
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Improving Convergence Guarantees of Ran-
dom Subspace Second-order Algorithm for
Nonconvex Optimization

Anonymous authors
Paper under double-blind review

Abstract

In recent years, random subspace methods have been actively studied for
large-dimensional nonconvex problems. Recent subspace methods have im-
proved theoretical guarantees such as iteration complexity and local con-
vergence rate while reducing computational costs by deriving descent direc-
tions in randomly selected low-dimensional subspaces. This paper proposes
the Random Subspace Homogenized Trust Region (RSHTR) method with
the best theoretical guarantees among random subspace algorithms for non-
convex optimization. RSHTR achieves an ε-approximate first-order station-
ary point in O(ε−3/2) iterations, converging locally at a linear rate. Fur-
thermore, under rank-deficient conditions, RSHTR satisfies ε-approximate
second-order necessary condition in O(ε−3/2) iterations and exhibits a lo-
cal quadratic convergence. Experiments on real-world datasets verify the
benefits of RSHTR.

1 Introduction

We consider unconstrained nonconvex optimization problems as follows:

min
x∈Rn

f(x), (1.0.1)

where f : Rn → R is a possibly nonconvex C2 function and bounded below. Nonconvex
optimization problems are often encountered in real-world applications, such as training
deep neural networks, and they are often high-dimensional in recent years. Therefore, there
is a growing need for nonconvex optimization algorithms with low complexity relative to
dimensionality.

Figure 1: Illustration
of our random sub-
space method on R2.
Each iteration restricts
the update to a 1-dim.
randomly selected sub-
space.

Recently, subspace methods have been actively investigated for
problems with large dimension n; they compute the search direc-
tion at each iteration on a low s-dimensional space (i.e., s � n),
reducing the computational cost involved in gradient computation
and Hessian matrices. Among these methods, the method using
random projection, where the function f is restricted at each it-
eration k to a subspace P >

k Rs with the use of a random matrix
Pk ∈ Rs×n, is referred to as random subspace method. When find-
ing the search direction at the iterate xk, mind̃∈Rs f(xk +P >

k d̃) can
be considered instead of mind∈Rn f(xk +d) in the random subspace
method, and various solution methods can be derived depending
on how a solution d̃ is found.

Overview of existing random subspace methods: We can
use ideas from existing optimization algorithms for dealing with
mind̃∈Rs f(xk + P >

k d̃), and various random subspace optimization methods have been pro-
posed for convex optimization in e.g., Berahas et al. (2020); Gower et al. (2019); Grishchenko
et al. (2021); Lacotte & Pilanci (2022); Pilanci & Wainwright (2014). Recently, some ran-
dom subspace algorithms have started to be developed for nonconvex optimization and the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: Comparison of random subspace algorithms for nonconvex optimization. The
SOSP column indicates whether the convergence point is a second-order stationary point
or not. The "Feas." column indicates whether numerical experiments were given, implying
the implementation is possible. The number in the "Local" column indicates the rate of
convergence: 1 for linear, 1+ for superlinear, and 2 for quadratic. The † represents the
condition that the Hessian at the local minimizer is rank deficient. The ∗ signifies that the
objective function has low effective dimensionality. The ��indicates that in addition to the
same assumption as the previous work in ✓, this property holds under another assumption.

Underlying algo. Subprob. cost/iter Global Local SOSP Feas.
Roberts & Royer (2023) Direct search Multi. line-search O(ε−2) ✓
Dzahini & Wild (2024) Zeroth order Finite diff. grad. O(ε−2) ✓

Kozak et al. (2023) Zeroth order Finite diff. grad. O(ε−2) 1 ✓
Kozak et al. (2021) Grad. descent Gradient O(ε−2) 1 ✓
Cartis et al. (2020) Gauss-Newton Cond.quad.prog. (QP) O(ε−2) ✓

Shao (2022) Cubic Newton Cond. cubic.reg.QP O(ε−3/2) ✓
Zhao et al. (2024) Cubic Newton Cubic.reg.QP O(ε−3/2) ✓ ✓
Fuji et al. (2022) Reg. Newton Solve eq. O(ε−2) 1+† ✓

