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ABSTRACT

Quantifying feature importance with valid statistical uncertainty is central to in-
terpretable machine learning, yet classical model-agnostic methods often fail un-
der feature correlation, producing unreliable attributions and compromising infer-
ence. Statistical approaches that address correlation through feature decorrelation
have shown promise but remain restricted to /> loss, limiting their applicability
across diverse machine learning tasks. We introduce Flow-Disentangled Feature
Importance (FDFI), a model-agnostic framework that resolves these limitations
by combining principled statistical inference with computational flexibility. FDFI
leverages flow matching to learn flexible disentanglement maps that not only han-
dle arbitrary feature distributions but also provide an interpretable pathway for
understanding how importance is attributed through the data’s correlation struc-
ture. The framework generalizes the decorrelation-based attribution to general
differentiable loss functions, enabling statistically valid importance assessment for
black-box predictors across regression and classification. We establish statistical
inference theory, deriving semiparametric efficiency of FDFI estimators, which
enables valid confidence intervals and hypothesis testing with Type I error con-
trol. Experiments demonstrate that FDFI achieves substantially higher statistical
power than removal-based and conditional permutation approaches, while main-
taining robust and interpretable attributions even under severe interdependence.
These findings hold across synthetic benchmarks and a broad collection of real
datasets spanning diverse domains.

1 INTRODUCTION

Quantifying the importance of input features is fundamental to model interpretability and scientific
discovery (Murdoch et al., 2019). However, standard model-agnostic methods falter when features
are correlated. Removal-based approaches, such as Leave-One-Covariate-Out (LOCO) (Lei et al.,
2018) and resample-based approaches such as Conditional Permutation Importance (CPI) (Strobl
et al., 2008), can produce ambiguous attributions because they cannot cleanly isolate the unique
predictive contribution of a single variable from that of its statistical dependents. This confounding
effect of multicollinearity undermines the reliability of explanations derived from complex models
(Williamson et al., 2021; Verdinelli & Wasserman, 2024a). Further, many attribution methods pro-
vide only point estimates, lacking uncertainty quantification necessary for valid statistical inference,
such as constructing confidence intervals or performing hypothesis testing (Chamma et al., 2023).

To address the challenge of correlation, Disentangled Feature Importance (DFI) was recently pro-
posed as a principled framework for attribution under dependence (Du et al., 2025). The core idea is
to first learn a transformation that maps the original correlated features into a latent space where they
become statistically independent (Genizi, 1993). By measuring importance in this disentangled rep-
resentation and then mapping the scores back to the original feature space, DFI effectively isolates
the unique signal attributable to each feature. While powerful, the original DFI framework has two
key limitations: (i) its reliance on an optimal transport (OT) map to perform the disentanglement can
be computationally intensive and less flexible for complex, high-dimensional distributions beyond
Gaussianity, and (ii) its formulation is restricted to importance scores evaluated with the /5 loss.

In this work, we build upon this foundation to introduce Flow-Disentangled Feature Importance
(FDFI), a significant generalization and enhancement of the DFI framework. An overview of the
FDFI framework is provided in Figure 1. We replace the restrictive OT map with a more powerful
and flexible transformation learned via flow matching, a state-of-the-art technique from generative
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Figure 1: Overview of FDFI. A black-box model takes correlated features X as input to predict
Y. Conventional attribution methods (e.g., LOCO, CPI, Shapley) underestimate the importance of
correlated features. DFI addresses this issue for Gaussian features under squared-error loss. The pro-
posed FDFI framework generalizes DFI by replacing the linear optimal transport with flexible flow
matching and extending to general losses and black-box models. Operationally, FDFI addresses this
by (1) decorrelating X into latent variables Z via flow matching, (2) assigning importance scores in
the disentangled latent space, and (3) attributing them back to the original features with uncertainty
quantification. The latent importance reveals the intrinsic predictive variability, and the disentangled
map enables interpretable attributions under correlations.

modeling (Lipman et al., 2022). This allows our method to learn complex, nonlinear disentangle-
ment maps between arbitrary feature distributions. Furthermore, we extend the DFI formulation to
accommodate general differentiable loss functions, making it applicable to a broader range of tasks,
including regression and classification. FDFI thus provides a unified framework that not only deliv-
ers robust feature importance under feature dependency but also enables valid statistical inference
and uncertainty quantification for these importance scores. Moreover, the generative nature of the
flow-based map provides a transparent mechanism for understanding how importance is attributed
back through the data’s correlation structure, providing reliable feature attribution.

1.1 SUMMARY OF CONTRIBUTIONS

A general feature importance framework. We analyze the relationship between three founda-
tional feature importance measures under general differentiable loss functions (Theorem 2.1). We
establish their formal equivalence under the /5 loss (Lemma 2.2), a result that underscores their
shared fundamental limitation: a vulnerability to correlation distortion when features are depen-
dent. To address this, we propose a new framework, Flow-Disentangled Feature Importance (FDFI),
which makes two key advances: (i) it replaces restrictive Gaussian transport map (Du et al., 2025;
Genizi, 1993) with a more flexible and powerful transformation learned via flow matching (Lipman
et al., 2022), enabling it to handle arbitrary feature distributions; and (ii) it extends the attribution
framework beyond the /5 loss to any differentiable loss function (4), broadening its applicability to
classification and other machine learning tasks.

Semiparametric statistical inference. We establish valid statistical inference to quantify the un-
certainty of estimated importance based on semiparametric efficiency theory. We derive the efficient
influence functions and formally prove the asymptotic normality of our FDFI estimators for both
the latent importance scores (Theorem 3.1) and the final original feature importance scores (Propo-
sition 3.2). This theoretical foundation provides a principled basis for valid statistical inference,
enabling the construction of confidence intervals and hypothesis testing.

Extensive empirical validation. We conduct extensive experiments on both synthetic and real-
world data, covering regression and classification tasks. Synthetic experiments systematically vary
correlation strength, sample size, and data-generating processes (Section 4.1 and appendix E.1).
Across nine real-world datasets spanning multiple domains and tasks (Section 4.3 and appendix E.2),
FDFI produces robust and clinically interpretable importance profiles, consistently outperforming
existing methods in identifying influential features under complex dependency structures.



Under review as a conference paper at ICLR 2026

1.2 RELATED WORK

Model-agnostic feature attributions. A central goal of explainable Al is to develop model-agnostic
methods for quantifying feature importance. Permutation approaches (Breiman, 2001; Janitza et al.,
2018) remove information by randomly shuffling a variable, but were originally introduced as algo-
rithmic heuristics without statistical guarantees. One refinement is Conditional Permutation Impor-
tance (CPI) (Strobl et al., 2008; Hooker et al., 2021) that improves robustness through conditional
resampling, and recent works (Chamma et al., 2023; Lobo et al., 2025) further explore the statistical
inference problem. In parallel, Leave-One-Covariate-Out (LOCO) defines importance as the change
in predictive risk when a variable is removed, which naturally supports statistical inference (Lei
et al., 2018; Rinaldo et al., 2019; Verdinelli & Wasserman, 2024b). In contrast, Shapley-value meth-
ods, originating from cooperative game theory (Shapley, 1953) and popularized in machine learning
through SHAP (Lundberg & Lee, 2017), provide an axiomatic framework that ensures fairness and
additivity; however, exact computation and statistical inference remain challenging. Subsequent
work shows that SHAP values can be expressed as weighted averages of LOCO estimands under
squared-error loss, thereby linking the two paradigms (Williamson & Feng, 2020). Despite these
methodological advances, all approaches remain sensitive to collinearity, often underestimate the
importance of correlated features (Verdinelli & Wasserman, 2024a).

Feature importance under correlated predictors. A growing body of work has sought to address
the correlation distortion that undermines classical feature importance measures (Iooss & Prieur,
2019; Williamson & Feng, 2020; Williamson et al., 2021; Verdinelli & Wasserman, 2024b). Be-
yond conditional resampling strategies, a complementary line of work leverages knockoff construc-
tions and conditional randomization tests to control the false discovery rate of variable selection
(Candes et al., 2018; Gimenez et al., 2019; Mason & Fei, 2025); however, this differs from our
objective of quantifying the marginal importance of features. A conceptually distinct direction is
Disentangled Feature Importance (DFI) (Du et al., 2025), as a nonparametric extension of classic
R2-decomposition under linear models with correlated features (Genizi, 1993). It maps correlated
predictors into an independent latent space via OT, computes importance in this disentangled repre-
sentation, and attributes the results back to the original variables. However, DFI is less flexible for
mapping between complex high-dimensional distributions and is also restricted to the square loss.

2 PRELIMINARIES

2.1 FOUNDATIONAL FEATURE IMPORTANCE MEASURES

Let (X,Y) € X x Y C R? x R be a random vector representing features and a target variable. For a
loss function £ : Y x Y — R, the risk of the model is defined as R(f; X,Y) = E[{(Y, f(X))]. For
any j € {1,...,d}, wedenote by X_; = (X1,...,X,_1, Xj41,...,Xq) the feature vector except
X;and XU = (Xq,...,X;-1,X;, Xj41,. .., Xq) the feature vector with jth feature replaced by
X, ~ p(X; | X_,) independent of Y and X; conditional on X_ ;. For a given loss function ¢, we
study the behavior of a prediction model f : X — Y. In particular, we focus on the analysis of the
Bayes optimal predictors whose prediction values are defined as

f(z) =argminE[{(Y,y) | X =] and f_j(z—;)=argminE[{(Y,y) | X_; =x_;].
yeY yeyY

There are various types of importance measures. Below, we restrict our analysis to three basic ones.

* Leave-One-Covariate-Out Importance (LOCO) (Lei et al., 2018) that measures the increase in risk
when the model is retrained without feature j:

0 = R(f-53X-;,Y) — R(f; X,Y).

In particular, the Shapley value with prediction error as the value function can be expressed as a
weighted average of LOCO estimators over all subsets (Verdinelli & Wasserman, 2024b).

* Conditional Permutation Importance (CPI) (Hooker et al., 2021; Lobo et al., 2025) that measures
the increase in error when a feature is replaced by a random draw from its conditional distribution:

= %[R(f;X(j),Y) — R(f; X,Y)].
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* Sobol-Conditional Permutation Importance (SCPI) (Lobo et al., 2025) that measures the portion
of the model’s prediction variance attributable to a feature, conditional on other features:

S = R(g;i X_j,Y) — R X,Y),
where g;(X_;) = E[f(X()) | X_,] is the condition mean of prediction through f given X_;.

For a general function, f_;(X_;) and ¢g;(X_;) may not be identical. Their difference gives rise
to the distinction between LOCO and CPI. We first establish an exact identity that decomposes the

difference |¢>§?jco — ¢§§J‘| into interpretable components, which requires Assumption Al.

Assumption A1 (Loss function). Let the loss function ¢ : R x R — R be a function of the true
label y and the prediction ij. We assume the function £(y, -) is convex and differentiable with respect
to its second argument for any fixed y. Furthermore, {(y, -) is M-smooth, i.e., |0*(y,7)/0y?| < M.

This assumption imposes standard regularity conditions for analyzing the risk functional. Convexity
and differentiability ensure that the Bayes predictors are well-defined minimizers of the expected
loss. The smoothness condition controls the second-order variability and holds for loss functions
(e.g., the £ loss £(y,y) = (y — y)?, the binary cross-entropy loss defined on the logit scale); though
it is not needed for the FDFI framework we introduce in the next section. Under this assumption, an
identity involving LOCO and CPI is given in the following theorem.

Theorem 2.1 (Bound on LOCO and CPI Discrepancy). Under Assumption Al, the difference be-
tween LOCO and CPI can be decomposed into two components:

QS[)‘(%CO - ¢§§JI = EMIE - Eapproxa (1)
1

where Eyrig = 5 ( 38’1 — Jg) is the model interaction effect and Eqapprox := R(g;) — R(f—;) is the

approximation error;, and J, := E[((Y, f(X9)))]— R(g;) is the Jensen gap. The absolute difference
is bounded by:
‘ng?jco - (rbg(l')“ S Eapprox + |EMIE|,

where individual components can be further upper-bounded by

M M
Eapprox < 7”9]' — f-ll%,, | Emig| < - E [V(f(X) | X-;)]-

The approximation error E,ppr0x quantifies the suboptimality from using the averaged model g;
instead of the actual optimal model f_;, while the Jensen gap J, quantifies the risk difference due
to the convexity of the loss function, based on Jensen’s inequality. The term Eng precisely captures
the discrepancy that arises from using a general loss function instead of the ¢, loss. For the /5 loss,
where M = 2, one has J; = ¢X' = E[V(f(X) | X_;)]. Substituting these into the definition
yields Enie = 0. Since E,pprox 1S also zero for the /5 loss (as g; = f—;), the bound is tight. These
results are summarized in Lemma 2.2.

Lemma 2.2 (Equivalence of LOCO, CPI, and SCPI for /5 loss). For the {5 loss £(y,5) = (y — §)%,
the Bayes optimal predictor f satisfies g; = f_;. Further, the identity (1) in Theorem 2.1 equals
LOCO CPI SCPI

zero, yielding an exact equivalence: ¢5¢°° = ¢§1 = ¢X7" = E[V(f(X) [ X_;)].

Despite their equivalence under the ¢ loss, all three measures share a fundamental limitation: they
suffer from correlation distortion when predictors are collinear. These methods cannot disentangle
the predictive contribution of a feature from the shared signal of its statistical dependents, causing
the importance scores to be diluted or masked and yielding ambiguous attributions (Verdinelli &
Wasserman, 2024a;b). For example, as shown by Du et al. (2025, Example 5), given a linear model
Y = Xi + X2 + € where features X; and X5 are near-perfectly correlated (X; =~ X5), the above
methods would assign near-zero importance to X; (since removing it causes minimal performance
drop, as X5 retains all predictive information) and, symmetrically, near-zero importance to X». This
contradicts the fact that X7 and X5 are both critical.
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2.2 DISENTANGLED FEATURE IMPORTANCE

To overcome this limitation, disentangled feature importance (DFI) (Du et al., 2025) was introduced
to attribute importance scores while accounting for correlation under an /5 loss. More specifically,
DFI seeks a Gaussian optimal transport map 7" : R? — R? such that Z = T(X) has independent
coordinates, ideally matching a simple reference distribution such as multivariate Gaussian Ny(0, I).

