|\phi_{X_j}^{\text{LOCO}} - \phi_{X_j}^{\text{CPI}}| \leq E_{\text{approx}} + |E_{\text{MIE}}|,$$

190 where individual components can be further upper-bounded by

191
$$E_{\text{approx}} \leq \frac{M}{2} \|g_j - f_{-j}\|_{L_2}^2, \quad |E_{\text{MIE}}| \leq \frac{M}{2} \mathbb{E}[\mathbb{V}(f(X) \mid X_{-j})].$$

 192

193 The approximation error E_{approx} quantifies the suboptimality from using the averaged model g_j
 194 instead of the actual optimal model f_{-j} , while the Jensen gap J_g quantifies the risk difference due
 195 to the convexity of the loss function, based on Jensen’s inequality. The term E_{MIE} precisely captures
 196 the discrepancy that arises from using a general loss function instead of the ℓ_2 loss. For the ℓ_2 loss,
 197 where $M = 2$, one has $J_g = \phi_{X_j}^{\text{SCPI}} = \mathbb{E}[\mathbb{V}(f(X) \mid X_{-j})]$. Substituting these into the definition
 198 yields $E_{\text{MIE}} \equiv 0$. Since E_{approx} is also zero for the ℓ_2 loss (as $g_j = f_{-j}$), the bound is tight. These
 199 results are summarized in Lemma 2.2.

200 **Lemma 2.2** (Equivalence of LOCO, CPI, and SCPI for ℓ_2 loss). *For the ℓ_2 loss $\ell(y, \hat{y}) = (y - \hat{y})^2$,
 201 the Bayes optimal predictor f satisfies $g_j = f_{-j}$. Further, the identity (1) in Theorem 2.1 equals
 202 zero, yielding an exact equivalence: $\phi_{X_j}^{\text{LOCO}} = \phi_{X_j}^{\text{CPI}} = \phi_{X_j}^{\text{SCPI}} = \mathbb{E}[\mathbb{V}(f(X) \mid X_{-j})]$.*

203 Despite their equivalence under the ℓ_2 loss, all three measures share a fundamental limitation: they
 204 suffer from *correlation distortion* when predictors are collinear. These methods cannot disentangle
 205 the predictive contribution of a feature from the shared signal of its statistical dependents, causing
 206 the importance scores to be diluted or masked and yielding ambiguous attributions (Verdinelli &
 207 Wasserman, 2024a;b). For example, as shown by Du et al. (2025, Example 5), given a linear model
 208 $Y = X_1 + X_2 + \epsilon$ where features X_1 and X_2 are near-perfectly correlated ($X_1 \approx X_2$), the above
 209 methods would assign near-zero importance to X_1 (since removing it causes minimal performance
 210 drop, as X_2 retains all predictive information) and, symmetrically, near-zero importance to X_2 . This
 211 contradicts the fact that X_1 and X_2 are both critical.

216 2.2 DISENTANGLED FEATURE IMPORTANCE
217

218 To overcome this limitation, disentangled feature importance (DFI) (Du et al., 2025) was introduced
219 to attribute importance scores while accounting for correlation under an ℓ_2 loss. More specifically,
220 DFI seeks a Gaussian optimal transport map $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that $Z = T(X)$ has *independent*
221 coordinates, ideally matching a simple reference distribution such as multivariate Gaussian $\mathcal{N}_d(0, I)$.
222 Without loss of generality, we assume Z_j has zero mean and unit variance for all $j = 1, \dots, d$. Once
223 the disentangled representation is obtained, the latent DFI score $\phi_{Z_j}^{\text{DFI}}$ for Z_j is defined as:

$$224 \phi_{Z_j}^{\text{DFI}} := \mathbb{E} [\mathbb{V}(f(X) \mid Z_{-j})] = \mathbb{E} [\mathbb{V}(\eta(Z) \mid Z_{-j})], \quad (2)$$

226 where $\mu(x) = \mathbb{E}[Y \mid X = x]$ and $\eta(z) := \mu(T^{-1}(z))$ denote the regression functions in the latent
227 and feature spaces, respectively. This measure aligns with both LOCO and CPI, except that it is
228 defined in terms of the latent feature Z rather than the raw feature X . The DFI score $\phi_{X_l}^{\text{DFI}}$ for each
229 original feature X_l by transferring importance from the disentangled features Z back to X through
230 the sensitivity of Z_j with respect to X_l . Formally, the original DFI measure for the ℓ_2 loss is

$$231 \phi_{X_l}^{\text{DFI}} := \sum_{j=1}^d \mathbb{E} \left[\mathbb{V}(f(X) \mid Z_{-j}) \left(\frac{\partial X_l}{\partial Z_j} \right)^2 \right], \quad (3)$$

234 where $\partial X_l / \partial Z_j$ denotes the partial derivative of $X_l = e_l^\top T^{-1}(Z)$ with respect to Z_j . The inner
235 term $\mathbb{V}(\eta(Z) \mid Z_{-j})$ is the first-order Sobol index of Z_j , representing the “intrinsic” predictive
236 signal uniquely attributable to that disentangled direction. Multiplying by $(\partial X_l / \partial Z_j)^2$ gauges how
237 strongly fluctuations in Z_j are expressed through X_l ; integrating over the data distribution, averages
238 these local sensitivities into a global importance score. Thus, $\phi_{X_l}^{\text{DFI}}$ quantifies how much of the
239 irreducible signal carried by all latent directions is channelled through X_l .

240 While DFI provides an alternative strategy for attribution under dependence, its formulation presents
241 two key limitations that motivate our work: (i) By defining latent importance via conditional variance
242 (2), the framework is intrinsically restricted to the ℓ_2 loss, precluding its application to classification
243 tasks or models using general differentiable loss functions; and (ii) The reliance of DFI on optimal
244 transport maps to learn the transformation T can be computationally intensive and less flexible for
245 mapping the complex, high-dimensional distributions encountered in modern machine learning.

246 3 FLOW-BASED DISENTANGLED FEATURE IMPORTANCE
247248 3.1 MODEL-AGNOSTIC DFI WITH GENERAL LOSS FUNCTIONS
249

251 To extend DFI beyond the ℓ_2 loss, we generalize its two core components: the latent importance
252 measure and the attribution rule. First, we require a latent importance measure ϕ_{Z_j} that is well-
253 defined for a general loss function ℓ . For each disentangled feature Z_j , we define the latent FDFI
254 score as the expected increase in risk upon resampling its values conditional on other latent features:

$$255 \phi_{Z_j}^{\text{FDFI}} := \mathbb{E}[\omega(O; T)], \text{ where } \omega(O; T) = \frac{1}{2} \left[\ell(Y, f(T^{-1}(Z^{(j)}))) - \ell(Y, f(T^{-1}(Z))) \right].$$

257 Here, $O = (X, Y)$ is the observation, $Z^{(j)}$ is the latent vector with its j -th coordinate $Z_j^{(j)}$ resampled
258 from $p(Z_j)$, and T is the nuisance transport map.

260 Second, we generalize the aggregation rule in (3). The original formulation weights the intrinsic
261 signal of Z_j quantified by the conditional variance $\mathbb{V}(f(X) \mid Z_{-j})$ by a sensitivity term. The
262 squared Jacobian is based on a first-order approximation of the geometric influence of the latent
263 variables on the original features. This sensitivity term is a property of the transport map T itself,
264 independent of the specific loss function. For a general loss, the analogous measure of intrinsic
265 signal is the conditional expected increase in loss $\mathbb{E}[\omega(O; T) \mid Z_{-j}]$. By substituting this term for
266 the conditional variance, we obtain a natural generalization:

$$267 \phi_{X_l}^{\text{FDFI}} := \sum_{j=1}^d \mathbb{E} \left[\mathbb{E} [\omega(O; T) \mid Z_{-j}] \left(\frac{\partial X_l}{\partial Z_j} \right)^2 \right]. \quad (4)$$

269 This definition is a principled extension, and it recovers DFI (3) under ℓ_2 loss; see Appendix A.3.

270 3.2 DISENTANGLED TRANSFORMATION WITH PROBABILISTIC FLOW
271

272 To overcome the limitation of (Gaussian) optimal transport, we utilize flow matching to learn a
273 vector field that transports between a target distribution X into a simple source distribution Z (Lip-
274 man et al., 2022). Suppose that ρ_0 and ρ_1 are the densities for the source and target distributions,
275 respectively. This amounts to constructing $U_t : \mathbb{R}^d \rightarrow \mathbb{R}^d$ such that if $u \sim \rho_0$, then $U_t(u) \sim \rho_t$ for
276 some density satisfying $\rho_{t=0} = \rho_0$, $\rho_{t=1} = \rho_1$. In particular, a velocity field v_t is used to construct
277 the flow $U_t(u)$ of the ordinary differential equation:

$$278 \quad \frac{d}{dt} U_t(u) = v_t(U_t(u)), \quad U_0(u) = u.$$

280 *Flow matching* (Lipman et al., 2022; Liu et al., 2022) was proposed to efficiently learn a regression-
281 based vector field along a predefined probability path. The central idea is to define an interpolation
282 between $U_0 \sim \rho_0$ and $U_1 \sim \rho_1$, typically in the form $U_t = (1-t)U_0 + tU_1$, $t \in [0, 1]$. The velocity
283 field for flow matching Lipman et al. (2022; 2024) is defined as

$$285 \quad v_t \in \arg \min_{w_t \in L_2(\rho_t)} \mathcal{L}(w_t | U_0, U_1), \text{ where } \mathcal{L}(w_t | U_0, U_1) := \int_0^1 \mathbb{E} \left[\|w_t(U_t) - U_1 + U_0\|^2 \right] dt.$$

287 The above optimization problem admits a unique minimizer and can be formulated as $v_t(u) =$
288 $\mathbb{E}[U_1 - U_0 | U_t = u]$ (Lipman et al., 2022; Liu et al., 2022; Hertrich et al., 2025), which further
289 guarantees a unique map U_t by Theorem B.1. Hence, we can define FDFI (4) relative to this unique
290 flow map $T := U_1$ (not necessarily an optimal transport map) that transforms the original feature X
291 to the latent feature Z , rather than discovering a single ground-truth importance. Let \widehat{U}_t be the flow
292 map obtained by solving the above ODE with v_t replaced with \widehat{v}_t . Then, the estimated transport map
293 can be represented by $\widehat{T} := \widehat{U}_1$. In particular, since the disentangled flow does not require labels,
294 we can utilize independent, and potentially much larger, auxiliary unlabeled data to estimate T .
295

296 3.3 STATISTICAL ESTIMATION AND INFERENCE
297

298 After we obtain \widehat{T} from auxiliary samples, we construct an estimator for $\phi_{Z_j}^{\text{FDFI}}$ using a set of n i.i.d.
299 samples $\{O_i\}_{i=1}^n$. For each data point $O_i = (X_i, Y_i)$, let $\widehat{Z}_i = \widehat{T}(X_i)$. The estimator is defined as:

$$301 \quad \widehat{\phi}_{Z_j}^{\text{FDFI}} := \frac{1}{n} \sum_{i=1}^n \left[\left(\frac{1}{2M} \sum_{k=1}^M \left[\ell(Y_i, f(\widehat{T}^{-1}(\widehat{Z}_i^{(j,k)}))) - \ell(Y_i, f(\widehat{T}^{-1}(\widehat{Z}_i))) \right] \right) \right], \quad (5)$$

304 where $\{\widehat{Z}_i^{(j,k)}\}_{k=1}^M$ is generated by resampling the j -th coordinate of \widehat{Z}_i . We analyze this as a cross-
305 fit estimator for the parameter $\phi_{Z_j}^{\text{FDFI}}$ defined in (2).

307 Before stating the main result, we briefly summarize the standing assumptions presented in Ap-
308 pendix C.1. Assumption A2 imposes basic identifiability and regularity conditions ensuring that the
309 latent representation and associated flow are well-defined. Assumption A3 collects smoothness and
310 integrability requirements on the velocity field v_t that guarantee existence and stability of the flow
311 T and its inverse. Assumption A4 (i)–(iii) encode the loss differentiability and standard complex-
312 ity/rate conditions on the nuisance estimators, which together ensure the pathwise differentiability
313 of $\phi_{Z_j}^{\text{FDFI}}(\mathbb{P})$ and that the remainder of the cross-fit estimator is $o_{\mathbb{P}}(n^{-1/2})$.
314

Theorem 3.1 (Asymptotic efficiency of latent FDFI). *Assume that Assumptions A2–A4 (i)–(iii) hold.*

If the nuisance estimator satisfies $\sqrt{\int_0^1 \|v_t - \widehat{v}_t\|_{L_2}^2 dt} = o_{\mathbb{P}}(n^{-1/4})$, then the cross-fit estimator
 $\widehat{\phi}_{Z_j}^{\text{FDFI}}$ given in Algorithm D.1 is asymptotically linear. It satisfies the expansion:

$$319 \quad \widehat{\phi}_{Z_j}^{\text{FDFI}} - \phi_{Z_j}^{\text{FDFI}}(\mathbb{P}) = (\mathbb{P}_n - \mathbb{P})\{\varphi_{Z_j}(O; \mathbb{P})\} + o_{\mathbb{P}}(n^{-1/2}),$$

320 where the efficient influence function (EIF) $\varphi_{Z_j}(O; \mathbb{P})$ is given by:

$$322 \quad \varphi_{Z_j}(O; \mathbb{P}) := \omega(O; T) - \phi_{Z_j}^{\text{FDFI}}(\mathbb{P}). \quad (6)$$

324 Consequently, $\sqrt{n}(\hat{\phi}_{Z_j}^{\text{FDFI}} - \phi_{Z_j}^{\text{FDFI}}) \xrightarrow{d} \mathcal{N}(0, \mathbb{V}\{\varphi_{Z_j}(O; \mathbb{P})\})$ under the alternative $\mathcal{H}_{1j} : \phi_{Z_j}^{\text{FDFI}}(\mathbb{P}) \neq 0$.
 325

326 Theorem 3.1 establishes semiparametric efficiency under the Neyman orthogonality condition that
 327 the estimand $\phi_{Z_j}^{\text{FDFI}}$ is locally insensitive to first-order errors in the estimation of the nuisance transport
 328 map T . Consequently, the EIF (6) is identical to the EIF one would obtain if the actual map T were
 329 known a priori. This permits us to use a flexible nonparametrically estimated \hat{T} (or equivalently the
 330 velocity field \hat{v}_t through flow matching), which may converge at a rate slower than $n^{-1/2}$, and still
 331 achieve a \sqrt{n} -consistent, asymptotically normal, and efficient estimator for the latent importance
 332 $\phi_{Z_j}^{\text{FDFI}}$. Without this property, the EIF would contain a complex correction term accounting for the
 333 influence of estimating T , as shown in Appendix C.2.
 334

335 To construct Wald-based confidence intervals for $\phi_{Z_j}^{\text{FDFI}}$, we estimate the asymptotic covariance
 336 $\mathbb{V}\{\varphi_{Z_j}(O; \mathbb{P})\}$ by plugging in consistent estimators of T in (6) and evaluating the sample variance
 337 over independent observations. If $\phi_{Z_j}^{\text{FDFI}} = 0$, the observation contribution to the asymptotic variance
 338 will be zero, which leads to additional complications that we discuss further in Appendix D.3.2.
 339

340 A cross-fit estimator can also be used to estimate the importance $\phi_{X_l}^{\text{FDFI}}$ defined in (4) for raw features:

$$341 \quad \hat{\phi}_{X_l}^{\text{FDFI}} := \sum_{j=1}^d \frac{1}{n} \sum_{i=1}^n \left[\frac{1}{2M} \sum_{k=1}^M \left[\ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i^{(j,k)}))) - \ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i))) \right] \hat{H}_{jl}(\hat{Z}_i) \right], \quad (7)$$

344 where $\hat{H}_{jl}(Z) = [\nabla \hat{T}^{-1}(Z)]_{jl}^2$ is the square of estimated Jacobian of X_l with respect to Z_j . The
 345 statistical properties of this estimator are analyzed in the following proposition. **In addition to the**
 346 **conditions of Theorem 3.1, Assumption A4 (iv) is a mild strengthening of the complexity require-**
 347 **ment that ensures uniform convergence of the plug-in estimator of the flow estimator \hat{T} .**
 348

349 **Proposition 3.2** (Statistical inference of ϕ_{X_l}). *Assume conditions in Theorem 3.1 and Assump-*
 350 *tion A4 (iv) hold. Then, the estimator $\hat{\phi}_{X_l}^{\text{FDFI}}$ is asymptotically normal under $\mathcal{H}_{1l} : \phi_{X_l}^{\text{FDFI}}(\mathbb{P}) \neq 0$:*
 351

$$352 \quad \sqrt{n}(\hat{\phi}_{X_l}^{\text{FDFI}} - \phi_{X_l}^{\text{FDFI}}(\mathbb{P})) \xrightarrow{d} \mathcal{N}(0, \mathbb{V}\{\varphi_{X_l}(O; \mathbb{P})\}),$$

354 where $\varphi_{X_l}(O; \mathbb{P}) = \sum_{j=1}^d \varphi_{jl}(O; \mathbb{P})$ is the EIF for $\phi_{X_l}^{\text{FDFI}}(\mathbb{P})$ and φ_{jl} is the EIF for the
 355 component $\phi_{jl} = \mathbb{E}[\omega_j(O; T)H_{jl}(X)]$, defined as $\varphi_{jl}(O; \mathbb{P}) := (\omega_j(O; T)H_{jl}(X) - \phi_{jl}) +$
 356 $\text{Cov}(\omega_j(O; T), \text{IF}_{H_{jl}}(O; \cdot))$, where $\text{IF}_{H_{jl}}$ is the influence function of H_{jl} .
 357

358 Proposition 3.2 provides inferential tools for the final FDFI scores. The EIF φ_{jl} for component at-
 359 tribution from Z_j to X_l induces a more complex structure than its latent counterpart in Theorem 3.1.
 360 It consists of two parts: (i) a first-order approximation term, $\omega_j(O; T)H_{jl}(X) - \phi_{jl}$, which repre-
 361 sents the pointwise importance score centered by its mean, and (ii) a second-order correction term,
 362 $\text{Cov}(\omega_j(O; T), \text{IF}_{H_{jl}}(O; \cdot))$, which arises because the squared Jacobian term \hat{H}_{jl} is also estimated
 363 from data. The form of covariance reveals that the bias is driven by the covariance between point-
 364 wise importance scores and the point-wise influence on the map’s estimated geometry. Since \hat{H}_{jl}
 365 is estimated on the auxiliary sample of size m , its influence function $\text{IF}_{H_{jl}}$ is of order $\mathcal{O}_{\mathbb{P}}(m^{-1/2})$.
 366 **When m is large, the correction term is negligible, and approximate EIF can be used for practical**
 367 **inference (see Appendix D.3.1).** Algorithm 1 outlines a statistical inference procedure using FDFI.
 368

369 4 EXPERIMENTS

371 4.1 THE IMPACT OF DISENTANGLEMENT

373 We evaluate the performance of LOCO, CPI, DFI, FDFI (SCPI), and FDFI (CPI) on identifying
 374 important raw features X_l ’s across varying feature correlation strengths and sample sizes through
 375 simulations. DFI uses the Gaussian optimal transport map, while the two variants of FDFI estimators
 376 given in (14) and (15) use flow matching. The simulated data is generated from a nonlinear response
 377 model $y = \arctan(X_0 + X_1) \mathbb{1}_{\{X_2 > 0\}} + \sin(X_3 X_4) \mathbb{1}_{\{X_2 < 0\}} + \epsilon$ with $X \sim \mathcal{N}_{50}(0, \Sigma(\rho))$ and $\epsilon \sim$
 $\mathcal{N}(0, 1)$. The covariance matrix $\Sigma(\rho) := I_5 \otimes \Sigma_{\rho} \in \mathbb{R}^{50 \times 50}$ consists of 5 blocks of the equicorrelated

378 **Algorithm 1 FDFI (brief).** See Algorithm D.1 for full pseudocode and implementation details.
 379
 380 **Require:** Labeled data $\mathcal{D}_{\text{est}} = \{(X_i, Y_i)\}_{i=1}^n$; black-box predictor f and loss ℓ ; independent unlabeled covariates $\mathcal{D}_X = \{\tilde{X}_i\}_{i=1}^m$; flow training routine \mathcal{M} ; and other hyperparameters.
 381
 382 **Ensure:** Latent importance scores $\{\hat{\phi}_{Z_j}\}_{j=1}^d$ and original feature scores $\{\hat{\phi}_{X_l}\}_{l=1}^d$, with p-values.
 383 1: **Step 1: Disentangled representation.** Train the flow on \mathcal{D}_X to obtain a transport map $\hat{T} = \mathcal{M}(\mathcal{D}_X)$ such that $Z = \hat{T}(X)$ has approximately independent coordinates. For each labeled point X_i , set $\hat{Z}_i := \hat{T}(X_i)$, $J_i := \nabla \hat{T}^{-1}(z)|_{z=\hat{Z}_i}$, and $\hat{H}_{jl}(\hat{Z}_i) := (J_i)_{lj}^2$ for $j, l \in \{1, \dots, d\}$.
 384 2: **Step 2: Point-wise latent perturbations.** For each observation index $i \in \{1, \dots, n\}$ and latent coordinate $j \in \{1, \dots, d\}$, construct perturbed latent vectors $\{\hat{Z}_i^{(j,k)}\}_{k=1}^M$ by resampling only the j -th coordinate of \hat{Z}_i from the reference p_{Z_j} , keeping all other coordinates fixed. Define the point-wise latent score $\Omega_{ij} := \frac{1}{2M} \sum_{k=1}^M \left\{ \ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i^{(j,k)}))) - \ell(Y_i, f(X_i)) \right\}$.
 385 3: **Step 3: Attribution to original features.** For each observation i and original feature index $l \in \{1, \dots, d\}$, aggregate latent scores: $\Psi_{il} := \sum_{j=1}^d \Omega_{ij} \hat{H}_{jl}(\hat{Z}_i)$.
 386 4: **Step 4: Latent importance and inference.** For each latent coordinate j , compute $\hat{\phi}_{Z_j} := \frac{1}{n} \sum_{i=1}^n \Omega_{ij}$ in (5) and one-sided p-values based on estimated EIF components.
 387 5: **Step 5: Original feature importance and inference.** For each original feature index l , compute $\hat{\phi}_{X_l} := \frac{1}{n} \sum_{i=1}^n \Psi_{il}$ in (7) and one-sided p-values based on its approximate EIF.
 388 6: **return** Importance scores and p-values.