Ours Trust Region Min eigenvalue O(ε−3/2) 2∗ �� ✓

main ones related to our research are summarized in Table 1. It may not be so challenging
to construct a random subspace variant for each optimization method. What is difficult is
to show that the sequence of iterates computed in subspaces converges with high probability
to a stationary point of the original problem. The derivation of the faster local convergence
rate (e.g., superlinear rate) is complicated when it comes to subspace methods. Indeed, Fuji
et al. (2022) proved that even for strongly convex f locally around a strict local minimizer,
we cannot aim, with high probability, at local superlinear convergence using random sub-
space, even though the full dimensional regularized Newton method allows it. Based on the
above and the discussion in Section 1.1 shown later, the following question naturally arises:

To what extent can theoretical guarantees be improved by performing gradient-vector and
Hessian-matrix operations in a low-dimensional subspace?

Our research idea: Trust region methods are known to be fast and stable with excellent
theoretical guarantees. Nevertheless, with conventional methods of solving subproblems, it
is challenging to develop a subspace algorithm with convergence guarantees. In fact, prior
to a recent series of subspace method studies, Erway & Gill (2010) proposed a trust region
method based on projection calculations onto low-dimensional subspace, but there was no
discussion of convergence speed. To the best of our knowledge, random subspace trust region
methods with complexity analysis have not been developed until now. Only recently, a new
type of trust region method was developed by Zhang et al. (2022), and we realized that
we could develop a subspace variant with convergence guarantees based on this method.
However, deriving local convergence rates is still tricky. The trust region method in Zhang
et al. (2022) treats the trust region subproblem as a basic minimum eigenvalue problem,
which makes theoretical analysis possible. This approach contrasts with the intricate design
of update rules in the previous trust region methods and makes the theoretical analysis of
dimension reduction using the random subspace method more concise.

Contribution: We propose a new random subspace method, Random Subspace Homog-
enized Trust Region (RSHTR), which efficiently solves high-dimensional nonconvex opti-
mization problems by identifying descent directions within randomly selected subspaces.
RSHTR does not need to compute the restricted Hessian, P∇2f(x)P > ∈ Rs×s, making
our algorithm more advantageous than other second-order methods numerically. It also has
excellent theoretical properties as in Table 1: more concretely,
• convergence to an ε–approximate first-order stationary point with a global convergence

rate of O(ε−3/2), giving an analysis of the total computational complexity and confirming
that the total computational complexity, as well as space complexity, are improved over
the existing algorithm (Zhang et al., 2022) in full space,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

• convergence to a second-order stationary point under the assumption that the Hessian
at the point is rank-deficient or under the same assumption as Shao (2022),

• local quadratic convergence under the assumption on f being strongly convex within its
low effective subspace.

This rank-deficient assumption includes cases commonly observed in recent machine-learning
optimization problems. Indeed, the structure of the Hessian in neural networks has been
studied both theoretically and experimentally, revealing that it often possesses a low-rank
structure (Wu et al., 2020; Sagun et al., 2017; 2016; Ghorbani et al., 2019). Thus, our
theoretical guarantee is considered important from a practical perspective.