Without loss of generality, we assume Z; has zero mean and unit variance forall j = 1,...,d. Once
the disentangled representation is obtained, the latent DFI score ¢'}? for Z; is defined as:
7, =EV({f(X) | Z)] =E[V(Z) | Z-;)], 2

where p(z) = E[Y | X = x] and 7(z) := u(T~'(z)) denote the regression functions in the latent
and feature spaces, respectively. This measure aligns with both LOCO and CPI, except that it is
defined in terms of the latent feature Z rather than the raw feature X. The DFI score ¢ for each
original feature X; by transferring importance from the disentangled features Z back to X through
the sensitivity of Z; with respect to X;. Formally, the original DFI measure for the ¢, loss is

2
P = ZIEJ X)| 2 )(‘3‘?)
J

where 0X;/0Z; denotes the partlal derivative of X; = ¢, T~%(Z) with respect to Z;. The inner
term V(n(Z) | Z_;) is the first-order Sobol index of Z;, representing the “intrinsic” predictive
signal uniquely attributable to that disentangled direction. Multiplying by (0X;/0Z;)* gauges how
strongly fluctuations in Z; are expressed through X;; integrating over the data distribution, averages
these local sensitivities 1nto a global importance score. Thus, ¢% quantifies how much of the
irreducible signal carried by all latent directions is channelled through X;.

3)

While DFI provides an alternative strategy for attribution under dependence, its formulation presents
two key limitations that motivate our work: (i) By defining latent importance via conditional variance
(2), the framework is intrinsically restricted to the /5 loss, precluding its application to classification
tasks or models using general differentiable loss functions; and (ii) The reliance of DFI on optimal
transport maps to learn the transformation 7' can be computationally intensive and less flexible for
mapping the complex, high-dimensional distributions encountered in modern machine learning.

3  FLOW-BASED DISENTANGLED FEATURE IMPORTANCE

3.1 MODEL-AGNOSTIC DFI WITH GENERAL LOSS FUNCTIONS

To extend DFI beyond the /5 loss, we generalize its two core components: the latent importance
measure and the attribution rule. First, we require a latent importance measure ¢z, that is well-
defined for a general loss function £. For each disentangled feature Z;, we define the latent FDFI
score as the expected increase in risk upon resampling its values conditional on other latent features:

G = Ew(O; T)], where w(O; T) = 3 [((v, J(T(Z0) — (v, 5T (2)))]

Here, O = (X,Y) is the observation, Z() is the latent vector with its j-th coordinate Z ](-j ) resampled
from p(Z;), and T is the nuisance transport map.

Second, we generalize the aggregation rule in (3). The original formulation weights the intrinsic
signal of Z; quantified by the conditional variance V(f(X) | Z_;) by a sensitivity term. The
squared Jacobian is based on a first-order approximation of the geometric influence of the latent
variables on the original features. This sensitivity term is a property of the transport map 7T’ itself,
independent of the specific loss function. For a general loss, the analogous measure of intrinsic
signal is the conditional expected increase in loss E[w(O;T') | Z_;]. By substituting this term for
the conditional variance, we obtain a natural generalization:

2
PR = ZE w(O;T) | Z] ((;)Z(;)

This definition is a principled extension, and it recovers DFI (3) under /5 loss; see Appendix A.3.

4)
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3.2 DISENTANGLED TRANSFORMATION WITH PROBABILISTIC FLOW

To overcome the limitation of (Gaussian) optimal transport, we utilize flow matching to learns a
vector field that transports between a target distribution X into a simple source distribution Z (Lip-
man et al., 2022). Suppose that py and p; are the densities for the source and target distributions,
respectively. This amounts to constructing Uy : R? — R? such that if u ~ pg, then Uy (u) ~ p; for
some density satisfying p.—o = po, pt=1 = p1. In particular, a velocity field v; is used to construct
the flow Uy (u) of the ordinary differential equation:

d

V(@) = ve(Ue(w)),  Uo(u) = u.

Flow matching (Lipman et al., 2022; Liu et al., 2022) was proposed to efficiently learn a regression-
based vector field along a predefined probability path. The central idea is to define an interpolation
between Uy ~ po and Uy ~ p1, typically in the form U; = (1 — t)Uy + tUy, t € [0, 1]. The velocity
field for flow matching Lipman et al. (2022; 2024) is defined as

1
v € arg min  L(wy | Ug, Uy), where L(w; | Up,Uy) ::/ Eth(Ut) — U + Uon} dt.
0

wy€La(pt)

The above optimization problem admits a unique minimizer and can be formulated as v;(u) =
E[Uy — Uy | Uy = u] (Lipman et al., 2022; Liu et al., 2022; Hertrich et al., 2025), which further
guarantees a unique map U; by Theorem B.1. Hence, we can define FDFI (4) relative to this unique
flow map T" := U; (not necessarily an optimal transport map) that transforms the original feature X

to the latent feature Z, rather than discovering a single ground truth importance. Let (7,5 be the flow
map obtained by solvmg the above ODE with v, replaced with ¥;. Then, the estimated transport map

can be represented by T = U1 In particular, since the disentangled flow does not require labels,
we can utilize independent, and potentially much larger, auxiliary unlabeled data to estimate 7T'.

3.3 STATISTICAL ESTIMATION AND INFERENCE

After we obtain 7' from auxiliary samples, we construct an estimator for PPH

samples {O; }_,. For each data point O; = (X;,Y;), let 7 =T(X;). The estimator is defined as:

" using a set of n i.i.d.

n

o7 :=EZ KQMZ[ (Yi, f(T (2fj’k))))—€(1ﬁ7f(f1(2)))})], 5)

1=1

where {Z(J k) M | is generated by resampling the j-th coordinate of Z We analyze this as a cross-
fit estimator for the parameter (bFZ[;_” defined in (2).

Before stating the main result, we briefly summarize the standing assumptions presented in Ap-
pendix C.1. Assumption A2 imposes basic identifiability and regularity conditions ensuring that the
latent representation and associated flow are well-defined. Assumption A3 collects smoothness and
integrability requirements on the velocity field v, that guarantee existence and stability of the flow
T and its inverse. Assumption A4 (i)—(iii) encode the loss differentiability and standard complex-
ity/rate conditions on the nuisance estimators, which together ensure the pathwise differentiability
of ¢’2"'(P) and that the remainder of the cross-fit estimator is op(n=1/2).

Theorem 3.1 (Asymptotic efficiency of latent FDFI). Assume that Assumptions A2—A4 (i)-(iii) hold.

If the nuisance estimator satisfies 1/ fol lve — D)2, dt = op(n=1/%), then the cross-fit estimator

FDF‘ given in Algorithm D. 1 is asymptotically linear. It satisfies the expansion.:
O — 7" (P) = (P — P){pz,(O;P)} + 0p(n™"7?),
where the efficient inﬂuencefunction (EIF) ¢ 7,(0;P) is given by:
¢z,(O;P) == w(0;T) — 92" (P). (6)
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Consequently, \/ﬁ(gg’:ZI;FI—quZiFI) 4 N(0,V{pz,(O;P)}) under the alternative H1; : ¢ (P) # 0.

Theorem 3.1 establishes semiparametric efficiency under the Neyman orthogonality condition that
the estimand d)FZ‘?F‘ is locally insensitive to first-order errors in the estimation of the nuisance transport
map 7. Consequently, the EIF (6) is identical to the EIF one would obtain if the actual map 7" were
known a priori. This permits us to use a flexible nonparametrically estimated T (or equiavlently the
velocity field U, through flow matching), which may converge at a rate slower than n~1/2, and still
achieve a y/n-consistent, asymptotically normal, and efficient estimator for the latent importance
qﬁFZZFl. Without this property, the EIF would contain a complex correction term accounting for the

influence of estimating 7", as shown in Appendix C.2.

To construct Wald-based confidence intervals for QSFZ'?FI, we estimate the asymptotic covariance

V{pz,(O;P)} by plugging in consistent estimators of 7" in (6) and evaluating the sample variance
over independent observations. If quZ'jF ' = 0, the observation contribution to the asymptotic variance
will be zero, which leads to additional complications that we discuss further in Appendix D.3.2.

A cross-fit estimator can also be used to estimate the importance d)FDFI defined in (4) for raw features:

d n
=Yg lejwz[em,f@l(%m)))em,ﬂ NZo) B2
j=1 = k=1

where H jl(Z ) = [VT-Y(z )]7 is the square of estimated Jacobian of X; with respect to Z;. The
statistical properties of this estimator are analyzed in the following proposition. In addition to the
conditions of Theorem 3.1, Assumption A4 (iv) is a mild strengthening of the complexity require-
ment that ensures uniform convergence of the plug-in estimator of the flow estimator T.

)

Proposition 3.2 (Statistical inference of ¢x,). Assume conditions in Theorem 3.1 and Assump-
tion A4 (iv) hold. Then, the estimator QSFDFI is asymptotically normal under Hy; : ¢ (P) # 0:

V(SR — 87 () S N (0, V{ipx, (O;P)}),

where ¢x,(0;P) = E 1 91(O;P) is the EIF for ¢ %" (P) and ¢j is the EIF for the
component ¢j; = E[wj(O T)H;;(X)], defined as ¢j(O;P) = (wj(O;T)Hjl(X) — ;1) +
Cov(w;(O;T),1TF g, (05 )], where IFp,, is the influence function oijl

Proposition 3.2 provides inferential tools for the final FDFI scores. The EIF ¢;; for component at-
tribution from Z; to X; induces a more complex structure than its latent counterpart in Theorem 3.1.
It consists of two parts: (i) a first-order approximation term, w,;(O; T)H,;(X) — ¢;;, which repre-
sents the pointwise importance score centered by its mean, and (ii) a second- order correction term,
Cov(w;(0;T),TF g, (O;-)), which arises because the squared Jacobian term H 41 is also estimated
from data. The form of covariance reveals that the bias is driven by the covariance between point-

wise importance scores and the point-wise influence on the map’s estimated geometry. Since H;

is estimated on the auxiliary sample of size m, its influence function IF 7, is of order Op(m —1/2),
When m is large, the correction term is negligible, and approximate EIF can be used for practical
inference (see Appendix D.3.1). Algorithm 1 outlines a statistical inference procedure using FDFI.

4 EXPERIMENTS

4.1 THE IMPACT OF DISENTANGLEMENT

We evaluate the performance of LOCO, CPI, DFI, FDFI (SCPI), and FDFI (CPI) on identifying
important raw features X;’s across varying feature correlation strengths and sample sizes through
simulations. DFI uses the Gaussian optimal transport map, while the two variants of FDFI estimators
given in (14) and (15) use flow matching. The simulated data is generated from a nonlinear response
model y = arctan(Xo + X1) Lyx,>0} +sin(XsXy) Tx, <o) +€ with X ~ N50(0,3(p)) and € ~
N (0, 1). The covariance matrix X(p) := I5®3, € R59%5Y consists of 5 blocks of the equicorrelated
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Algorithm 1 FDFT (brief). See Algorithm D.1 for full pseudocode and implementation details.

Require: Labeled data Dest = {(X;,Y;)}7 ; black-box predictor f and loss ¢; independent unla-
beled covariates Dx = {X m 1 flow training routine M; and other hyperparameters
Ensure: Latent importance scores {@Z }4_, and original feature scores {dx,}¢ ¢, with p-values.
1: Step 1: Disentangled representatlon Train the flow on Dx to obtain a transport map T =
M(Dx) such that Z = T'(X) has approximately independent coordinates. For each labeled
point X;, set Z; := T(X,), J; := VI 1(2)| _5 ,and Hy(Z;) := (J;),, for j,l € {1, d}.
2: Step 2: Point-wise latent perturbations. For each observation index ¢ € {1,...,n} and latent
coordinate j € {1,..., d} construct perturbed latent vectors {Z; A% k)} 1 by resampling only
the j-th coordinate of Z from the reference Pz, keeplng all other coordlnates fixed. Define the
point-wise latent score € := 51 S0 { (Yi, F(T(Z 74 k)))) — K(Yi,f(Xi))}.
3: Step 3: Attribution to original features. For each observation ¢ and original feature index
le{l,...,d}, aggregate latent scores: ¥;; := 25:1 Q5 ﬁjl(Z).
4: Step 4: Latent importance and inference. For each latent coordinate j, compute (;AS z; =
711 Z"’ €2;; in (5) and one-sided p-values based on estimated EIF components.
5 Step S: Orlglnal feature importance and inference. For each original feature index [, compute
gb X, = ,1] Z[ 1 ¥4 in (7) and one-sided p-values based on its approximate EIF.
6: return Importance scores and p-values.

matrix X, € R'0*10 with correlation coefficient p, i.e., (X,);; = 1 if i = j and p otherwise. The
d = 50 features are partitioned into three non-overlapping subsets {1,...,d} = U3_,C,. Based
on the response model, C; = {0,...,4} contains the active features that directly generate y. The
set Co = {5,...,9} contains features from the first correlation block that are correlated nulls,
i.e., dependent on C; but with no direct predictive effect. The set C3 = {10,...,49} contains the
remaining independent null features from the other four blocks.

We evaluate all methods based on four key metrics: (1) AUC (Area Under the ROC Curve) on
Cy1 UCs, (2) Power on Cq, (3) Power on C; U Co, and (4) Type I error on C3. AUC is computed by
treating the estimated feature importance scores as prediction values and the ground-truth feature
labels (informative = 1, null = 0) as binary outcomes. For statistical inference, we test H; : feature
X is not important versus H; : feature X; is important for each feature j. Based on a p-value P},
statistical power is defined as the probability of rejecting the null when H,; is true, and type-I error
is the probability of incorrectly rejecting Hy; when it is true, i.e., declaring a null feature significant:

Power = P(P; < a | Hy, is true), Type I Error = P(P; < a | Hy, is true).

In all experiments, we present results using random forests (Breiman, 2001) as the regres-
sor/classifier for clarity, while additional comparisons with alternative predictors (Lasso and neural
networks) and with more complex dependency structures are provided in Appendices E.1.1-E.1.3.

As shown in Figure 2, all methods control the Type-I error at the nominal 5% level on the indepen-
dent null features (C3) as expected. However, FDFI and DFI consistently outperform LOCO and
CPI, attaining higher AUC and statistical power. Their performance is notably robust to increas-
ing correlation, whereas LOCO and CPI’s performance degrades significantly. Though both FDFI
variants (SCPI and CPI) are theoretically equivalent under the /5 loss (Lemma 2.2), the CPI vari-
ant demonstrates superior finite-sample power in low-sample or low-correlation regimes; we thus
select FDFI (CPI) as the representative method for subsequent experiments. These results demon-
strate the effectiveness of disentanglement as a reliable and powerful approach for assessing feature
importance.

