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ABSTRACT

Vulnerability to Distribution Shift is a major challenge for real-world applications
of Deep Learning. Distribution Shift occurs when the test data distribution is not
identical to the training distribution. We present Multi-Distribution Learning, ex-
ploring the effectiveness of Data Augmentation to prepare for Distribution Shift.
We use common Data Augmentations to simulate multiple data distributions and
test how many of these distributions can be learned with a single model. We first
illustrate the impact of adding the test distribution to the training distribution, such
that it is no longer a Distribution Shift. We find success with pairs of distributions,
however, the model is limited when attempting to learn 10 distributions simulta-
neously. In order to search for a subset of distributions that train well together,
we use a Lookahead search derived from research in Multi-Task Learning. From
this analysis, we select 4 distributions with high affinities to train together and 1
negative distribution to use for performance comparison. These experiments con-
firm that the accuracy of models evaluated on a test set included in the training
distribution is much higher compared to test distributions not included in training.
We evaluate our distribution grouping with Zero-Shot Distribution Inference to a
held-out positive distribution and the held-out negative distribution. We compare
this Zero-Shot Distribution Inference to a strong baseline of the RandAugment
training scheme, as well as to a weak baseline of a model trained without Data
Augmentation. We conclude by discussing directions for future work in using
Data Augmentation to combat Distribution Shift.

1 INTRODUCTION

Distribution Shift, defined as the performance on test distributions not identical to the training set,
are the Achilles heel of Deep Learning. We propose a simple solution to use Data Augmentation
for targeted Generalization, alleviating the problem of Distribution Shift. In training, we aim to
cover as many data distributions as possible, such that a Distribution Shift is not completely novel
to our model. We measure our models using the Average Distribution Accuracy and propose a
new framework of Distribution Generalization Metrics. These performance scores are a weighted
average of the model loss or accuracy, the number of distributions it can cover, and the diversity of
these distributions.

We begin with two important questions for thinking about Distribution Shift. What are different
data distributions? What does Distribution Shift in the real-world look like? A data distribution can
be characterized based on the frequency of class labels. For example, the training set may contain
80% dogs and 20% cats, but the test distribution shifts to 40% dogs and 60% cats. In addition to
distributions of labels, we can think about distributions of the inputs themselves. This is significantly
harder to characterize due to the high-dimensional nature of raw inputs, such as pixel grids or word
embeddings, or even intermediate vector representations from these sequential processing models.

The WILDS benchmark Koh et al. (2020) has been a very useful dataset to understand Distribution
Shift in the real-world. Koh et al. collected examples of Distribution Shifts across applications
in Wildlife Monitoring, Molecular Engineering, and Python Code Completion, to give a few ex-
amples. The authors characterize Distribution Shift into two categories, Subpopulation Shift and
Domain Generalization. Subpopulation Shift is well illustrated by our previous example of a shift-
ing frequency of cats and dogs. However, Subpopulation Shift can also refer to more high-level
distributions, such as an increase in certain features of the input. Domain Generalization describes
settings where the train and test domains are completely disjoint. For example, a sentiment classifier
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Figure 1: The Multi-Distribution Learning framework evaluates how training with a data distribu-
tion helps with test performance on that distribution. The framework tests the limits of how many
distributions we can learn with a single model.

trained on movie reviews and then tested on restaurant reviews Gururangan et al. (2020), or an image
classifier trained on photorealistic images and tested on paintings Peng et al. (2019).

Another technique for studying Distribution Shift is through corruption tests. Datasets such as
ImageNet-C Hendrycks & Dietterich (2019), ImageNet-Corrupted, are constructed by applying
common Data Augmentations to the original ImageNet test set. Models that achieve high perfor-
mance on ImageNet typically do not generalize to ImageNet-C as well. There are several other ex-
amples of these datasets, such as smaller-scale CIFAR-C and MNIST-C tests Mu & Gilmer (2019),
ImageNet-P with more subtle corruptions, and Stylized-ImageNet Geirhos et al. (2019) which uses
a style transfer algorithm to disentangle content from style in images. Corruption testing, achieved
by applying Data Augmentation to an original test set, is an important lens for viewing the phe-
nomenon of Distribution Shift. We explore how we can similarly use Data Augmentation to prepare
for Distribution Shift and the limits of this technique.