1.1 Existing random subspace algorithms for nonconvex optimization

As summarized in Table 1, various types of random subspace methods have been proposed
in recent years to tackle high-dimensional machine learning applications characterized by
over-parametrization. Several papers (Hanzely et al., 2020; Shao, 2022) investigate subspace
cubic regularization algorithm. It can be noticed that Shao (2022) achieves the current best
global convergence rate for a random subspace method of O(ε−3/2) for a nonconvex function.
Although it guarantees the convergence to a second-order stationary point under some strong
assumptions on the condition number and the rank of the Hessian around that point, it does
not discuss local convergence rates. We also noticed a concurrent work (Zhao et al., 2024),
which was uploaded after finishing our project, ensuring the convergence rate of O(ε−3/2) to
a second-order stationary point. However, their algorithm requires a subspace size s = Ω(n)
in general for the guarantee, which is larger than ours s = Ω(log n), and leads to larger
computation cost per iteration (see Theorem 3.2).
In contrast, the study by Fuji et al. (2022) proves that a subspace variant of the regu-
larized Newton method achieves linear local convergence in general and superlinear local
convergence under the rank-deficiency assumption for the Hessian. However, the global con-
vergence rate is limited to O(ε−2), and they only guarantee the convergence to a first-order
stationary point. Other random subspace algorithms for nonconvex optimization include
Roberts & Royer (2023), where the algorithm converges to first-order stationary points with
O(ε−2) and the local convergence rates are not studied. A series of studies (Cartis et al.,
2022; 2023; Cartis & Otemissov, 2021) assume the use of a global optimization method to
solve subproblems, and do not discuss local convergence rates.

Notations. We define I as the identity matrix. For related quantities α and β, we write
α = O (β) if there exists a constant c > 0 such that α ≤ cβ for all β sufficiently small.
We also write α = o(β) if limβ→0

α
β = 0 holds, and α = Ω(β) if β = O (α). For a positive

semi-definite matrix S, we denote by
√

S its squared root, i.e.,
√

S
√

S = S.

2 Proposed method

2.1 Existing algorithm: HSODM

Before proposing our method, we briefly describe a new type of trust region method, a homo-
geneous second-order descent method (HSODM), for the nonconvex optimization problem
(1.0.1); see Appendix A for the details. One of the exciting points of HSODM (Zhang et al.,
2022) is that it uses eigenvalue computations to solve trust region subproblems (TRSs). The
TRS is a subproblem constructed and solved in each iteration of the trust region method.
Various solution methods have been proposed for TRS so far, and due to the improvement
in eigenvalue computation, solving the TRS with eigenvalue computation has recently at-
tracted much attention (see, e.g., Adachi et al. (2017); Lieder (2020)). HSODM is a method
that incorporates the idea of homogenization into TRS and solves it by eigenvalue compu-
tation in the trust region method.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.2 Random Subspace Homogenized Trust Region: RSHTR

Now we propose Random Subspace Homogenized Trust Region (RSHTR), which is an al-
gorithm that reduces the dimension of the subproblems solved in HSODM with random
projection and solves it by eigenvalue computations.
For the sake of detail, we will first define by f̃k the function f restricted to a low s-
dimensional subspace P >

k Rs (i.e., s� n) containing the current iterate xk, that is, ∀u ∈ Rs,
f̃k(u) := f(xk + P >

k u), using a random matrix Pk ∈ Rs×n, where each element follows an
independent normal distribution N (0, 1/s). Random Gaussian matrices Pk are sampled in-
dependently at each iteration k. Using the notation gk := ∇f(xk) and Hk := ∇2f(xk), we
can write the gradient and Hessian matrix of f̃k as g̃k := Pkgk, H̃k := PkHkP >

k . The tilde
symbol denotes the subspace counterpart of the corresponding variable. Using the notation,
the subproblem we need to solve at each iteration can be written as:

min‖[ṽ;t]‖≤1

[
ṽ
t

]> [
H̃k g̃k

g̃>
k −δ

] [
ṽ
t

]
, (2.2.1)

where δ ≥ 0 is a parameter appropriately selected to meet the desired accuracy. The relation
between δ and the accuracy will be shown in Section 3. This subproblem is a lower dimen-
sional version of the subproblem solved in Zhang et al. (2022). We explain in Appendix A
the motivation of the above subproblem. Similar to the subproblem solved in Zhang et al.
(2022), (2.2.1) can also be regarded as a problem of finding the leftmost eigenvector of a
matrix. Hence, (2.2.1) is solved using eigenvalue solvers, such as Lanczos tridiagonalization
algorithm (Golub & Van Loan, 2013) and the randomized Lanczos algorithm (Kuczyński
& Woźniakowski, 1992). The random projection decreases the subproblem dimension from
n + 1 to s + 1. Therefore, unlike HSODM, RSHTR allows for other eigensolvers beyond the
Lanczos method.
Using the solution of (2.2.1) denoted by [ṽk, tk], we can approximate the solution of the
full-space subproblem by [P >

k ṽk, tk]. We then define the descent direction dk as1

dk :=
{

P >
k ṽk/tk, if tk 6= 0

P >
k ṽk, otherwise .