4.2  VALIDATION ON RNA-SEQUENCING DATASETS

To further validate FDFI’s performance with high-dimensional and complex correlated features,
we evaluate it on two RNA-seq datasets: (i) the TCGA-PANCAN-HiSeq bulk RNA-seq dataset
(n = 801, d = 20531) for classifying five tumor types (BRCA, KIRC, COAD, LUAD, PRAD)
(Weinstein et al., 2013); and (ii) a human single-cell RNA-seq dataset (n = 632, d = 23257) dis-
tinguishing neoplastic cells from tumor core versus periphery (Darmanis et al., 2017). In practice, a
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Figure 2: Simulation results of Section 4.1. Top: varying sample size with fixed p = 0.8. Bottom:
varying correlation with fixed n = 1000. We report AUC, power, and type-I error for each method
over 100 runs. Shaded regions denote 95% bootstrap confidence intervals, and the dashed line
indicates the nominal type-I error level (o« = 0.05).
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Figure 3: Prediction accuracy vs. top-k selected variables across two RNA-seq datasets.

common ad-hoc approach for mitigating multicollinearity is to apply CPI or LOCO after hierarchi-
cal clustering. We select highly variable genes and compare the average prediction accuracy across
datasets for important features selected by FDFI, DFI, and the ad-hoc approach, using two-fold splits
and reporting the mean accuracy for each dataset; see Appendix E.2.5 for further details. As shown
in Figure 3, FDFI consistently outperforms both DFI and the ad hoc method, highlighting its supe-
riority in identifying more predictive and biologically representative gene sets; see Appendix E.2.5
for specific biomarkers identified by FDFI and their clinical relevance.

4.3 CASE STUDY ON CARDIOTOCOGRAPHY DATASET

In clinical applications, feature dependency is ubiquitous, and decisions are high-stakes, making
reliable interpretability essential for clinical decision support. To evaluate FDFI’s practical utility,
we focus here on the Cardiotocography (CTG) dataset (n = 2126,d = 21) for a case study, which
uses fetal heart rate (FHR) and uterine contraction (UC) features to classify fetal state (normal y = 0,
non-normal y = 1) (Campos & Bernardes, 2000). We evaluate feature importance with the binary
cross-entropy loss: [(y,y) = —ylog(y) — (1—y) log(1—7%). Additional large-scale real data studies,
covering diverse domains and high-dimensional settings, are provided in Appendix E.2.

On the CTG dataset, nonlinear feature correlations cause LOCO and CPI to identify only a few es-
sential features, whereas FDFI demonstrates substantially higher statistical power (Figure E7). Fig-
ure 4(a) visualizes the FDFI attribution pipeline: latent importance scores (left bar plot) are mapped
via the squared Jacobian heatmap to produce the final FDFI scores. The heatmap (0X,;/0Z;)? re-
veals the first-order influences among features, capturing a strong block-diagonal relationship among
the FHR histogram features LB, Mean, Mode, and Median, which shows how the predictive impor-
tance from underlying latent features is distributed across correlated features.
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Figure 4: Data analysis of the CTG dataset. (a) FDFI estimation. Barplots show the estimated
latent importance scores qSFZ’?F‘ (left) and original importance scores ¢%¢™ (top). The heatmap shows

the squared Jacobian weight (0X;/9Z;)%. (b) Hierarchical clustering results based on Spearman
correlation. (c) Prediction accuracy with selected important features for FDFI, DFI, and an ad hoc
method that applies CPI on the cluster-representative features.

As illustrated in Figure 4(b), the ad-hoc approach clusters features using Spearman correlation and
selects a medoid to represent each cluster. However, choosing the top-k features with FDFI or DFI
achieves higher predictive accuracy than relying on cluster representatives from the ad-hoc method
(Figure 4(c)). Moreover, FDFI consistently outperforms DFI, underscoring the benefit of its flexible
flow-based mapping over DFI’s more restrictive Gaussian assumption.

5 CONCLUSION

We introduce a model-agnostic framework, FDFI, that uses flow matching to assist feature impor-
tance attribution under general differentiable loss functions. We establish the semiparametric effi-
ciency of our FDFI estimators and provide valid statistical inference. Empirically, FDFI resolves
the correlation distortion problem (Verdinelli & Wasserman, 2024b), successfully recovering estab-
lished and correlated diagnostic features that classical methods overlook.

Beyond the empirical evaluations above, FDFI also enables several practical downstream workflows
that benefit from statistically principled importance scores under dependence. First, by ranking
features in a way that is robust to correlation, FDFI can be used for feature pruning and model
compression, to preserve predictive performance while reducing dimensionality, inference cost, and
model complexity (Han et al., 2015; Nelson et al., 2022; Ranek et al., 2024). Second, in data col-
lection and experimental design, FDFI highlights variables or modalities with the highest marginal
utility to prioritize operations under resource constraints (Wang et al., 2024). Third, by mitigating
spurious attributions that arise from correlated covariates, FDFI improves model debugging and the
detection of implausible signals, unlike traditional importance measures that can assign non-zero
relevance to purely null variables (e.g., Chen et al., 2022). In summary, FDFI reliably guides what
to measure, keep, or discard in high-stakes or resource-limited decision-making pipelines.

Lastly, FDFlis inherently a local sensitivity measure in a learned latent space and is most appropriate
when the flow 7' and predictor f o T-1 are locally smooth and well-approximated by first-order
expansions. In highly non-smooth or purely combinatorial regimes (e.g., parity/XOR-type rules
with near piecewise-constant predictors), infinitesimal latent perturbations can fail to probe the truly
influential directions. Developing extensions of flow-disentangled importance reliable under such
non-smooth, combinatorial interaction structures is an interesting direction for future work.

10
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Appendix

This serves as an appendix to the main paper. Below, we provide an outline for the appendix along
with a summary of the notation used in the main paper and the appendix.

Organization. The content of the appendix is organized as follows.

Appendix Content

Appendix A.1  Proof of Theorem 2.1.
Appendix A.2  Proof of Lemma 2.2.

Appendix A

Appendix B.1 ~ Uniqueness of flow solution (Theorem B.1).

Appendix B Appendix B.2  Estimation error of transport map (Lemma B.2).

Appendix C.1  Assumptions.
Appendix C  Appendix C.2  Proof of Theorem C.1 and Theorem 3.1.
Appendix C.3  Proof of Proposition 3.2.

Appendix D.1  The full FDFI algorithm and computational devices.
Appendix D.2  Technical details of flow matching for FDFI.

Appendix D Appendix D.3  Technical details of statistical inference for FDFI.
Appendix D.4  Computational time comparison.
Appendix E Appendix E.1  Extra simulation studies.

Appendix E.2  Extra real data studies.

Notation. An overview of some general notation used in the main paper and the appendix is as
follows.

For a vector X € R?% Xs e RIS! denotes a sub-vector of X indexed by S C [d], and X_; :=
X1, j—1,j+1,...ay- In R?, the j-th standard basis vector is denoted by e; and the zero vector is
denoted by 04 or simply 0 if the dimension is clear from the context. The cardinality of a set S is
denoted by |S|. The indicator function is denoted by 1 ;.

For a tuple of random vectors O = (X, Y"), the expectation and probability over the joint distribution
P are denoted by E(-) and P(-), respectively. For (potentially random) measurable functions f,
we denote expectations with respect to the data-generating distribution of O alone by Pf(O) =
J fdP, while E[f(O)] marginalizes out all randomness from both O and any nuisance functions f
is dependent on. The empirical expectation over n samples is denoted by P,, f(O) = L 3" | £(O;).
The Ly norm of a function f is denoted by || f|| -

For a statistical estimand ¢, we write ¢(P) to emphasise its dependence on the underlying distri-
bution P. The population and empirical variances (covariances) are denoted by V and V,, (C and
C,,). The d-dimensional multivariate normal distribution with mean  and covariance X is denoted
by Ng(p, X). For matrices Ay, Ao, ..., Ay, the notation diag(A;, As, ..., Ag) represents a block
diagonal matrix that combines all of the matrices.

[P}

We use “0” and “O” to denote the little-o and big-O notations; “op” and “Op” are their probabilistic
counterparts. For sequences {a,} and {b,}, we write a,, < b, if a,, = O(b,); and a,, < b, if

~

an = O(b,) and b, = O(a,,). Convergence in distribution is denoted by «dyr

The Use of Large Language Models. In preparing this manuscript, Large Language Models
(LLMs) were used strictly as auxiliary tools for: (i) Language editing and polishing: improving
clarity, grammar, and academic style of author-written text without changing technical content. (ii)
Literature search assistance: surfacing potentially relevant references and recent work; all cited ma-
terials were independently verified and read by the authors. No parts of the scientific contribution
(problem formulation, methodology, experiments, results, or analysis) were generated by LLMs.
The authors take full responsibility for all contents of the paper, including any text refined with
LLM support. LLMs are not eligible for authorship.
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A COMPARISON BETWEEN LOCO- AND CPI-BASED DFI

A.1 PROOF OF THEOREM 2.1

Proof of Theorem 2.1. The proof proceeds in three parts. First, we prove the exact identity. Second,
we apply the triangle inequality. Third, we derive the bounds for the error terms E,ppr0x and Jg.
For simplicity, we write R(f; X,Y) and R(f_;; X_;,Y") as R(f) and R(f_;), respectively.

Part 1: Proof of the Identity. We start with the right-hand side of the identity and substitute the
definitions of ¢, Eapprox, and Jj.

% 38)1 - %Jg - Eapprox
= S(R(g5) ~ R(F)) — 5BV, F(XD))] - R(gy)) ~ (R(gy) ~ R( )
= (37(a) = Blap) + 3R(6) )+ RU-j) = SR = GBIV, FXO)

:Mﬁﬂ—%RU%—EWKﬂXmm

= (R(/-) = RU) -

__ 4LOCO __ (bCPI
- Xj XJ' °

This confirms the identity ¢ — ¢§! = ( M = Jy) = Eapprox-

(R(f; X9Y) = R(f; X))

N = N =

Part 2: Application of the Triangle Inequality. Taking the absolute value of the identity and
applying the triangle inequality yields:

650 — 6| = 165" — J4)/2 — Euppron]
1
§|¢§(€:I - Jg‘ + | - Eapp1'0X|

= ‘EMIE| =+ Eapprox-

IN

The last step follows from the fact that E,ppr0x > 0, because the function f_; is the Bayes optimal

predictor, meaning it is the minimizer of the risk functional.
Part 3: Bounding the Error Terms. We now derive the bounds for F, ;0 and Eyig.

(i) Bounding Eapprox = R(gj) — R(f—;): Therisk R(h) = E[¢(Y, h(X_;))] is a convex functional
of the predictor h. For a convex and M -smooth functional, the difference in value between any
point and the minimizer is bounded. Because R(h) is M-smooth with respect to the Lo norm on
functions, we have:

Rlgs) ~ RUF—3) < "5 Bllgy(X_5) — F 5 (X)) = Slgs — 11
This provides the bound for the approximation error.
(ii) Bounding J, = E[¢(Y, f(X9)))] — R(g;): We can write .J, using iterated expectation:
Jy = Evix_, [EIY, F(XD) | X_j] = (Y, E[f(XV) | X_,))] (®)
The inner term is the Jensen gap for the convex function /(y, ) and the random variable f(X (@)
(where the randomness comes from X; ~ P(- | X_;)). For an M-smooth convex function ¢, the

Jensen gap is bounded by E[¢(Z)] — ¢(E[Z]) < 4LV(Z). Applying this to the inner expectation
(conditional on Y, X _;):

. _ M .
E[0(Y, (X)) | X_j] = (Y, E[f(XV) | X)) < 7V(f(X(” | X))
Taking the expectation of both sides with respect to Y, X_; gives the final bound:
M M
Ty SE|SVIX) | X )| = SEVX) | X)),

14
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(iii) Bounding | Eyig|: By the triangle inequality on the definition of Eyg:
1
|Evis| = *|¢>SC” Jol < 59551+ Jg).

From step (ii), the bound for Jy is: J, < 2 E[V(f(X) | X_;)]. To bound [¢X}"|, we use a second-

order Taylor expansion of (Y, g;) around f(X). By Assumption Al, for some &; on the line seg-
ment between g;(X_,) and f(X), we have:

UY, g5(X—5)) = LY, f(X)) + 0V, f(X))(9;(X—j) = £(X)) + %”(&)(%(ij) — fX)*
Taking the expectation and rearranging gives
X, = R(g;) — R(f)

1
= E[('(Y, f(X))(g;(X—5) = F(X)D] + SB[ (&) (9;(X—5) = F(X))?).
Since f is the Bayes optimal predictor, E[¢'(Y, f(X)) | X] = 0. The first term vanishes by iterated
expectation: E[E[¢'(Y, f(X)) | X](g;(X—;) — f(X))] = 0. This leaves:

M

2657 = %E[e"(@)(gj = 7| < SEIE@)I(g; — £)°] < TElg; = )7

Recognizing that E[(g;(X—;) — f(X))?] = E[V(f(X) | X_;)]. we get [¢]"| < FE[V(f(X) |
X))l
Combining the bounds for |¢%™'| and J,:

Bnars] < 5087+ Jp) < SEV(F(X) | X)) + 2 BV(F(X) | X )]
= SEV(X)| X))

Substituting the final bounds for E,pprox and | Eyg| into the result from Part 1 completes the prooé.]
A.2 PROOF OF LEMMA 2.2
Proof of Lemma 2.2. For the {5 loss, we analyze each term of the identity quLOCO ngC” (&5 XJ —
Jg)/2 = Euppros. Since f_;(X_j) = E[Y | X_j] and g;(X_;) = E[E[Y | X] | X_;] = E[Y |
X j], we have f_; = g;. This implies the approximation error E,pprox = R(g;) — ( ;) =0
and by definition,

0 = g, ©)
For (8) under the /5 loss, from the derivation in Du et al. (2025a, Lemma 2.2), we also have that

¢, = Jo =EB[V(f(X) | X_;)]- (10)

Substituting these into the identity gives ¢L°C° Sé’f =1J,-1J,-0=0,ie.,

Loco _ ¢CP[ (11)
Combining (9) and (11) completes the proof. O]

A.3 EQUIVALENCE OF FDFI AND DFI UNDER /3 LOSS

Recall that the DFI and FDFI estimands for the original features are defined in (3) and (4), respec-
tively.
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For /5 loss, the influence function component in (4) becomes
W(OT) = 5 [£V, F(T7H(ZD))) = (Y, [T (2)))

(Y = F(TH(ZD))? = (Y = A(T~(2)))?).