Our objective is to use Data Augmentation to target the Generalization we want the model to achieve.
This is a simple, but promising strategy to inject prior knowledge about how the distribution will
shift. We believe these assumptions on the test data distribution are necessary to make progress,
inspired by the following quote from Arjovsky (2019), “If the test data is arbitrary or unrelated to
the training data, then generalization is obviously futile.” This quote supports the idea that we should
make assumptions and bake in prior knowledge about the test distributions.

We begin our experiments by confirming that models which achieve high performance on an original
test set will fail to generalize to the same test set corrupted with common data augmentations. This
holds even for models trained with RandAugment Cubuk et al. (2020), a strong regularization strat-
egy based on Data Augmentation. Our training strategy to achieve generalization to these test sets is
illustrated in Figure 1. We apply N corruptions to the original data to form N training distributions.
These N corruptions are additionally applied to the original test data to form an equivalent N test
distributions. We report the average accuracy across the N test distributions. We begin by showing
how this strategy increases the performance using N=2 augmentations.

We then scale our strategy up to learning N=10 distributions at once. We find that this requires much
longer training times to achieve rivaling performance to single augmentation specializations trained
with N=1. We borrow inspiration from research in Multi-Task Learning and use a Task Groupings
algorithm Fifty et al. (2021) to search for distributions that train well together. We refer to these
distributions as having a high affinity with each other. We use a Lookahead search to compare the
performance of a proposed gradient update after training on a given distribution. Distributions are
determined to train well together if the proposed update improves the performance across both test
sets. We further attempt to disentangle the impact of repeating data in our distribution construction
strategy by partitioning the CIFAR-10 set into 5,000 images each, to remove the confounding factor
of repeating data. We find similar distribution groupings with and without repeating the original
data.
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We select 4 augmentations from our Lookahead search to train together. We additionally select 1
augmentation with a negative affinity for the sake of comparison. We find that the grouping achieves
a much higher Average Distribution Score than the N=10 model trained with similar computation.
We then generalize these experiments to a more realistic evaluation of Distribution Shift. We pose
this as a problem of Zero-Shot Distribution Inference. We propose that groupings with a high affinity
to the novel test distribution will perform better. We use a cross-validation analysis to iteratively pair
3 out of the 4 augmented distributions for training, evaluating the held-out distribution Zero-Shot.
We find much better performance with this cluster compared to a strong RandAugment baseline,
which is not completely Zero-Shot, as well as a weak baseline of a model trained without any Data
Augmentation.

Our experiments utilize Data Augmentation to simulate diverse data distributions. We are currently
limited to geometric transformations such as Rotations or Horizontal Flipping. However, we note
that new frontiers in Data Augmentation such as CycleGAN Zhu et al. (2017) translations between
domains or Text-to-Image generation Ramesh et al. (2021) should have a massive impact on this
framework. We believe that Distribution Shift should be viewed similarly to Zero-Shot task infer-
ence commonly used in probing large models Liu et al. (2021). An interesting characteristic of
Zero-Shot inference is the difference between massive models typically trained with less supervi-
sion than smaller, expert models. We view training on specialized distributions as analogous to
supervised learning with particular tasks. Finally, we propose directions to extend our Distribution
Generalization Score. Rather than the naive average accuracy, which we have reported in these
experiments, we want a metric that rewards covering many distributions and the diversity of these
distributions. We propose some ideas for measuring the diversity of these distributions.

In summary, we propose a framework of using Data Augmentation to anticipate and alleviate the
challenges of Distribution Shift. Our contributions are as follows:

• We propose a new framework for Learning and Evaluating Multiple Data Distributions.

• We present a new metric for Distributional Generalization, the Average Distribution Score.

• We adapt a Task Grouping algorithm from Multi-Task Learning to study Multiple Distri-
bution Learning.

• We present an analysis of Zero-Shot Distribution Inference, inspired by research on Zero-
Shot Task Inference.