Similar to HSODM, the algorithm updates the iterates according to the following rule:

xk+1 =
{

xk + ηkdk, if ‖dk‖ > ∆
xk + dk, if ‖dk‖ ≤ ∆ . (2.2.2)

In RSHTR, the step size selection is fixed to ηk = ∆/‖dk‖, and we do not address line
search strategy. However, it should be noted that it is also possible to give theoretical
guarantees when we adopt a usual line search strategy in RSHTR to compute ηk. The
complete algorithm is given in Algorithm 1.
As shown in Section 3, the output x̂ of our algorithm is an ε–approximate first-order sta-
tionary point (ε–FOSP), i.e., it satisfies ‖∇f(x̂)‖ ≤ O(ε). If some assumption is satis-
fied, it will be an ε–approximate second-order stationary point (ε–SOSP), i.e., it satisfies
λmin(∇2f(x̂)) ≥ Ω(−

√
ε). More precisely,

• if the condition ‖dk‖ ≤ ∆ is satisfied, the algorithm can either terminate and output
xk+1, thereby obtaining an ε–FOSP (or ε–SOSP if stronger Assumption 2 holds),

• or reset δ = 0, fix the update rule to xk+1 = xk + dk and continue, thereby achieving
local linear convergence (or quadratic convergence if stronger Assumption 4 holds).

2.3 Total computational complexity and space complexity

We also discuss the computational cost per iteration in Algorithm 1. The main cost involving
Pk and P >

k is dominated by the computation of PkHkP >
k v for a vector v in Line 6 of

1It might seem to be more natural to describe |tk| > ν instead of tk 6= 0 as in HSODM (see
Algorithm 2) for pure random subspace variant of HSODM. However, in the fixed-radius strategy,
on which we focus (see (2.2.2)), even if we obtain theoretical guarantees for any ν ∈ (0, 1/2), the
results do not depend on ν. Therefore, we discuss the case with ν → +0 for simplicity and clarity.
Theoretical guarantees regarding a general ν are provided in Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 RSHTR: Random Subspace Homogenized Trust Region Method
1: function RSHTR(s, n, δ, ∆, max_iter)
2: global_mode = True
3: for k = 1, . . . , max_iter do
4: Pk ← s× n random Gaussian matrix with each element being from N (0, 1/s)
5: g̃k ← Pkgk

6: (tk, ṽk)← optimal solution of (2.2.1) by eigenvalue computation

7: dk ←
{

P >
k ṽk/tk, if tk 6= 0

P >
k ṽk, otherwise

8: if global_mode and ‖dk‖ > ∆ then
9: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search

10: xk+1 ← xk + ηkdk

11: else
12: xk+1 ← xk + dk

13: terminate ▷ or continue with (δ, global_mode)← (0, False) for local
convergence

Algorithm 1. Indeed, we notice that it is not needed to compute the whole matrix PkHkP >
k

in order to solve the subproblem (2.2.1) by the Lanczos algorithm. This can be done by
computing the Hessian-vector product ∇2f̃k(0)v where we recall that f̃k(u) = f(xk +P >

k u).
Assuming the use of the Hessian-vector product operation, we discuss below the computation
cost of Line 6, as well as the total computational complexity of Algorithm 1.
Assuming that the full-space Hessian-vector product can be computed in O(n) using back-
propagation (see (Pearlmutter, 1994)), the total complexity of computing ∇2f̃k(0)v becomes
O(sn). Furthermore, Lanczos tridiagonalization algorithm solves, using a random initial-
ization, (2.2.1) exactly (Golub & Van Loan, 2013, Theorem 10.1.1). The computational
cost boils down to computing s + 1 matrix vector products. Hence, by using Hessian-vector
product, the iteration complexity to solve (2.2.1) exactly is (s + 1) ·O(sn) = O

(
s2n
)

.