Taking expectation conditional on Z_;, we further have

DN = N =

EIW(O5T) | 73] = gEI(Y — f(T7 (Z0)? — (v — {(T1(2)) | 7]
= SEIFT 1 (Z9)) — frH2))
—EY(f((29) ~ (T 7N(2)), | 7]
= SEIF(T(29) ~ JT @) | 2]
~E[[f(T(2) - VAT (29) ~ 5N @) 2
= SVTN(2) | Z-5) -0
= VTN 2) | Z-y),

which reduces to the component in (3). Therefore, the DFI and FDFI estimands coincide under ¢
loss.
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B PROPERTIES OF PROBABILISTIC FLOW

B.1 UNIQUENESS OF SOLUTIONS

Assumption A2. Let (Uy, Uy, Uy) € R*® admit a joint density p;(ug,u1,u) fort € [0, 1]. Define
pe(u) == / ) pi(uo, ur, u) dugdus,
RQ

my(u) := /RQd (u1 — uo)pe(ug, ur,w) dugdug,

and

Assume that

(i) Continuity: my, py are continuous on [0, 1] xR?, are C' inu, and V., my, V upt are continuous
on [0,1] x R%;

(ii) Uniform lower bound and bounded score on compact supports: For every compact set K C
R, there exist B > 0 and My < oo such that

i u) > Bk, sup Vulogpi(u)|| < Mg;
(t,u)e[oyl]XKpt( ) (t,u)e[o,l]xK” prlw)l

(iii) Bounded ¥V ,m; on compact supports: For every compact set K, there exists Ji < oo with

sup  [|[Vum(u)|| < Tk
(t,u)€[0,1]x K

(iv) Conditional second moment with linear growth (uniform int): There exist bounded continuous
o, ¢1 1 [0,1] — [0, 00) such that

IE[HUl —Uo|)? | Uy = u] < co(t) + c;l(t)||u\|2 Sor all (t,u).

A :=sup, y/co(t) < 0o and B := sup, \/c1(t) < 0.

The conditions in Assumption A2 are standard in the theory of ordinary differential equations, As-
sumption A2(i)-(iii) ensure that the velocity field v;(u) is continuous and uniformly Lipschitz in
u. This is precisely the regularity required by the Picard-Lindelof theorem, which guarantees local
existence and uniqueness of the ODE solution (Hartman, 2002; Amann, 2011). Assumption A2(iv)
further imposes a linear growth bound, ruling out finite-time blow-up and thus ensuring that the
solution extends globally to [0, 1] (Hartman, 2002; Amann, 2011). In the Gaussian mixture set-
ting, Assumption A2(i)-(iii) hold since the density and score are smooth and bounded on compacts
(Bishop, 2006; Hyvirinen, 2005). Moreover, the conditional expectation E[U; — Uy | Uy = u] is a
convex combination of affine functions in u, so that v;(u) remains smooth and m(u) = pi(u)ve(u)
has gradient V,,m;(u) continuous and bounded on compacts (Anderson, 2003; Bishop, 2006). As-
sumption A2(iv) is verified in the final part of the proof.

Theorem B.1 (Local and global uniqueness of U;). Under Assumption A2 (i)-(iii), the velocity field
vi(u) is continuous on [0, 1] x R and, for every compact K C RY, is uniformly (in t) Lipschitz in
u. Hence, for every initial u € RY, there exists a T > 0 such that the ODE

d

&Ut(u) =u(U(u)), Uo(u)=u,

admits a locally unique solution on [0, 7).

If, in addition, Assumption A2 (iv) holds, then the solution extends to the whole interval [0,1], and
is globally unique. Moreover; this condition is automatically satisfied when the source distribution
Uy is Gaussian and the target distribution U, follows a Gaussian mixture distribution.

In the standard theory of ordinary differential equations (ODEs), local uniqueness of the solution
follows immediately if one directly assumes that the velocity field v;(u) is continuous in ¢ and
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locally Lipschitz in w. This is precisely the setting of the classical Picard—Lindelof theorem. Under
these conditions, the ODE admits a unique local solution. A further linear growth condition ensures
global uniqueness.

In practice, when v, is parameterized by a neural network, Lipschitz continuity can be enforced by
architectural choices: for instance, using 1-Lipschitz activations such as ReL.U or tanh together with
spectral norm constraints on each weight matrix. In this case the Lipschitz constant of the network
is upper bounded by the product of the spectral norms of the layers (Virmaux & Scaman, 2018;
Bartlett et al., 2017; Gouk et al., 2021). Compared to directly assuming Lipschitz continuity of vy,
our Assumption A2 adopts a distributional perspective: it imposes regularity and boundedness on
p¢ and my, which in turn imply that v, is Lipschitz continuous. The advantage of this formulation is
that it does not rely on a particular parameterization of v; and can be verified for broad distribution
families such as Gaussian mixtures.

Proof of Theorem B.1. The proof proceeds in six parts. The first five parts establish the proof of
Theorem B.1, and the last part shows that the Gaussian and Gaussian mixture case automatically
satisfies Assumption A2 (iv).

Part 1: Continuity of v,. By the quotient rule (componentwise),

Vume(u)
Vv (1) o) ve(u) @ Vy, log pi(u)

Assumption A2 (i) guarantees that m;(u) and p;(u) are continuous on [0, 1] x R?, they are differ-
entiable in u, and their derivatives V,,m(u) and V,p:(u) are also continuous. Since p:(u) > 0,
the reciprocal 1/p;(u) is continuous, and thus V,m(u)/p:(u) is continuous as well. Moreover,
Vi log pi(u) = Vyupi(u)/pi(u) is continuous by the same reasoning. Consequently, both terms
on the right-hand side above are continuous, which shows that V,v;(u) is continuous. Together
with vt(u)d = my(u)/p:(u) being continuous, we conclude that both v; and Vv, are continuous on
[0,1] x R

Part 2: Uniform Lipschitzness of v;. Fix compact K with radius Rx = sup,cx ||u|. From
Assumption A2 (ii) and (iii),
Vumg(u) H < JK

pe(u) 11~ Br

From Cauchy-Schwarz inequality and Assumption A2 (iv),

lo:(w)ll < Veolt) + Ve () [lull < A+ B ull,

SO SUP(y yyef0,1]x i |1Ve(w)]| < A+ BRk. Using [[a @ b]| < ||a]| [|b]| and Assumption A2 (i),

sup H
(t,u)€[0,1]x K

J
sup IVave(u)|| < 25 + Mg (A+ BRk) =: Li < 0.
(t,u)€[0,1]x K Br

Thus, ||v¢(uw) — v (v)|| < L |lu —v| forall t and u,v € K.
Part 3: Local existence and uniqueness of the ODE solution. By Part 1 and Part 2, v;(u) is

continuous and uniformly Lipschitz in u on compacts; Picard—Lindelof theorem yields a unique
solution on [0, 7).

Part 4: Proof of a priori bound and extension. Using ||v,(Uy)|| < A + B||U¢||,
d
Uil = A+ BIU = Ul < ([Jull + At)ePt < (||ul + A)e” (¢ € [0,1]).
Hence, there is no finite-time blow-up, the solution extends to [0, 1].

Part 5: Global uniqueness of the ODE solution. Let U; and V; be two solutions with the same
initial condition Uy = Vp. By the linear-growth bound |[v:(z)|| < A + B||z|| and Gronwall’s
inequality, there exists R < oo such that ||[U|| < R and |V;|| < R for all ¢ € [0,1]. Hence
both trajectories remain in the common compact ball K := {z : ||z|| < R}, on which the field is
uniformly (in t) Lipschitz in u:

[lve(u) — ve(v)|| < Lk ||u — v, vt € [0,1], Yu,v € K.
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Writing the integral form of the ODE and subtracting,

U, - Vi =/0 (0(Us) — va(V2) d,

we obtain, with Z; := U; — V,,

t t
nmmlnmm%mmwﬁsALﬂaw&

By Gronwall’s inequality in integral form, letting ¢(t) := || Z;|| yields ¢(¢) < ¢(0) exp(Lkt) =0,
s0 ¢(t) = 0 and hence U; = V;. Therefore the solution on [0, 1] is unique.

Part 6: Proof of the Gaussian and Gaussian mixture case. We first consider the case where U
follows a Gaussian distribution, and then extend the argument to show that the result also holds
when U; follows a Gaussian mixture distribution. Note that a Gaussian distribution can be regarded
as a special case of a Gaussian mixture distribution.

Gaussian. Consider Y = [Up; U;] € R?? such that Y ~ A/(u, X2) with mean and covariance:

(o _ (%00 o1
H= (M) ’ N (Em E11) =0
Define U; := (1 —t)Ug+tU; = C,Y, D := Uy — Uy = BY, where C; = [(1—1t)Iy, t1;] € R4x24
and B = [—1, ;] € R™24, By the Gaussian conditioning formula,

Y| Ui=u ~ Npu+2C Ai(u— Cip), ¥ —3C, NCiY),
with A; := (C;XC,")~L. Consequently,
D ‘ Ui =u ~ N(m(t,u), S(t)),

where
m(t,u) = at) + M(t)u, S(t) = B(X - 2C, A,C,X)BT,
with a(t) = Bu — BXC,” AyCypand M (t) = BXC," A,. Thus,
E[|D|* | Ue = u] = [[m(t, u)|* + tx S(2).
Since [|m(t, u)|[* < 2[la(t)[|* + 2[|M (2)[|3, [[u]]*. we obtain
E[IDI? | U = u] < (2la(t)]> + tr5(0)) + 2 M @), [lul®

=:co(t) =:cq(t)

Here ¢ (t), ¢1(t) are continuous and bounded on [0, 1].
Gaussian mixture. Consider U; ~ Zkl,il 7 N (p1k, B1k), where m, > 0, >, 1 = 1, Bqi = 0,
and Z € {1,..., K} with P(Z = k) = . Conditioned on Z = k, (Uy, Uy) is jointly Gaussian,
and the bound from the previous Gaussian case yields

E[|ID|* | Uy = u, Z = k] < cox(t) + cu(t)]|ul|*.

Denote the posterior weight by wy(¢t,u) = P(Z = k | Uy = u). Hence
K
E[|D[* | Uy = u] Zwk E[|D|? | U; = u, Z = k]
k=1

( gliX cor(t )+( max clk(t))HuH?

1<k<K

This completes the proof. O
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B.2 ESTIMATION ERROR
In this subsection, we characterize the estimation error of the resulting transport map in terms of the

estimation accuracy of the probabilistic flow. We require the smoothness condition of the estimated
velocity field associated with the learned flow.

Assumption A3 (Smoothness of velocity field). Assume that vy(u) is continuously differentiable in
(t,w) and Lipschitz in u uniformily on (t,u) € [0,1] x R? with Lipschitz constant K.

Under the uniqueness assumption and the above smoothness condition, we can show that the estima-
tion error of the transport map can be controlled by the uniform (over the time horizon) estimation
error of the velocity field. This suggests that if one can estimate the velocity field v, well enough,
then T can also be well approximated in Ly norm.

Lemma B.2 (Estimation error of transport map). Under Assumptions A2 and A3, it holds that

1
IT - 7|2, < e1+2K / lor — B2, dt.

Proof of Lemma B.2. By Assumptions A2 and A3, Albergo & Vanden-Eijnden (2023, Proposition

3) gives that
.

1+2K ! ~ 2
et / Ad|vt<Ut<u>>—vt<Ut<u>>\ po(u) dudt

1
= el+2K/O |lve —@t||2L2dt.

IT = TIiZ,

Ul(u) — Ul(u)

. 2
‘ po(u) du

IN
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C SEMIPARAMETRIC THEORY

C.1 ASSUMPTIONS

To formalize the asymptotic analysis of our estimator, we rely on the von Mises expansion, which
is a form of Taylor series for functionals. This requires a precise notion of a functional derivative.
We introduce two related concepts: the Gateaux derivative, which is directional, and the stronger
Fréchet derivative, which ensures a uniform linear approximation.

The Gateaux derivative of the functional ¢ with respect to the function 7" in the direction of another
function h is defined as:
O(T + eh) — ¢(T)

V(T[] = lim S

It describes how the functional behaves along a specific linear path. Gateaux differentiability is also
referred to as pathwise differentiability, where the path specifies the direction in the function space.
To control the remainder term of the Taylor expansion for any perturbation, not just along straight
lines, a stronger condition of Fréchet differentiability is needed to guarantee that the functional can
be well-approximated by a linear map in a neighborhood of 7'. Formally, let V' and W be normed
vector spaces, let U C V be an open set, and let f : U — W. The function f is Fréchet differentiable
at x € U if there exists a bounded linear operator A : V' — W such that:

| f(x+h) — f(x) — Ah|lw
lIhllv =0 1Al

=0

If such a bounded linear operator A exists, it is unique and is called the Fréchet derivative of f at x,
denoted by D f ().

Within this framework, a pivotal concept is Neyman orthogonality (Chernozhukov et al., 2018).
This condition is defined using the Gateaux derivative: the functional ¢ is Neyman-orthogonal with
respect to the nuisance parameter T if its Gateaux derivative is the zero functional, meaning it
evaluates to zero for any valid perturbation function h:

VO(T)=0 <= Vo(T)[h] =0, Vh.

When this condition holds, the first-order bias from the estimation of the nuisance function 7" van-
ishes, which simplifies the asymptotic analysis and leads to estimators with only higher-order bias.

For the remaining section, we will write (bFZ[;” and ¢ as ¢z, and ¢x,, respectively, for notation

simplicty. We require assumptions about the data generating process and nuisance function estima-
tion.

Assumption A4 (Regularity conditions). For any P € P, assume the following holds:

(i) (Smoothness) The map T — w(O;T) is twice Fréchet differentiable with respect to T. The
loss function ((y,y) is differentiable with respect to its second argument, and the function T
is continuously differentiable.

(ii) (Donsker Class) The class of functions {w(O;T") : ||T" — T||L, < 8} for some § > O isa
P-Donsker class.