399 matrix $\Sigma_\rho \in \mathbb{R}^{10 \times 10}$ with correlation coefficient ρ , i.e., $(\Sigma_\rho)_{ij} = 1$ if $i = j$ and ρ otherwise. The
 400 $d = 50$ features are partitioned into three non-overlapping subsets $\{1, \dots, d\} = \cup_{\ell=1}^3 \mathcal{C}_\ell$. Based
 401 on the response model, $\mathcal{C}_1 = \{0, \dots, 4\}$ contains the *active features* that directly generate y . The
 402 set $\mathcal{C}_2 = \{5, \dots, 9\}$ contains features from the first correlation block that are *correlated nulls*,
 403 i.e., dependent on \mathcal{C}_1 but with no direct predictive effect. The set $\mathcal{C}_3 = \{10, \dots, 49\}$ contains the
 404 remaining *independent null features* from the other four blocks.

405 We evaluate all methods based on four key metrics: (1) AUC (Area Under the ROC Curve) on
 406 $\mathcal{C}_1 \cup \mathcal{C}_3$, (2) Power on \mathcal{C}_1 , (3) Power on $\mathcal{C}_1 \cup \mathcal{C}_2$, and (4) Type I error on \mathcal{C}_3 . AUC is computed by
 407 treating the estimated feature importance scores as prediction values and the ground-truth feature
 408 labels (informative = 1, null = 0) as binary outcomes. For statistical inference, we test H_{0j} : feature
 409 X_j is not important versus H_{1j} : feature X_j is important for each feature j . Based on a p-value P_j ,
 410 statistical power is defined as the probability of rejecting the null when H_{1j} is true, and type-I error
 411 is the probability of incorrectly rejecting H_{0j} when it is true, i.e., declaring a null feature significant:

$$412 \text{Power} = \mathbb{P}(P_j \leq \alpha \mid H_{1j} \text{ is true}), \quad \text{Type I Error} = \mathbb{P}(P_j \leq \alpha \mid H_{0j} \text{ is true}).$$

413 In all experiments, we present results using random forests (Breiman, 2001) as the regressor/classifier for clarity, while additional comparisons with alternative predictors (Lasso and neural networks) and with more complex dependency structures are provided in Appendices E.1.1–E.1.3.

414 As shown in Figure 2, all methods control the Type-I error at the nominal 5% level on the independent
 415 null features (\mathcal{C}_3) as expected. However, FDFI and DFI consistently outperform LOCO and
 416 CPI, attaining higher AUC and statistical power. Their performance is notably robust to increasing
 417 correlation, whereas LOCO and CPI’s performance degrades significantly. Though both FDFI
 418 variants (SCPI and CPI) are theoretically equivalent under the ℓ_2 loss (Lemma 2.2), the CPI variant
 419 demonstrates superior finite-sample power in low-sample or low-correlation regimes; we thus
 420 select FDFI (CPI) as the representative method for subsequent experiments. These results demon-
 421 strate the effectiveness of disentanglement as a reliable and powerful approach for assessing feature
 422 importance.

423 4.2 VALIDATION ON RNA-SEQUENCING DATASETS

424 To further validate FDFI’s performance with high-dimensional and complex correlated features,
 425 we evaluate it on two RNA-seq datasets: (i) the TCGA-PANCAN-HiSeq bulk RNA-seq dataset
 426 ($n = 801$, $d = 20531$) for classifying five tumor types (BRCA, KIRC, COAD, LUAD, PRAD)
 427 (Weinstein et al., 2013); and (ii) a human single-cell RNA-seq dataset ($n = 632$, $d = 23257$) dis-
 428 tinguishing neoplastic cells from tumor core versus periphery (Darmanis et al., 2017). In practice, a

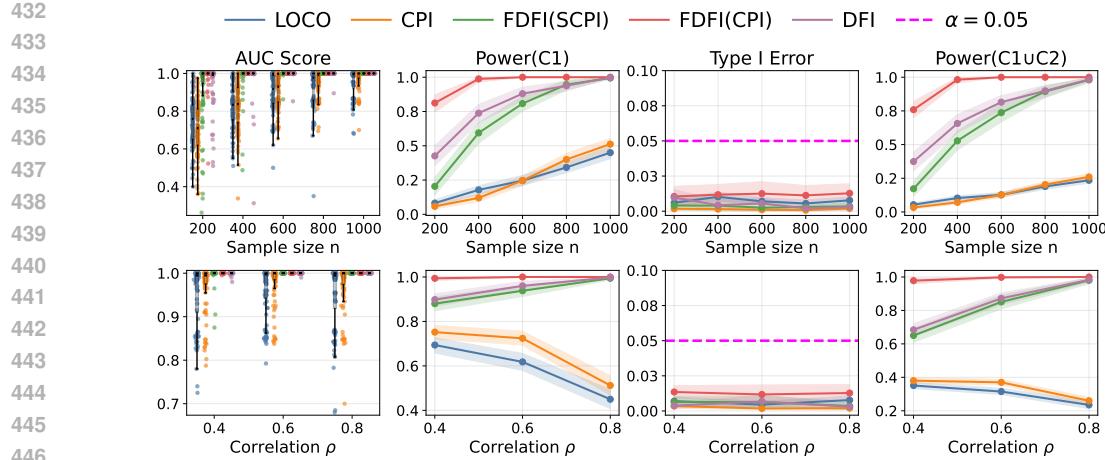


Figure 2: Simulation results of Section 4.1. Top: varying sample size with fixed $\rho = 0.8$. Bottom: varying correlation with fixed $n = 1000$. We report AUC, power, and type-I error for each method over 100 runs. Shaded regions denote 95% bootstrap confidence intervals, and the dashed line indicates the nominal type-I error level ($\alpha = 0.05$).

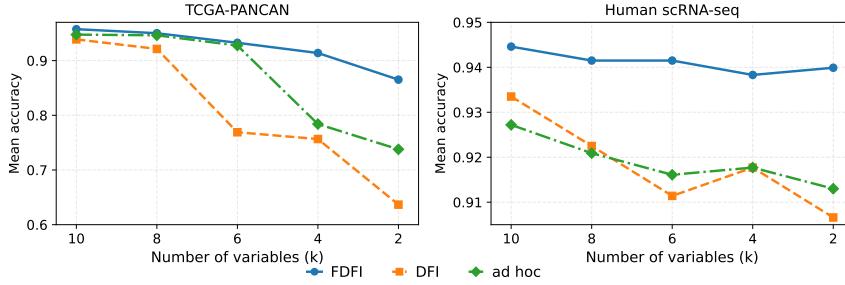


Figure 3: Prediction accuracy vs. top-k selected variables across two RNA-seq datasets.

common ad-hoc approach for mitigating multicollinearity is to apply CPI or LOCO after hierarchical clustering. We select highly variable genes and compare the average prediction accuracy across datasets for important features selected by FDFI, DFI, and the ad-hoc approach, using two-fold splits and reporting the mean accuracy for each dataset; see Appendix E.2.5 for further details. As shown in Figure 3, FDFI consistently outperforms both DFI and the ad hoc method, highlighting its superiority in identifying more predictive and biologically representative gene sets; see Appendix E.2.5 for specific biomarkers identified by FDFI and their clinical relevance.

4.3 CASE STUDY ON CARDIOTOCOGRAPHY DATASET

In clinical applications, feature dependency is ubiquitous, and decisions are high-stakes, making reliable interpretability essential for clinical decision support. To evaluate FDFI’s practical utility, we focus here on the Cardiotocography (CTG) dataset ($n = 2126, d = 21$) for a case study, which uses fetal heart rate (FHR) and uterine contraction (UC) features to classify fetal state (normal $y = 0$, non-normal $y = 1$) (Campos & Bernardes, 2000). We evaluate feature importance with the binary cross-entropy loss: $l(y, \hat{y}) = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$. Additional large-scale real data studies, covering diverse domains and high-dimensional settings, are provided in Appendix E.2.

On the CTG dataset, nonlinear feature correlations cause LOCO and CPI to identify only a few essential features, whereas FDFI demonstrates substantially higher statistical power (Figure E7). Figure 4(a) visualizes the FDFI attribution pipeline: latent importance scores (left bar plot) are mapped via the squared Jacobian heatmap to produce the final FDFI scores. The heatmap $(\partial X_l / \partial Z_j)^2$ reveals the first-order influences among features, capturing a strong block-diagonal relationship among the FHR histogram features *LB*, *Mean*, *Mode*, and *Median*, which shows how the predictive importance from underlying latent features is distributed across correlated features.

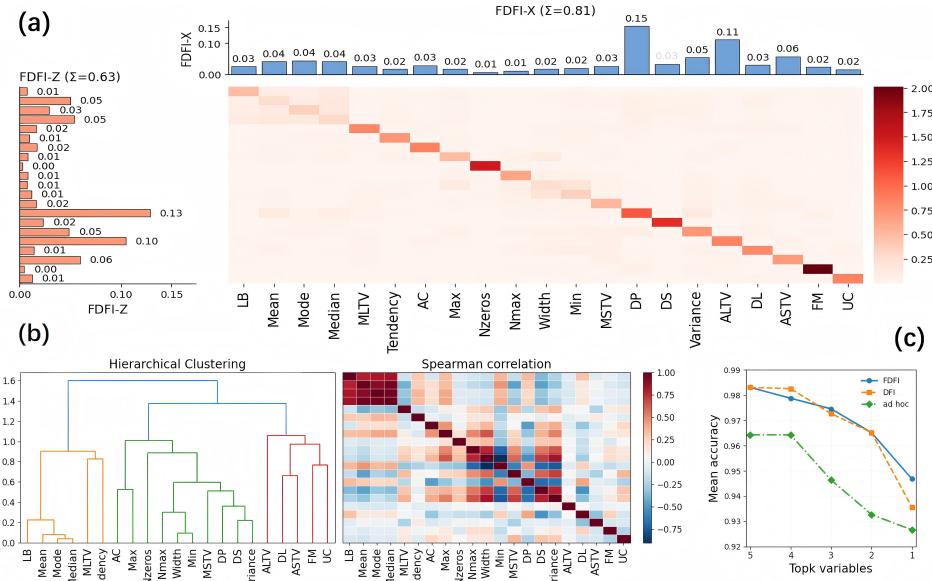


Figure 4: Data analysis of the CTG dataset. (a) FDFI estimation. Barplots show the estimated latent importance scores $\phi_{Z_j}^{\text{FDFI}}$ (left) and original importance scores $\phi_{X_l}^{\text{FDFI}}$ (top). The heatmap shows the squared Jacobian weight $(\partial X_l / \partial Z_j)^2$. (b) Hierarchical clustering results based on Spearman correlation. (c) Prediction accuracy with selected important features for FDFI, DFI, and an ad hoc method that applies CPI on the cluster-representative features.

As illustrated in Figure 4(b), the ad-hoc approach clusters features using Spearman correlation and selects a medoid to represent each cluster. However, choosing the top- k features with FDFI or DFI achieves higher predictive accuracy than relying on cluster representatives from the ad-hoc method (Figure 4(c)). Moreover, FDFI consistently outperforms DFI, underscoring the benefit of its flexible flow-based mapping over DFI’s more restrictive Gaussian assumption.

5 CONCLUSION

We introduce a model-agnostic framework, FDFI, that uses flow matching to assist feature importance attribution under general differentiable loss functions. We establish the semiparametric efficiency of our FDFI estimators and provide valid statistical inference. Empirically, FDFI resolves the correlation distortion problem (Verdinelli & Wasserman, 2024b), successfully recovering established and correlated diagnostic features that classical methods overlook.

Beyond the empirical evaluations above, FDFI also enables several practical downstream workflows that benefit from statistically principled importance scores under dependence. First, by ranking features in a way that is robust to correlation, FDFI can be used for feature pruning and model compression, to preserve predictive performance while reducing dimensionality, inference cost, and model complexity (Han et al., 2015; Nelson et al., 2022; Ranek et al., 2024). Second, in data collection and experimental design, FDFI highlights variables or modalities with the highest marginal utility to prioritize operations under resource constraints (Wang et al., 2024). Third, by mitigating spurious attributions that arise from correlated covariates, FDFI improves model debugging and the detection of implausible signals, unlike traditional importance measures that can assign non-zero relevance to purely null variables (e.g., Chen et al., 2022). In summary, FDFI reliably guides what to measure, keep, or discard in high-stakes or resource-limited decision-making pipelines.

Lastly, FDFI is inherently a *local* sensitivity measure in a learned latent space and is most appropriate when the flow \hat{T} and predictor $f \circ \hat{T}^{-1}$ are locally smooth and well-approximated by first-order expansions. In highly non-smooth or purely combinatorial regimes (e.g., parity/XOR-type rules with near piecewise-constant predictors), infinitesimal latent perturbations can fail to probe the truly influential directions. Developing extensions of flow-disentangled importance reliable under such non-smooth, combinatorial interaction structures is an interesting direction for future work.

540 **Ethics statement.** The authors acknowledge and adhere to the ICLR Code of Ethics. This research
 541 utilizes publicly available, anonymized biomedical datasets for empirical validation, which are stan-
 542 dard in the machine learning literature, and their use in this context, to the best of our knowledge,
 543 presents no new risks to patient privacy. We do not foresee any direct negative societal impacts
 544 stemming from our methodological contribution. Furthermore, in line with ICLR policy, our use of
 545 Large Language Models as writing assistants has been disclosed in the Appendix.

546
 547 **Reproducibility statement.** We have taken several steps to ensure the reproducibility of
 548 our work. The main text provides clear descriptions of the proposed method, experimen-
 549 tal setup, and evaluation protocols. Complete proofs of the theoretical results and de-
 550 tailed explanations of assumptions are included in the Appendix. For experiments, we de-
 551 scribe datasets and hyperparameter settings in the Appendix. To further facilitate repli-
 552 cation, we provide an anonymous GitHub repository containing the source code, training
 553 scripts, and instructions for reproducing results: [https://anonymous.4open.science/r/
 554 FLOW-DISENTANGLER-FEATURE-IMPORTANCE-F202](https://anonymous.4open.science/r/FLOW-DISENTANGLER-FEATURE-IMPORTANCE-F202).

555 **REFERENCES**

557 Leo Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.

558
 559 Diogo Campos and Jorge Bernardes. Cardiotocography [dataset]. UCI Machine Learning Reposi-
 560 tory, 2000. <https://archive.ics.uci.edu/dataset/193/cardiotocography>.

561 Emmanuel Candes, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold:‘model-
 562 x’ knockoffs for high dimensional controlled variable selection. *Journal of the Royal Statistical
 563 Society Series B: Statistical Methodology*, 80(3):551–577, 2018.

564
 565 Ahmad Chamma, Denis A Engemann, and Bertrand Thirion. Statistically valid variable impor-
 566 tance assessment through conditional permutations. *Advances in Neural Information Processing
 567 Systems*, 36:67662–67685, 2023.

568
 569 Hugh Chen, Scott M Lundberg, and Su-In Lee. Explaining a series of models by propagating shapley
 570 values. *Nature communications*, 13(1):4512, 2022.

571
 572 Spyros Darmanis, Steven A Sloan, Derek Croote, Marco Mignardi, Sophia Chernikova, Peyman
 573 Samghababi, Ye Zhang, Norma Neff, Mark Kowarsky, Christine Caneda, et al. Single-cell rna-
 574 seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. *Cell
 575 reports*, 21(5):1399–1410, 2017.

576
 577 Jin-Hong Du, Kathryn Roeder, and Larry Wasserman. Disentangled feature importance. *arXiv
 578 preprint arXiv:2507.00260*, 2025.

579
 580 Abraham Genizi. Decomposition of R^2 in multiple regression with correlated regressors. *Statistica
 581 Sinica*, pp. 407–420, 1993.

582
 583 Jaime Roquero Gimenez, Amirata Ghorbani, and James Zou. Knockoffs for the mass: new feature
 584 importance statistics with false discovery guarantees. In *The 22nd international conference on
 585 artificial intelligence and statistics*, pp. 2125–2133. PMLR, 2019.

586
 587 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
 588 efficient neural network. *Advances in neural information processing systems*, 28, 2015.

589
 590 Johannes Hertrich, Antonin Chambolle, and Julie Delon. On the relation between rectified flows
 591 and optimal transport. *arXiv preprint arXiv:2505.19712*, 2025.

592
 593 Giles Hooker, Lucas Mentch, and Siyu Zhou. Unrestricted permutation forces extrapolation: vari-
 594 able importance requires at least one more model, or there is no free variable importance. *Statistics
 595 and Computing*, 31(6):82, 2021.

596
 597 Bertrand Iooss and Clémentine Prieur. Shapley effects for sensitivity analysis with correlated inputs:
 598 comparisons with sobol’indices, numerical estimation and applications. *International Journal for
 599 Uncertainty Quantification*, 9(5), 2019.

594 Silke Janitz, Ender Celik, and Anne-Laure Boulesteix. A computationally fast variable importance
 595 test for random forests for high-dimensional data. *Advances in Data Analysis and Classification*,
 596 12(4):885–915, 2018.

597 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
 598 free predictive inference for regression. *Journal of the American Statistical Association*, 113
 599 (523):1094–1111, 2018.

600 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 601 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

602 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ
 603 Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv
 604 preprint arXiv:2412.06264*, 2024.

605 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 606 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

607 Angel Reyero Lobo, Pierre Neuvial, and Bertrand Thirion. On the double robustness of conditional
 608 feature importance. *arXiv preprint arXiv:2501.17520*, 2025.

609 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances
 610 in neural information processing systems*, 30, 2017.

611 Evan Mason and Zhe Fei. Novel knockoff generation and importance measures with heterogeneous
 612 data via conditional residuals and local gradients. *arXiv preprint arXiv:2508.14882*, 2025.

613 W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions, meth-
 614 ods, and applications in interpretable machine learning. *Proceedings of the National Academy of
 615 Sciences*, 116(44):22071–22080, 2019.

616 Michael E Nelson, Simone G Riva, and Ana Cvejic. Smash: a scalable, general marker gene identi-
 617 fication framework for single-cell rna-sequencing. *BMC bioinformatics*, 23(1):328, 2022.

618 Jolene S Ranek, Wayne Stallaert, J Justin Milner, Margaret Redick, Samuel C Wolff, Adriana S
 619 Beltran, Natalie Stanley, and Jeremy E Purvis. Delve: feature selection for preserving biological
 620 trajectories in single-cell data. *Nature Communications*, 15(1):2765, 2024.

621 Alessandro Rinaldo, Larry Wasserman, and Max G’Sell. Bootstrapping and sample splitting for
 622 high-dimensional, assumption-lean inference. *The Annals of Statistics*, 47(6):3438–3469, 2019.

623 L. S. Shapley. A value for n-person games. In *Contributions to the Theory of Games (AM-28),
 624 Volume II*, pp. 307–318. Princeton University Press, Princeton, NJ, 1953. ISBN 9780691079356.

625 Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis. Con-
 626 ditional variable importance for random forests. *BMC bioinformatics*, 9:1–11, 2008.

627 Isabella Verdinelli and Larry Wasserman. Decorrelated variable importance. *Journal of Machine
 628 Learning Research*, 25(7):1–27, 2024a.

629 Isabella Verdinelli and Larry Wasserman. Feature importance: A closer look at shapley values and
 630 loco. *Statistical Science*, 39(4):623–636, 2024b.

631 Yu Wang, Nan Liang, and Ge Gao. Quantifying the regulatory potential of genetic variants via a
 632 hybrid sequence-oriented model with sven. *Nature Communications*, 15(1):10917, 2024.

633 John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Shaw, Brad A Ozenberger, Kyle
 634 Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. The cancer genome atlas pan-cancer
 635 analysis project. *Nature genetics*, 45(10):1113–1120, 2013.

636 Brian Williamson and Jean Feng. Efficient nonparametric statistical inference on population feature
 637 importance using shapley values. In *International conference on machine learning*, pp. 10282–
 638 10291. PMLR, 2020.

639 Brian D Williamson, Peter B Gilbert, Marco Carone, and Noah Simon. Nonparametric variable
 640 importance assessment using machine learning techniques. *Biometrics*, 77(1):9–22, 2021.

Appendix

This serves as an appendix to the main paper. Below, we provide an outline for the appendix along with a summary of the notation used in the main paper and the appendix.

Organization. The content of the appendix is organized as follows.

Appendix	Content
Appendix A	Appendix A.1 Proof of Theorem 2.1.
	Appendix A.2 Proof of Lemma 2.2.
Appendix B	Appendix B.1 Uniqueness of flow solution (Theorem B.1).
	Appendix B.2 Estimation error of transport map (Lemma B.2).
Appendix C	Appendix C.1 Assumptions.
	Appendix C.2 Proof of Theorem C.1 and Theorem 3.1.
	Appendix C.3 Proof of Proposition 3.2.
Appendix D	Appendix D.1 The full FDFI algorithm and computational devices.
	Appendix D.2 Technical details of flow matching for FDFI.
	Appendix D.3 Technical details of statistical inference for FDFI.
	Appendix D.4 Computational time comparison.
Appendix E	Appendix E.1 Extra simulation studies.
	Appendix E.2 Extra real data studies.

Notation. An overview of some general notation used in the main paper and the appendix is as follows.

For a vector $X \in \mathbb{R}^d$, $X_{\mathcal{S}} \in \mathbb{R}^{|\mathcal{S}|}$ denotes a sub-vector of X indexed by $\mathcal{S} \subseteq [d]$, and $X_{-j} := X_{\{1, \dots, j-1, j+1, \dots, d\}}$. In \mathbb{R}^d , the j -th standard basis vector is denoted by e_j and the zero vector is denoted by 0_d or simply 0 if the dimension is clear from the context. The cardinality of a set \mathcal{S} is denoted by $|\mathcal{S}|$. The indicator function is denoted by $\mathbb{1}_{\{\cdot\}}$.