Combining this with the iteration complexity of RSHTR O
(
(n/s)3/4ε−3/2), which will be

shown later in Theorem 3.1 under gradient Lipschitz and Hessian Lipschitz assumptions (see
Assumption 1), the total computational complexity of RSHTR becomes O

(
ε−3/2s5/4n7/4).

On the other hand, the total computational complexity of the full-space algorithm HSODM
(Zhang et al., 2022) is O(ε−3/2n2), as the complexity of solving exactly the subproblem,
using Hessian vector products, becomes O(n2). Therefore, when s = o(n) (for example
s = O(log(n))), the total computational complexity of the proposed method is smaller than
that of HSODM. Notice that in any case (for any value of s < n) the actual execution time
of the proposed method outperforms HSODM. This is because HSODM’s space complexity2

explodes to O(n2) due to the Hessian, whereas the proposed method’s space complexity is
limited to O(sn) since the s× n random matrix is larger than the restricted Hessian.

3 Theoretical analysis

We analyze the global and local convergence properties of RSHTR. First, we show that
RSHTR converges, with high probability, to an ε–FOSP in at most O(ε−3/2) iterations.
Secondly, we prove that, under some conditions, the algorithm actually converges to an
ε–SOSP. Lastly, we investigate local convergence, proving local linear convergence and local
quadratic convergence under a rank deficiency condition. Note that the analysis in this
section is inspired by Zhang et al. (2022).
Assumption 1. f has L-Lipschitz continuous gradient and M -Lipschitz continuous Hes-
sian, that is, for all x, y ∈ Rn,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,
∥∥∇2f(x)−∇2f(y)

∥∥ ≤M‖x− y‖.
2Here, we assume the Hessian matrix is stored, as rigorously evaluating the space complexity of

the Hessian-vector product is challenging.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

To prove the global convergence property, we first state that when ‖dk‖ > ∆ holds, the
objective function value decreases sufficiently at each iteration.
Lemma 3.1. Suppose that Assumption 1 holds. If ‖dk‖ > ∆, then for all δ > 0

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s+C)2
∆2δ + M

6 ∆3

with probability at least 1− 2 exp(−s). Here C and C3 are absolute constantes.

The following lemma shows that if the descent direction once get small enough, the norm
of the gradient in the subsequent iteration is bounded using δ and ∆.
Lemma 3.2. Suppose that Assumption 1 holds. If ‖dk‖ ≤ ∆ ≤ 1

2
√

2 , then we have

‖gk+1‖ ≤ M
2 ∆2 + 1√

n/s−C

(
2δ∆ + 16∆3

((√
n
s + C

)2
L + δ

))
with probability of at least 1− 4 exp

(
−C

4 s
)
− 4 exp (−s).

Notice that we can assume that ∆ ≤ 1/2
√

2 holds w.l.o.g. as we want to take ∆ as small as
possible to ensure a better convergence rate. Next, we show a lower bound on the minimum
eigenvalue of the Hessian.
Lemma 3.3. Suppose that Assumption 1 holds. If ‖dk‖ ≤ ∆ ≤ 1/2

√
2, then we have

H̃k+1 � −
[
8∆2

((√
n
s + C

)2
L + δ

)
+ δ + M∆

]
I

with probability at least 1− 2 exp
(
−C

4 s
)
− 2 exp (−s).

Although Lemma 3.3 does not directly provide a lower bound on the eigenvalues of Hk+1, it
is proportional to the bound in Lemma 3.3 under certain conditions. We later discuss this
in Section 3.2.

3.1 Global convergence to an ε–FOSP

We now prove that our algorithm converges to an ε–FOSP under a general assumption.
Theorem 3.1 (Global convergence to an ε–FOSP). Suppose that Assumption 1 holds. Let

0 < ε ≤ M2

8 , δ =
(√

n
s + C

)2√
ε and ∆ =

√
ε

M . (3.1.1)

Then RSHTR outputs an ε–FOSP in at most O
(
ε−3/2) iterations with probability at least

1− 4 exp (−Cs/4)− (2Uε + 2) exp (−s) , (3.1.2)
where C and C are absolute constants and Uε := b3M2 (f(x0)− infx∈Rn f(x)) ε−3/2c+ 1.