(iii) g Neyman orthogonality) Gateaux derivative of ¢ 7, with respect to T satisfies that V ¢ z,(T') =

(iv) (Nuisance estimator influence function) The nuisance function estimator T, trained on an in-
dependent auxiliary dataset with size m, admits an efficient influence function representation.
For any point x, its estimation error can be linearized as:

T(x) — T(z) = P2X[IF7(0;2)] + Op(||IT — T|2,),

where P2 is the empirical average over the auxiliary data, and E[IF1(O; z)] = 0.

Assumption A4(i) is smoothness condition, and Assumption A4(ii)-(iii) are analogous to those nec-
essary for the results in Chernozhukov et al. (2018); Williamson & Feng (2020).

Assumption A4(ii) ensures that empirical process terms of the form (P,, — P)(w(O; T") — w(0O; T))
are well-behaved. It can be weakened to proper bounded moment conditions with cross-fitting, as in
double machine learning literature (Chernozhukov et al., 2018). However, we stick with the former
assumption to simplify the exposition.
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Neyman orthogonality condition (Assumption A4(iii)) is the conceptual equivalent of the core re-
quirement in Williamson & Feng (2020), as both require the parameter of interest to be locally
quadratic (i.e., first-order insensitive) to estimation errors in the nuisance function. The primary
distinction arises from the nature of the nuisance parameter itself: our framework must manage the
estimation of the complex generative transport map 7', whereas related works typically analyze the
estimation of the regression function f.

The Neyman orthogonality condition Assumption A4(iii) holds in important cases. For instance,
for the {5 loss, if the predictor f(x) is the true conditional expectation, f () = EY|X = g,
the Gateaux derivative of the parameter ¢z, with respect to T' is zero. This occurs because the
derivative term involves E[Y — f(X) | X], which is zero by definition. In this scenario, our estimator
1s first-order insensitive to errors in estimating 7'. The practical implication is that even though

T is estimated nonparametrically and may converge slowly, the final estimator qb z; Temains +/n-
consistent and asymptotically normal under the alternative without requiring a correction term for
the estimation of 7. When the Neyman orthogonality condition does not hold, the first-order error
from estimating the nuisance map 7" no longer vanishes. To achieve a y/n-consistent estimator for
¢z;, we must explicitly correct for this bias using a one-step estimator can be used to correct for

first-order bias, which is possible if the nuisance estimator T itself admits a linear expansion, as in
Assumption A4(iv).

C.2 SEMIPARAMETRIC EFFICIENCY

Under Assumption A4 (i), (ii) and (iv), we first derive general EIF in Theorem C.1 without the
Neyman orthogonality assumption. We will then specialize this result to prove Theorem 3.1.

Theorem C.1 (General EIF for Latent FDFI). Let the data be randomly partitioned into a main

sample of size n and an auxiliary sample of size m. Let T' be an estimator of the nuisance function
T computed on auxiliary samples. Under Assumption A4 (i), (ii) and (iv), the cross-fit estimator

$Zj (P) = P, [w(O; f)] for the parameter ¢ z,(P) = E[w(O; T')| satisfies the following asymptotic
expansion:

$Zj (]P) - ¢Zj (IP)) = (Pn - ]P)){Somain(o; IP))} + (]Pm - IP)){(»Ocorr(0§ P)} + Rn,mv

where P,, and P,,, are the empirical measures for the main and auxiliary samples, respectively. The
efficient influence function @ z,(O; P) is given by:

$Yz; (07 ]P) = (pmain(0§ ]P) + Spcorr(O§ P)a
where the components of the efficient influence function are:

(pmain(O; P) = W(Ov T) - ¢Zj (]P)
1 _ ; _
=5 [ @ @), v) - as@(2), Y)| - 62, (P),
@Corr(o; P) = V¢(T) [IFT(Ov )]
1 . )
= 5 (Exo [Dx(X)IF7(0)(X9)] ~ Ex[Dx (X)IFr(0)(X)])
The remainder term R,, ,, is of order Op(n~1/2,,+E2,), where £, = ||f—T||L2 is the Ly error of
the nuisance estimator computed on the auxiliary sample. Here, X = T~(Z), X9 = T7-1(20)),
IE7(O)(") is the influence function of T evaluated at observation O, and

U(f(x),Y) [ (x)

xte) =By [~

5]

with ' (u,y) being the derivative of { with respect to its first argument. The expectations Ex|-] and
E x ) [-] are taken over the marginal distributions of X and X (), respectively.

The EIF consists of the “naive” influence function, w(O; T') — ¢z, (), which would be correct if T'
were known, plus a correction term. This correction term, V(T )[IFT(O -)], directly accounts for
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the first-order impact of using an estimate T instead of the true T'. When the Neyman orthogonality
condition holds (V¢(T) = 0), this correction term vanishes, and we recover the simplified EIF
from Theorem 3.1. Therefore, this theorem provides a complete characterization of the estimator’s
asymptotic behavior, nesting the orthogonal case as a special instance.

While the EIF itself is independent of sample sizes, the asymptotic variance of the cross-fit estimator
depends on n and m. For a cross-fit estimator, its variance is approximated by a sum of variances of
the EIF components, scaled by the respective sample sizes:

~ 1 1

A\ ~ -V main —V corr /s
(92,) % ~V(@main) + —V(geon)
when the remainder term R,, ,,, is negligible.

C.2.1 PROOF OF THEOREM C.1

Proof of Theorem C.1. Note that (5) is a sample average of M copies of Z;. Below, we present the
proof for the simplified case M = 1, and the conclusion holds for general M using the linearity and

independence across Z(J ) The proof proceeds by deriving the von Mises expansion (Du et al.,

2025b) for the estimator ¢ z; = Pplw(0; T))]. We decompose the estimation error as follows:
¢z, — 6z, = Pu[w(0; T)] — Elw(0;T)]
= (P, — P)[w(O; T)] +Plw(O; T) — w(O; T)] + (P, — P)[w(O; T) — w(O;T)].

Term I Term II Term III

Term I is the desired empirical average of the influence function’s main part, centered to have zero
mean. By the central limit theorem, it converges to a normal distribution when V(1) > 0.

Term 1II is the first-order bias term due to plugging in the estimated nuisance function T By
Assumption A4 (i), the Taylor expansion of ¢(T") := E[w(O; T')] around the true T" gives:

Term I = ¢(T) — ¢(T) = Vo(T)[T — T] + Op(|T - T|3,),

where V¢(T)[d7] is the Gateaux derivative of ¢ in the direction 7 = T — T, given by:

d
Vo(T)[or] = e Elw(O;T + edr)]
e=0
d 1 _ ; _
= [d 5 (((T + €)1 (29)), V) = £(F(T + e6r) 7 (2), Y))] .
€lep?
Using the chain rule and the identity <-|c—o(T" + ed7) "' (2) = —%, we obtain:

, 4 ©)
Vo(T)[61] = %]E [z’(f(Xw)f’(X) (—?EQ ) — (PO, Y) (X)) (—%)] ’

where X = T71(Z) and XU) = T-1(ZU)). Using the law of iterated expectations and the
definition of Dx (), this simplifies to:

Vo()lor] = 5 (Exo [Dx(X9)5r(X0)] ~ Ex[Dx (X)5r(X)])

By Assumption A4 (iv), T — T can be represented via its influence function: f(x) —T(z) =
P2 [IFp(O; )] + Op(||T — T'||7,)- Substituting 67 = T — T and its IF representation:
Vo(T)[T —T) = Vo(T) [P*[Fr(0; )] + Oe(IT — T13,)
1 m
== > Vo(D)[IFr(0;™; )] + O=(€7,)
=1

n-

= ]Pm[_gpcorr(Oi)] + OP(572n)7

23



Under review as a conference paper at ICLR 2026

where @eorr(0) = —Vo(T)[IF7r(O;-)]. Note that E[pcor (0)] = —Vo(T)[E[IF1(O;-)]] = 0.
Thus, P, [—@corr] = (P — P)[—@cor:| and Term 11 reduces (P, — P)[—@core] + Op(E2).

Term III is an empirical process term. Under Assumption A4 (ii) and (iv), this term is of a smaller
order. Specifically, (P, — P)[g(T) — g(T)] is stochastically equicontinuous, leading to Term III
being Op(n~Y2||T — T||) = Op(n=1/2E,,).

Combining terms, we have:
Q/Zng — ¢z, = (Pn, = P){w(O;T) — bz (P)} = (Pin = P){peorr (0)} + Rim
= (Pn = PH{w(O;T) — ¢z, (P)} + (P — P){VA(T)IF7(O; )]} + R,

where the remainder R,, ,, = Op(nfl/ 28m + Efn). This completes the proof and establishes the

form of the efficient influence function ¢z, (O;P). O

C.2.2 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. The derivation of the EIF follows from Theorem C.1 by noting that the cor-

rection term in the definition of efficient influence function vanishes when the Neyman orthogonality

condition holds (V¢(T') = 0). This shows that ¢ 7 (O;P) := w(O;T) — ¢z, (P) is the EIF:
67,(P) = 67,(F) = (P — P){7,(0: P)} + Op(n/?En + £7,),

where &, = | T — T 1,

Recall that ﬁt is the flow map obtained by solving the above ODE with v; replaced with v, and the

transport map can be represented by 7" = Uj.

From Lemma B.2 and the rate condition, we have

1
- ~ _ 1
€ = |IT -T2, < el+2K/ lon = Bell2, dt = op(n3).
0

Therefore, we conclude that

07,(P) — 67,(P) = (P, — P){pz,(0;P)} + op(n~/?),

and consequently, the asymptotic normality follows. [

C.3 PROOF OF PROPOSITION 3.2

Proof of Proposition 3.2. The proof proceeds by first deriving the efficient influence function (EIF)
for a single component ¢;; (P) of the total importance score ¢ x, (P), and then aggregating the results.

By the linearity of the influence function operator, the EIF for ¢x, (P) = Z;‘i=1 ¢;1(PP) is simply the
sum of the EIFs for each component, i.e., px, (O;P) = ijl ©1(0;P).

Part 1: Deriving the EIF for a single component ¢;;(IP). Let ¢;;(T) = E[w; (O; T)H;;(X;T)],
where we make the dependence of the sensitivity term H;;(X) = (0X;/0Z;)* on the transport
map T explicit. The cross-fit estimator is ajl =P, [w;(O; T)H i1(X; f)] We perform a von Mises
expansion of the estimation error g@,(P) — ¢1(P):

$j1(P) — ¢j1(P) = Pplw;(0; T) Hju(X;T)] — Elw; (03 T)Hjo(X; T)]
= (P, — P)[w; (O; T)Hyi(X; )] + Elw; (0; T) Hju (X; T) — w; (0; T) Hu(X;T)]
+ (P = P)[w; (O; T)Hyy (X3 T) — w; (0; T) Hju(X; T)]

Term IIT

Next, we analyze each term separately.
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Term 1 is the standard empirical process term that converges to a normal distribution after /n
scaling by the Central Limit Theorem.

Term II is the first-order bias from due to the nuisance estimator 7. We linearize this term using the
functional derivative of ¢;;(T'). Let 67 = T — T'. By Fréchet differentiability in Assumption A4 (i)

and the functional product rule:
Term Il = ¢;(T) — ¢1(T)
=V (T)[or] + Op(llor]Z,)
= E[(Vrw; (0; T)[or]) Hj(X; T)] + E [w; (0; T)(Vr Hj(X; T)[67))] + Op([10711Z,)-

When the predictor f is Bayes optimal, the parameter ¢z, (T') = E[w;(O; T)] is Neyman-orthogonal
with respect to 7. This implies that its Gateaux derivative Vroz, (T)[] = E[Vrw;(O;T)[]]
is zero. Under regularity conditions allowing the interchange of derivative and expectation, the
weighted expectation also vanishes, i.e., E[(Vrw;(O; T)[o7])H;(X;T)] =

Therefore, the bias term simplifies to its second component. Using the influence function represen-
tation for T from Assumption A4 (iv), 67 = T — T = PaX[IF7(O*; )] + Op(E2,), we have:

Term I = E [w;(O; T) (Vo Hy (X; T) P2 [IF7]))] + Op(E7)

= L S B (O:T) (Ve H (XTI (O )] + Ob(E2)

= (P = P){Eor [w; (O T)(Vr Hju(Xs T)[IF7 (05 )]} + Op (),

where the final step uses E[IF] = 0. This term is the empirical average of the correction term
evaluated on the auxiliary data.

Term III is a higher-order empirical process term. Under Donsker condition (Assumption A4 (ii)),
this term is of order op(n~"/2).

Part 2: Asymptotic normality. Combining the terms, and noting that the main sample (for P,,)
and the auxiliary sample (for P2™) are independent, the total estimation error can be written as an
empirical average over a single sample:

651(P) = 6;1(P) = (B — P) {w;(O; T) Hyu (X T)
+Eo [w; (O T)(Vr Hj(X's T)[IF7 (03 )]} + Op(E7,).
By subtracting the mean ¢;;(IP) from the first part, we identify the EIF for ¢; as:
0i1(O;P) = (w;(O; T)Hju(X;T) — ¢u(P)) + Eor [w; (O's T)(Vr Hju (X' T) [IF 7 (05 )])]

Naive Term Correction Term

By defining IFy, = Vo H jl[IFT] as the influence function of the estimator for the function
Hj;, and using the fact that influence functions have zero mean, the term becomes a covariance

Cov(w;(0:T),IF,,(0;)). Thus, the total EIF for ¢, () is ¢x, (O: P) = >7_; @ji(O;P). The

vector of estimators ¢ x thus has the asymptotic linear expansion:
N n
Vi(ox (P) - Z ) + op(1),
where ¥(0;;P) = (¢¥1(0;P),...,104(0;;P)) 7. By the multivariate Central Limit Theorem, it

1 iy
follows that /n(dx (P) — éx (P)) 4 N(0,%4), where X = E[t)(O;P)y(O;P) ], with entries
(X¢)i = Cov(px, (O;P), ¢, (O;P)). This completes the proof. O
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D COMPUTATIONAL DETAILS

D.1 ALGORITHM AND COMPUTATIONAL DEVICES

Algorithm. The full algorithm of FDFI is given in Algorithm D.1.

Algorithm D.1 Flow-disentangled feature importance

Require: Labeled data Doy, = {O; = (X;,Y;)},, a black-box model f, a loss function ¢. In-
dependent auxiliary unlabeled data Dy = {X 17, and a flow model training procedure M(-)
that returns a map T. The null adjustment constant ¢ and the Monte Carlo sample size M.