For a tuple of random vectors $O = (X, Y)$, the expectation and probability over the joint distribution \mathbb{P} are denoted by $\mathbb{E}(\cdot)$ and $\mathbb{P}(\cdot)$, respectively. For (potentially random) measurable functions f , we denote expectations with respect to the data-generating distribution of O alone by $\mathbb{P}f(O) = \int f d\mathbb{P}$, while $\mathbb{E}[f(O)]$ marginalizes out all randomness from both O and any nuisance functions f is dependent on. The empirical expectation over n samples is denoted by $\mathbb{P}_n f(O) = \frac{1}{n} \sum_{i=1}^n f(O_i)$. The L_2 norm of a function f is denoted by $\|f\|_{L_2}$.

For a statistical estimand ϕ , we write $\phi(\mathbb{P})$ to emphasise its dependence on the underlying distribution \mathbb{P} . The population and empirical variances (covariances) are denoted by \mathbb{V} and \mathbb{V}_n (\mathbb{C} and \mathbb{C}_n). The d -dimensional multivariate normal distribution with mean μ and covariance Σ is denoted by $\mathcal{N}_d(\mu, \Sigma)$. For matrices A_1, A_2, \dots, A_k , the notation $\text{diag}(A_1, A_2, \dots, A_k)$ represents a block diagonal matrix that combines all of the matrices.

We use “ o ” and “ O ” to denote the little-o and big-O notations; “ $o_{\mathbb{P}}$ ” and “ $O_{\mathbb{P}}$ ” are their probabilistic counterparts. For sequences $\{a_n\}$ and $\{b_n\}$, we write $a_n \lesssim b_n$ if $a_n = O(b_n)$; and $a_n \asymp b_n$ if $a_n = O(b_n)$ and $b_n = O(a_n)$. Convergence in distribution is denoted by “ \xrightarrow{d} ”.

The Use of Large Language Models. In preparing this manuscript, Large Language Models (LLMs) were used strictly as auxiliary tools for: (i) Language editing and polishing: improving clarity, grammar, and academic style of author-written text without changing technical content. (ii) Literature search assistance: surfacing potentially relevant references and recent work; all cited materials were independently verified and read by the authors. No parts of the scientific contribution (problem formulation, methodology, experiments, results, or analysis) were generated by LLMs. The authors take full responsibility for all contents of the paper, including any text refined with LLM support. LLMs are not eligible for authorship.

702 **A COMPARISON BETWEEN LOCO- AND CPI-BASED DFI**
 703

704 **A.1 PROOF OF THEOREM 2.1**
 705

706 *Proof of Theorem 2.1.* The proof proceeds in three parts. First, we prove the exact identity. Second,
 707 we apply the triangle inequality. Third, we derive the bounds for the error terms E_{approx} and J_g .

708 For simplicity, we write $R(f; X, Y)$ and $R(f_{-j}; X_{-j}, Y)$ as $R(f)$ and $R(f_{-j})$, respectively.
 709

710 **Part 1: Proof of the Identity.** We start with the right-hand side of the identity and substitute the
 711 definitions of $\phi_{X_j}^{\text{SCPI}}$, E_{approx} , and J_g .

$$\begin{aligned}
 712 \quad & \frac{1}{2}\phi_{X_j}^{\text{SCPI}} - \frac{1}{2}J_g - E_{\text{approx}} \\
 713 \quad &= \frac{1}{2}(R(g_j) - R(f)) - \frac{1}{2}(\mathbb{E}[\ell(Y, f(X^{(j)}))] - R(g_j)) - (R(g_j) - R(f_{-j})) \\
 714 \quad &= \left(\frac{1}{2}R(g_j) - R(g_j) + \frac{1}{2}R(g_j)\right) + R(f_{-j}) - \frac{1}{2}R(f) - \frac{1}{2}\mathbb{E}[\ell(Y, f(X^{(j)}))] \\
 715 \quad &= R(f_{-j}) - \frac{1}{2}R(f) - \frac{1}{2}\mathbb{E}[\ell(Y, f(X^{(j)}))] \\
 716 \quad &= (R(f_{-j}) - R(f)) - \frac{1}{2}(R(f; X^{(j)}, Y) - R(f; X)) \\
 717 \quad &= \phi_{X_j}^{\text{LOCO}} - \phi_{X_j}^{\text{CPI}}.
 \end{aligned}$$

724 This confirms the identity $\phi_{X_j}^{\text{LOCO}} - \phi_{X_j}^{\text{CPI}} = \frac{1}{2}(\phi_{X_j}^{\text{SCPI}} - J_g) - E_{\text{approx}}$.
 725

726 **Part 2: Application of the Triangle Inequality.** Taking the absolute value of the identity and
 727 applying the triangle inequality yields:

$$\begin{aligned}
 728 \quad & |\phi_{X_j}^{\text{LOCO}} - \phi_{X_j}^{\text{CPI}}| = |(\phi_{X_j}^{\text{SCPI}} - J_g)/2 - E_{\text{approx}}| \\
 729 \quad & \leq \frac{1}{2}|\phi_{X_j}^{\text{SCPI}} - J_g| + |-E_{\text{approx}}| \\
 730 \quad & = |E_{\text{MIE}}| + E_{\text{approx}}.
 \end{aligned}$$

732 The last step follows from the fact that $E_{\text{approx}} \geq 0$, because the function f_{-j} is the Bayes optimal
 733 predictor, meaning it is the minimizer of the risk functional.
 734

735 **Part 3: Bounding the Error Terms.** We now derive the bounds for E_{approx} and E_{MIE} .
 736

737 *(i) Bounding $E_{\text{approx}} = R(g_j) - R(f_{-j})$:* The risk $R(h) = \mathbb{E}[\ell(Y, h(X_{-j}))]$ is a convex functional
 738 of the predictor h . For a convex and M -smooth functional, the difference in value between any
 739 point and the minimizer is bounded. Because $R(h)$ is M -smooth with respect to the L_2 norm on
 740 functions, we have:

$$R(g_j) - R(f_{-j}) \leq \frac{M}{2}\mathbb{E}[|g_j(X_{-j}) - f_{-j}(X_{-j})|^2] = \frac{M}{2}\|g_j - f_{-j}\|_{L_2}^2.$$

742 This provides the bound for the approximation error.
 743

744 *(ii) Bounding $J_g = \mathbb{E}[\ell(Y, f(X^{(j)}))] - R(g_j)$:* We can write J_g using iterated expectation:

$$J_g = \mathbb{E}_{Y, X_{-j}} \left[\mathbb{E}[\ell(Y, f(X^{(j)})) \mid X_{-j}] - \ell(Y, \mathbb{E}[f(X^{(j)}) \mid X_{-j}]) \right] \quad (8)$$

747 The inner term is the Jensen gap for the convex function $\ell(y, \cdot)$ and the random variable $f(X^{(j)})$
 748 (where the randomness comes from $\tilde{X}_j \sim P(\cdot \mid X_{-j})$). For an M -smooth convex function ϕ , the
 749 Jensen gap is bounded by $\mathbb{E}[\phi(Z)] - \phi(\mathbb{E}[Z]) \leq \frac{M}{2}\mathbb{V}(Z)$. Applying this to the inner expectation
 750 (conditional on Y, X_{-j}):

$$\mathbb{E}[\ell(Y, f(X^{(j)})) \mid X_{-j}] - \ell(Y, \mathbb{E}[f(X^{(j)}) \mid X_{-j}]) \leq \frac{M}{2}\mathbb{V}(f(X^{(j)} \mid X_{-j})).$$

753 Taking the expectation of both sides with respect to Y, X_{-j} gives the final bound:
 754

$$J_g \leq \mathbb{E} \left[\frac{M}{2}\mathbb{V}(f(X) \mid X_{-j}) \right] = \frac{M}{2}\mathbb{E}[\mathbb{V}(f(X) \mid X_{-j})].$$

756 (iii) *Bounding $|E_{\text{MIE}}|$:* By the triangle inequality on the definition of E_{MIE} :

$$758 \quad |E_{\text{MIE}}| = \frac{1}{2} |\phi_{X_j}^{\text{SCPI}} - J_g| \leq \frac{1}{2} (|\phi_{X_j}^{\text{SCPI}}| + J_g).$$

760 From step (ii), the bound for J_g is: $J_g \leq \frac{M}{2} \mathbb{E}[\mathbb{V}(f(X) | X_{-j})]$. To bound $|\phi_{X_j}^{\text{SCPI}}|$, we use a second-
761 order Taylor expansion of $\ell(Y, g_j)$ around $f(X)$. By Assumption A1, for some ξ_i on the line seg-
762 ment between $g_j(X_{-j})$ and $f(X)$, we have:

$$764 \quad \ell(Y, g_j(X_{-j})) = \ell(Y, f(X)) + \ell'(Y, f(X))(g_j(X_{-j}) - f(X)) + \frac{1}{2} \ell''(\xi_i)(g_j(X_{-j}) - f(X))^2.$$

766 Taking the expectation and rearranging gives

$$768 \quad \phi_{X_j}^{\text{SCPI}} = R(g_j) - R(f) \\ 769 \quad = \mathbb{E}[\ell(Y, g_j) - \ell(Y, f)] \\ 770 \quad = \mathbb{E}[\ell'(Y, f(X))(g_j(X_{-j}) - f(X))] + \frac{1}{2} \mathbb{E}[\ell''(\xi_i)(g_j(X_{-j}) - f(X))^2].$$

772 Since f is the Bayes optimal predictor, $\mathbb{E}[\ell'(Y, f(X)) | X] = 0$. The first term vanishes by iterated
773 expectation: $\mathbb{E}[\mathbb{E}[\ell'(Y, f(X)) | X](g_j(X_{-j}) - f(X))]$ = 0. This leaves:

$$775 \quad |2\phi_{X_j}^{\text{SCPI}}| = \left| \frac{1}{2} \mathbb{E}[\ell''(\xi_i)(g_j - f)^2] \right| \leq \frac{1}{2} \mathbb{E}[\ell''(\xi_i)|(g_j - f)^2] \leq \frac{M}{2} \mathbb{E}[(g_j - f)^2].$$

778 Recognizing that $\mathbb{E}[(g_j(X_{-j}) - f(X))^2] = \mathbb{E}[\mathbb{V}(f(X) | X_{-j})]$, we get $|\phi_{X_j}^{\text{SCPI}}| \leq \frac{M}{2} \mathbb{E}[\mathbb{V}(f(X) | X_{-j})]$.

780 Combining the bounds for $|\phi_{X_j}^{\text{SCPI}}|$ and J_g :

$$782 \quad |E_{\text{MIE}}| \leq \frac{1}{2} (|\phi_{X_j}^{\text{SCPI}}| + J_g) \leq \frac{M}{4} \mathbb{E}[\mathbb{V}(f(X) | X_{-j})] + \frac{M}{4} \mathbb{E}[\mathbb{V}(f(X) | X_{-j})] \\ 784 \quad = \frac{M}{2} \mathbb{E}[\mathbb{V}(f(X) | X_{-j})].$$

786 Substituting the final bounds for E_{approx} and $|E_{\text{MIE}}|$ into the result from Part 1 completes the proof. \square

A.2 PROOF OF LEMMA 2.2

791 *Proof of Lemma 2.2.* For the ℓ_2 loss, we analyze each term of the identity $\phi_{X_j}^{\text{LOCO}} - \phi_{X_j}^{\text{CPI}} = (\phi_{X_j}^{\text{SCPI}} -$
792 $J_g)/2 - E_{\text{approx}}$. Since $f_{-j}(X_{-j}) = \mathbb{E}[Y | X_{-j}]$ and $g_j(X_{-j}) = \mathbb{E}[\mathbb{E}[Y | X] | X_{-j}] = \mathbb{E}[Y |$
793 $X_{-j}]$, we have $f_{-j} = g_j$. This implies the approximation error $E_{\text{approx}} = R(g_j) - R(f_{-j}) = 0$
794 and by definition,

$$795 \quad \phi_{X_j}^{\text{LOCO}} = \phi_{X_j}^{\text{SCPI}}. \quad (9)$$

798 For (8) under the ℓ_2 loss, from the derivation in Du et al. (2025a, Lemma 2.2), we also have that

$$800 \quad \phi_{X_j}^{\text{SCPI}} = J_g = \mathbb{E}[\mathbb{V}(f(X) | X_{-j})]. \quad (10)$$

801 Substituting these into the identity gives $\phi_{X_j}^{\text{LOCO}} - \phi_{X_j}^{\text{CPI}} = \frac{1}{2} J_g - \frac{1}{2} J_g - 0 = 0$, i.e.,

$$803 \quad \phi_{X_j}^{\text{LOCO}} = \phi_{X_j}^{\text{CPI}}. \quad (11)$$

805 Combining (9) and (11) completes the proof. \square

A.3 EQUIVALENCE OF FDFI AND DFI UNDER ℓ_2 LOSS

807 Recall that the DFI and FDFI estimands for the original features are defined in (3) and (4), respec-
808 tively.

810 For ℓ_2 loss, the influence function component in (4) becomes
 811

$$\begin{aligned} 812 \quad \omega(O; T) &= \frac{1}{2} \left[\ell(Y, f(T^{-1}(Z^{(j)}))) - \ell(Y, f(T^{-1}(Z))) \right] \\ 813 \\ 814 \quad &= \frac{1}{2} [(Y - f(T^{-1}(Z^{(j)})))^2 - (Y - f(T^{-1}(Z)))^2]. \\ 815 \end{aligned}$$

816 Taking expectation conditional on Z_{-j} , we further have
 817

$$\begin{aligned} 818 \quad \mathbb{E}[\omega(O; T) | Z_{-j}] &= \frac{1}{2} \mathbb{E}[(Y - f(T^{-1}(Z^{(j)})))^2 - (Y - f(T^{-1}(Z)))^2 | Z_{-j}] \\ 819 \\ 820 \quad &= \frac{1}{2} \mathbb{E}[f(T^{-1}(Z^{(j)}))^2 - f(T^{-1}(Z))^2] \\ 821 \\ 822 \quad &\quad - \mathbb{E}[Y(f(T^{-1}(Z^{(j)})) - f(T^{-1}(Z)), | Z_{-j}] \\ 823 \\ 824 \quad &= \frac{1}{2} \mathbb{E}[[f(T^{-1}(Z^{(j)})) - f(T^{-1}(Z))]^2 | Z_{-j}] \\ 825 \\ 826 \quad &\quad - \mathbb{E}[[f(T^{-1}(Z)) - Y][f(T^{-1}(Z^{(j)})) - f(T^{-1}(Z))], | Z_{-j}] \\ 827 \\ 828 \quad &= \frac{1}{2} \mathbb{V}(f(T^{-1}(Z)) | Z_{-j}) - 0 \\ 829 \\ 830 \quad &= \frac{1}{2} \mathbb{V}(f(T^{-1}(Z)) | Z_{-j}), \end{aligned}$$

831 which reduces to the component in (3). Therefore, the DFI and FDFI estimands coincide under ℓ_2
 832 loss.

833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **B PROPERTIES OF PROBABILISTIC FLOW**
865866 **B.1 UNIQUENESS OF SOLUTIONS**
867868 **Assumption A2.** *Let $(U_0, U_1, U_t) \in \mathbb{R}^{3d}$ admit a joint density $p_t(u_0, u_1, u)$ for $t \in [0, 1]$. Define*
869

870
$$\rho_t(u) := \int_{\mathbb{R}^{2d}} p_t(u_0, u_1, u) du_0 du_1,$$

871
872
$$m_t(u) := \int_{\mathbb{R}^{2d}} (u_1 - u_0) p_t(u_0, u_1, u) du_0 du_1,$$

873

874 *and*
875

876
$$v_t(u) := \frac{m_t(u)}{\rho_t(u)}.$$

877

878 *Assume that*
879880

- (i) *Continuity: m_t, ρ_t are continuous on $[0, 1] \times \mathbb{R}^d$, are C^1 in u , and $\nabla_u m_t, \nabla_u \rho_t$ are continuous on $[0, 1] \times \mathbb{R}^d$;*
- (ii) *Uniform lower bound and bounded score on compact supports: For every compact set $K \subset \mathbb{R}^d$, there exist $\beta_K > 0$ and $M_K < \infty$ such that*

881

882
$$\inf_{(t,u) \in [0,1] \times K} \rho_t(u) \geq \beta_K, \quad \sup_{(t,u) \in [0,1] \times K} \|\nabla_u \log \rho_t(u)\| \leq M_K;$$

883

884

- (iii) *Bounded $\nabla_u m_t$ on compact supports: For every compact set K , there exists $J_K < \infty$ with*

885

886
$$\sup_{(t,u) \in [0,1] \times K} \|\nabla_u m_t(u)\| \leq J_K;$$

887

888

- (iv) *Conditional second moment with linear growth (uniform in t): There exist bounded continuous $c_0, c_1 : [0, 1] \rightarrow [0, \infty)$ such that*

889

890
$$\mathbb{E}[\|U_1 - U_0\|^2 \mid U_t = u] \leq c_0(t) + c_1(t)\|u\|^2 \quad \text{for all } (t, u).$$

891

892
$$A := \sup_t \sqrt{c_0(t)} < \infty \text{ and } B := \sup_t \sqrt{c_1(t)} < \infty.$$

893

894 The conditions in Assumption A2 are standard in the theory of ordinary differential equations, Assumption A2(i)-(iii) ensure that the velocity field $v_t(u)$ is continuous and uniformly Lipschitz in u . This is precisely the regularity required by the Picard–Lindelöf theorem, which guarantees local existence and uniqueness of the ODE solution (Hartman, 2002; Amann, 2011). Assumption A2(iv) further imposes a linear growth bound, ruling out finite-time blow-up and thus ensuring that the solution extends globally to $[0, 1]$ (Hartman, 2002; Amann, 2011). In the Gaussian mixture setting, Assumption A2(i)-(iii) hold since the density and score are smooth and bounded on compacts (Bishop, 2006; Hyvärinen, 2005). Moreover, the conditional expectation $\mathbb{E}[U_1 - U_0 \mid U_t = u]$ is a convex combination of affine functions in u , so that $v_t(u)$ remains smooth and $m_t(u) = \rho_t(u)v_t(u)$ has gradient $\nabla_u m_t(u)$ continuous and bounded on compacts (Anderson, 2003; Bishop, 2006). Assumption A2(iv) is verified in the final part of the proof.
895896 **Theorem B.1** (Local and global uniqueness of U_t). *Under Assumption A2 (i)-(iii), the velocity field*
897 *$v_t(u)$ is continuous on $[0, 1] \times \mathbb{R}^d$ and, for every compact $K \subset \mathbb{R}^d$, is uniformly (in t) Lipschitz in*
898 *u . Hence, for every initial $u \in \mathbb{R}^d$, there exists a $\tau > 0$ such that the ODE*
899

900
$$\frac{d}{dt} U_t(u) = v_t(U_t(u)), \quad U_0(u) = u,$$

901

902 *admits a locally unique solution on $[0, \tau]$.*
903904 *If, in addition, Assumption A2 (iv) holds, then the solution extends to the whole interval $[0, 1]$, and*
905 *is globally unique. Moreover, this condition is automatically satisfied when the source distribution*
906 *U_0 is Gaussian and the target distribution U_1 follows a Gaussian mixture distribution.*
907908 In the standard theory of ordinary differential equations (ODEs), local uniqueness of the solution follows immediately if one directly assumes that the velocity field $v_t(u)$ is continuous in t and
909

locally Lipschitz in u . This is precisely the setting of the classical Picard–Lindelöf theorem. Under these conditions, the ODE admits a unique local solution. A further linear growth condition ensures global uniqueness.

In practice, when v_t is parameterized by a neural network, Lipschitz continuity can be enforced by architectural choices: for instance, using 1-Lipschitz activations such as ReLU or tanh together with spectral norm constraints on each weight matrix. In this case the Lipschitz constant of the network is upper bounded by the product of the spectral norms of the layers (Virmaux & Scaman, 2018; Bartlett et al., 2017; Gouk et al., 2021). Compared to directly assuming Lipschitz continuity of v_t , our Assumption A2 adopts a distributional perspective: it imposes regularity and boundedness on ρ_t and m_t , which in turn imply that v_t is Lipschitz continuous. The advantage of this formulation is that it does not rely on a particular parameterization of v_t and can be verified for broad distribution families such as Gaussian mixtures.

Proof of Theorem B.1. The proof proceeds in six parts. The first five parts establish the proof of Theorem B.1, and the last part shows that the Gaussian and Gaussian mixture case automatically satisfies Assumption A2 (iv).

Part 1: Continuity of v_t . By the quotient rule (componentwise),

$$\nabla_u v_t(u) = \frac{\nabla_u m_t(u)}{\rho_t(u)} - v_t(u) \otimes \nabla_u \log \rho_t(u)$$

Assumption A2 (i) guarantees that $m_t(u)$ and $\rho_t(u)$ are continuous on $[0, 1] \times \mathbb{R}^d$, they are differentiable in u , and their derivatives $\nabla_u m_t(u)$ and $\nabla_u \rho_t(u)$ are also continuous. Since $\rho_t(u) > 0$, the reciprocal $1/\rho_t(u)$ is continuous, and thus $\nabla_u m_t(u)/\rho_t(u)$ is continuous as well. Moreover, $\nabla_u \log \rho_t(u) = \nabla_u \rho_t(u)/\rho_t(u)$ is continuous by the same reasoning. Consequently, both terms on the right-hand side above are continuous, which shows that $\nabla_u v_t(u)$ is continuous. Together with $v_t(u) = m_t(u)/\rho_t(u)$ being continuous, we conclude that both v_t and $\nabla_u v_t$ are continuous on $[0, 1] \times \mathbb{R}^d$.

Part 2: Uniform Lipschitzness of v_t . Fix compact K with radius $R_K := \sup_{u \in K} \|u\|$. From Assumption A2 (ii) and (iii),

$$\sup_{(t,u) \in [0,1] \times K} \left\| \frac{\nabla_u m_t(u)}{\rho_t(u)} \right\| \leq \frac{J_K}{\beta_K}.$$

From Cauchy–Schwarz inequality and Assumption A2 (iv),

$$\|v_t(u)\| \leq \sqrt{c_0(t)} + \sqrt{c_1(t)} \|u\| \leq A + B \|u\|,$$

so $\sup_{(t,u) \in [0,1] \times K} \|v_t(u)\| \leq A + B R_K$. Using $\|a \otimes b\| \leq \|a\| \|b\|$ and Assumption A2 (ii),

$$\sup_{(t,u) \in [0,1] \times K} \|\nabla_u v_t(u)\| \leq \frac{J_K}{\beta_K} + M_K (A + B R_K) =: L_K < \infty.$$

Thus, $\|v_t(u) - v_t(v)\| \leq L_K \|u - v\|$ for all t and $u, v \in K$.