2 RELATED WORK

2.1 DISTRIBUTION SHIFT

Understanding the nature of Generalization is one of the core goals of Artificial Intelligence Chol-
let (2019). Many recent works have characterized types of Generalization. These include Do-
main Transfer Peng et al. (2019), Compositional and Systematic Generalization Johnson et al.
(2016), Concept Drift, or Robustness, to give a few examples. Further characterizations include
In-Distribution versus Out-of-Distribution Generalization, viewing Generalization gaps in a similar
lens as fine- and coarse-grained classification. From a practical perspective, Koh et al. (2020) have
published the WILDS benchmark characterizing the generalization needed for many real-world ap-
plications. In this work, we propose a simple framework for studying the relationship between train-
ing and test distributions. Andreassen et al. (2021) and Wortsman et al. (2021) have also explored the
relationship between Zero-Shot robustness and fine-tuned models. Regardless of the particular type
of generalization, we can likely form Data Augmentations that communicate expected Distribution
Shifts.

2.2 CORRUPTION TESTING

Many works have found that Deep Learning systems are vulnerable to corruption tests. These tests
are generally head-scratching cases because they very closely resemble the original input. This de-
fies a natural intuition about the data and requires thinking closely about the distributions of inputs.
Corruption tests range from injecting adversarial noise maps to applying Data Augmentations, as we
have done in this work. Hendrycks & Dietterich (2019) presented ImageNet-C, a dataset constructed
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from a set of 75 Data Augmentations and ImageNet-P constructed from adversarial injections. Ova-
dia et al. (2019) used corruption sets to evaluate Uncertainty techniques in Deep Learning. ? utilized
style randomization to understand intrinsic properties of Convolutional Neural Networks, finding a
texture bias.

2.3 DATA AUGMENTATION

Multi-Distribution Learning is a technique building on Data Augmentation for improving the Gen-
eralization of Deep Neural Networks. Many works have covered different Data Augmentation tech-
niques across many domains. Some examples include Kernel Filters, Geometric Transformations,
Random Erasing, Color Space Transformations, Mixing Images, Adversarial Training, Neural Style
Transfer, and GAN Data Augmentation Shorten & Khoshgoftaar (2019). In addition to individ-
ual augmentations, recent works have explored new strategies for utilizing Data Augmentation.
This includes application in contrastive losses in self-supervised learning such as SimCLR Chen
et al. (2020), as well as consistency losses in Unsupervised Data Augmentation Xie et al. (2020).
Sinha et al. (2021) have additionally explored utilizing Data Augmentations that intentionally create
Out-of-Distribution data. Our work is similar in that we are looking for new ways to utilize Data
Augmentation in Deep Learning.

3 EXPERIMENTS

Our experiments report training and evaluation strategies for the ResNet152V2 He et al. (2016) on
the CIFAR-10 dataset. The experiments are implemented using the Keras framework. The experi-
ments are run on an NVIDIA A100 GPU in a Google Colab Pro+ runtime, with a maximum training
time of roughly 20 hours. We experiment with up to 10 common Data Augmentations used for
image data: Rotation, Translation, Crop, Cutout, Bright, Dark, Gamma Contrast, Horizontal Flip,
Vertical Flip, and Jigsaw. These augmentations are implemented using the imgaug open-source
library. Following is a quick description of how these augmentations transform the original data
distribution.

The Rotation augmentation rotates an image along polar coordinates between 0 to 360 degrees. The
Translation augmentation shifts an image along the x and y axes. This is done by moving pixels
over/up by x pixels and adding 0s to displaced values. The Crop augmentation selects a subset of
the original image and then resizes the subset to the original resolution with bilinear interpolation.
The Cutout augmentation selects patches of the image and replaces the patch with 0 values. The
Bright augmentation adds k to each pixel value in the image, essentially pushing it closer to 255
(white). The Dark augmentation inversely subtracts k to each pixel value in the image, essentially
pushing it closer to 0 (black). The Gamma Contrast augmentation alters the distribution of pixel
values to a smaller window between 0 and 255. The Horizontal Flip (LR Flip) augmentation mirrors
the original image along the y-axis. The Vertical Flip (UD Flip) augmentation inversely mirrors the
original image along the x-axis. The Jigsaw augmentation divides the image into n pixel windows
and shuffles their location in the image.

As a quick summary of our experiments, Training with 2 Distributions characterizes the problem
of Distribution Shift and the simple solution of adding the test distribution to the training set. The
model is not training with the test set itself, just the underlying distribution that will be encoun-
tered in-the-wild. We simulate the different distributions through Data Augmentations. We then
scale this up to N=10 distributions in training. Lookahead Search to Group Training Distributions
utilizes Lookahead analysis to find distributions that complement each other during training. Re-
sults of Grouping Training Distributions compares the Average Distribution Score with the grouped
distributions to N=1 and N=10 distribution training strategies. Table 4 illustrates the Zero-Shot Dis-
tribution Inference of the grouping with a strong RandAugment baseline and a weak baseline of
training with No Data Augmentation.