Ensure: FDFI scores {¢, - {$x, )¢, and p-values {py, Y1 Apx Yy

1: Obtain transport map through flow matching T= M(Dx). v Disentangled map estimation
2: Initialize point-wise score storage: W <— empty n X d matrix, {2 < empty n X d matrix.
3: fori =1tondo > Compute scores on the labeled data

4 Compute latent vector Z; < T(X;) and generative Jacobian J; « VzT-(Z)| 2=%,-

5 Compute squared sensitivities ﬁ]l(Z) — (Ji)le forall j,l € {1,...,d}.

6: for j = 1toddo > Point-wise latent scores
7

8

Let {Z(J ™) M be M copies of Z; where the J-th coord is resampled from pz, .

: Qi oo S0 0, F(THZEPY) — 0, £(X0) |
9: end for

10: for! =1toddo > Attribution to original features
4 o~

11: \Ijil <_Zj:1 QLJ 'Hjl(Z'L')-

12: end for

13: end for

14: for j = 1to d do > Compute latent feature importance ¢z,

15 ¢z, =30 Qi > Cross-fit estimator (5)

16: Gij — Qij — ¢z, fori=1...n. > EIF components

17: sezzj — (Vo {@ij} + o) /n. > Adjust standard error for inference

18: pz; < 1— ¢($Zj/sezj)- > Compute p-values

19: end for

20: for ! =1toddo > Compute original feature importance ¢x,

21: bx, — =30 Yy > Estimator (7)

22: @% — Uy —ox, fori=1...n > Approximate EIF components

23: sex, « (Vo {@5} +c)/n. > Adjust standard error for inference

24: px, « 1 — ®(dx, /sex,). > Compute p-values

25: end for

26: return Estimated importance scores and their uncertainty.

Variants of FDFI estimators. There are two different ways to construct an estimator for latent
FDFI (2). One can adopt the idea of CPI (Strobl et al., 2008), SCPI (Lobo et al., 2025), and LOCO
(Lei et al., 2018) to estimate this quantity. More specifically, we can define

n M
CHOEEDS KQ}M > [ s THEE) - v, f(f*(z)))m .
i=1 k=1

n

~ 1
SCPL(PY . = 13
%' (P) n; BNE)

k=1

M
1 1 Bk PP
’ (Y =Y [ra e 5)}) — Ui, f(T71(Z))
where (12) coincides with the latent FDFI estimator (5) presented in the main text.
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The final FDFI estimator of the original feature can be constructed as follows:

o, (P =ZiZl2MZ[ (Vi fTHZIDN) = Y, fTNZ)) | Hu(Z)| (14

SCPI d 1« < JJC) F—-1/7 oo
=3I e (v S D] | = e FT1Z0) | Hu(Z), (15)
j=1 =1 k=1

where }AIjl (Z) = [VT (Z)El is the square of estimated Jacobian of X; with respect to Z;.

One can, in principle, construct a LOCO-type estimator; however, this requires refitting submodels
for f oT~1, which is computationally expensive in general. Except in the special case of /5 loss, the
LOCO-type estimator coincides with the SCPI-type estimator if f is the Bayes optimal predictor.
For this reason, we didn’t explore this variant in the current paper.

Computational devices. All experiments were conducted on dedicated computing platforms. All
experiments, except for Appendix D.4, were executed on a server equipped with an AMD EPYC
7542 32-Core Processor CPU and NVIDIA RTX 3090 GPUs. Appendix D.4 was carried out on a
personal computer with an Intel Core i5-14600KF CPU and an NVIDIA RTX 5070 Ti GPU.

D.2 FLOW MATCHING MODEL

Flow matching is a concise and powerful framework for generative modeling that has advanced the
state of the art across various domains and applications. Following Lipman et al. (2022; 2024), we
adopt the Conditional Flow Matching (CFM) model as the backbone of our approach. Similar to
the setting in Lipman et al. (2024), we train the model for 5000 steps per 1000 samples. Because
performance is sensitive to architectural and optimization choices—including network depth, hidden
dimensions, and batch size—we systematically explore multiple hyperparameter combinations to
identify a configuration that offers a favorable performance—efficiency trade-off for training.

In statistics, the Maximum Mean Discrepancy (MMD) is a widely used metric for quantifying the
difference between two probability distributions. A smaller MMD value indicates that the two dis-
tributions are more similar, whereas a larger value reflects greater divergence. For the target data, we
split the dataset into training and testing subsets with a 1:1 ratio. Using the training set, we trained
the model to generate samples from a standard normal distribution, thereby obtaining the generated
target distribution. We then computed the MMD? between the real and generated distributions on
both the training and testing sets. These results were used as the criterion for selecting appropriate
configurations.

To select a suitable hyperparameter configuration, we proceeded as follows. As an example, in
Section 4.1 we fixed the training sample size at 1000 and trained the model for 5000 steps using
the Adam optimizer with a learning rate of 1 x 1073, In each trial, a distinct random seed was
used to generate a new simulated dataset; for that dataset, we evaluated multiple hyperparameter
configurations. This procedure was repeated for 50 seeds in total, and for every configuration-seed
pair, we recorded the resulting MMD? on both the training and test sets.

A suitable set of hyperparameters should yield relatively small MMD? values on both the training
and test sets. Moreover, the gap between training and test MMD? values should remain modest;
otherwise, the model risks underfitting or overfitting. As shown in Table D1, the configuration
with hidden dimension 128, batch size 256, and a two-layer network satisfies the above criteria:
it attains relatively small MMD? on both training and test sets with only a modest gap between
them. By contrast, smaller hidden dimensions and a single-layer network yield large MMD? on both
splits, indicating underfitting. Increasing the hidden dimension and depth further reduces the training
MMD? but enlarges the train—test gap, signaling an overfitting risk. Although the setting with
hidden dimension 256, batch size 128, and two layers performs comparably, we ultimately select
the hidden-dimension-128, batch-size-256, two-layer configuration as it offers a more favorable
balance between model performance and computational efficiency.

After identifying an appropriate hyperparameter configuration based on the preceding selection pro-
cedure, we examined the effect of proportionally increasing the training sample size and steps, scal-
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Table D1: Train and test MMD? (mean =+ std) across hidden dimensions, batch sizes, and network
depths.

Hidden dim Batch size  Train (1 layer) Test (1 layer) Train (2 layers)  Test (2 layers) Train (3 layers)  Test (3 layers)

64 32 0.0100£0.0069  0.0109£0.0056 0.0079+0.0039  0.009640.0052  0.0076+0.0044  0.0084+0.0042
64 64 0.0065+0.0040 0.0073+£0.0047 0.0072+0.0038  0.008040.0039  0.0055+0.0037  0.0069+0.0054
64 128  0.007140.0043  0.0076£0.0049  0.0053+0.0028  0.005840.0033  0.0038+0.0020  0.0046+0.0023
64 256 0.005240.0028 0.0064+0.0031  0.0047+0.0025  0.00594+0.0027  0.0041+£0.0029  0.0046-+0.0025
64 384 0.0048+0.0024  0.0054+0.0027 0.0041£0.0031  0.005740.0032  0.0038+0.0022  0.0046-+0.0020
128 32 0.0062+0.0025 0.0068+0.0024 0.0057+0.0041  0.006740.0045 0.0061+0.0032  0.0070-+0.0030
128 64 0.00524+0.0032  0.00624+0.0034  0.0042:+£0.0029  0.005940.0041  0.0043+0.0025 0.0058-+0.0025
128 128 0.0050+£0.0024  0.0061£0.0023  0.0036+0.0023  0.00461+0.0026  0.0027+0.0021  0.0035+0.0020
128 256 0.0044+0.0026 0.0052£0.0019  0.0024+0.0022  0.0030+0.0022  0.0021+0.0016  0.0035+0.0015
128 384 0.004140.0020 0.0052+0.0020 0.0030£0.0022  0.004040.0026  0.0023+0.0014  0.0033+0.0011
256 32 0.00364+0.0017 0.0041+0.0018 0.0035+0.0018  0.004140.0022  0.0032+0.0019  0.0039+0.0028
256 64 0.0026+0.0016 0.0034£0.0017  0.0024+0.0019  0.003240.0026  0.0025+0.0021  0.0035+0.0019
256 128  0.0018+0.0012  0.0028+0.0016  0.0023+0.0016  0.0028+-0.0015  0.0020+0.0012  0.0031£0.0015
256 256  0.001740.0014  0.0027+£0.0019  0.0014+0.0012  0.002540.0010  0.0011+£0.0006  0.0026-+0.0008
256 384 0.0024+£0.0018  0.0031£0.0019  0.0013+0.0011  0.002440.0013  0.0012+0.0011  0.0029£0.0010
384 32 0.0016+0.0010 0.0024£0.0019  0.0015+0.0009  0.002840.0012  0.00274+0.0021  0.0040+0.0024
384 64 0.0016+0.0011 0.0026+0.0017 0.0013+0.0011  0.00234-0.0013  0.0022+0.0010  0.0029+0.0013
384 128  0.001540.0013  0.0030+£0.0012  0.0010£0.0008  0.00194+0.0010  0.0016+0.0011  0.0023+0.0011
384 256 0.0016+0.0013  0.0025£0.0014  0.0012+0.0009  0.002340.0012  0.0020£0.0009  0.0036+0.0015
384 384 0.001840.0008 0.0027£0.0011 0.0015£0.0011  0.002740.0009  0.0023£0.0014  0.0039+0.0018

ing from (1000, 5000) to (2000, 10000) and beyond. For comparability, the procedure was repeated
50 times, each with a fixed random seed; within each run, datasets of different sizes were generated
using the same seed to ensure consistency. The results in Figure D1 show that when the sample size
reaches 3000 or above, the MMD? values on both training and test sets stabilize. While larger sample
sizes can still improve generation quality, we adopt 3000 as the sample size, balancing performance
and computational cost.

MMD? vs. Sample size

—&— Train MMD? * std
0.005 A Test MMD? + std
0.004 =+
£ 0.0034
=
= .\’\o‘.\‘
0.002
0.001 l 1 T
1000 2000 3000 4000 5000

Sample size n

Figure D1: Comparison of Train and Test MMD? across varying sample sizes.

D.3 STATITSICAL INFERENCE

D.3.1 APPROXIMATION FOR EIF OF ¢x,

Recall that the component EIF from Proposition 3.2 is given by

@j1(O;P) = (w; (O; T)Hju(X) = ¢5u(P)) + Cov(w; (O; T), IF i, (03 )]
= ¢5(0;P) + Cj1.
The first-order approximate term ¢ (O;P) can be estimated using a cross-fit estimator; the correc-
tion term C, however, requires evaluation of the influence function of Hj;. Analytically deriving

IFr (and thus IF ) for a flow-based model is generally intractable. In practice, the correction
term must be estimated using resampling methods.
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Algorithm D.2 Jackknife estimation of the EIF correction term (C';;)

Require: Dataset D = {O;}";, where O; = (X;,Y;). Flow model training procedure M(-) that
returns a map T'. Point-wise latent score function w; (O;T).

Ensure: Estimated correction term Cj; = C,,(w;(O;T),1F g,,(0;)).

1: Initialize score vector W < |[]. > Step 1: Compute point-wise scores using T.

2: fori=1tondo _

3 W, « Wi (O“ T)

4 Append W, to W.

5: end for R

6: Let Hj;(-) be the estimator function derived from the full map 7.

7: Initialize influence vector I < [].

8: fori =1tondo

9 LetD\ Y« {Xy,..., Xi 1, Xis1,. .., X}

10: Retrain model: 7(—9) + M(Dg{i)). > Step 2: Compute leave-one-out estimate.
11: Derive the leave-one-out estimator function H J(l_ 2 (+) from T,

12: I+ (n-1) (ﬁjl(Xi) - ﬁ](l_l)(Xl)) > Step 3: Estimate point-wise influence.
13: Append I, to I.

14: end for

15: Cj; + C, (W, I). > Step 4: Compute the sample covariance.

16: return C};
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Figure D2: Comparison between first-order approximate term @?Z(O; P) and the correction term
Cji. The correction term C'j; is of smaller order than the first-order approximate term ¢, (O;P).

The influence function IF i, measures the sensitivity of the estimator H; to the data. To measure

this, one must re-estimate H ;1 on perturbed versions of the data. A direct, though computationally
intensive, method to estimate the covariance term is the jackknife, as outlined in Algorithm D.2.

We fix the dimension d = 10 and study the response model y = 5Xg + ¢, where € ~ N(0,1).
The covariates X € R'? are sampled under two regimes: (i) Gaussian. X ~ AN(0,%.s), and (ii)
Gaussian mixture. X ~ 0.2MV(0,%05) + 0.8NV(0,%0.2), where £, € R'*10, with [3,] . =1
if ¢ = j and p otherwise, is the AR1 covariance matrix with parameter p.

In this part, we choose the sample size as n = 1000 and compute the approximate term 80?1(09 P)
and the correction term (', respectively. Crucially, this experiment is conducted without sample
splitting; the same data is used to estimate the transport map T and to subsequently compute the im-
portance scores. As shown in Figure D2, the correction term is of smaller order than the approximate
term. For this reason, we can approximate the EIF of ¢ x, with the individual first-order approx-
imate EIFs ¢%,. This provides strong empirical evidence that while sample splitting is the most
theoretically rigorous approach, practitioners may often be able to use the simpler approximate EIF
for inference without splitting the data, which offers a significant computational advantage.
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D.3.2 INFERENCE NEAR THE NULL

As stated in Verdinelli & Wasserman (2024a), when dealing with the quadratic functional, under the
null hypothesis, the influence function for the parameter vanishes, the coverage rate becomes n !,
and the limiting distribution is no longer a Gaussian distribution. This hinders variable selection with
direct statistical guarantees, which is an essential component of reliable scientific discovery (Lobo
et al. (2025)). In Verdinelli & Wasserman (2024a), they propose to replace the standard error se,,
with \/se2 + ¢/n to ensure control of the type-I error, where c is a constant, and many constants
could be used. In this paper, we choose ¢ = > min{/V(Y), V(Y), V(Y)2, V(Y)*}, where

V(Y) is the variance of the output and d is the dimension of all features.

Due to the quadratic nature of the statistic g/b\ under the null hypothesis, the variance vanishes as
V(¢) = O(n~7) with v > 1. It can be found that under the null hypothesis, using Cantelli’s

~ ~ 2
inequality, we have Py, (gb > zo\/ s€2 + c/n) < V(d))/(zaw se2 + c/n) — 0. This

guarantees that the expanded confidence interval controls the Type I error.