Part 3: Local existence and uniqueness of the ODE solution. By Part 1 and Part 2, $v_t(u)$ is continuous and uniformly Lipschitz in u on compacts; Picard–Lindelöf theorem yields a unique solution on $[0, \tau]$.

Part 4: Proof of a priori bound and extension. Using $\|v_t(U_t)\| \leq A + B \|U_t\|$,

$$\frac{d}{dt} \|U_t\| \leq A + B \|U_t\| \Rightarrow \|U_t\| \leq (\|u\| + At) e^{Bt} \leq (\|u\| + A) e^B \quad (t \in [0, 1]).$$

Hence, there is no finite-time blow-up, the solution extends to $[0, 1]$.

Part 5: Global uniqueness of the ODE solution. Let U_t and V_t be two solutions with the same initial condition $U_0 = V_0$. By the linear-growth bound $\|v_t(z)\| \leq A + B \|z\|$ and Grönwall’s inequality, there exists $R < \infty$ such that $\|U_t\| \leq R$ and $\|V_t\| \leq R$ for all $t \in [0, 1]$. Hence both trajectories remain in the common compact ball $K := \{z : \|z\| \leq R\}$, on which the field is uniformly (in t) Lipschitz in u :

$$\|v_t(u) - v_t(v)\| \leq L_K \|u - v\|, \quad \forall t \in [0, 1], \forall u, v \in K.$$

972 Writing the integral form of the ODE and subtracting,
 973

$$974 \quad 975 \quad 976 \quad U_t - V_t = \int_0^t (v_s(U_s) - v_s(V_s)) \, ds,$$

977 we obtain, with $Z_t := U_t - V_t$,

$$978 \quad 979 \quad 980 \quad \|Z_t\| \leq \int_0^t \|v_s(U_s) - v_s(V_s)\| \, ds \leq \int_0^t L_K \|Z_s\| \, ds.$$

981 By Grönwall's inequality in integral form, letting $q(t) := \|Z_t\|$ yields $q(t) \leq q(0) \exp(L_K t) = 0$,
 982 so $q(t) \equiv 0$ and hence $U_t \equiv V_t$. Therefore the solution on $[0, 1]$ is unique.
 983

984 **Part 6: Proof of the Gaussian and Gaussian mixture case.** We first consider the case where U_1
 985 follows a Gaussian distribution, and then extend the argument to show that the result also holds
 986 when U_1 follows a Gaussian mixture distribution. Note that a Gaussian distribution can be regarded
 987 as a special case of a Gaussian mixture distribution.

988 **Gaussian.** Consider $Y = [U_0; U_1] \in \mathbb{R}^{2d}$ such that $Y \sim \mathcal{N}(\mu, \Sigma)$ with mean and covariance:

$$989 \quad 990 \quad 991 \quad \mu = \begin{pmatrix} \mu_0 \\ \mu_1 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_{00} & \Sigma_{01} \\ \Sigma_{10} & \Sigma_{11} \end{pmatrix} \succ 0.$$

992 Define $U_t := (1-t)U_0 + tU_1 = C_t Y$, $D := U_1 - U_0 = BY$, where $C_t = [(1-t)I_d, tI_d] \in \mathbb{R}^{d \times 2d}$
 993 and $B = [-I_d, I_d] \in \mathbb{R}^{d \times 2d}$. By the Gaussian conditioning formula,
 994

$$995 \quad 996 \quad Y \mid U_t = u \sim \mathcal{N}(\mu + \Sigma C_t^\top \Lambda_t(u - C_t \mu), \Sigma - \Sigma C_t^\top \Lambda_t C_t \Sigma),$$

997 with $\Lambda_t := (C_t \Sigma C_t^\top)^{-1}$. Consequently,

$$998 \quad 999 \quad D \mid U_t = u \sim \mathcal{N}(m(t, u), S(t)),$$

1000 where

$$1001 \quad 1002 \quad m(t, u) = \alpha(t) + M(t)u, \quad S(t) = B(\Sigma - \Sigma C_t^\top \Lambda_t C_t \Sigma)B^\top,$$

1003 with $\alpha(t) = B\mu - B\Sigma C_t^\top \Lambda_t C_t \mu$ and $M(t) = B\Sigma C_t^\top \Lambda_t$. Thus,
 1004

$$1005 \quad 1006 \quad \mathbb{E}[\|D\|^2 \mid U_t = u] = \|m(t, u)\|^2 + \text{tr } S(t).$$

1007 Since $\|m(t, u)\|^2 \leq 2\|\alpha(t)\|^2 + 2\|M(t)\|_{\text{op}}^2\|u\|^2$, we obtain

$$1008 \quad 1009 \quad 1010 \quad \mathbb{E}[\|D\|^2 \mid U_t = u] \leq \underbrace{(2\|\alpha(t)\|^2 + \text{tr } S(t))}_{=:c_0(t)} + \underbrace{2\|M(t)\|_{\text{op}}^2\|u\|^2}_{=:c_1(t)}.$$

1011 Here $c_0(t), c_1(t)$ are continuous and bounded on $[0, 1]$.
 1012

1013 **Gaussian mixture.** Consider $U_1 \sim \sum_{k=1}^K \pi_k \mathcal{N}(\mu_{1k}, \Sigma_{1k})$, where $\pi_k > 0$, $\sum_k \pi_k = 1$, $\Sigma_{1k} \succ 0$,
 1014 and $Z \in \{1, \dots, K\}$ with $\mathbb{P}(Z = k) = \pi_k$. Conditioned on $Z = k$, (U_0, U_1) is jointly Gaussian,
 1015 and the bound from the previous **Gaussian** case yields
 1016

$$1017 \quad \mathbb{E}[\|D\|^2 \mid U_t = u, Z = k] \leq c_{0k}(t) + c_{1k}(t)\|u\|^2.$$

1018 Denote the posterior weight by $w_k(t, u) = \mathbb{P}(Z = k \mid U_t = u)$. Hence
 1019

$$1020 \quad 1021 \quad 1022 \quad \mathbb{E}[\|D\|^2 \mid U_t = u] = \sum_{k=1}^K w_k(t, u) \mathbb{E}[\|D\|^2 \mid U_t = u, Z = k] \\ 1023 \quad 1024 \quad \leq \left(\max_{1 \leq k \leq K} c_{0k}(t) \right) + \left(\max_{1 \leq k \leq K} c_{1k}(t) \right) \|u\|^2.$$

1025 This completes the proof. □

1026
1027

B.2 ESTIMATION ERROR

1028
1029
1030

In this subsection, we characterize the estimation error of the resulting transport map in terms of the estimation accuracy of the probabilistic flow. We require the smoothness condition of the estimated velocity field associated with the learned flow.

1031
1032
1033

Assumption A3 (Smoothness of velocity field). *Assume that $\hat{v}_t(u)$ is continuously differentiable in (t, u) and Lipschitz in u uniformly on $(t, u) \in [0, 1] \times \mathbb{R}^d$ with Lipschitz constant K .*

1034
1035
1036
1037

Under the uniqueness assumption and the above smoothness condition, we can show that the estimation error of the transport map can be controlled by the uniform (over the time horizon) estimation error of the velocity field. This suggests that if one can estimate the velocity field v_t well enough, then T can also be well approximated in L_2 norm.

1038
1039

Lemma B.2 (Estimation error of transport map). *Under Assumptions A2 and A3, it holds that*

1040
1041
1042

$$\|T - \hat{T}\|_{L_2}^2 \leq e^{1+2K} \int_0^1 \|v_t - \hat{v}_t\|_{L_2}^2 dt.$$

1043
1044
1045

Proof of Lemma B.2. By Assumptions A2 and A3, Albergo & Vanden-Eijnden (2023, Proposition 3) gives that

1046
1047
1048
1049
1050
1051
1052

$$\begin{aligned} \|T - \hat{T}\|_{L_2}^2 &= \int_{\mathbb{R}^d} \left| U_1(u) - \hat{U}_1(u) \right|^2 \rho_0(u) du \\ &\leq e^{1+2K} \int_0^1 \int_{\mathbb{R}^d} |v_t(U_t(u)) - \hat{v}_t(U_t(u))|^2 \rho_0(u) du dt \\ &= e^{1+2K} \int_0^1 \|v_t - \hat{v}_t\|_{L_2}^2 dt. \end{aligned}$$

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

□

1080 C SEMIPARAMETRIC THEORY
10811082 C.1 ASSUMPTIONS
1083

1084 To formalize the asymptotic analysis of our estimator, we rely on the von Mises expansion, which
1085 is a form of Taylor series for functionals. This requires a precise notion of a functional derivative.
1086 We introduce two related concepts: the Gateaux derivative, which is directional, and the stronger
1087 Fréchet derivative, which ensures a uniform linear approximation.

1088 The *Gateaux derivative* of the functional ϕ with respect to the function T in the direction of another
1089 function h is defined as:

$$1090 \nabla\phi(T)[h] := \lim_{\epsilon \rightarrow 0} \frac{\phi(T + \epsilon h) - \phi(T)}{\epsilon}.$$

1092 It describes how the functional behaves along a specific linear path. Gateaux differentiability is also
1093 referred to as pathwise differentiability, where the path specifies the direction in the function space.
1094 To control the remainder term of the Taylor expansion for any perturbation, not just along straight
1095 lines, a stronger condition of Fréchet differentiability is needed to guarantee that the functional can
1096 be well-approximated by a linear map in a neighborhood of T . Formally, let V and W be normed
1097 vector spaces, let $U \subset V$ be an open set, and let $f : U \rightarrow W$. The function f is Fréchet differentiable
1098 at $x \in U$ if there exists a bounded linear operator $A : V \rightarrow W$ such that:

$$1099 \lim_{\|h\|_V \rightarrow 0} \frac{\|f(x + h) - f(x) - Ah\|_W}{\|h\|_V} = 0$$

1101 If such a bounded linear operator A exists, it is unique and is called the *Fréchet derivative* of f at x ,
1102 denoted by $Df(x)$.

1103 Within this framework, a pivotal concept is *Neyman orthogonality* (Chernozhukov et al., 2018).
1104 This condition is defined using the Gateaux derivative: the functional ϕ is Neyman-orthogonal with
1105 respect to the nuisance parameter T if its Gateaux derivative is the zero functional, meaning it
1106 evaluates to zero for any valid perturbation function h :

$$1107 \nabla\phi(T) = 0 \iff \nabla\phi(T)[h] = 0, \forall h.$$

1109 When this condition holds, the first-order bias from the estimation of the nuisance function T van-
1110 ishes, which simplifies the asymptotic analysis and leads to estimators with only higher-order bias.

1111 For the remaining section, we will write $\phi_{Z_j}^{\text{FDFI}}$ and $\phi_{X_l}^{\text{FDFI}}$ as ϕ_{Z_j} and ϕ_{X_l} , respectively, for notation
1112 simplicity. We require assumptions about the data generating process and nuisance function estima-
1113 tion.

1114 **Assumption A4** (Regularity conditions). *For any $\mathbb{P} \in \mathcal{P}$, assume the following holds:*

- 1116 (i) (Smoothness) *The map $T \mapsto \omega(O; T)$ is twice Fréchet differentiable with respect to T . The
1117 loss function $\ell(y, \hat{y})$ is differentiable with respect to its second argument, and the function T
1118 is continuously differentiable.*
- 1119 (ii) (Donsker Class) *The class of functions $\{\omega(O; T') : \|T' - T\|_{L_2} < \delta\}$ for some $\delta > 0$ is a
1120 \mathbb{P} -Donsker class.*
- 1121 (iii) (Neyman orthogonality) *Gateaux derivative of ϕ_{Z_j} with respect to T satisfies that $\nabla\phi_{Z_j}(T) = 0$.*
- 1122 (iv) (Nuisance estimator influence function) *The nuisance function estimator \hat{T} , trained on an in-
1123 dependent auxiliary dataset with size m , admits an efficient influence function representation.
1124 For any point x , its estimation error can be linearized as:*

$$1125 \hat{T}(x) - T(x) = \mathbb{P}_m^{\text{aux}}[\text{IF}_T(O; x)] + \mathcal{O}_{\mathbb{P}}(\|\hat{T} - T\|_{L_2}^2),$$

1126 where $\mathbb{P}_m^{\text{aux}}$ is the empirical average over the auxiliary data, and $\mathbb{E}[\text{IF}_T(O; x)] = 0$.

1128 Assumption A4(i) is smoothness condition, and Assumption A4(ii)-(iii) are analogous to those nec-
1129 essary for the results in Chernozhukov et al. (2018); Williamson & Feng (2020).

1131 Assumption A4(ii) ensures that empirical process terms of the form $(\mathbb{P}_n - \mathbb{P})(\omega(O; T') - \omega(O; T))$
1132 are well-behaved. It can be weakened to proper bounded moment conditions with cross-fitting, as in
1133 double machine learning literature (Chernozhukov et al., 2018). However, we stick with the former
assumption to simplify the exposition.

1134 Neyman orthogonality condition (Assumption A4(iii)) is the conceptual equivalent of the core re-
 1135 quirement in Williamson & Feng (2020), as both require the parameter of interest to be locally
 1136 quadratic (i.e., first-order insensitive) to estimation errors in the nuisance function. The primary
 1137 distinction arises from the nature of the nuisance parameter itself: our framework must manage the
 1138 estimation of the complex generative transport map T , whereas related works typically analyze the
 1139 estimation of the regression function f .

1140 The Neyman orthogonality condition Assumption A4(iii) holds in important cases. For instance,
 1141 for the ℓ_2 loss, if the predictor $f(x)$ is the true conditional expectation, $f(x) = \mathbb{E}[Y|X = x]$,
 1142 the Gateaux derivative of the parameter ϕ_{Z_j} with respect to T is zero. This occurs because the
 1143 derivative term involves $\mathbb{E}[Y - f(X) | X]$, which is zero by definition. In this scenario, our estimator
 1144 is first-order insensitive to errors in estimating T . The practical implication is that even though
 1145 \hat{T} is estimated nonparametrically and may converge slowly, the final estimator $\hat{\phi}_{Z_j}$ remains \sqrt{n} -
 1146 consistent and asymptotically normal under the alternative without requiring a correction term for
 1147 the estimation of T . When the Neyman orthogonality condition does not hold, the first-order error
 1148 from estimating the nuisance map T no longer vanishes. To achieve a \sqrt{n} -consistent estimator for
 1149 ϕ_{Z_j} , we must explicitly correct for this bias using a one-step estimator can be used to correct for
 1150 first-order bias, which is possible if the nuisance estimator \hat{T} itself admits a linear expansion, as in
 1151 Assumption A4(iv).

1152

1153 C.2 SEMIPARAMETRIC EFFICIENCY

1154

1155 Under Assumption A4 (i), (ii) and (iv), we first derive general EIF in Theorem C.1 without the
 1156 Neyman orthogonality assumption. We will then specialize this result to prove Theorem 3.1.

1157

1158 **Theorem C.1** (General EIF for Latent FDFI). *Let the data be randomly partitioned into a main
 1159 sample of size n and an auxiliary sample of size m . Let \hat{T} be an estimator of the nuisance function
 1160 T computed on auxiliary samples. Under Assumption A4 (i), (ii) and (iv), the cross-fit estimator
 1161 $\hat{\phi}_{Z_j}(\mathbb{P}) = \mathbb{P}_n[\omega(O; \hat{T})]$ for the parameter $\phi_{Z_j}(\mathbb{P}) = \mathbb{E}[\omega(O; T)]$ satisfies the following asymptotic
 1162 expansion:*

1163

$$\hat{\phi}_{Z_j}(\mathbb{P}) - \phi_{Z_j}(\mathbb{P}) = (\mathbb{P}_n - \mathbb{P})\{\varphi_{\text{main}}(O; \mathbb{P})\} + (\mathbb{P}_m - \mathbb{P})\{\varphi_{\text{corr}}(O; \mathbb{P})\} + R_{n,m},$$

1164

1165 where \mathbb{P}_n and \mathbb{P}_m are the empirical measures for the main and auxiliary samples, respectively. The
 1166 efficient influence function $\varphi_{Z_j}(O; \mathbb{P})$ is given by:

1167

$$\varphi_{Z_j}(O; \mathbb{P}) = \varphi_{\text{main}}(O; \mathbb{P}) + \varphi_{\text{corr}}(O; \mathbb{P}),$$

1168

1169 where the components of the efficient influence function are:

1170

$$\begin{aligned} \varphi_{\text{main}}(O; \mathbb{P}) &= \omega(O; T) - \phi_{Z_j}(\mathbb{P}) \\ &= \frac{1}{2} \left[\ell(f(T^{-1}(Z^{(j)})), Y) - \ell(f(T^{-1}(Z)), Y) \right] - \phi_{Z_j}(\mathbb{P}), \\ \varphi_{\text{corr}}(O; \mathbb{P}) &= \nabla \phi(T)[\text{IF}_T(O; \cdot)] \\ &= \frac{1}{2} \left(\mathbb{E}_{X^{(j)}}[D_X(X^{(j)}) \text{IF}_T(O)(X^{(j)})] - \mathbb{E}_X[D_X(X) \text{IF}_T(O)(X)] \right). \end{aligned}$$

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

The remainder term $R_{n,m}$ is of order $\mathcal{O}_{\mathbb{P}}(n^{-1/2} \mathcal{E}_m + \mathcal{E}_m^2)$, where $\mathcal{E}_m = \|\hat{T} - T\|_{L_2}$ is the L_2 error of
 the nuisance estimator computed on the auxiliary sample. Here, $X = T^{-1}(Z)$, $X^{(j)} = T^{-1}(Z^{(j)})$,
 $\text{IF}_T(O)(\cdot)$ is the influence function of \hat{T} evaluated at observation O , and

$$D_X(x) = \mathbb{E}_Y \left[-\frac{\ell'(f(x), Y) f'(x)}{T'(x)} \mid X = x \right],$$

with $\ell'(u, y)$ being the derivative of ℓ with respect to its first argument. The expectations $\mathbb{E}_X[\cdot]$ and
 $\mathbb{E}_{X^{(j)}}[\cdot]$ are taken over the marginal distributions of X and $X^{(j)}$, respectively.

The EIF consists of the “naive” influence function, $\omega(O; T) - \phi_{Z_j}(\mathbb{P})$, which would be correct if T
 were known, plus a correction term, $\nabla \phi(T)[\text{IF}_T(O; \cdot)]$, directly accounts for

the first-order impact of using an estimate \hat{T} instead of the true T . When the Neyman orthogonality condition holds ($\nabla\phi(T) = 0$), this correction term vanishes, and we recover the simplified EIF from Theorem 3.1. Therefore, this theorem provides a complete characterization of the estimator's asymptotic behavior, nesting the orthogonal case as a special instance.

While the EIF itself is independent of sample sizes, the asymptotic variance of the cross-fit estimator depends on n and m . For a cross-fit estimator, its variance is approximated by a sum of variances of the EIF components, scaled by the respective sample sizes:

$$\mathbb{V}(\hat{\phi}_{Z_j}) \approx \frac{1}{n} \mathbb{V}(\varphi_{\text{main}}) + \frac{1}{m} \mathbb{V}(\varphi_{\text{corr}}),$$

when the remainder term $R_{n,m}$ is negligible.

C.2.1 PROOF OF THEOREM C.1

Proof of Theorem C.1. Note that (5) is a sample average of M copies of Z_j . Below, we present the proof for the simplified case $M = 1$, and the conclusion holds for general M using the linearity and independence across $\hat{Z}_i^{(j,k)}$. The proof proceeds by deriving the von Mises expansion (Du et al., 2025b) for the estimator $\hat{\phi}_{Z_j} = \mathbb{P}_n[\omega(O; \hat{T})]$. We decompose the estimation error as follows:

$$\begin{aligned} \hat{\phi}_{Z_j} - \phi_{Z_j} &= \mathbb{P}_n[\omega(O; \hat{T})] - \mathbb{E}[\omega(O; T)] \\ &= \underbrace{(\mathbb{P}_n - \mathbb{P})[\omega(O; T)]}_{\text{Term I}} + \underbrace{\mathbb{P}[\omega(O; \hat{T}) - \omega(O; T)]}_{\text{Term II}} + \underbrace{(\mathbb{P}_n - \mathbb{P})[\omega(O; \hat{T}) - \omega(O; T)]}_{\text{Term III}}. \end{aligned}$$

Term I is the desired empirical average of the influence function's main part, centered to have zero mean. By the central limit theorem, it converges to a normal distribution when $\mathbb{V}(\psi) > 0$.