3.1 TRAINING WITH 2 DISTRIBUTIONS

We begin by highlighting the problem of Distribution Shift, reproducing it in our experimental setup,
and conducting simple experiments within the framework described in Figure 1. As shown in Table
1, when trained without any Data Augmentation the model performs much worse on the Rotation
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Training Technique Original Test Rotation Test Jigsaw Test Average Distribution Score
No Augmentation 73.9% 41.6% 61.3% 51.5%

RandAugment 83.8% 55.0% 69.6% 62.3%
Rotation 75.9% 75.2% 63.2% 69.2%
Jigsaw 75.9% 42.7% 71.6% 57.2%
Seq-RJ 78.2% 66.5% 73.0% 69.8%
Seq-JR 75.9% 71.5% 69.4% 70.5%
Alt-RJ 80.0% 73.7% 74.8% 74.3%

Alt-SH-RJ 80.2% 73.3% 75.0% 74.2%

Table 1: The efficacy of training with a specialized distribution. The bolded values indicate the
maximum accuracy achieved on each data distribution. The bolded values indicate the maximumm
accuracy for each data distribution.

Epoch 10 30 50 200 350 1000
Original Test 65.5% 68.4% 72.5% 77.0% 79.8% 83.4%

Average Aug Score 57.4% 58.7% 61.8% 68.9% 71.6% 75.3%
Max Aug Score 78.5% 77.1% 78.0% 79.2% 79.5% 83.2%
Min Aug Score 50.2% 49.3% 49.4% 62.7% 65.1% 70.6%
Max Aug Name UD Flip UD Flip UD Flip UD Flip LR Flip LR Flip
Min Aug Name Rotate Translate Crop Crop Crop Crop

Table 2: Learning curves for Multi-Distribution Learning of 10 Augmentations. The schematic of
this training strategy is shown in Figure 1.

and Jigsaw distributions compared to the original CIFAR-10 data. Even though the RandAugment
training scheme dramatically improves performance on the original set, it is still susceptible to these
augmentation derived distribution shifts. We then report the efficacy of specialized training on the
distribution used in testing, such that it is no longer a Distribution Shift. We shift our aim to learning
to specialize on multiple distributions in training. We consider two high-level schema for doing this.
The first of which is Sequential Training (abbreviated as Seq in Table 1). Sequential Training refers
to first learning the Rotation distribution and then learning the Jigsaw distribution. We encounter an
interesting case of Catastrophic Forgetting where performance on the previously learned distribution
quickly drops as it shifts focus to another data distribution. We find a better result with Alternating
Training (abbreviated as Alt in Table 1). In Alternating Training we switch between each training
distribution every epoch, rather than after convergence. We additionally test sharing a base feature
extractor between each distribution and using separate classification heads to model each distribution
(abbreviated as Alt-SH in Table 1). We do not find much difference with separate heads compared
to fine-tuning the entire model. We continue with Alternating Training throughout the rest of the
experiments.

3.2 TRAINING WITH 10 DISTRIBUTIONS

Following the success of learning 2 distributions in training, we set our sights on increasing the
number of learned data distributions. Table 2 illustrates the learning curve of 10 data distributions.
We find that it takes much longer for this strategy to achieve a strong Average Augmentation Score.
However, after 1,000 epochs (roughly 20 hours of training with our computing setup described
previously), the model achieves a fairly strong Average Augmentation Score with small variance
and no significant minimum or maximum outliers in the accuracy scores. Throughout training the
Rotation, Translation, and Crop Augmentations have the lowest performance, whereas Vertical and
Horizontal Flipping (shown as UD Flip and LR Flip) have the highest score. At the end of training
the multi-distribution learning model achieves a nearly identical score on the Horizontal Flip as the
Original Test set, it could be interesting future work to see if the model has achieved invariance to
this distribution shift in the prediction and representation spaces. We find more interesting details
about the Vertical Flip augmentation in our analysis of Lookahead Search.
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Figure 2: This table shows the performance difference by taking the proposed gradient update on
the y-axis on the test distributions on the x-axis. In this index: Rotate = 0, Translate = 1, Crop = 2,
Cutout = 3, Bright = 4, Dark = 5, Gamma Contrast = 6, LR Flip = 7, UD Flip = 8, and Jigsaw = 9.