D.4 COMPUTATION TIME COMPARISON

For the computational efficiency study, we followed the experimental protocol of Experiment 2.
However, computing Shapley value for all 50 features is prohibitively time-consuming; therefore, for
Shapley value (Shapley, 1953), we restrict the feature dimension to d = 10 while keeping all other
settings identical. Under this setting, we measured the runtime of CPI, LOCO, nLOCO, dLOCO,
DFI, FDFI-Z, FDFI, and Shapley value across a range of sample sizes to characterize scalability and
comparative efficiency as data volume grows. Each method was run 10 times for every sample size
configuration.
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Figure D3: Computation time in logarithmic scale of different methods. The error bars indicate
standard deviations across 10 random seeds.

The computation-time results show that CPI, FDFI, and DFI are substantially more efficient than
LOCO-based and Shapley value methods. Across all sample sizes, both approaches consistently
require only a fraction of the runtime compared with LOCO-based and Shapley value estimators,
while maintaining stable variance as reflected by the narrow error bars. This highlights their scala-
bility and practical advantage for large-sample applications. In particular, FDFI achieves markedly
lower runtime than correlation-aware methods such as dLOCO, further underscoring its efficiency.
Although DFI allows for an arbitrary optimal transport map in theory, its implementation in the orig-
inal paper only uses a Gaussian transport map, which admits a closed-form solution and is indeed
efficient, as shown in the above figure. However, if one needs to transform features to another latent
distribution, a general OT solver must be used, and it is usually computationally expensive when the
feature dimension is large.
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E ADDITIONAL EMPIRICAL RESULTS

E.1 EXTRA SIMULATION STUDIES

E.1.1 BENCHMARKING WITH DIFFERENT PREDICTORS

We conduct a comparative evaluation of LOCO, CPI, DFI, FDFI (SCPI), and FDFI (CPI) employ-
ing three prediction models: random forests, neural networks, and Lasso in the same setting of
Section 4.1, fixing the correlation at p = 0.4 and the sample size at n = 1000. Each configura-
tion is repeated 100 times with different random seeds. We choose p = 0.4 because the perfor-
mance of methods such as LOCO and CPI tends to deteriorate as p increases; therefore, among
p € {0.4,0.6,0.8}, the smallest correlation coefficient was selected to allow a more objective com-
parison of the performance differences across different predictors.

AUC Score Power(C1) Type | Error Power(C1uC2)
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Figure E4: Performance comparison across three different predictors under the settings of Sec-
tion 4.1. Top: results obtained with the random forest predictor. Middle: results obtained with the
neural network predictor. Bottom: results obtained with the Lasso predictor. Points indicate mean
values, with error bars representing 95% bootstrap confidence intervals over 100 runs.

According to Figure E4, when using the random forest predictor, different methods demonstrate
consistently better performance in terms of AUC, Power, and Type I error control. Therefore, we
adopt random forests as the predictor in our experiments.

E.1.2 DISENTANGLED TRANSFORM MAP

The term (0X;/ 8Zj)2 in Equation (4) quantifies how strongly fluctuations in Z; are transmitted
through X;. Collecting these sensitivities across all pairs (I, j) yields a matrix that characterizes how
latent variations propagate into the observed space. This sensitivity matrix reveals the block structure
of X, where coherent feature groups manifest as localized blocks. To illustrate this phenomenon,
we visualize the matrix as a heatmap. Specifically, we consider the nonlinear response model

y = arctan(Xp) + sin(Xsa) + ¢,

with X ~ Ni(0,X), and € ~ N(0, 1). The covariance matrix X is block-diagonal with two blocks
of equal size (5 x 5). The first block (features Xo—X4) is subdivided into two uncorrelated groups,
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Xo, X1 and Xs, X3, X4, while the second block (features X5—Xg) forms a single equicorrelated
cluster, as in Section 4.1. The within-block correlation is fixed at p = 0.8.

Features

. ' . ) . . ) ] .
0 1 2 3 4 5 6 7 8 9
Features

Figure ES: Sensitivity matrix under block structure (p = 0.8). The color bar denotes pairwise
correlation strength, with darker red indicating higher correlation.

As shown in Figure ES, the heatmap exhibits clear block patterns consistent with this design. These
structures provide direct empirical evidence of grouped dependencies, supporting the claim that the
disentangled representation successfully recovers the latent dependency structure of X.

E.1.3 BENCHMARKING ON COMPLEX FEATURE DISTRIBUTIONS

To evaluate in more challenging settings that approximate real-world data, we move from sim-
ple Gaussians to Gaussian mixtures, which possess universal approximation capability to capture
complex patterns commonly observed in real data (Goodfellow et al., 2016). We retain the same
response model from Section 4.1 but generate covariates from a two-component Gaussian mixture:
X ~ 0.2N(0,2(0.8)) + 0.8 N (0,X(0.2)). Both covariance matrices, ¥(0.8) and ¥(0.2), follow
the block structure introduced in Section 4.1, with correlation parameters p = 0.8 and p = 0.2,
respectively. In this non-Gaussian setting, we benchmark 5 feature important measures, includ-
ing LOCO, nLOCO (normalized LOCO; Verdinelli & Wasserman, 2024b), dLOCO (decorrelated
LOCO; Verdinelli & Wasserman, 2024a), DFI, and FDFI, which provide both point estimates and
uncertainty quantification. We exclude Shapley-value-based methods from this comparison due to
their prohibitive computational cost, as detailed in our runtime analysis (Appendix D.4).
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Figure E6: Benchmarking results of Gaussian mixture setting with a sample size of n = 1000.
Points indicate mean values, with error bars representing 95% bootstrap confidence intervals over
100 runs.

The results in Figure E6 demonstrate that FDFI consistently achieves the strongest performance,
attaining the highest AUC scores and statistical power while robustly controlling the Type I error.
DFI also improves over the LOCO-based methods and maintains well-controlled Type I error.
However, DFI’s reliance on the Gaussian optimal transport map, which is less flexible than flow
matching, limits its discriminative ability on this complex non-Gaussian data, resulting in inferior
AUC and power compared to FDFI. By contrast, the LOCO, nLOCO, and dLOCO baselines remain
substantially weaker in both AUC and power. Overall, these results highlight that FDFI’s flow-based
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disentanglement provides superior flexibility and statistical power on complex distributions.

Moreover, we also adapt a more sophisticated design for the covariance matrices and construct
X to exhibit heavy-tailed distribution characteristics. We first generate latent Gaussian covariates
Z =(Zy,...,Z1000) " € RY00%50 from a two-component Gaussian mixture

Z; ~0.2N(0,%(0.8)) + 0.8 M(0,%(0.2)), i=1,...,1000,

where X(p) = Iy ® &, and (£,);; = p/"~7/°. To induce heavy tails, we then transform Z into X
via a Gaussian—t scale mixture: for each i, we draw W; ~ x%, independently and set

10
Xi =\ 77 Zis
Wi

so that the rows of X follow a heavy-tailed distribution of multivariate ¢-type with 10 degrees of
freedom and covariance proportional to ¥(p). We retain the same response model as in Section 4.1
and perform 100 independent experiments, each with a randomly chosen seed. We then compare the
performance of LOCO, nLOCO, dLOCO, DFI, and FDFI in terms of AUC score, Type I error, and
Power, as reported in Table E2. It can be observed that even under a sophisticated covariance de-
sign and heavy-tailed distributions, FDFI still achieves the best performance among all methods by
leveraging a flow-based model. This further highlights the advantage of FDFI over DFI in handling
complex dependence structures and non-Gaussian data.

Table E2: Comparison of LOCO, nLOCO, dLOCO, DFI, and FDFI in terms of AUC score, Type I
error, and Power.

Method AUC score Type Ierror Power (C1) Power (C1 U C2)

LOCO 0.9536 0.0063 0.5180 0.2640
nLOCO 0.9549 0.0095 0.5300 0.2700
dLOCO 0.9893 0.0357 0.9200 0.5080
DFI 1.0000 0.0037 0.9280 0.5730
FDFI 1.0000 0.0307 1.0000 0.8660

E.1.4 LATENTE INDEPENDENCE DIAGNOSTICS

To inspect the effect of the latent representation Z on FDFI, we compute the pairwise normalized
HSIC (nHSIC) with Gaussian kernel:

nHSIC(Z,, Z;) = HSIC(Z), Zk)
7O JASIC(Z;, Z;) BSIC(Zy, Zy)|

and the distance correlation (dCor):
Z) dCov?(Z;, Z) .
\/dVarQ(Zj) dVarQ(Zk.)

dCor?(Z;,

between two coordinates Z; and Zj, for the learned latent representation under different settings.
Here, dCov and dVar are the covariance and variance of the Euclidean distance matrix.

To illustrate how one can diagnose the latent independence and its effects on statistical inference, we
retain the experimental setup of Section 4.1 and keep all other settings fixed. By reducing the width
of the neural network and the number of training steps (hidden dimension 128 — 16, training steps
5000 — 5), , we deliberately deteriorate the training performance so that the correlations among
the components of Z increase, and then investigate the resulting impact. For both the “good” and
“bad” training regimes, we perform 50 independent runs with different random seeds. In each run,
we compute the two metrics between the coordinates of Z and summarize the dependence structure
by averaging all off-diagonal entries (i.e., excluding the self-dependence terms with j = k) of the
resulting pairwise nHSIC and distance-correlation matrices. Finally, we average these run-wise
summaries across the 50 runs and relate them to the average empirical power and the standard
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Table E3: Effect of average dependence in Z (pairwise nHSIC and distance correlation) on test
performance and feature importance stability.

Regime nHSIC(Z) dCor(Z) Power(Cy;UCs) sd (QAS(XO))
Good training 0.0032 0.0543 1.0000 0.0147
Bad training 0.0711 0.1872 0.4480 0.0229

deviation of the feature importance of the first covariate X. The results are reported in Table E3.
As expected, bad training fails to decorrelate Z’s coordinates (large nHSIC and dCor), and hence
deteriorates the statistical inference.

E.1.5 SENSITIVITY TO NUISANCE QUALITY

To analyze the sensitivity of FDFI to different flow training, we retain the model construction in
Section 4.1 and inspect the performance with different parameter values. According to Figure 2,
FDFI becomes highly stable when the sample size is sufficiently large. Therefore, to better investi-
gate how these hyperparameters affect performance, we fix the sample size at 300 in the following
experiments.

In Section 4.1, the response is generated as

y = arctan(Xo + X1) Lix,>0p +sin(X3Xy4) Lix, <0y +e

Therefore, for Xy and X, their feature importances should be identical in theory. Motivated by this,
we introduce an additional metric to assess the effect of hyperparameters on the training outcome,
namely the geometric-relative discrepancy between ¢q and ¢4, defined by

Ageo((bOv ¢1) = %

Ideally, this quantity should be as small as possible.

We consider different configurations of each hyperparameter (and keep all other settings identical
to Section 4.1): (i) The size of auxiliary set. We vary the auxiliary set size m, while keeping the
training steps proportional to m, to ensure sufficient training. (ii) Latent resample size. We vary the
number of latent resamples M from 1 to 50. (iii) Model depth/width. We evaluate 5 configurations
of the hidden dimension (width) and the number of layers (depth) of the neural network.

The statistical power, geometric-relative discrepancy, and Type I error in all configurations are pre-
sented in Table E4. We observe that increasing the auxiliary set size m, the latent resample size
M , or the network width and depth consistently improves power and reduces geometric discrepancy
while maintaining well-controlled Type I error. Notably, as long as the hyperparameters lie within
a reasonable range, the overall performance remains highly stable, showing that FDFI maintains
stable performance without being overly sensitive to the specific choice of hyperparameters.

Table E4: Sensitivity analysis of FDFI to flow training hyperparameters on Power, geometric-
relative discrepancy, and Type I error.

Hyperparameter Power(C7 UC2)  Ageo(Po,¢1) Type I error
300 0.8560 0.2275 0.009
Size of auxiliary setm 500 0.8880 0.2161 0.0180
1000 0.9080 0.1821 0.0165
1 0.7700 0.2522 0.0115
Latent resample size M 10 0.8820 0.2143 0.0185
p 50 0.9080 0.1821 0.0165
(16, 1) 0.4340 0.5637 0.0215
64, 1) 0.8860 0.2402 0.0125
. (128, 1) 0.8980 0.2251 0.0205
(width, depth) (128, 2) 0.9080 0.1821 0.0165
(128, 3) 0.9040 0.2023 0.0135
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E.2 EXTRA REAL DATA STUDIES

We conducted data analysis on nine different real-world datasets, which vary in sample sizes, feature
dimensions, task types, variable types, and domains. We summarize their information in Table ES.

Table ES5: Summary of all 9 real datasets studied in the paper. In the “Task’ column, ‘Cls’ denotes
classification and ‘Reg’ denotes regression.

Dataset (n, d) Task Variable type Domain
Cardiotocography (2126, 21) Cls Continuous Medical
Pima Indians Diabetes (768, 8) Cls Continuous Medical
MicroMass (571, 1300) Cls Discrete Biological
Codon usage (13028, 69) Cls  Continuous & Discrete  Biological
Default of Credit Card Clients (30000, 23) Cls Continuous & Discrete  Commercial
Superconductivity Data (21263, 81) Reg Continuous Industrial
Video Transcoding (68784,19) Reg Continuous & Discrete Industrial
TCGA-PANCAN-HiSeq (801, 20531) Cls Discrete Biological
human single-cell RNA-seq (632,23257) Cls Discrete Biological

E.2.1 CARDIOTOCOGRAPHY DATASET

The Cardiotocography (CTG) dataset (n = 2126,d = 21) (Campos & Bernardes, 2000) consists
of 2,126 computer-processed cardiotocograms with 21 diagnostic features derived from fetal heart
rate (FHR) and uterine contraction (UC) signals. These features capture baseline FHR, counts of
accelerations and decelerations, short- and long-term variability, and FHR-histogram statistics. We
use this dataset to classify fetuses as normal or abnormal and to compare feature importance esti-
mates produced by different methods. The Shapley value method was not applied here because its
computation time exceeded one day, even with only 21 features.