Term II is the first-order bias term due to plugging in the estimated nuisance function \hat{T} . By Assumption A4 (i), the Taylor expansion of $\phi(T) := \mathbb{E}[\omega(O; T)]$ around the true T gives:

$$\text{Term II} = \phi(\hat{T}) - \phi(T) = \nabla\phi(T)[\hat{T} - T] + \mathcal{O}_{\mathbb{P}}(\|\hat{T} - T\|_{L_2}^2),$$

where $\nabla\phi(T)[\delta_T]$ is the Gateaux derivative of ϕ in the direction $\delta_T = \hat{T} - T$, given by:

$$\begin{aligned} \nabla\phi(T)[\delta_T] &= \frac{d}{d\epsilon} \Big|_{\epsilon=0} \mathbb{E}[\omega(O; T + \epsilon\delta_T)] \\ &= \mathbb{E} \left[\frac{d}{d\epsilon} \Big|_{\epsilon=0} \frac{1}{2} \left(\ell(f((T + \epsilon\delta_T)^{-1}(Z^{(j)})), Y) - \ell(f((T + \epsilon\delta_T)^{-1}(Z)), Y) \right) \right]. \end{aligned}$$

Using the chain rule and the identity $\frac{d}{d\epsilon}|_{\epsilon=0}(T + \epsilon\delta_T)^{-1}(z) = -\frac{\delta_T(T^{-1}(z))}{T'(T^{-1}(z))}$, we obtain:

$$\nabla\phi(T)[\delta_T] = \frac{1}{2} \mathbb{E} \left[\ell'(f(X), Y) f'(X) \left(-\frac{\delta_T(X)}{T'(X)} \right) - \ell'(f(X^{(j)}), Y) f'(X^{(j)}) \left(-\frac{\delta_T(X^{(j)})}{T'(X^{(j)})} \right) \right],$$

where $X = T^{-1}(Z)$ and $X^{(j)} = T^{-1}(Z^{(j)})$. Using the law of iterated expectations and the definition of $D_X(x)$, this simplifies to:

$$\nabla\phi(T)[\delta_T] = \frac{1}{2} \left(\mathbb{E}_{X^{(j)}}[D_X(X^{(j)})\delta_T(X^{(j)})] - \mathbb{E}_X[D_X(X)\delta_T(X)] \right).$$

By Assumption A4 (iv), $\hat{T} - T$ can be represented via its influence function: $\hat{T}(x) - T(x) = \mathbb{P}_m^{\text{aux}}[\text{IF}_T(O; x)] + \mathcal{O}_{\mathbb{P}}(\|\hat{T} - T\|_{L_2}^2)$. Substituting $\delta_T = \hat{T} - T$ and its IF representation:

$$\begin{aligned} \nabla\phi(T)[\hat{T} - T] &= \nabla\phi(T)[\mathbb{P}_m^{\text{aux}}[\text{IF}_T(O; \cdot)]] + \mathcal{O}_{\mathbb{P}}(\|\hat{T} - T\|_{L_2}^2) \\ &= \frac{1}{n} \sum_{i=1}^m \nabla\phi(T)[\text{IF}_T(O_i^{\text{aux}}; \cdot)] + \mathcal{O}_{\mathbb{P}}(\mathcal{E}_m^2) \\ &= \mathbb{P}_m[-\varphi_{\text{corr}}(O_i)] + \mathcal{O}_{\mathbb{P}}(\mathcal{E}_m^2), \end{aligned}$$

1242 where $\varphi_{\text{corr}}(O) = -\nabla\phi(T)[\text{IF}_T(O; \cdot)]$. Note that $\mathbb{E}[\varphi_{\text{corr}}(O)] = -\nabla\phi(T)[\mathbb{E}[\text{IF}_T(O; \cdot)]] = 0$.
 1243 Thus, $\mathbb{P}_m[-\varphi_{\text{corr}}] = (\mathbb{P}_m - \mathbb{P})[-\varphi_{\text{corr}}]$ and Term II reduces $(\mathbb{P}_m - \mathbb{P})[-\varphi_{\text{corr}}] + \mathcal{O}_{\mathbb{P}}(\mathcal{E}_m^2)$.
 1244

1245 **Term III** is an empirical process term. Under Assumption A4 (ii) and (iv), this term is of a smaller
 1246 order. Specifically, $(\mathbb{P}_n - \mathbb{P})[g(\hat{T}) - g(T)]$ is stochastically equicontinuous, leading to Term III
 1247 being $\mathcal{O}_{\mathbb{P}}(n^{-1/2}\|\hat{T} - T\|) = \mathcal{O}_{\mathbb{P}}(n^{-1/2}\mathcal{E}_m)$.

1248 Combining terms, we have:
 1249

$$\begin{aligned} 1250 \hat{\phi}_{Z_j} - \phi_{Z_j} &= (\mathbb{P}_n - \mathbb{P})\{\omega(O; T) - \phi_{Z_j}(\mathbb{P})\} - (\mathbb{P}_m - \mathbb{P})\{\varphi_{\text{corr}}(O)\} + R_{n,m} \\ 1251 &= (\mathbb{P}_n - \mathbb{P})\{\omega(O; T) - \phi_{Z_j}(\mathbb{P})\} + (\mathbb{P}_m - \mathbb{P})\{\nabla\phi(T)[\text{IF}_T(O; \cdot)]\} + R_{n,m}, \end{aligned}$$

1253 where the remainder $R_{n,m} = \mathcal{O}_{\mathbb{P}}(n^{-1/2}\mathcal{E}_m + \mathcal{E}_m^2)$. This completes the proof and establishes the
 1254 form of the efficient influence function $\varphi_{Z_j}(O; \mathbb{P})$. \square
 1255

1256 C.2.2 PROOF OF THEOREM 3.1

1257 *Proof of Theorem 3.1.* The derivation of the EIF follows from Theorem C.1 by noting that the
 1258 correction term in the definition of efficient influence function vanishes when the Neyman orthogonality
 1259 condition holds ($\nabla\phi(T) = 0$). This shows that $\varphi_{Z_j}(O; \mathbb{P}) := \omega(O; T) - \phi_{Z_j}(\mathbb{P})$ is the EIF:
 1260

$$1261 \hat{\phi}_{Z_j}(\mathbb{P}) - \phi_{Z_j}(\mathbb{P}) = (\mathbb{P}_n - \mathbb{P})\{\varphi_{Z_j}(O; \mathbb{P})\} + \mathcal{O}_{\mathbb{P}}(n^{-1/2}\mathcal{E}_m + \mathcal{E}_m^2),$$

1263 where $\mathcal{E}_m = \|T - \hat{T}\|_{L_2}$.
 1264

1265 Recall that \hat{U}_t is the flow map obtained by solving the above ODE with v_t replaced with \hat{v}_t , and the
 1266 transport map can be represented by $\hat{T} = \hat{U}_1$.

1267 From Lemma B.2 and the rate condition, we have
 1268

$$1269 \mathcal{E}_m^2 = \|T - \hat{T}\|_{L_2}^2 \leq e^{1+2K} \int_0^1 \|v_t - \hat{v}_t\|_{L_2}^2 dt = o_{\mathbb{P}}(n^{-\frac{1}{2}}).$$

1272 Therefore, we conclude that

$$1273 \hat{\phi}_{Z_j}(\mathbb{P}) - \phi_{Z_j}(\mathbb{P}) = (\mathbb{P}_n - \mathbb{P})\{\varphi_{Z_j}(O; \mathbb{P})\} + o_{\mathbb{P}}(n^{-1/2}),$$

1275 and consequently, the asymptotic normality follows. \square
 1276

1277 C.3 PROOF OF PROPOSITION 3.2

1279 *Proof of Proposition 3.2.* The proof proceeds by first deriving the efficient influence function (EIF)
 1280 for a single component $\phi_{jl}(\mathbb{P})$ of the total importance score $\phi_{X_l}(\mathbb{P})$, and then aggregating the results.
 1281 By the linearity of the influence function operator, the EIF for $\phi_{X_l}(\mathbb{P}) = \sum_{j=1}^d \phi_{jl}(\mathbb{P})$ is simply the
 1282 sum of the EIFs for each component, i.e., $\varphi_{X_l}(O; \mathbb{P}) = \sum_{j=1}^d \varphi_{jl}(O; \mathbb{P})$.
 1283

1284 **Part 1: Deriving the EIF for a single component $\phi_{jl}(\mathbb{P})$.** Let $\phi_{jl}(T) = \mathbb{E}[\omega_j(O; T)H_{jl}(X; T)]$,
 1285 where we make the dependence of the sensitivity term $H_{jl}(X) = (\partial X_l / \partial Z_j)^2$ on the transport
 1286 map T explicit. The cross-fit estimator is $\hat{\phi}_{jl} = \mathbb{P}_n[\omega_j(O; \hat{T})H_{jl}(X; \hat{T})]$. We perform a von Mises
 1287 expansion of the estimation error $\hat{\phi}_{jl}(\mathbb{P}) - \phi_{jl}(\mathbb{P})$:
 1288

$$\begin{aligned} 1289 \hat{\phi}_{jl}(\mathbb{P}) - \phi_{jl}(\mathbb{P}) &= \mathbb{P}_n[\omega_j(O; \hat{T})H_{jl}(X; \hat{T})] - \mathbb{E}[\omega_j(O; T)H_{jl}(X; T)] \\ 1290 &= \underbrace{(\mathbb{P}_n - \mathbb{P})[\omega_j(O; T)H_{jl}(X; T)]}_{\text{Term I}} + \underbrace{\mathbb{E}[\omega_j(O; \hat{T})H_{jl}(X; \hat{T}) - \omega_j(O; T)H_{jl}(X; T)]}_{\text{Term II}} \\ 1291 &\quad + \underbrace{(\mathbb{P}_n - \mathbb{P})[\omega_j(O; \hat{T})H_{jl}(X; \hat{T}) - \omega_j(O; T)H_{jl}(X; T)]}_{\text{Term III}}. \end{aligned}$$

1295 Next, we analyze each term separately.

1296 **Term I** is the standard empirical process term that converges to a normal distribution after \sqrt{n}
 1297 scaling by the Central Limit Theorem.
 1298

1299 **Term II** is the first-order bias from due to the nuisance estimator \widehat{T} . We linearize this term using the
 1300 functional derivative of $\phi_{jl}(T)$. Let $\delta_T = \widehat{T} - T$. By Fréchet differentiability in Assumption A4 (i)
 1301 and the functional product rule:

$$\begin{aligned} 1302 \text{Term II} &= \phi_{jl}(\widehat{T}) - \phi_{jl}(T) \\ 1303 &= \nabla_T \phi_{jl}(T)[\delta_T] + \mathcal{O}_p(\|\delta_T\|_{L_2}^2) \\ 1304 &= \mathbb{E}[(\nabla_T \omega_j(O; T)[\delta_T]) H_{jl}(X; T)] + \mathbb{E}[\omega_j(O; T)(\nabla_T H_{jl}(X; T)[\delta_T])] + \mathcal{O}_p(\|\delta_T\|_{L_2}^2). \\ 1305 \end{aligned}$$

1306 When the predictor f is Bayes optimal, the parameter $\phi_{Z_j}(T) = \mathbb{E}[\omega_j(O; T)]$ is Neyman-orthogonal
 1307 with respect to T . This implies that its Gateaux derivative $\nabla_T \phi_{Z_j}(T)[\cdot] = \mathbb{E}[\nabla_T \omega_j(O; T)[\cdot]]$
 1308 is zero. Under regularity conditions allowing the interchange of derivative and expectation, the
 1309 weighted expectation also vanishes, i.e., $\mathbb{E}[(\nabla_T \omega_j(O; T)[\delta_T]) H_{jl}(X; T)] = 0$.
 1310

1311 Therefore, the bias term simplifies to its second component. Using the influence function represen-
 1312 tation for \widehat{T} from Assumption A4 (iv), $\delta_T = \widehat{T} - T = \mathbb{P}_m^{\text{aux}}[\text{IF}_T(O^{\text{aux}}; \cdot)] + \mathcal{O}_p(\mathcal{E}_m^2)$, we have:

$$\begin{aligned} 1313 \text{Term II} &= \mathbb{E}[\omega_j(O; T)(\nabla_T H_{jl}(X; T)[\mathbb{P}_m^{\text{aux}}[\text{IF}_T]])] + \mathcal{O}_p(\mathcal{E}_m^2) \\ 1314 &= \frac{1}{n_{\text{aux}}} \sum_{i=1}^{n_{\text{aux}}} \mathbb{E}[\omega_j(O; T)(\nabla_T H_{jl}(X; T)[\text{IF}_T(O_i^{\text{aux}}; \cdot)])] + \mathcal{O}_p(\mathcal{E}_m^2) \\ 1315 &= (\mathbb{P}_m^{\text{aux}} - \mathbb{P}) \{ \mathbb{E}_{O'}[\omega_j(O'; T)(\nabla_T H_{jl}(X'; T)[\text{IF}_T(O; \cdot)])] \} + \mathcal{O}_p(\mathcal{E}_m^2), \\ 1316 \end{aligned}$$

1317 where the final step uses $\mathbb{E}[\text{IF}_T] = 0$. This term is the empirical average of the correction term
 1318 evaluated on the auxiliary data.
 1319

1320 **Term III** is a higher-order empirical process term. Under Donsker condition (Assumption A4 (ii)),
 1321 this term is of order $o_{\mathbb{P}}(n^{-1/2})$.
 1322

1323 **Part 2: Asymptotic normality.** Combining the terms, and noting that the main sample (for \mathbb{P}_n)
 1324 and the auxiliary sample (for $\mathbb{P}_m^{\text{aux}}$) are independent, the total estimation error can be written as an
 1325 empirical average over a single sample:
 1326

$$\begin{aligned} 1327 \widehat{\phi}_{jl}(\mathbb{P}) - \phi_{jl}(\mathbb{P}) &= (\mathbb{P}_n - \mathbb{P}) \{ \omega_j(O; T) H_{jl}(X; T) \\ 1328 &\quad + \mathbb{E}_{O'}[\omega_j(O'; T)(\nabla_T H_{jl}(X'; T)[\text{IF}_T(O; \cdot)])] \} + \mathcal{O}_p(\mathcal{E}_m^2). \\ 1329 \end{aligned}$$

1330 By subtracting the mean $\phi_{jl}(\mathbb{P})$ from the first part, we identify the EIF for ϕ_{jl} as:
 1331

$$\begin{aligned} 1332 \varphi_{jl}(O; \mathbb{P}) &= \underbrace{(\omega_j(O; T) H_{jl}(X; T) - \phi_{jl}(\mathbb{P}))}_{\text{Naive Term}} + \underbrace{\mathbb{E}_{O'}[\omega_j(O'; T)(\nabla_T H_{jl}(X'; T)[\text{IF}_T(O; \cdot)])]}_{\text{Correction Term}}. \\ 1333 \end{aligned}$$

1334 By defining $\text{IF}_{H_{jl}} := \nabla_T H_{jl}[\text{IF}_T]$ as the influence function of the estimator for the function
 1335 H_{jl} , and using the fact that influence functions have zero mean, the term becomes a covariance
 1336 $\text{Cov}(\omega_j(O; T), \text{IF}_{H_{jl}}(O; \cdot))$. Thus, the total EIF for $\phi_{X_l}(\mathbb{P})$ is $\varphi_{X_l}(O; \mathbb{P}) = \sum_{j=1}^d \varphi_{jl}(O; \mathbb{P})$. The
 1337 vector of estimators $\widehat{\phi}_X$ thus has the asymptotic linear expansion:
 1338

$$\begin{aligned} 1339 \sqrt{n}(\widehat{\phi}_X(\mathbb{P}) - \phi_X(\mathbb{P})) &= \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi(O_i; \mathbb{P}) + o_{\mathbb{P}}(1), \\ 1340 \end{aligned}$$

1341 where $\psi(O_i; \mathbb{P}) = (\psi_1(O_i; \mathbb{P}), \dots, \psi_d(O_i; \mathbb{P}))^\top$. By the multivariate Central Limit Theorem, it
 1342 follows that $\sqrt{n}(\widehat{\phi}_X(\mathbb{P}) - \phi_X(\mathbb{P})) \xrightarrow{d} \mathcal{N}(0, \Sigma_\phi)$, where $\Sigma_\phi = \mathbb{E}[\psi(O; \mathbb{P})\psi(O; \mathbb{P})^\top]$, with entries
 1343 $(\Sigma_\phi)_{lk} = \text{Cov}(\varphi_{X_l}(O; \mathbb{P}), \psi_k(O; \mathbb{P}))$. This completes the proof. \square
 1344

1345
 1346
 1347
 1348
 1349

1350 **D COMPUTATIONAL DETAILS**1351 **D.1 ALGORITHM AND COMPUTATIONAL DEVICES**1352 **Algorithm.** The full algorithm of FDFI is given in Algorithm D.1.1353 **Algorithm D.1** Flow-disentangled feature importance

1354 **Require:** Labeled data $\mathcal{D}_{\text{est}} = \{O_i = (X_i, Y_i)\}_{i=1}^n$, a black-box model f , a loss function ℓ . In-
 1355 dependent auxiliary unlabeled data $\mathcal{D}_X = \{\tilde{X}_i\}_{i=1}^m$ and a flow model training procedure $\mathcal{M}(\cdot)$
 1356 that returns a map \hat{T} . The null adjustment constant c and the Monte Carlo sample size M .
 1357 **Ensure:** FDFI scores $\{\hat{\phi}_{Z_j}\}_{j=1}^d, \{\hat{\phi}_{X_l}\}_{l=1}^d$ and p-values $\{p_{Z_j}\}_{j=1}^d, \{p_{X_l}\}_{l=1}^d$.

1358 1: Obtain transport map through flow matching $\hat{T} = \mathcal{M}(\mathcal{D}_X)$. \triangleright Disentangled map estimation
 1359 2: Initialize point-wise score storage: $\Psi \leftarrow$ empty $n \times d$ matrix, $\Omega \leftarrow$ empty $n \times d$ matrix.
 1360 3: **for** $i = 1$ **to** n **do** \triangleright Compute scores on the labeled data
 1361 4: Compute latent vector $\hat{Z}_i \leftarrow \hat{T}(X_i)$ and generative Jacobian $J_i \leftarrow \nabla_Z \hat{T}^{-1}(Z)|_{Z=\hat{Z}_i}$.
 1362 5: Compute squared sensitivities $\hat{H}_{jl}(\hat{Z}_i) \leftarrow (J_i)_{lj}^2$ for all $j, l \in \{1, \dots, d\}$.
 1363 6: **for** $j = 1$ **to** d **do** \triangleright Point-wise latent scores
 1364 7: Let $\{\hat{Z}_i^{(j,m)}\}_{m=1}^M$ be M copies of \hat{Z}_i where the j -th coord is resampled from p_{Z_j} .
 1365 8: $\Omega_{ij} \leftarrow \frac{1}{2M} \sum_{k=1}^M [\ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i^{(j,k)}))) - \ell(Y_i, f(X_i))]$.
 1366 9: **end for**
 1367 10: **for** $l = 1$ **to** d **do** \triangleright Attribution to original features
 1368 11: $\Psi_{il} \leftarrow \sum_{j=1}^d \Omega_{ij} \cdot \hat{H}_{jl}(\hat{Z}_i)$.
 1369 12: **end for**
 1370 13: **end for**
 1371 14: **for** $j = 1$ **to** d **do** \triangleright Compute latent feature importance $\hat{\phi}_{Z_j}$
 1372 15: $\hat{\phi}_{Z_j} \leftarrow \frac{1}{n} \sum_{i=1}^n \Omega_{ij}$. \triangleright Cross-fit estimator (5)
 1373 16: $\hat{\varphi}_{ij} \leftarrow \Omega_{ij} - \hat{\phi}_{Z_j}$ for $i = 1 \dots n$. \triangleright EIF components
 1374 17: $\text{se}_{Z_j}^2 \leftarrow (\mathbb{V}_n\{\hat{\varphi}_{ij}\} + c)/n$. \triangleright Adjust standard error for inference
 1375 18: $p_{Z_j} \leftarrow 1 - \Phi(\hat{\phi}_{Z_j}/\text{se}_{Z_j})$. \triangleright Compute p-values
 1376 19: **end for**
 1377 20: **for** $l = 1$ **to** d **do** \triangleright Compute original feature importance $\hat{\phi}_{X_l}$
 1378 21: $\hat{\phi}_{X_l} \leftarrow \frac{1}{n} \sum_{i=1}^n \Psi_{il}$. \triangleright Estimator (7)
 1379 22: $\hat{\varphi}_{il}^a \leftarrow \Psi_{il} - \hat{\phi}_{X_l}$ for $i = 1 \dots n$. \triangleright Approximate EIF components
 1380 23: $\text{se}_{X_l}^2 \leftarrow (\mathbb{V}_n\{\hat{\varphi}_{il}^a\} + c)/n$. \triangleright Adjust standard error for inference
 1381 24: $p_{X_l} \leftarrow 1 - \Phi(\hat{\phi}_{X_l}/\text{se}_{X_l})$. \triangleright Compute p-values
 1382 25: **end for**
 1383 26: **return** Estimated importance scores and their uncertainty.

1393 **Variants of FDFI estimators.** There are two different ways to construct an estimator for latent
 1394 FDFI (2). One can adopt the idea of CPI (Strobl et al., 2008), SCPI (Lobo et al., 2025), and LOCO
 1395 (Lei et al., 2018) to estimate this quantity. More specifically, we can define

$$\hat{\phi}_{Z_j}^{\text{CPI}}(\mathbb{P}) := \frac{1}{n} \sum_{i=1}^n \left[\left(\frac{1}{2M} \sum_{k=1}^M [\ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i^{(j,k)}))) - \ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i)))] \right) \right], \quad (12)$$

$$\hat{\phi}_{Z_j}^{\text{SCPI}}(\mathbb{P}) := \frac{1}{n} \sum_{i=1}^n \left[\ell \left(Y_i, \frac{1}{M} \sum_{k=1}^M [f(\hat{T}^{-1}(\hat{Z}_i^{(j,k)}))] \right) - \ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i))) \right], \quad (13)$$

1403 where (12) coincides with the latent FDFI estimator (5) presented in the main text.

1404 The final FDFI estimator of the original feature can be constructed as follows:
 1405

$$1406 \hat{\phi}_{X_l}^{\text{CPI}}(\mathbb{P}) := \sum_{j=1}^d \frac{1}{n} \sum_{i=1}^n \left[\frac{1}{2M} \sum_{k=1}^M \left[\ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i^{(j,k)}))) - \ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i))) \right] \hat{H}_{jl}(\hat{Z}_i) \right] \quad (14)$$

$$1409 \hat{\phi}_{X_l}^{\text{SCPI}}(\mathbb{P}) := \sum_{j=1}^d \frac{1}{n} \sum_{i=1}^n \left[\ell \left(Y_i, \frac{1}{M} \sum_{k=1}^M \left[f(\hat{T}^{-1}(\hat{Z}_i^{(j,k)})) \right] \right) - \ell(Y_i, f(\hat{T}^{-1}(\hat{Z}_i))) \right] \hat{H}_{jl}(\hat{Z}_i), \quad (15)$$

1412 where $\hat{H}_{jl}(Z) = [\nabla \hat{T}^{-1}(Z)]_{jl}^2$ is the square of estimated Jacobian of X_l with respect to Z_j .
 1413

1414 One can, in principle, construct a LOCO-type estimator; however, this requires refitting submodels
 1415 for $f \circ T^{-1}$, which is computationally expensive in general. Except in the special case of ℓ_2 loss, the
 1416 LOCO-type estimator coincides with the SCPI-type estimator if f is the Bayes optimal predictor.
 1417 For this reason, we didn't explore this variant in the current paper.