Theorem 3.1 leads to the following corollary on the probability bound, which is confirmed
by rewriting (3.1.2) as 1− 4n−Cc/4 − (2Uε + 2)n−c with s = c log n for some c > 0.
Corollary 3.1. If s = Ω(log n), then the probability bound (3.1.2) is in the order of 1−o(1).

For comparison with the full-space algorithm HSODM (Zhang et al., 2022), when considering
the dependency on n and s, the norm of the gradient at the output point is O(

√
n/sε). This

result is obtained by substituting the given parameters into Lemma 3.2. This is
√

n/s times
worse than the HSODM. Since we want to obtain an ε–FOSP and not an (

√
n/sε)–FOSP,

we need to scale down ε by
√

s/n leading the number of iterations increased by a factor
(n/s)3/4. We have added some detailed explanations in Appendix D.3 just after the proof of
Theorem 3.1. This is the price to pay for utilizing random subspace. However, as discussed
in Section 2.3, the total complexity becomes smaller thanks to the smaller-size subproblem.
As mentioned in the footnote of Section 2.2, these results (essentially Lemma 3.1) can also
be demonstrated for any ν ∈ (0, 1/2), i.e., the similar statement also holds for the pure
random subspace variant of HSODM shown in Algorithm 3. Refer to Appendix C for the
proof.

3C can be estimated to 1/8; see Wainwright (2019) for details.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

3.2 Global convergence to an ε–SOSP

Section 3.1 demonstrated that RSHTR globally converges to an ε–FOSP. In this section, we
show that the output x∗ of RSHTR is also an ε–SOSP under one of two possible assumptions
about the Hessian at the point, one of which is presented in Shao (2022). For clarity and
brevity, we move the result under the assumption from Shao (2022) in Appendix D.4 while
focusing on the more practical one in this section.
Assumption 2. Let r = rank(∇2f(x∗)), where x∗ is the output of RSHTR. We assume
that r ≤ s.

Notice that this includes many cases commonly observed in recent machine-learning opti-
mization problems. Indeed, the structure of the Hessian in neural networks has been studied
both theoretically and experimentally, revealing that it often possesses a low-rank structure
(Wu et al., 2020; Sagun et al., 2017; 2016; Ghorbani et al., 2019). We also introduce some
problems satisfying a stronger condition than Assumption 2 at the beginning of Section 3.4.
Thus, our theoretical guarantee is considered important from a practical perspective. We
guarantee in Theorem 3.2 that the output x∗ of RSHTR is a ε–SOSP when the Hessian
at x∗, denoted by H∗, is rank deficient. Before proceeding to the theorem, we show in
Lemma 3.4 that the lower bound of the minimum eigenvalue of H∗ is proportional to the
lower bound of the minimum eigenvalue of P ∗H∗P ∗> or non-negative with high probability.
Here P ∗ denotes the matrix Pk used at the last iteration of the algorithm.
Lemma 3.4. Let C̄ and c̄ be absolute constants4. If Assumption 2 holds, then for all ζ > 0,
the following inequality holds with probability at least 1− (C̄ζ)s−r+1 − e−c̄s.

λmin(H∗) ≥ ζ−2
(

1−
√

(r − 1)/s
)−2

min
{

λmin
(
P ∗H∗P ∗>) , 0

}
.