3.3 LOOKAHEAD SEARCH TO GROUP TRAINING DISTRIBUTIONS

Due to the long training time of learning 10 distributions at once, we aim to find a subset of dis-
tributions that have a faster learning curve and higher performance. We adapt the Task Groupings
algorithm Fifty et al. (2021) to search for this subset. This algorithm uses a Lookahead search
to compute what the change in performance on other tasks, or distributions in our example, will
change. For example, in Multi-Task Learning the Task Groupings algorithm computes the change
in performance on Semantic Segmentation after taking a gradient update on Object Detection. We
similarly compute the change in performance on the Translation distribution after taking a gradient
step on the Rotated training set.

The results of the Distribution Grouping analysis are shown in Figure 2. The x-axis is the evaluated
distribution and the y-axis is the distribution that proposes a gradient update. The augmentations
are indexed according to their position in the following list: Rotate = 0, Translate = 1, Crop = 2,
Cutout = 3, Bright = 4, Dark = 5, Gamma Contrast = 6, LR Flip = 7, UD Flip = 8, and Jigsaw =
9. We find a strong outlier result where a proposed gradient update on Vertical Flipping (UD Flip)
causes a significant drop in performance across the other augmentations. This likely explains the
optimization difficulty behind learning all 10 distributions simultaneously. The second strongest
negative result is the impact of updating on Bright and evaluating on the Dark test distribution. We
leave it to future work to explore if the inverse augmentations of increased and decreased Brightness
have opposite gradient directions.

From Figure 2, we propose to group Rotation, Translation, Dark, and Jigsaw to form our subset. In
order to further understand the impact of a gradient update on one distribution to the performance
of another, we avoid repeating data. For example, the rotation distribution still has roughly the same
image as the translation distribution in Figure 2. The right hand side of Figure 3 illustrates the
lookahead updates when we split the data such that no distribution has the same original CIFAR-10
image. We find a similar grouping analysis with and without repeating data.
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Figure 3: A Side-by-Side view of the impact of repeating data for Lookahead update analysis. Please
see the caption of Figure 2 for more details on the x and y axes and the distribution indexing from 0
to 9.

3.4 RESULTS OF GROUPING TRAINING DISTRIBUTIONS

We analyze the performance of our distribution grouping on learning the training distributions and
zero-shot inference to novel distributions. Table 3 reports enumerating through 3 of the 4 selected
distributions for training. We encountered an optimization difficulty with the Rotate, Translate,
Jigsaw (abbreviated as RTJ in Table3) that achieves low performance. However, the other 3 clusters
outperform the 10 Augmentation scheme other than the Jigsaw test. We find an interesting division
between distributions that benefit from specialization (Rotation and Translation) and others that
benefit from the ensemble (Darker and Jigsaw). This could be an interesting property for the design
of ensembles and specialist distribution models that we leave for future work.

The ultimate goal of learning multiple data distributions is to lessen the decrease in accuracy when
faced with Distribution Shift. We test how the grouped distributions help with Zero-Shot Distribu-
tion Inference through a cross-validation analysis within the group. For example, we hold-out the
Rotation distribution and train with Translate, Darker, and Jigsaw. The entires for 3 Augmentations
in Table 4 reflect the Zero-Shot accuracy without training on that augmented distribution. For Rota-
tion and Translation, we find a very strong Zero-Shot generalization with the group. As mentioned
in Table 3, we ran into optimization difficulties with our run leaving out the Darker distribution and it
achieves a very low accuracy. We found a similar performance on Zero-Shot Jigsaw generalization.
We held-out Gamma Contrast as an example of a distribution with a negative affinity to the group.
We report the best Zero-Shot accuracy on Gamma Contrast, supporting our analysis that the negative
augmentation does not benefit from this particular cluster of training distributions. We compare this
with the RandAugment model reported in Table 1, which achieves 83.8% accuracy on the original
CIFAR-10 test set. Although RandAugment has never seen any of these distributions in isolation,
it has seen compositions of them such as rotation, then translation, then darker applied to a single
image. Thus, the RandAugment baseline is not truly Zero-Shot. The No Augmentation baseline
highlights the poor performance when faced with Distribution Shift. In both RandAugment and No
Augmentation we see the lowest performance decrease with the weakest augmentation, Darker. This
highlights the need to develop distribution distance scores to weight the performances.