1418 **Computational devices.** All experiments were conducted on dedicated computing platforms. All
 1419 experiments, except for Appendix D.4, were executed on a server equipped with an AMD EPYC
 1420 7542 32-Core Processor CPU and NVIDIA RTX 3090 GPUs. Appendix D.4 was carried out on a
 1421 personal computer with an Intel Core i5-14600KF CPU and an NVIDIA RTX 5070 Ti GPU.
 1422

1423 D.2 FLOW MATCHING MODEL

1425 Flow matching is a concise and powerful framework for generative modeling that has advanced the
 1426 state of the art across various domains and applications. Following Lipman et al. (2022; 2024), we
 1427 adopt the Conditional Flow Matching (CFM) model as the backbone of our approach. Similar to
 1428 the setting in Lipman et al. (2024), we train the model for 5000 steps per 1000 samples. Because
 1429 performance is sensitive to architectural and optimization choices—including network depth, hidden
 1430 dimensions, and batch size—we systematically explore multiple hyperparameter combinations to
 1431 identify a configuration that offers a favorable performance–efficiency trade-off for training.

1432 In statistics, the Maximum Mean Discrepancy (MMD) is a widely used metric for quantifying the
 1433 difference between two probability distributions. A smaller MMD value indicates that the two dis-
 1434 tributions are more similar, whereas a larger value reflects greater divergence. For the target data, we
 1435 split the dataset into training and testing subsets with a 1:1 ratio. Using the training set, we trained
 1436 the model to generate samples from a standard normal distribution, thereby obtaining the generated
 1437 target distribution. We then computed the MMD^2 between the real and generated distributions on
 1438 both the training and testing sets. These results were used as the criterion for selecting appropriate
 1439 configurations.

1440 To select a suitable hyperparameter configuration, we proceeded as follows. As an example, in
 1441 Section 4.1 we fixed the training sample size at 1000 and trained the model for 5000 steps using
 1442 the Adam optimizer with a learning rate of 1×10^{-3} . In each trial, a distinct random seed was
 1443 used to generate a new simulated dataset; for that dataset, we evaluated multiple hyperparameter
 1444 configurations. This procedure was repeated for 50 seeds in total, and for every configuration–seed
 1445 pair, we recorded the resulting MMD^2 on both the training and test sets.

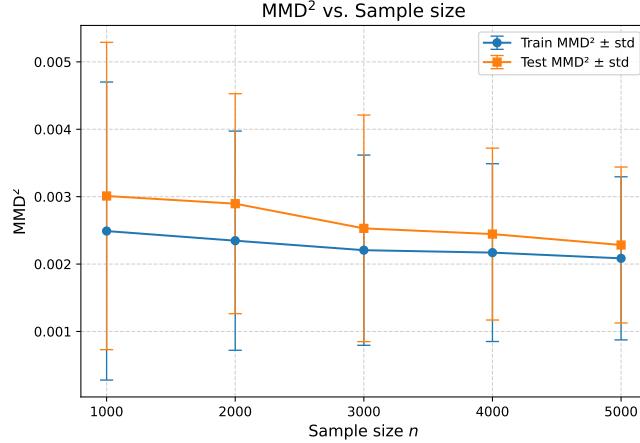
1446 A suitable set of hyperparameters should yield relatively small MMD^2 values on both the training
 1447 and test sets. Moreover, the gap between training and test MMD^2 values should remain modest;
 1448 otherwise, the model risks underfitting or overfitting. As shown in Table D1, the configuration
 1449 with hidden dimension 128, batch size 256, and a two-layer network satisfies the above criteria:
 1450 it attains relatively small MMD^2 on both training and test sets with only a modest gap between
 1451 them. By contrast, smaller hidden dimensions and a single-layer network yield large MMD^2 on both
 1452 splits, indicating underfitting. Increasing the hidden dimension and depth further reduces the training
 1453 MMD^2 but enlarges the train–test gap, signaling an overfitting risk. Although the setting with
 1454 hidden dimension 256, batch size 128, and two layers performs comparably, we ultimately select
 1455 the hidden-dimension-128, batch-size-256, two-layer configuration as it offers a more favorable
 1456 balance between model performance and computational efficiency.

1457 After identifying an appropriate hyperparameter configuration based on the preceding selection pro-
 1458 cedure, we examined the effect of proportionally increasing the training sample size and steps, scal-

1458 **Table D1:** Train and test MMD² (mean \pm std) across hidden dimensions, batch sizes, and network
 1459 depths.

Hidden dim	Batch size	Train (1 layer)	Test (1 layer)	Train (2 layers)	Test (2 layers)	Train (3 layers)	Test (3 layers)
64	32	0.0100 \pm 0.0069	0.0109 \pm 0.0056	0.0079 \pm 0.0039	0.0096 \pm 0.0052	0.0076 \pm 0.0044	0.0084 \pm 0.0042
64	64	0.0065 \pm 0.0040	0.0073 \pm 0.0047	0.0072 \pm 0.0038	0.0080 \pm 0.0039	0.0055 \pm 0.0037	0.0069 \pm 0.0054
64	128	0.0071 \pm 0.0043	0.0076 \pm 0.0049	0.0053 \pm 0.0028	0.0058 \pm 0.0033	0.0038 \pm 0.0020	0.0046 \pm 0.0023
64	256	0.0052 \pm 0.0028	0.0064 \pm 0.0031	0.0047 \pm 0.0025	0.0059 \pm 0.0027	0.0041 \pm 0.0029	0.0046 \pm 0.0025
64	384	0.0048 \pm 0.0024	0.0054 \pm 0.0027	0.0041 \pm 0.0031	0.0057 \pm 0.0032	0.0038 \pm 0.0022	0.0046 \pm 0.0020
128	32	0.0062 \pm 0.0025	0.0068 \pm 0.0024	0.0057 \pm 0.0041	0.0067 \pm 0.0045	0.0061 \pm 0.0032	0.0070 \pm 0.0030
128	64	0.0052 \pm 0.0032	0.0062 \pm 0.0034	0.0042 \pm 0.0029	0.0059 \pm 0.0041	0.0043 \pm 0.0025	0.0058 \pm 0.0025
128	128	0.0050 \pm 0.0024	0.0061 \pm 0.0023	0.0036 \pm 0.0023	0.0046 \pm 0.0026	0.0027 \pm 0.0021	0.0035 \pm 0.0020
128	256	0.0044 \pm 0.0026	0.0052 \pm 0.0019	0.0024\pm0.0022	0.0030\pm0.0022	0.0021 \pm 0.0016	0.0035 \pm 0.0015
128	384	0.0041 \pm 0.0020	0.0052 \pm 0.0020	0.0030 \pm 0.0022	0.0040 \pm 0.0026	0.0023 \pm 0.0014	0.0033 \pm 0.0011
256	32	0.0036 \pm 0.0017	0.0041 \pm 0.0018	0.0035 \pm 0.0018	0.0041 \pm 0.0022	0.0032 \pm 0.0019	0.0039 \pm 0.0028
256	64	0.0026 \pm 0.0016	0.0034 \pm 0.0017	0.0024 \pm 0.0019	0.0032 \pm 0.0026	0.0025 \pm 0.0021	0.0035 \pm 0.0019
256	128	0.0018 \pm 0.0012	0.0028 \pm 0.0016	0.0023\pm0.0016	0.0028\pm0.0015	0.0020 \pm 0.0012	0.0031 \pm 0.0015
256	256	0.0017 \pm 0.0014	0.0027 \pm 0.0019	0.0014 \pm 0.0012	0.0025 \pm 0.0010	0.0011 \pm 0.0006	0.0026 \pm 0.0008
256	384	0.0024 \pm 0.0018	0.0031 \pm 0.0019	0.0013 \pm 0.0011	0.0024 \pm 0.0013	0.0012 \pm 0.0011	0.0029 \pm 0.0010
384	32	0.0016 \pm 0.0010	0.0024 \pm 0.0019	0.0015 \pm 0.0009	0.0028 \pm 0.0012	0.0027 \pm 0.0021	0.0040 \pm 0.0024
384	64	0.0016 \pm 0.0011	0.0026 \pm 0.0017	0.0013 \pm 0.0011	0.0023 \pm 0.0013	0.0022 \pm 0.0010	0.0029 \pm 0.0013
384	128	0.0015 \pm 0.0013	0.0030 \pm 0.0012	0.0010 \pm 0.0008	0.0019 \pm 0.0010	0.0016 \pm 0.0011	0.0023 \pm 0.0011
384	256	0.0016 \pm 0.0013	0.0025 \pm 0.0014	0.0012 \pm 0.0009	0.0023 \pm 0.0012	0.0020 \pm 0.0009	0.0036 \pm 0.0015
384	384	0.0018 \pm 0.0008	0.0027 \pm 0.0011	0.0015 \pm 0.0011	0.0027 \pm 0.0009	0.0023 \pm 0.0014	0.0039 \pm 0.0018

1477 ing from (1000, 5000) to (2000, 10000) and beyond. For comparability, the procedure was repeated
 1478 50 times, each with a fixed random seed; within each run, datasets of different sizes were generated
 1479 using the same seed to ensure consistency. The results in Figure D1 show that when the sample size
 1480 reaches 3000 or above, the MMD² values on both training and test sets stabilize. While larger sample
 1481 sizes can still improve generation quality, we adopt 3000 as the sample size, balancing performance
 1482 and computational cost.



1498 **Figure D1:** Comparison of Train and Test MMD² across varying sample sizes.

1500 D.3 STATISTICAL INFERENCE

1502 D.3.1 APPROXIMATION FOR EIF OF ϕ_{X_l}

1504 Recall that the component EIF from Proposition 3.2 is given by

$$\begin{aligned}
 1506 \varphi_{jl}(O; \mathbb{P}) &:= (\omega_j(O; T)H_{jl}(X) - \phi_{jl}(\mathbb{P})) + \text{Cov}(\omega_j(O; T), \text{IF}_{H_{jl}}(O; \cdot)) \\
 1507 &=: \varphi_{jl}^a(O; \mathbb{P}) + C_{jl}.
 \end{aligned}$$

1509 The first-order approximate term $\varphi_{jl}^a(O; \mathbb{P})$ can be estimated using a cross-fit estimator; the correc-
 1510 tion term C , however, requires evaluation of the influence function of H_{jl} . Analytically deriving
 1511 IF_T (and thus $\text{IF}_{H_{jl}}$) for a flow-based model is generally intractable. In practice, the correction
 term must be estimated using resampling methods.

Algorithm D.2 Jackknife estimation of the EIF correction term (C_{jl})

Require: Dataset $\mathcal{D} = \{O_i\}_{i=1}^n$, where $O_i = (X_i, Y_i)$. Flow model training procedure $\mathcal{M}(\cdot)$ that returns a map \widehat{T} . Point-wise latent score function $\omega_j(O; T)$.

Ensure: Estimated correction term $\widehat{C}_{jl} = \mathbb{C}_n(\omega_j(O; T), \text{IF}_{H_{jl}}(O; \cdot))$.

1: Initialize score vector $W \leftarrow []$. ▷ Step 1: Compute point-wise scores using \widehat{T} .
 2: **for** $i = 1$ **to** n **do**
 3: $W_i \leftarrow \omega_j(O_i; \widehat{T})$
 4: Append W_i to W .
 5: **end for**
 6: Let $\widehat{H}_{jl}(\cdot)$ be the estimator function derived from the full map \widehat{T} .
 7: Initialize influence vector $I \leftarrow []$.
 8: **for** $i = 1$ **to** n **do**
 9: Let $\mathcal{D}_X^{(-i)} \leftarrow \{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\}$.
 10: Retrain model: $\widehat{T}^{(-i)} \leftarrow \mathcal{M}(\mathcal{D}_X^{(-i)})$. ▷ Step 2: Compute leave-one-out estimate.
 11: Derive the leave-one-out estimator function $\widehat{H}_{jl}^{(-i)}(\cdot)$ from $\widehat{T}^{(-i)}$.
 12: $I_i \leftarrow (n-1) \left(\widehat{H}_{jl}(X_i) - \widehat{H}_{jl}^{(-i)}(X_i) \right)$ ▷ Step 3: Estimate point-wise influence.
 13: Append I_i to I .
 14: **end for**
 15: $\widehat{C}_{jl} \leftarrow \mathbb{C}_n(W, I)$. ▷ Step 4: Compute the sample covariance.
 16: **return** \widehat{C}_{jl}

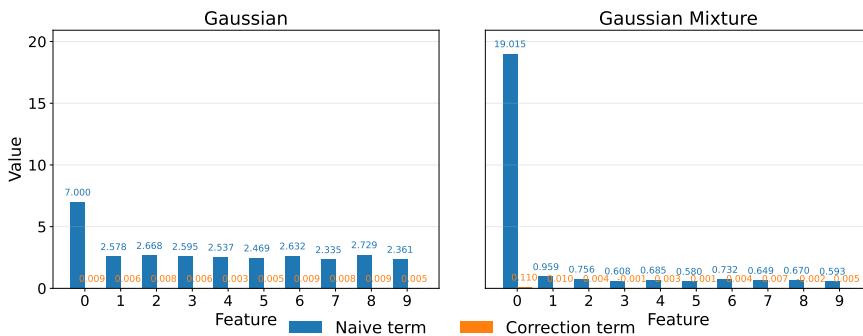


Figure D2: Comparison between first-order approximate term $\varphi_{jl}^a(O; \mathbb{P})$ and the correction term C_{jl} . The correction term C_{jl} is of smaller order than the first-order approximate term $\varphi_{jl}^a(O; \mathbb{P})$.

The influence function $IF_{\hat{H}_{jl}}$ measures the sensitivity of the estimator \hat{H}_{jl} to the data. To measure this, one must re-estimate \hat{H}_{jl} on perturbed versions of the data. A direct, though computationally intensive, method to estimate the covariance term is the jackknife, as outlined in Algorithm D.2.

We fix the dimension $d = 10$ and study the response model $y = 5X_0 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 1)$. The covariates $X \in \mathbb{R}^{10}$ are sampled under two regimes: (i) **Gaussian**. $X \sim \mathcal{N}(0, \Sigma_{0.8})$, and (ii) **Gaussian mixture**. $X \sim 0.2\mathcal{N}(0, \Sigma_{0.8}) + 0.8\mathcal{N}(0, \Sigma_{0.2})$, where $\Sigma_\rho \in \mathbb{R}^{10 \times 10}$, with $[\Sigma_\rho]_{ij} = 1$ if $i = j$ and ρ otherwise, is the AR1 covariance matrix with parameter ρ .

In this part, we choose the sample size as $n = 1000$ and compute the approximate term $\varphi_{jl}^a(O; \mathbb{P})$ and the correction term C_{jl} , respectively. Crucially, this experiment is conducted without sample splitting; the same data is used to estimate the transport map \hat{T} and to subsequently compute the importance scores. As shown in Figure D2, the correction term is of smaller order than the approximate term. For this reason, we can approximate the EIF of φ_{X_l} with the individual first-order approximate EIFs φ_{jl}^a . This provides strong empirical evidence that while sample splitting is the most theoretically rigorous approach, practitioners may often be able to use the simpler approximate EIF for inference without splitting the data, which offers a significant computational advantage.

1566
1567

D.3.2 INFERENCE NEAR THE NULL

1568 As stated in Verdinelli & Wasserman (2024a), when dealing with the quadratic functional, under the
 1569 null hypothesis, the influence function for the parameter vanishes, the coverage rate becomes n^{-1} ,
 1570 and the limiting distribution is no longer a Gaussian distribution. This hinders variable selection with
 1571 direct statistical guarantees, which is an essential component of reliable scientific discovery (Lobo
 1572 et al. (2025)). In Verdinelli & Wasserman (2024a), they propose to replace the standard error se_n
 1573 with $\sqrt{se_n^2 + c/n}$ to ensure control of the type-I error, where c is a constant, and many constants
 1574 could be used. In this paper, we choose $c = \frac{1}{d^2} \min\{\sqrt{\mathbb{V}(Y)}, \mathbb{V}(Y), \mathbb{V}(Y)^2, \mathbb{V}(Y)^4\}$, where
 1575 $\mathbb{V}(Y)$ is the variance of the output and d is the dimension of all features.

1576 Due to the quadratic nature of the statistic $\hat{\phi}$, under the null hypothesis, the variance vanishes as
 1577 $\mathbb{V}(\hat{\phi}) = O(n^{-\gamma})$ with $\gamma > 1$. It can be found that under the null hypothesis, using Cantelli's
 1578 inequality, we have $\mathbb{P}_{\mathcal{H}_0}(\hat{\phi} \geq z_\alpha \sqrt{se_n^2 + c/n}) \leq \mathbb{V}(\hat{\phi}) / (z_\alpha \sqrt{se_n^2 + c/n})^2 \rightarrow 0$. This
 1579 guarantees that the expanded confidence interval controls the Type I error.
 1580

1581

D.4 COMPUTATION TIME COMPARISON

1582

1583 For the computational efficiency study, we followed the experimental protocol of Experiment 2.
 1584 However, computing Shapley value for all 50 features is prohibitively time-consuming; therefore, for
 1585 Shapley value (Shapley, 1953), we restrict the feature dimension to $d = 10$ while keeping all other
 1586 settings identical. Under this setting, we measured the runtime of CPI, LOCO, nLOCO, dLOCO,
 1587 DFI, FDFI-Z, FDFI, and Shapley value across a range of sample sizes to characterize scalability and
 1588 comparative efficiency as data volume grows. Each method was run 10 times for every sample size
 1589 configuration.
 1590

1591



1603

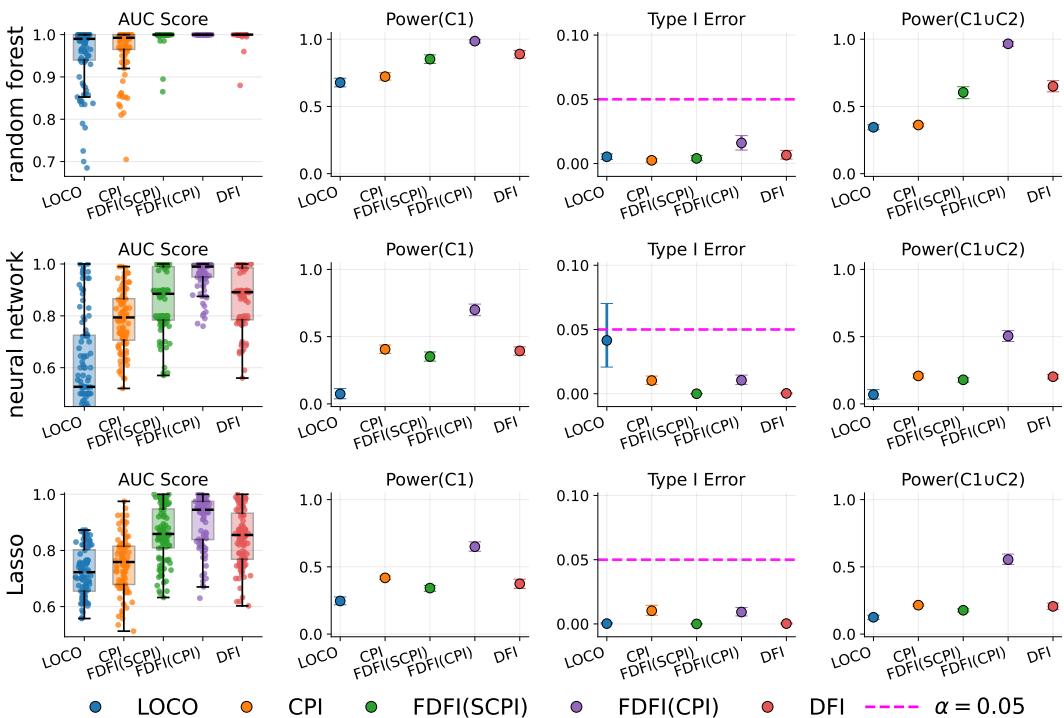
1604 **Figure D3:** Computation time in logarithmic scale of different methods. The error bars indicate
 1605 standard deviations across 10 random seeds.
 1606

1607

1608 The computation-time results show that CPI, FDFI, and DFI are substantially more efficient than
 1609 LOCO-based and Shapley value methods. Across all sample sizes, both approaches consistently
 1610 require only a fraction of the runtime compared with LOCO-based and Shapley value estimators,
 1611 while maintaining stable variance as reflected by the narrow error bars. This highlights their scal-
 1612 ability and practical advantage for large-sample applications. In particular, FDFI achieves markedly
 1613 lower runtime than correlation-aware methods such as dLOCO, further underscoring its efficiency.
 1614 Although DFI allows for an arbitrary optimal transport map in theory, its implementation in the orig-
 1615 inal paper only uses a Gaussian transport map, which admits a closed-form solution and is indeed
 1616 efficient, as shown in the above figure. However, if one needs to transform features to another latent
 1617 distribution, a general OT solver must be used, and it is usually computationally expensive when the
 1618 feature dimension is large.
 1619

1620 **E ADDITIONAL EMPIRICAL RESULTS**
16211622 **E.1 EXTRA SIMULATION STUDIES**
16231624 **E.1.1 BENCHMARKING WITH DIFFERENT PREDICTORS**
1625

1626 We conduct a comparative evaluation of LOCO, CPI, DFI, FDFI (SCPI), and FDFI (CPI) employing
1627 three prediction models: random forests, neural networks, and Lasso in the same setting of
1628 Section 4.1, fixing the correlation at $\rho = 0.4$ and the sample size at $n = 1000$. Each configuration
1629 is repeated 100 times with different random seeds. We choose $\rho = 0.4$ because the performance
1630 of methods such as LOCO and CPI tends to deteriorate as ρ increases; therefore, among
1631 $\rho \in \{0.4, 0.6, 0.8\}$, the smallest correlation coefficient was selected to allow a more objective
1632 comparison of the performance differences across different predictors.



1640 **Figure E4:** Performance comparison across three different predictors under the settings of Section 4.1. Top: results obtained with the random forest predictor. Middle: results obtained with the
1641 neural network predictor. Bottom: results obtained with the Lasso predictor. Points indicate mean
1642 values, with error bars representing 95% bootstrap confidence intervals over 100 runs.
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655

1660 According to Figure E4, when using the random forest predictor, different methods demonstrate
1661 consistently better performance in terms of AUC, Power, and Type I error control. Therefore, we
1662 adopt random forests as the predictor in our experiments.
1663
1664

1665 **E.1.2 DISENTANGLED TRANSFORM MAP**
1666

1667 The term $(\partial X_l / \partial Z_j)^2$ in Equation (4) quantifies how strongly fluctuations in Z_j are transmitted
1668 through X_l . Collecting these sensitivities across all pairs (l, j) yields a matrix that characterizes how
1669 latent variations propagate into the observed space. This sensitivity matrix reveals the block structure
1670 of X , where coherent feature groups manifest as localized blocks. To illustrate this phenomenon,
1671 we visualize the matrix as a heatmap. Specifically, we consider the nonlinear response model
1672

$$y = \arctan(X_0) + \sin(X_2) + \epsilon,$$

1673 with $X \sim \mathcal{N}_{10}(0, \Sigma)$, and $\epsilon \sim \mathcal{N}(0, 1)$. The covariance matrix Σ is block-diagonal with two blocks
of equal size (5×5) . The first block (features X_0 – X_4) is subdivided into two uncorrelated groups,

X_0, X_1 and X_2, X_3, X_4 , while the second block (features X_5 – X_9) forms a single equicorrelated cluster, as in Section 4.1. The within-block correlation is fixed at $\rho = 0.8$.