This lemma implies that under Assumption 2, it is sufficient to guarantee that the output of
RSHTR is ε–SOSP in full space if it is ε–SOSP in a subspace. Since the minimum eigenvalue
of H∗ is bounded as shown in Lemma 3.3, the following theorem holds.
Theorem 3.2 (Global convergence to an ε–SOSP under rank deficiency). Suppose that
Assumptions 1 and 2 hold. Set ε, δ and ∆ as in (3.1.1) of Theorem 3.1. Then, RSHTR
outputs an ε–SOSP in at most O(ε−3/2) iterations with probability at least

1− 6 exp (−Cs/4)− (2Uε + 4) exp (−s)− exp (−s + r − 1)− exp(−c̄s),
where c̄ and C are absolute constants and Uε := b3M2 (f(x0)− infx∈Rn f) ε−3/2c+ 1.

This theorem also suggest s = Ω(log n), similarly to Corollary 3.1.
For comparison with the full-space algorithm HSODM (Zhang et al., 2022), when consid-
ering the dependency on n and s, the minimum eigenvalue of the Hessian at the output
point is Ω(−(n/s)

√
ε). This result is obtained by substituting the given parameters into

Lemma 3.3. This is n/s times worse than the full-space method. In other words, the
number of iterations required to achieve the same accuracy as the full-space algorithm is
(n/s)3 times larger. Unlike convergence to an ε–FOSP, convergence to an ε–SOSP requires
an additional assumption, Assumption 2. The convergence guarantee to ε–SOSP is not
easy because the algorithm is run until the termination condition is satisfied, considering
only subspaces, while convergence to ε–SOSP can be shown without any extra assumption
thanks to Johnson-Lindenstrauss lemma, Lemma B.1. Recall that other random subspace
algorithms (Zhao et al., 2024; Shao, 2022) also showed convergence to an ε–SOSP, but Zhao
et al. (2024) required the dimension of the subspace s to be Ω(n) in general, and Shao (2022)
required stronger assumptions as explained at the beginning of this subsection.

3.3 Local linear convergence

In this section, we discuss the local convergence of RSHTR to a strict local minimizer x̄.
Here, we consider the case when we continue to run Algorithm 1 after ‖dk‖ ≤ ∆ is satisfied,
by setting δ = 0 and global_mode = False. We consider a standard assumption for local
convergence analysis.

4We refer the reader to Rudelson & Vershynin (2009) for estimations on these constants.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Assumption 3. Assume that RSHTR converges to a strict local minimizer x̄ such that
∇f(x̄) = 0,∇2f(x̄) � 0.

We denote the Hessian at x̄ by H̄ and introduce the norm ‖x‖H̄ =
√
‖x>H̄x‖. This

assumption implies that for any δ > 0, there exists k0 such that o(‖xk−x̄‖)
‖xk−x̄‖ ≤ δ for ∀k ≥ k0.

Theorem 3.3 (Local linear convergence). Suppose Assumptions 1 and 3 hold. Then, for
k large enough, i.e., there exists k0 such that for all k ≥ k0,

Pr
[
‖xk+1 − x̄‖H̄ ≤

√
1− 1

4κ(H̄)(
√

n/s+C)2
‖xk − x̄‖H̄

]
≥ 1− 6 exp (−s) ,

where κ(H̄) := λmax(H̄)/λmin(H̄).

Trust region method closely resembles Newton’s method in a sufficiently small neighborhood
of a local minimizer. Consequently, we expect that the impossibility of achieving local
superlinear convergence in general can be shown, similar to Fuji et al. (2022). Indeed, in
order to prove local superlinear convergence, Zhang et al. (2022) decompose the direction
dk = dN

k + rk, where dN
k correspond to the direction in a Newton step. In the subspace

setting, this strategy would fail as the dN
k part of the descent direction dk would hinder

superlinear convergence, as proved in Fuji et al. (2022).