4 DISCUSSION

4.1 FUTURE DIRECTIONS FOR SIMULATING DATA DISTRIBUTIONS

Our experiments tested simple data augmentations to simulate distribution shifts. We have used
the terms “augmentations” and “distributions” interchangeably to propose their similarities. We
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Training Distributions Rotate Test Translate Test Darker Test Jigsaw Test Average Distribution Score
3 Augs (TDJ) N/A 72.4% 82.2% 67.4% 74.0%
3 Augs (RDJ) 72.7% N/A 81.0% 66.3% 73.3%
3 Augs (RTJ) 37.3% 33.2% N/A 42.2% 37.6%
3 Augs (RTD) 71.9% 71.0% 81.4% N/A 74.8%

10 Augs, 100 Epochs 54.3% 49.3% 62.7% 57.6% 56.0%
10 Augs, 1000 Epochs 70.9% 74.8% 76.3% 76.0% 74.5%

1 Aug 75.2% 79.4% 74.9% 71.6% N/A

Table 3: Comparison of Generalization to Test Distributions included in the Training Distribution.

Training Distributions Rotate Test Translate Test Darker Test Jigsaw Test Gamma Contrast Test
3 Augmentations 72.4% 71.9% 45.5% 65.2% 62.6%

RandAugment 57.4% 49.7% 82.2% 69.5% 72.6%
No Augmentation 46.5% 35.6% 68.1% 62.5% 54.2%

Table 4: Zero-Shot Distribution Inference.

believe techniques such as CycleGAN Zhu et al. (2017) and DALL-E Ramesh et al. (2021) will
allow us to control Domain Generalization with Data Augmentation-style interfaces. For example,
the iWildlife-monitoring camera in the WILDS benchmark encounters a new location for a wildelife
monitoring camera at test time. A CycleGAN may be able to map the existing training data into this
new location, further guided with text interfaces from DALL-E. We propose that we can train with
this inferred novel distribution to perform better in the Distribution Shift.

4.2 ZERO-SHOT DISTRIBUTION INFERENCE

Few-Shot Learning describes learning a new task with a few examples, hopefully achieved by lever-
aging information from previously learned tasks. Zero-Shot Learning refers to a more extreme case
in which the model performs a new task, but no additional learning is allowed. We can similarly
view Distribution Shifts as having a few examples from the new distribution or having to perform
Zero-Shot task inference. Another interesting trend in Few- and Zero-Shot learning is the efficacy of
larger-scale models. Models such as GPT-3 can be guided with prompts to perform novel language
tasks. It remains to be seen whether collections of expert models assigned to their respective infer-
ences will outperform a single monolithic model. Even if it becomes unnecessary to train expert
models for collections of tasks, or distributions as we have argued, understanding novel tasks will
still be useful for evaluation.

4.3 DISTRIBUTION GENERALIZATION SCORE

Our experiments report a simple average augmentation accuracy. For future work we intend to
explore metrics that better capture the diversity of a model’s generalization ability. We intend to
weight the average accuracies by the number of evaluated distributions and the distance between
these distributions. The distance between distributions is a challenging quantity to measure. One
solution, similar to ideas in the automated evaluation of generated images such as the Inception
Score, could be to embed each distribution into the feature space of a pre-trained classifier and
use these vector representations to compute distances. A strong Distribution Generalization Score
should also be correlated with performance on Zero-Shot Distribution Inference.

5 CONCLUSION

In Conclusion, we have presented Multi-Distribution Learning, a framework to study the impact of
training on potential test distributions. This is a simple framework to leverage the prior knowledge
about how a data distribution is likely to change in deployment. Key to our framework are the
number of distributions used in training and the metric used to score the diversity of distribution
performance. We have presented several experiments that highlight the challenge of learning many
distributions at once. We have additionally presented a technique to group together distributions for
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training. Finally, we propose framing the problem of Distribution Shift as analogous to Zero-Shot
Task Inference. We believe that rapid advances in Data Augmentation and Generative Modeling will
have a large impact on this research direction.
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