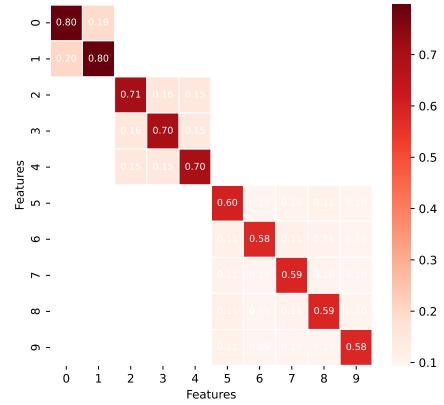


Figure E5: Sensitivity matrix under block structure ($\rho = 0.8$). The color bar denotes pairwise correlation strength, with darker red indicating higher correlation.

As shown in Figure E5, the heatmap exhibits clear block patterns consistent with this design. These structures provide direct empirical evidence of grouped dependencies, supporting the claim that the disentangled representation successfully recovers the latent dependency structure of X .

E.1.3 BENCHMARKING ON COMPLEX FEATURE DISTRIBUTIONS

To evaluate in more challenging settings that approximate real-world data, we move from simple Gaussians to Gaussian mixtures, which possess universal approximation capability to capture complex patterns commonly observed in real data (Goodfellow et al., 2016). We retain the same response model from Section 4.1 but generate covariates from a two-component Gaussian mixture: $X \sim 0.2\mathcal{N}(0, \Sigma(0.8)) + 0.8\mathcal{N}(0, \Sigma(0.2))$. Both covariance matrices, $\Sigma(0.8)$ and $\Sigma(0.2)$, follow the block structure introduced in Section 4.1, with correlation parameters $\rho = 0.8$ and $\rho = 0.2$, respectively. In this non-Gaussian setting, we benchmark 5 feature important measures, including LOCO, nLOCO (normalized LOCO; Verdinelli & Wasserman, 2024b), dLOCO (decorrelated LOCO; Verdinelli & Wasserman, 2024a), DFI, and FDFI, which provide both point estimates and uncertainty quantification. We exclude Shapley-value-based methods from this comparison due to their prohibitive computational cost, as detailed in our runtime analysis (Appendix D.4).

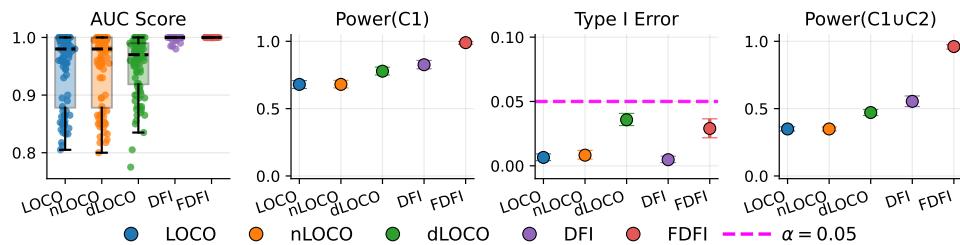


Figure E6: Benchmarking results of Gaussian mixture setting with a sample size of $n = 1000$. Points indicate mean values, with error bars representing 95% bootstrap confidence intervals over 100 runs.

The results in Figure E6 demonstrate that FDFI consistently achieves the strongest performance, attaining the highest AUC scores and statistical power while robustly controlling the Type I error. DFI also improves over the LOCO-based methods and maintains well-controlled Type I error. However, DFI's reliance on the Gaussian optimal transport map, which is less flexible than flow matching, limits its discriminative ability on this complex non-Gaussian data, resulting in inferior AUC and power compared to FDFI. By contrast, the LOCO, nLOCO, and dLOCO baselines remain substantially weaker in both AUC and power. Overall, these results highlight that FDFI's flow-based

1728 disentanglement provides superior flexibility and statistical power on complex distributions.
 1729

1730 Moreover, we also adapt a more sophisticated design for the covariance matrices and construct
 1731 X to exhibit heavy-tailed distribution characteristics. We first generate latent Gaussian covariates
 1732 $Z = (Z_1, \dots, Z_{1000})^\top \in \mathbb{R}^{1000 \times 50}$ from a two-component Gaussian mixture
 1733

$$1734 Z_i \sim 0.2 \mathcal{N}(0, \Sigma(0.8)) + 0.8 \mathcal{N}(0, \Sigma(0.2)), \quad i = 1, \dots, 1000,$$

1735 where $\Sigma(\rho) = I_5 \otimes \Sigma_\rho$ and $(\Sigma_\rho)_{ij} = \rho^{|i-j|/5}$. To induce heavy tails, we then transform Z into X
 1736 via a Gaussian- t scale mixture: for each i , we draw $W_i \sim \chi^2_{10}$ independently and set
 1737

$$1738 X_i = \sqrt{\frac{10}{W_i}} Z_i,$$

1741 so that the rows of X follow a heavy-tailed distribution of multivariate t -type with 10 degrees of
 1742 freedom and covariance proportional to $\Sigma(\rho)$. We retain the same response model as in Section 4.1
 1743 and perform 100 independent experiments, each with a randomly chosen seed. We then compare the
 1744 performance of LOCO, nLOCO, dLOCO, DFI, and FDFI in terms of AUC score, Type I error, and
 1745 Power, as reported in Table E2. It can be observed that even under a sophisticated covariance de-
 1746 sign and heavy-tailed distributions, FDFI still achieves the best performance among all methods by
 1747 leveraging a flow-based model. This further highlights the advantage of FDFI over DFI in handling
 1748 complex dependence structures and non-Gaussian data.

1749 **Table E2:** Comparison of LOCO, nLOCO, dLOCO, DFI, and FDFI in terms of AUC score, Type I
 1750 error, and Power.

Method	AUC score	Type I error	Power (C1)	Power (C1 \cup C2)
LOCO	0.9536	0.0063	0.5180	0.2640
nLOCO	0.9549	0.0095	0.5300	0.2700
dLOCO	0.9893	0.0357	0.9200	0.5080
DFI	1.0000	0.0037	0.9280	0.5730
FDFI	1.0000	0.0307	1.0000	0.8660

E.1.4 LATENTE INDEPENDENCE DIAGNOSTICS

To inspect the effect of the latent representation Z on FDFI, we compute the pairwise normalized
 HSIC (nHSIC) with Gaussian kernel:

$$1764 \text{nHSIC}(Z_j, Z_k) = \frac{\text{HSIC}(Z_j, Z_k)}{\sqrt{\text{HSIC}(Z_j, Z_j) \text{HSIC}(Z_k, Z_k)}},$$

1766 and the distance correlation (dCor):
 1767

$$1768 \text{dCor}^2(Z_j, Z_k) = \frac{\text{dCov}^2(Z_j, Z_k)}{\sqrt{\text{dVar}^2(Z_j) \text{dVar}^2(Z_k)}}.$$

1771 between two coordinates Z_j and Z_k for the learned latent representation under different settings.
 1772 Here, dCov and dVar are the covariance and variance of the Euclidean distance matrix.
 1773 To illustrate how one can diagnose the latent independence and its effects on statistical inference, we
 1774 retain the experimental setup of Section 4.1 and keep all other settings fixed. By reducing the width
 1775 of the neural network and the number of training steps (hidden dimension 128 \rightarrow 16, training steps
 1776 5000 \rightarrow 5), we deliberately deteriorate the training performance so that the correlations among
 1777 the components of Z increase, and then investigate the resulting impact. For both the “good” and
 1778 “bad” training regimes, we perform 50 independent runs with different random seeds. In each run,
 1779 we compute the two metrics between the coordinates of Z and summarize the dependence structure
 1780 by averaging all off-diagonal entries (i.e., excluding the self-dependence terms with $j = k$) of the
 1781 resulting pairwise nHSIC and distance-correlation matrices. Finally, we average these run-wise
 summaries across the 50 runs and relate them to the average empirical power and the standard

1782 **Table E3:** Effect of average dependence in Z (pairwise nHSIC and distance correlation) on test
 1783 performance and feature importance stability.

Regime	nHSIC(Z)	dCor(Z)	Power($C_1 \cup C_2$)	sd($\hat{\phi}(X_0)$)
Good training	0.0032	0.0543	1.0000	0.0147
Bad training	0.0711	0.1872	0.4480	0.0229

1789 deviation of the feature importance of the first covariate X_0 . The results are reported in Table E3.
 1790 As expected, bad training fails to decorrelate Z 's coordinates (large nHSIC and dCor), and hence
 1791 deteriorates the statistical inference.

1792 E.1.5 SENSITIVITY TO NUISANCE QUALITY

1794 To analyze the sensitivity of FDFI to different flow training, we retain the model construction in
 1795 Section 4.1 and inspect the performance with different parameter values. According to Figure 2,
 1796 FDFI becomes highly stable when the sample size is sufficiently large. Therefore, to better investi-
 1797 gate how these hyperparameters affect performance, we fix the sample size at 300 in the following
 1798 experiments.

1799 In Section 4.1, the response is generated as

$$1800 y = \arctan(X_0 + X_1) \mathbb{1}_{\{X_2 > 0\}} + \sin(X_3 X_4) \mathbb{1}_{\{X_2 < 0\}} + \epsilon.$$

1802 Therefore, for X_0 and X_1 , their feature importances should be identical in theory. Motivated by this,
 1803 we introduce an additional metric to assess the effect of hyperparameters on the training outcome,
 1804 namely the *geometric-relative discrepancy* between ϕ_0 and ϕ_1 , defined by

$$1805 \Delta_{\text{geo}}(\phi_0, \phi_1) = \frac{|\phi_0 - \phi_1|}{\sqrt{\phi_0 \phi_1}}.$$

1808 Ideally, this quantity should be as small as possible.

1809 We consider different configurations of each hyperparameter (and keep all other settings identical
 1810 to Section 4.1): (i) *The size of auxiliary set*. We vary the auxiliary set size m , while keeping the
 1811 training steps proportional to m , to ensure sufficient training. (ii) *Latent resample size*. We vary the
 1812 number of latent resamples M from 1 to 50. (iii) *Model depth/width*. We evaluate 5 configurations
 1813 of the hidden dimension (width) and the number of layers (depth) of the neural network.

1814 The statistical power, geometric-relative discrepancy, and Type I error in all configurations are pre-
 1815 sented in Table E4. We observe that increasing the auxiliary set size m , the latent resample size
 1816 M , or the network width and depth consistently improves power and reduces geometric discrepancy
 1817 while maintaining well-controlled Type I error. Notably, as long as the hyperparameters lie within
 1818 a reasonable range, the overall performance remains highly stable, showing that FDFI maintains
 1819 stable performance without being overly sensitive to the specific choice of hyperparameters.

1820 **Table E4:** Sensitivity analysis of FDFI to flow training hyperparameters on Power, geometric-
 1821 relative discrepancy, and Type I error.

Hyperparameter		Power($C_1 \cup C_2$)	$\Delta_{\text{geo}}(\phi_0, \phi_1)$	Type I error
Size of auxiliary set m	300	0.8560	0.2275	0.009
	500	0.8880	0.2161	0.0180
	1000	0.9080	0.1821	0.0165
Latent resample size M	1	0.7700	0.2522	0.0115
	10	0.8820	0.2143	0.0185
	50	0.9080	0.1821	0.0165
(width, depth)	(16, 1)	0.4340	0.5637	0.0215
	(64, 1)	0.8860	0.2402	0.0125
	(128, 1)	0.8980	0.2251	0.0205
	(128, 2)	0.9080	0.1821	0.0165
	(128, 3)	0.9040	0.2023	0.0135

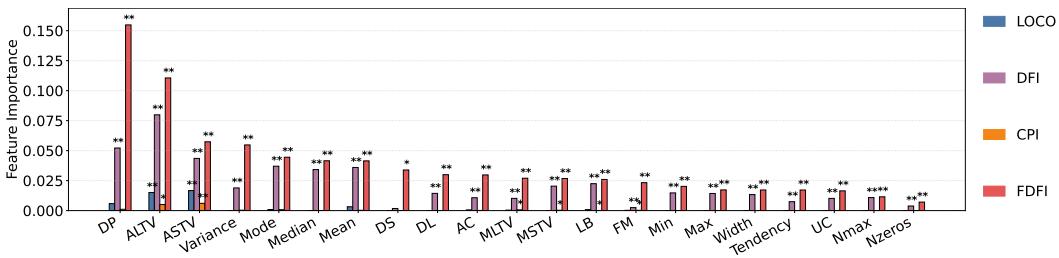
1836 E.2 EXTRA REAL DATA STUDIES
18371838 We conducted data analysis on nine different real-world datasets, which vary in sample sizes, feature
1839 dimensions, task types, variable types, and domains. We summarize their information in Table E5.
18401841 **Table E5:** Summary of all 9 real datasets studied in the paper. In the ‘Task’ column, ‘Cls’ denotes
1842 classification and ‘Reg’ denotes regression.
1843

Dataset	(n, d)	Task	Variable type	Domain
Cardiotocography	(2126, 21)	Cls	Continuous	Medical
Pima Indians Diabetes	(768, 8)	Cls	Continuous	Medical
MicroMass	(571, 1300)	Cls	Discrete	Biological
Codon usage	(13028, 69)	Cls	Continuous & Discrete	Biological
Default of Credit Card Clients	(30000, 23)	Cls	Continuous & Discrete	Commercial
Superconductivity Data	(21263, 81)	Reg	Continuous	Industrial
Video Transcoding	(68784, 19)	Reg	Continuous & Discrete	Industrial
TCGA-PANCAN-HiSeq	(801, 20531)	Cls	Discrete	Biological
human single-cell RNA-seq	(632, 23257)	Cls	Discrete	Biological

1854 E.2.1 CARDIOTOCOGRAPHY DATASET
18551856 The Cardiotocography (CTG) dataset ($n = 2126, d = 21$) (Campos & Bernardes, 2000) consists
1857 of 2,126 computer-processed cardiotocograms with 21 diagnostic features derived from fetal heart
1858 rate (FHR) and uterine contraction (UC) signals. These features capture baseline FHR, counts of
1859 accelerations and decelerations, short- and long-term variability, and FHR-histogram statistics. We
1860 use this dataset to classify fetuses as normal or abnormal and to compare feature importance esti-
1861 mates produced by different methods. The Shapley value method was not applied here because its
1862 computation time exceeded one day, even with only 21 features.
18631864 As shown in Figure E7, LOCO and CPI identify only a small subset of features as significant, in
1865 sharp contrast to FDFI and DFI. This divergence stems from the block-diagonal structure of the
1866 feature correlation matrix (Section 4.3), which is a manifestation of correlation distortion under
1867 multicollinearity. In such settings, LOCO and CPI attenuate or mask true effects, whereas FDFI and
1868 DFI are less affected (Verdinelli & Wasserman, 2024b). In the CTG dataset, *LB* anchors the tracing
1869 around the expected 110–160 bpm baseline for reassuring status, while central-tendency descrip-
1870 tors (*Mean*, *Median*, *Mode*) provide concordant evidence of the baseline neighborhood (Ayres-de
1871 Campos et al., 2015; Jia et al., 2023). Reactivity is reflected by *AC* (accelerations), often accom-
1872 panied by *FM* (fetal movements), both indicating intact autonomic control and low short-term risk.
1873 Excessive *UC* (uterine contractions), i.e., tachysystole, can compromise uteroplacental perfusion
1874 and precipitate decelerations (Ayres-de Campos et al., 2015). Beat-to-beat and longer-scale vari-
1875 ability are captured by *MSTV/ASTV* (short-term variability mean and abnormal-time proportion)
1876 and *MLTV/ALTV* (long-term variability mean and abnormal-time proportion). Adequate variability
1877 (higher *MSTV*, *MLTV* and lower *ASTV*, *ALTV*) is reassuring, whereas depressed variability is non-
1878 reassuring (Ayres-de Campos et al., 2015; Jia et al., 2023; Stampalija et al., 2023). Deceleration
1879 phenotypes—*DL* (mild/early), *DS* (severe/variable), and *DP* (prolonged)—span a spectrum from
1880 benign positional patterns to forms associated with cord compression and hypoxia/acidemia, with
1881 *DP* (> 2 min) and repetitive deep *DS* most strongly linked to metabolic risk (Parer & Ikeda, 2007).
1882 Histogram-based morphology provides supportive, context-dependent information: overall spread
1883 via *Width* and *Variance* (very low values echo variability loss; excessively wide or erratic distri-
1884 butions indicate nonreassurance), extremes via *Min/Max* (sustained brady- or tachycardic periods),
1885 modal structure via *Nmax/Nzeros* (multimodality and sparsity cues), and slow drift via *Tendency*.
1886 These descriptors are standard in computer-aided CTG (e.g., SisPorto) and are highlighted in con-
1887 temporary reviews (Ayres-de Campos et al., 2000; Romano et al., 2016; Zhao et al., 2018).
18881889 FDFI consistently isolates the physiologically meaningful signal and preserves it under strong cor-
1890 relation and Bonferroni control, yielding a stable, guideline-concordant importance profile. This
1891 pattern demonstrates clear advantages in interpretability and robustness, retaining clinically relevant
1892 effects despite multicollinearity and multiple testing, thereby providing a more reliable attribution
1893 map than methods that are prone to correlation distortion.

1890 **Table E6:** Description of 21 features in the Cardiotocography dataset ($n = 2126, d = 21$) . Where
 1891 n is the sample size and d is the feature dimension. ‘FHR’ means ‘Fetal Heart Rate’.

Broad category	Feature name	Meaning
Baseline & counts	LB	FHR baseline (beats per minute)
	AC	Number of accelerations per second
	FM	Number of fetal movements per second
	UC	Number of uterine contractions per second
Decelerations	DL	Number of light decelerations per second
	DS	Number of severe decelerations per second
	DP	Number of prolonged decelerations per second
Short-term variability	ASTV	Percentage of time with abnormal short-term variability
	MSTV	Mean value of short-term variability
Long-term variability	ALTV	Percentage of time with abnormal long-term variability
	MLTV	Mean value of long-term variability
Histogram (FHR)	Width	Width of the FHR histogram
	Min	Minimum value of the FHR histogram
	Max	Maximum value of the FHR histogram
	Nmax	Number of histogram peaks
	Nzeros	Number of histogram zeros
	Mode	Mode of the histogram
	Mean	Mean of the histogram
	Median	Median of the histogram
	Variance	Variance of the histogram
	Tendency	Tendency of the histogram



1923 **Figure E7:** Bar plot of feature importances of the random forest classifier on the Cardiotocography
 1924 (CTG) dataset. The symbols * and ** on the bars denote statistical significance at a level of $\alpha = 0.05$
 1925 and $\alpha = 0.05/21$, respectively. The meaning of all features is provided in Table E6.

1926 **Case-wise attributions:** Recall that the importance of feature X_l is estimated by Algorithm D.1 as:

$$\Psi_{il} = \sum_{j=1}^d \Omega_{ij} \cdot \hat{H}_{jl}(\hat{Z}_i), \quad \hat{\phi}_{X_l} = \frac{1}{n} \sum_{i=1}^n \Psi_{il}.$$

1931 In Figure 4(a), the heatmap exhibits a strong block-diagonal structure among *LB*, *Mean*, *Mode*, and
 1932 *Median*. For feature *LB*, we define the block-restricted contribution for *LB* as

$$\Psi_{i,LB}^{\text{block}} = \sum_{j \in \mathcal{B}_{LB}} \Omega_{ij} \hat{H}_{j,LB}(\hat{Z}_i), \quad \mathcal{B}_{LB} := \{\text{LB, Mean, Mode, Median}\}.$$

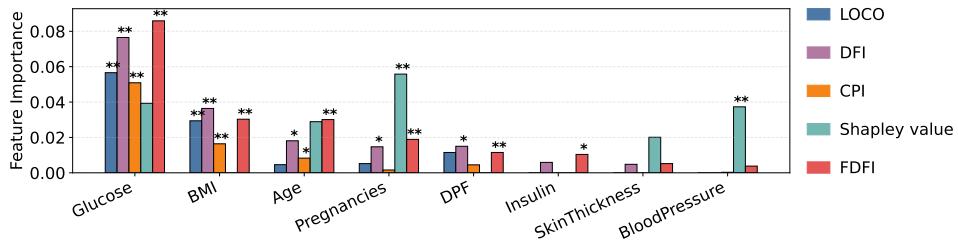
1935 Averaging these restricted sample-wise contributions over all i yields a block-based feature import-
 1936 tance $\hat{\phi}_{X_{LB}}^{\text{block}} = \frac{1}{n} \sum_i \Psi_{i,LB}^{\text{block}}$. For comparison, $\hat{\phi}_{X_{LB}} = \frac{1}{n} \sum_i \Psi_{i,LB}$ denotes the overall feature
 1937 importance of *LB* computed using all features. In our real data analysis, the overall importance
 1938 $\hat{\phi}_{X_{LB}} = 0.0286$, the block-based importance $\hat{\phi}_{X_{LB}}^{\text{block}} = 0.0228$, and their ratio is 0.7972, meaning
 1939 that the four-feature block accounts for nearly 80% of the importance of *LB*.