As shown in Figure E7, LOCO and CPI identify only a small subset of features as significant, in
sharp contrast to FDFI and DFI. This divergence stems from the block-diagonal structure of the
feature correlation matrix (Section 4.3), which is a manifestation of correlation distortion under
multicollinearity. In such settings, LOCO and CPI attenuate or mask true effects, whereas FDFI and
DFI are less affected (Verdinelli & Wasserman, 2024b). In the CTG dataset, LB anchors the tracing
around the expected 110-160 bpm baseline for reassuring status, while central-tendency descrip-
tors (Mean, Median, Mode) provide concordant evidence of the baseline neighborhood (Ayres-de
Campos et al., 2015; Jia et al., 2023). Reactivity is reflected by AC (accelerations), often accom-
panied by FM (fetal movements), both indicating intact autonomic control and low short-term risk.
Excessive UC (uterine contractions), i.e., tachysystole, can compromise uteroplacental perfusion
and precipitate decelerations (Ayres-de Campos et al., 2015). Beat-to-beat and longer-scale vari-
ability are captured by MSTV/ASTV (short-term variability mean and abnormal-time proportion)
and MLTV/ALTV (long-term variability mean and abnormal-time proportion). Adequate variability
(higher MSTV, MLTV and lower ASTV, ALTV) is reassuring, whereas depressed variability is non-
reassuring (Ayres-de Campos et al., 2015; Jia et al., 2023; Stampalija et al., 2023). Deceleration
phenotypes—DL (mild/early), DS (severe/variable), and DP (prolonged)—span a spectrum from
benign positional patterns to forms associated with cord compression and hypoxia/acidemia, with
DP (> 2 min) and repetitive deep DS most strongly linked to metabolic risk (Parer & Ikeda, 2007).
Histogram-based morphology provides supportive, context-dependent information: overall spread
via Width and Variance (very low values echo variability loss; excessively wide or erratic distri-
butions indicate nonreassurance), extremes via Min/Max (sustained brady- or tachycardic periods),
modal structure via Nmax/Nzeros (multimodality and sparsity cues), and slow drift via Tendency.
These descriptors are standard in computer-aided CTG (e.g., SisPorto) and are highlighted in con-
temporary reviews (Ayres-de Campos et al., 2000; Romano et al., 2016; Zhao et al., 2018).

FDFI consistently isolates the physiologically meaningful signal and preserves it under strong cor-
relation and Bonferroni control, yielding a stable, guideline-concordant importance profile. This
pattern demonstrates clear advantages in interpretability and robustness, retaining clinically relevant
effects despite multicollinearity and multiple testing, thereby providing a more reliable attribution
map than methods that are prone to correlation distortion.
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Table E6: Description of 21 features in the Cardiotocography dataset (n = 2126, d = 21) . Where
n is the sample size and d is the feature dimension. ‘FHR’ means ‘Fetal Heart Rate’.

Broad category Feature name Meaning
LB FHR baseline (beats per minute)
Baseline & counts AC Number of accelerations per second
M Number of fetal movements per second
ucC Number of uterine contractions per second
DL Number of light decelerations per second
Decelerations DS Number of severe decelerations per second
Dp Number of prolonged decelerations per second
Short-term variabilit ASTV Percentage of time with abnormal short-term variability
Y MSTV Mean value of short-term variability
Lone-term variabilit ALTV Percentage of time with abnormal long-term variability
& Y MLTV Mean value of long-term variability
Width Width of the FHR histogram
Min Minimum value of the FHR histogram
Max Maximum value of the FHR histogram
Nmax Number of histogram peaks
. Nzeros Number of histogram zeros
Histogram (FHR) Mode Mode of the histogram
Mean Mean of the histogram
Median Median of the histogram
Variance Variance of the histogram
Tendency Tendency of the histogram
- == LOCO
I DFI
cpl
I FDFI
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Figure E7: Bar plot of feature importances of the random forest classifier on the Cardiotocography
(CTG) dataset. The symbols * and ** on the bars denote statistical significance at a level of & = 0.05
and « = 0.05/21, respectively. The meaning of all features is provided in Table E6.

Case-wise attributions: Recall that the importance of feature X is estimated by Algorithm D.1 as:
d n
~ = ~ 1
i = Zl Qj - Hu(Z),  ox =~ Zl i,
Jj= i=
In Figure 4(a), the heatmap exhibits a strong block-diagonal structure among LB, Mean, Mode, and
Median. For feature LB, we define the block-restricted contribution for LB as

ik = N© 0y Hjus(Z:),  Bup == {LB, Mean, Mode, Median}.

JEBLB
Averaging these restricted sample-wise contributions over all ¢ yields a block-based feature impor-
tance %l‘fk = Z \If?li% For comparison, ¢x,, = %Z, W, 1,8 denotes the overall feature

importance of LB computed using all features. In our real data analysis, the overall importance
Ox.5 = 0.0286, the block-based importance @3 l"‘k = 0.0228, and their ratio is 0.7972, meaning
that the four-feature block accounts for nearly 80 /o of the importance of LB.

E.2.2 PIAM DIABETES DATASET

The Pima Indians Diabetes dataset (n = 768,d = 8) (Smith et al., 1988) contains medical records
from female patients of Pima Indian heritage. Each record includes eight clinical attributes such
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Table E7: Description of 8 features in the Pima Indians Diabetes dataset (n = 768, d = 8) . Where
n is the sample size and d is the feature dimension.

Broad category Feature name Meaning

Obstetric history ~ Pregnancies Number of times pregnant
Glycemia Glucose Plasma glucose concentration at 2 hours in an OGTT (mg/dL)
Blood pressure BloodPressure  Diastolic blood pressure (mm Hg)
Adiposity SkinThickness  Triceps skinfold thicknegss (mm)
BMI Body mass index (kg/m~)
Insulinemia Insulin 2-hour serum insulin (mU/L)
Family history DPF Diabetes pedigree function (family history—based risk score)
Demographics Age Age (years)

B LOCO
B DFI
CPI

Shapley value

I FDFI

6\\)@(’6 6@\\ Pge

Figure E8: Bar plot of feature importances of the random forest classifier on the Piam diabetes
dataset. The symbols * and ** on the bars denote statistical significance at a level of o = 0.05 and
a = 0.05/8, respectively. The meaning of all features is provided in Table E7.

as the number of pregnancies, plasma glucose concentration, blood pressure, skinfold thickness,
insulin level, body mass index (BMI), diabetes pedigree function, and age. The task is to predict the
onset of Type 2 diabetes, providing a widely used benchmark for classification in clinical settings.

On the Piam diabetes dataset, the results in Figure E8 align with clinical knowledge while under-
scoring FDFI’s robustness under correlation and multiple testing (Bonferroni o = 0.00625). (i)
Diagnostic marker: Glucose is consistently identified as significant by all methods except Shap-
ley value and remains so after Bonferroni adjustment, reflecting its established diagnostic role in
diabetes (ElSayed et al., 2023). (ii) Risk factors: BMI shows a nearly identical pattern, being re-
tained after correction for all methods except Shapley value, consistent with evidence that adiposity
strongly elevates diabetes risk, though its impact diminishes once baseline glycemia is considered
(Jayedi et al., 2022). FDFI additionally detects Age, Pregnancies, and DPF after correction and
assigns non-negligible weight to BloodPressure, aligning with their interpretation as background
screening factors rather than diagnostic markers (Davidson et al., 2021; Valdez et al., 2007; Emdin
et al., 2015). (iii) Physiology-aligned signals: Beyond these established predictors, FDFI also high-
lights Insulin at the nominal level and assigns non-negligible weight to SkinThickness, consistent
with prior evidence linking parity, OGTT-based insulin, and skinfold adiposity with type 2 diabetes
risk (Guo et al., 2017; Nicholson et al., 2006; Hanley et al., 2003; Ruiz-Alejos et al., 2020).

E.2.3 MICROMASS DATASET

The MicroMass dataset (n = 571, d = 1300) (Mahé & Veyrieras, 2014) contains mass spectrometry
measurements from 571 bacterial samples. Each sample is encoded as a 1300-dimensional spectrum
of mass-to-charge intensity values, which serve as high-dimensional fingerprints of bacterial compo-
sition. While originally designed for species-level identification, the dataset also provides a natural
binary partition between Gram-positive and Gram-negative bacteria. In our work, we leverage this
property to frame the problem as a binary classification task, aiming to discriminate Gram-positive
from Gram-negative organisms. This setting provides a biologically meaningful benchmark for
evaluating the effectiveness of the proposed method in high-dimensional, structurally complex data.
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Figure E9: Data analysis of the MicroMass dataset. (a) Number of significant features identified
by LOCO, CPI, DFI, and FDFI under different significance levels on the MicroMass dataset. (b)
Prediction accuracy with selected important features for FDFI, DFI, and an ad hoc method that
applies CPI on the cluster-representative features.

For the MicroMass dataset, due to the large number of features, we report the counts of features
identified as significant by the four methods (LOCO, CPI, DFI, and FDFI) under two significance
thresholds: the nominal 0.05 level and the Bonferroni-adjusted 0.05/1300 level, as summarized in
Figure E9(a). Results show that DFI and FDFI identify a considerably larger number of significant
features, whereas CPI yields only a few significant findings and LOCO fails to detect any, reflecting
their susceptibility to correlation distortion under multicollinearity.

Consistent with the preceding analysis in Appendix E.2, we also compare FDFI, DFI, and an ad-
hoc procedure that first clusters features on the Spearman correlation matrix, selects one medoid
per cluster as a representative, and then applies CPI on this reduced feature set. As illustrated in
Figure E9(b), on the MicroMass dataset, FDFI exhibits substantial superiority over both DFI and
the ad hoc method, empirically confirming the effectiveness of the proposed approach under high-
dimensional, structured-feature settings. Notably, by operating directly on the full feature space,
FDFI avoids the information loss inherent to cluster selection and remains robust to correlation
distortion, yielding consistently higher accuracy across the range of k.

E.2.4 RESULTS ON FOUR ADDITIONAL LARGE-SCALE DATASETS

In this section, we conduct experiments on four real-world datasets of moderately large sample
sizes. These datasets cover both classification and regression tasks. The larger sample sizes allow
for more reliable results, making it possible to assess the robustness and generalizability of the
models across different task types. We compare average prediction performance across datasets
for features selected by FDFI, DFI, and an ad hoc CPI-based clustering approach, using prediction
accuracy for classification and root mean squared error (RMSE) for regression, with results averaged
over two-fold splits for each dataset. For the classification task, we conduct experiments on datasets
Codon usage (n = 13028, d = 69) and Default of Credit Card Clients (DCCC) (n = 30000,d =
23), and for the regression task, we conduct experiments on datasets Superconductivity Data (n =
21263,d = 81) and Video Transcoding (n = 68784,d = 19). The results reported in Table E8
clearly demonstrate the superiority of our method. FDFI consistently outperforms both DFI and the
ad hoc CPI-based clustering approach across these datasets for both classification and regression
tasks. This superiority is evident in its ability to more effectively select the top-k features, which
leads to better model performance.

E.2.5 EXTRA RESULTS ON TwWO RNA-SEQ DATASETS

To further demonstrate that our method can achieve superior performance over existing approaches
in genuinely high-dimensional regimes with intricate inter-feature correlations, we additionally con-
duct experiments on two challenging RNA-seq datasets. (i) The TCGA-PANCAN-HiSeq bulk
RNA-seq dataset (n = 801, d = 20531) (Weinstein et al., 2013), where the goal is to classify
samples into five tumor types: breast invasive carcinoma (BRCA), kidney renal clear cell carcinoma
(KIRC), colon adenocarcinoma (COAD), lung adenocarcinoma (LUAD), and prostate adenocarci-
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Table E8: Classification performance (accuracy) of three methods with different top-% feature sets
on 4 datasets with large sample sizes.

Dataset Codon usage Default of Credit Card Clients
Method  Top-8 Top-4 Top-2 Top-8  Top-4 Top-2

FDFI 0.7642  0.6448  0.5401 0.8182 0.8197 0.8197
Classification DFI 0.7588  0.6391  0.5142 0.8150 0.8137 0.8173
ad-hoc  0.7132  0.5839  0.4479 0.8173 0.8118 0.8173

Dataset Superconductivty Data Video Transcoding
Method  Top-8 Top-4 Top-2 Top-8  Top-4 Top-2

FDFI  11.0347 12.7988 15.0577 6.8195 7.9727 9.0607
Regression DFI 11.4675 13.4683 16.9657 6.8588 8.2657 9.3723
ad-hoc  12.0083 13.1241 17.8346 6.8991 8.2052 9.1645

Type

Type

noma (PRAD). This dataset is representative of large-scale transcriptomic studies with strong co-
expression structures and severe p > n imbalance. (ii) The human single-cell RNA-seq dataset
(n = 632, d = 23257) (Darmanis et al., 2017), which is used to distinguish neoplastic cells orig-
inating from the tumor core versus those from the periphery. This dataset exemplifies ultra—high-
dimensional single-cell measurements with heterogeneous cell populations and complex gene—gene
dependencies, providing a stringent testbed for evaluating feature-importance methods. Following
the preprocessing procedures in (Yan et al., 2025), we selected 1,500 highly variable genes (HVGs)
for the TCGA-PANCAN-HiSeq bulk RNA-seq dataset and 2,000 HVGs for the human single-cell
RNA-seq dataset, and performed all downstream analyses on these HVG subsets. We then com-
pared the average prediction accuracy across datasets for the important features selected by FDFI,
DFI, and an ad hoc CPI-based clustering approach, using two-fold splits and reporting the mean
accuracy for each dataset.

In particular, for the human single-cell RNA-seq dataset, we found that the Top-20 genes selected
by our method include ALDOC, HES6, and CPE, all of which have been previously implicated
in glioma biology. ALDOC, a glycolytic enzyme highly enriched in neural tissue, has been im-
plicated in glioma metabolic reprogramming, where altered ALDOC expression is associated with
enhanced glycolytic activity, tumor progression, and increased migratory potential of glioma cells
(Chang et al., 2024). HES6, a basic helix—loop-helix transcription factor, is selectively overex-
pressed in glioma and functions as an important regulator driving tumor-cell proliferation, migration,
and lineage plasticity (Haapa-Paananen et al., 2012). CPE which encodes a neuroendocrine peptide-
processing enzyme, has more recently been recognized as an oncogenic factor in high-grade gliomas,
where its elevated expression promotes tumor-cell survival, invasion, and stress adaptation through
enhanced metabolic resilience and extracellular-matrix remodeling (Hareendran et al., 2022).

These concordances between known glioma biology and the features automatically selected by our
method provide additional support for the clinical relevance of our approach. In contrast, for the
TCGA-PANCAN-HiSeq dataset, only gene indices (rather than gene symbols) are provided, so we
report prediction accuracy only and do not attempt to interpret the selected genes in terms of their
clinical relevance.
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