E.2.2 PIAM DIABETES DATASET

1941 The Pima Indians Diabetes dataset ($n = 768, d = 8$) (Smith et al., 1988) contains medical records
 1942 from female patients of Pima Indian heritage. Each record includes eight clinical attributes such

1944 **Table E7:** Description of 8 features in the Pima Indians Diabetes dataset ($n = 768, d = 8$) . Where
 1945 n is the sample size and d is the feature dimension.
 1946

Broad category	Feature name	Meaning
Obstetric history	Pregnancies	Number of times pregnant
Glycemia	Glucose	Plasma glucose concentration at 2 hours in an OGTT (mg/dL)
Blood pressure	BloodPressure	Diastolic blood pressure (mm Hg)
Adiposity	SkinThickness	Triceps skinfold thickness (mm)
	BMI	Body mass index (kg/m^2)
Insulinemia	Insulin	2-hour serum insulin (mU/L)
Family history	DPF	Diabetes pedigree function (family history-based risk score)
Demographics	Age	Age (years)



1968 **Figure E8:** Bar plot of feature importances of the random forest classifier on the Piam diabetes
 1969 dataset. The symbols * and ** on the bars denote statistical significance at a level of $\alpha = 0.05$ and
 1970 $\alpha = 0.05/8$, respectively. The meaning of all features is provided in Table E7.

1971 as the number of pregnancies, plasma glucose concentration, blood pressure, skinfold thickness,
 1972 insulin level, body mass index (BMI), diabetes pedigree function, and age. The task is to predict the
 1973 onset of Type 2 diabetes, providing a widely used benchmark for classification in clinical settings.

1974 On the Piam diabetes dataset, the results in Figure E8 align with clinical knowledge while under-
 1975 scoring FDFI’s robustness under correlation and multiple testing (Bonferroni $\alpha = 0.00625$). (i)
 1976 Diagnostic marker: *Glucose* is consistently identified as significant by all methods except Shap-
 1977 ley value and remains so after Bonferroni adjustment, reflecting its established diagnostic role in
 1978 diabetes (ElSayed et al., 2023). (ii) Risk factors: *BMI* shows a nearly identical pattern, being re-
 1979 tained after correction for all methods except Shapley value, consistent with evidence that adiposity
 1980 strongly elevates diabetes risk, though its impact diminishes once baseline glycemia is considered
 1981 (Jayedi et al., 2022). FDFI additionally detects *Age*, *Pregnancies*, and *DPF* after correction and
 1982 assigns non-negligible weight to *BloodPressure*, aligning with their interpretation as background
 1983 screening factors rather than diagnostic markers (Davidson et al., 2021; Valdez et al., 2007; Emdin
 1984 et al., 2015). (iii) Physiology-aligned signals: Beyond these established predictors, FDFI also high-
 1985 lights *Insulin* at the nominal level and assigns non-negligible weight to *SkinThickness*, consistent
 1986 with prior evidence linking parity, OGTT-based insulin, and skinfold adiposity with type 2 diabetes
 1987 risk (Guo et al., 2017; Nicholson et al., 2006; Hanley et al., 2003; Ruiz-Alejos et al., 2020).

E.2.3 MICROMASS DATASET

1991 The MicroMass dataset ($n = 571, d = 1300$) (Mahé & Veyrieras, 2014) contains mass spectrometry
 1992 measurements from 571 bacterial samples. Each sample is encoded as a 1300-dimensional spectrum
 1993 of mass-to-charge intensity values, which serve as high-dimensional fingerprints of bacterial com-
 1994 position. While originally designed for species-level identification, the dataset also provides a natural
 1995 binary partition between Gram-positive and Gram-negative bacteria. In our work, we leverage this
 1996 property to frame the problem as a binary classification task, aiming to discriminate Gram-positive
 1997 from Gram-negative organisms. This setting provides a biologically meaningful benchmark for
 evaluating the effectiveness of the proposed method in high-dimensional, structurally complex data.

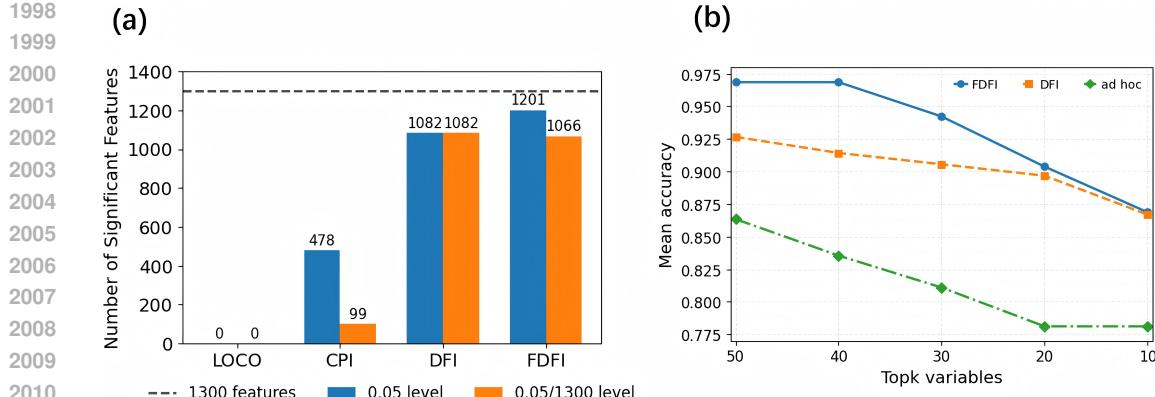


Figure E9: Data analysis of the MicroMass dataset. (a) Number of significant features identified by LOCO, CPI, DFI, and FDFI under different significance levels on the MicroMass dataset. (b) Prediction accuracy with selected important features for FDFI, DFI, and an ad hoc method that applies CPI on the cluster-representative features.

For the MicroMass dataset, due to the large number of features, we report the counts of features identified as significant by the four methods (LOCO, CPI, DFI, and FDFI) under two significance thresholds: the nominal 0.05 level and the Bonferroni-adjusted 0.05/1300 level, as summarized in Figure E9(a). Results show that DFI and FDFI identify a considerably larger number of significant features, whereas CPI yields only a few significant findings and LOCO fails to detect any, reflecting their susceptibility to correlation distortion under multicollinearity.

Consistent with the preceding analysis in Appendix E.2, we also compare FDFI, DFI, and an ad-hoc procedure that first clusters features on the Spearman correlation matrix, selects one medoid per cluster as a representative, and then applies CPI on this reduced feature set. As illustrated in Figure E9(b), on the MicroMass dataset, FDFI exhibits substantial superiority over both DFI and the ad hoc method, empirically confirming the effectiveness of the proposed approach under high-dimensional, structured-feature settings. Notably, by operating directly on the full feature space, FDFI avoids the information loss inherent to cluster selection and remains robust to correlation distortion, yielding consistently higher accuracy across the range of k .

2030 E.2.4 RESULTS ON FOUR ADDITIONAL LARGE-SCALE DATASETS

2031 In this section, we conduct experiments on four real-world datasets of moderately large sample
2032 sizes. These datasets cover both classification and regression tasks. The larger sample sizes allow
2033 for more reliable results, making it possible to assess the robustness and generalizability of the
2034 models across different task types. We compare average prediction performance across datasets
2035 for features selected by FDFI, DFI, and an ad hoc CPI-based clustering approach, using prediction
2036 accuracy for classification and root mean squared error (RMSE) for regression, with results averaged
2037 over two-fold splits for each dataset. For the classification task, we conduct experiments on datasets
2038 Codon usage ($n = 13028, d = 69$) and Default of Credit Card Clients (DCCC) ($n = 30000, d =$
2039 23), and for the regression task, we conduct experiments on datasets Superconductivity Data ($n =$
2040 21263, $d = 81$) and Video Transcoding ($n = 68784, d = 19$). The results reported in Table E8
2041 clearly demonstrate the superiority of our method. FDFI consistently outperforms both DFI and the
2042 ad hoc CPI-based clustering approach across these datasets for both classification and regression
2043 tasks. This superiority is evident in its ability to more effectively select the top- k features, which
2044 leads to better model performance.

2045 E.2.5 EXTRA RESULTS ON TWO RNA-SEQ DATASETS

2046 To further demonstrate that our method can achieve superior performance over existing approaches
2047 in genuinely high-dimensional regimes with intricate inter-feature correlations, we additionally con-
2048 duct experiments on two challenging RNA-seq datasets. (i) The TCGA-PANCAN-HiSeq bulk
2049 RNA-seq dataset ($n = 801, d = 20531$) (Weinstein et al., 2013), where the goal is to classify
2050 samples into five tumor types: breast invasive carcinoma (BRCA), kidney renal clear cell carcinoma
2051 (KIRC), colon adenocarcinoma (COAD), lung adenocarcinoma (LUAD), and prostate adenocarci-

2052
2053 **Table E8:** Classification performance (accuracy) of three methods with different top- k feature sets
2054 on 4 datasets with large sample sizes.

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105	Type	Dataset	Codon usage			Default of Credit Card Clients		
			Method	Top-8	Top-4	Top-2	Top-8	Top-4
Classification	FDFI	0.7642	0.6448	0.5401	0.8182	0.8197	0.8197	0.8197
	DFI	0.7588	0.6391	0.5142	0.8150	0.8137	0.8173	0.8173
	ad-hoc	0.7132	0.5839	0.4479	0.8173	0.8118	0.8173	0.8173
Regression	Superconductivity Data			Video Transcoding				
	Method	Top-8	Top-4	Top-2	Top-8	Top-4	Top-2	
	FDFI	11.0347	12.7988	15.0577	6.8195	7.9727	9.0607	
Regression	DFI	11.4675	13.4683	16.9657	6.8588	8.2657	9.3723	
	ad-hoc	12.0083	13.1241	17.8346	6.8991	8.2052	9.1645	

noma (PRAD). This dataset is representative of large-scale transcriptomic studies with strong co-expression structures and severe $p \gg n$ imbalance. (ii) The human single-cell RNA-seq dataset ($n = 632$, $d = 23257$) (Darmanis et al., 2017), which is used to distinguish neoplastic cells originating from the tumor core versus those from the periphery. This dataset exemplifies ultra-high-dimensional single-cell measurements with heterogeneous cell populations and complex gene–gene dependencies, providing a stringent testbed for evaluating feature-importance methods. Following the preprocessing procedures in (Yan et al., 2025), we selected 1,500 highly variable genes (HVGs) for the TCGA-PANCAN-HiSeq bulk RNA-seq dataset and 2,000 HVGs for the human single-cell RNA-seq dataset, and performed all downstream analyses on these HVG subsets. We then compared the average prediction accuracy across datasets for the important features selected by FDFI, DFI, and an ad hoc CPI-based clustering approach, using two-fold splits and reporting the mean accuracy for each dataset.

In particular, for the human single-cell RNA-seq dataset, we found that the Top-20 genes selected by our method include *ALDOC*, *HES6*, and *CPE*, all of which have been previously implicated in glioma biology. *ALDOC*, a glycolytic enzyme highly enriched in neural tissue, has been implicated in glioma metabolic reprogramming, where altered *ALDOC* expression is associated with enhanced glycolytic activity, tumor progression, and increased migratory potential of glioma cells (Chang et al., 2024). *HES6*, a basic helix–loop–helix transcription factor, is selectively overexpressed in glioma and functions as an important regulator driving tumor-cell proliferation, migration, and lineage plasticity (Haapa-Paananen et al., 2012). *CPE* which encodes a neuroendocrine peptide-processing enzyme, has more recently been recognized as an oncogenic factor in high-grade gliomas, where its elevated expression promotes tumor-cell survival, invasion, and stress adaptation through enhanced metabolic resilience and extracellular-matrix remodeling (Hareendran et al., 2022).

These concordances between known glioma biology and the features automatically selected by our method provide additional support for the clinical relevance of our approach. In contrast, for the TCGA-PANCAN-HiSeq dataset, only gene indices (rather than gene symbols) are provided, so we report prediction accuracy only and do not attempt to interpret the selected genes in terms of their clinical relevance.

2106 REFERENCES
2107

2108 Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
2109 polants. In *11th International Conference on Learning Representations*, 2023.

2110 Herbert Amann. *Ordinary differential equations: an introduction to nonlinear analysis*, volume 13.
2111 Walter de gruyter, 2011.

2112 T. W. Anderson. *An Introduction to Multivariate Statistical Analysis*. Wiley, 3rd edition, 2003.

2113 Diogo Ayres-de Campos, Joao Bernardes, Antonio Garrido, Joaquim Marques-de Sa, and Luis
2114 Pereira-Leite. Sisporto 2.0: a program for automated analysis of cardiotocograms. *Journal of*
2115 *Maternal-Fetal Medicine*, 9(5):311–318, 2000.

2116 Diogo Ayres-de Campos, Catherine Y Spong, Edwin Chandraharan, et al. Figo consensus guide-
2117 lines on intrapartum fetal monitoring: Cardiotocography. *International Journal of Gynecology &*
2118 *Obstetrics*, 131(1):13–24, 2015.

2119 Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
2120 neural networks. *Advances in neural information processing systems*, 30, 2017.

2121 Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.

2122 Diogo Campos and Jorge Bernardes. Cardiotocography [dataset]. UCI Machine Learning Reposi-
2123 tory, 2000. <https://archive.ics.uci.edu/dataset/193/cardiotocography>.

2124 Yu-Chan Chang, Ming-Hsien Chan, Chien-Hsiu Li, Chi-Long Chen, Wen-Chiuan Tsai, and Michael
2125 Hsiao. Ppar- γ agonists reactivate the aldoc-nr2f1 axis to enhance sensitivity to temozolomide and
2126 suppress glioblastoma progression. *Cell Communication and Signaling*, 22(1):266, 2024.

2127 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
2128 Newey, and James Robins. Double/debiased machine learning for treatment and structural pa-
2129 rameters, 2018.

2130 Spyros Darmanis, Steven A Sloan, Derek Croote, Marco Mignardi, Sophia Chernikova, Peyman
2131 Samghababi, Ye Zhang, Norma Neff, Mark Kowarsky, Christine Caneda, et al. Single-cell rna-
2132 seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. *Cell*
2133 *reports*, 21(5):1399–1410, 2017.

2134 Karina W Davidson, Michael J Barry, Carol M Mangione, Michael Cabana, Aaron B Caughey,
2135 Esa M Davis, Katrina E Donahue, Chyke A Doubeni, Alex H Krist, Martha Kubik, et al. Screening
2136 for prediabetes and type 2 diabetes: Us preventive services task force recommendation statement.
2137 *Jama*, 326(8):736–743, 2021.

2138 Jin-Hong Du, Kathryn Roeder, and Larry Wasserman. Disentangled feature importance. *arXiv*
2139 *preprint arXiv:2507.00260*, 2025a.

2140 Jin-Hong Du, Zhenghao Zeng, Edward H Kennedy, Larry Wasserman, and Kathryn Roeder. Causal
2141 inference for genomic data with multiple heterogeneous outcomes. *Journal of the American*
2142 *Statistical Association*, pp. 1–24, 2025b.

2143 Nuha A ElSayed, Grazia Aleppo, Vanita R Aroda, Raveendhara R Bannuru, Florence M Brown,
2144 Dennis Bruemmer, Billy S Collins, Jason L Gaglia, Marisa E Hilliard, Diana Isaacs, et al. 2.
2145 classification and diagnosis of diabetes: standards of care in diabetes—2023. *Diabetes care*, 46
2146 (Supplement_1):S19–S40, 2023.

2147 Connor A Emdin, Simon G Anderson, Mark Woodward, and Kazem Rahimi. Usual blood pressure
2148 and risk of new-onset diabetes: evidence from 4.1 million adults and a meta-analysis of prospec-
2149 tive studies. *Journal of the American College of Cardiology*, 66(14):1552–1562, 2015.

2150 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1(2).
2151 MIT press Cambridge, 2016.

2152 Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural net-
2153 works by enforcing lipschitz continuity. *Machine Learning*, 110(2):393–416, 2021.

2160 Peng Guo, Quan Zhou, Lei Ren, Yu Chen, and Yue Hui. Higher parity is associated with increased
 2161 risk of type 2 diabetes mellitus in women: a linear dose-response meta-analysis of cohort studies.
 2162 *Journal of diabetes and its complications*, 31(1):58–66, 2017.

2163
 2164 Saija Haapa-Paananen, S Kiviluoto, M Waltari, Marjut Puputti, John Patrick Mpindi, Pekka Koho-
 2165 nen, Olli Tynniinen, H Haapasalo, Heikki Joensuu, Merja Perälä, et al. Hes6 gene is selectively
 2166 overexpressed in glioma and represents an important transcriptional regulator of glioma prolif-
 2167 eration. *Oncogene*, 31(10):1299–1310, 2012.

2168 Anthony JG Hanley, Ken Williams, Clicerio Gonzalez, Ralph B D’Agostino Jr, Lynne E Wa-
 2169 genknecht, Michael P Stern, and Steven M Haffner. Prediction of type 2 diabetes using simple
 2170 measures of insulin resistance: combined results from the san antonio heart study, the mexico city
 2171 diabetes study, and the insulin resistance atherosclerosis study. *Diabetes*, 52(2):463–469, 2003.

2172 Sangeetha Hareendran, Xuyu Yang, Vinay Kumar Sharma, and Y Peng Loh. Carboxypeptidase e
 2173 and its splice variants: key regulators of growth and metastasis in multiple cancer types. *Cancer*
 2174 *letters*, 548:215882, 2022.

2175 Philip Hartman. *Ordinary differential equations*. SIAM, 2002.

2176 Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. *Journal of*
 2177 *Machine Learning Research*, 6:695–709, 2005.

2178 Ahmad Jayedi, Sepideh Soltani, Sheida Zeraat-talab Motlagh, Alireza Emadi, Hosein Shahinfar,
 2179 Hanieh Moosavi, and Sakineh Shab-Bidar. Anthropometric and adiposity indicators and risk of
 2180 type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. *Bmj*, 376,
 2181 2022.

2182 Yan-Ju Jia, Tullio Ghi, Susana Pereira, Anna Gracia Perez-Bonfils, and Edwin Chandraharan. Patho-
 2183 physiological interpretation of fetal heart rate tracings in clinical practice. *American journal of*
 2184 *obstetrics and gynecology*, 228(6):622–644, 2023.

2185 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
 2186 free predictive inference for regression. *Journal of the American Statistical Association*, 113
 2187 (523):1094–1111, 2018.

2188 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 2189 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

2190 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ
 2191 Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv*
 2192 *preprint arXiv:2412.06264*, 2024.

2193 Angel Reyero Lobo, Pierre Neuvial, and Bertrand Thirion. On the double robustness of conditional
 2194 feature importance. *arXiv preprint arXiv:2501.17520*, 2025.

2195 Pierre Mahé and Jean-Baptiste Veyrieras. Micromass [dataset]. UCI Machine Learning Repository,
 2196 2014. <https://archive.ics.uci.edu/ml/datasets/MicroMass>.

2197 Wanda K Nicholson, Keiko Asao, Frederick Brancati, Josef Coresh, James S Pankow, and Neil R
 2198 Powe. Parity and risk of type 2 diabetes: the atherosclerosis risk in communities study. *Diabetes*
 2199 *care*, 29(11):2349–2354, 2006.

2200 Julian T Parer and Tomoaki Ikeda. A framework for standardized management of intrapartum fetal
 2201 heart rate patterns. *American journal of obstetrics and gynecology*, 197(1):26–e1, 2007.

2202 Maria Romano, Luigi Iuppariello, Alfonso Maria Ponsiglione, Giovanni Imrota, Paolo Bifulco,
 2203 and Mario Cesarelli. Frequency and time domain analysis of foetal heart rate variability with
 2204 traditional indexes: a critical survey. *Computational and mathematical methods in medicine*,
 2205 2016(1):9585431, 2016.

2206 Andrea Ruiz-Alejos, Rodrigo M Carrillo-Larco, J Jaime Miranda, Robert H Gilman, Liam Smeeth,
 2207 and Antonio Bernabé-Ortiz. Skinfold thickness and the incidence of type 2 diabetes mellitus and
 2208 hypertension: an analysis of the peru migrant study. *Public health nutrition*, 23(1):63–71, 2020.

2214 L. S. Shapley. A value for n-person games. In *Contributions to the Theory of Games (AM-28),*
 2215 *Volume II*, pp. 307–318. Princeton University Press, Princeton, NJ, 1953. ISBN 9780691079356.
 2216

2217 Jack W Smith, James E Everhart, William C Dickson, William C Knowler, and Robert Scott Jo-
 2218 hannes. Using the adap learning algorithm to forecast the onset of diabetes mellitus. In *Proceed-
 2219 ings of the annual symposium on computer application in medical care*, pp. 261, 1988.

2220 T Stampalija, A Bhide, AEP Heazell, A Sharp, C Lees, et al. Computerized cardiotocography and
 2221 dawes–redman criteria: how should we interpret criteria not met? *Ultrasound in Obstetrics &*
 2222 *Gynecology*, 61(6):661–666, 2023.

2223

2224 Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis. Con-
 2225 ditional variable importance for random forests. *BMC bioinformatics*, 9:1–11, 2008.

2226 Rodolfo Valdez, Paula W Yoon, Tiebin Liu, and Muin J Khoury. Family history and prevalence of
 2227 diabetes in the us population: the 6-year results from the national health and nutrition examination
 2228 survey (1999–2004). *Diabetes care*, 30(10):2517–2522, 2007.

2229

2230 Isabella Verdinelli and Larry Wasserman. Decorrelated variable importance. *Journal of Machine
 2231 Learning Research*, 25(7):1–27, 2024a.

2232 Isabella Verdinelli and Larry Wasserman. Feature importance: A closer look at shapley values and
 2233 loco. *Statistical Science*, 39(4):623–636, 2024b.

2234

2235 Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
 2236 efficient estimation. *Advances in Neural Information Processing Systems*, 31, 2018.

2237 John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Shaw, Brad A Ozenberger, Kyle
 2238 Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. The cancer genome atlas pan-cancer
 2239 analysis project. *Nature genetics*, 45(10):1113–1120, 2013.

2240

2241 Brian Williamson and Jean Feng. Efficient nonparametric statistical inference on population feature
 2242 importance using shapley values. In *International conference on machine learning*, pp. 10282–
 10291. PMLR, 2020.

2243

2244 Guanao Yan, Shuo Harper Hua, and Jingyi Jessica Li. Categorization of 34 computational methods
 2245 to detect spatially variable genes from spatially resolved transcriptomics data. *Nature Communi-
 2246 cations*, 16(1):1141, 2025.

2247

2248 Zhidong Zhao, Yang Zhang, and Yanjun Deng. A comprehensive feature analysis of the fetal heart
 2249 rate signal for the intelligent assessment of fetal state. *Journal of clinical medicine*, 7(8):223,
 2018.

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267