3.4 Local convergence for strongly convex f in its effective subspace

We now consider the possibility of our algorithm achieving local quadratic convergence by
making stronger assumptions than Assumption 3 on the function f . Concretely, we focus
on so-called “functions with low dimensionality”5 (Wang et al., 2016), which satisfy the
following condition:

∃Π ∈ Rn×n, rank(Π) ≤ n− 1, s.t. ∀x ∈ Rn, f(x) = f(Πx), (3.4.1)
where Π is an orthogonal projection matrix. These are the functions that only vary over
a low-dimensional subspace (which is not necessarily be aligned with standard axes), and
remain constant along its orthogonal complement. Such functions are frequently encountered
in many applications. For instance, the loss functions of neural networks often have low rank
Hessians Gur-Ari et al. (2018); Sagun et al. (2017); Papyan (2018). This phenomenon is
also prevalent in other areas such as hyper-parameter optimization for neural networks
(Bergstra & Bengio, 2012), heuristic algorithms for combinatorial optimization problems
(Hutter et al., 2014), complex engineering and physical simulation problems as in climate
modeling (Knight et al., 2007), and policy search (Fröhlich et al., 2019).
Now we show a stronger assumption than Assumption 3 on the function f .
Assumption 4. f has s-low effective dimensionality as defined in (3.4.1) with an additional
restriction rank(Π) ≤ s. Furthermore, f is ρ–strongly convex within its effective subspace.

The assumption indicates that for R ∈ Rrank(Π)×n being a matrix whose columns form an
orthonormal basis for Im(Π), the function l(y) := f(R>y) is ρ–strongly convex. To measure
the distance within the effective subspace, we use the semi-norm ‖x‖Π =

√
‖x>Πx‖ = ‖Rx‖ .

Now we show the local quadratic convergence property of RSHTR with parameters δ and
global_mode being reset to 0 and False, respectively, similarly to the local convergence
discussion in Section 3.3. This is the first theoretical result of random subspace methods
having quadratic convergence properties for some classes of functions.
Theorem 3.4 (Local quadratic convergence under ρ–strong convexity in effective subspace).
Suppose Assumptions 1 and 4 hold. Then, for k large enough, i.e., there exists k0 such that
for all k ≥ k0, the following inequalities hold:

Pr
[
‖xk+1 − x̄‖Π ≤ 4Ml‖R‖ρ−1σmin(R>)−1‖xk − x̄‖2

Π
]
≥ 1− 4 exp

(
−C

4 s
)

,

Pr
[
f(xk+1)− f(x̄) ≤ 8LlM

2
l ‖R‖2ρ−4σmin(R>)−2 (f(xk)− f(x̄))2

]
≥ 1− 4 exp

(
−C

4 s
)

,

5They are also called objectives with “active subspaces" (Constantine et al., 2014), or “multi-
ridge" (Fornasier et al., 2012).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 2: Log plot of the convergence of RSHTR
on low effective Rosenbrock problems. The sub-
space dimension s is fixed at 100, and the prob-
lem rank r is varied (r = 25, 50, 100, 150).

Figure 3: The impact of the choice of
subspace dimension s (= 50, 100, 200) on
convergence in random subspace algo-
rithms (RSGD, RSRN, RSHTR) for MF.

where Ll and Ml are the Lipschitz constants of ∇l and ∇2l respectively and x̄ is the strict
local minimizer of f .

4 Numerical experiments

We compare the performance of our algorithm and existing methods: HSODM (Zhang et al.,
2022), RSRN (Fuji et al., 2022), Gradient Descent (GD), and Random Subspace Gradient
Descent (RSGD) (Kozak et al., 2021). We used backtracking line search in all algorithms to
determine the step size. Unless otherwise noted, the subspace dimension s is set to 100 for
all the algorithms utilizing random subspace techniques. In HSODM and our method, we
solve subproblems using the Lanczos method. The numerical experiments were conducted
in the environment: CPU: Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz, GPU: NVIDIA
RTX A5000, RAM: 32 GB. The details of the dataset we used are provided in Appendix F.

Low Effective Rosenbrock function (LER): To illustrate the theoretical properties
proved in this paper, we conducted numerical experiments on a Low Effective Rosenbrock
(LER) function, chosen for its property of satisfying Assumptions 1 and 2. This function is
defined as minx∈Rn R(A>Ax), where R(x) =

∑n−1
i=1 100(xi+1−x2

i)2 +(xi−1)2 and A ∈ Rr×n

with r < n. We set n = 10000 to represent a high-dimensional setting.
Figure 2 shows experiments varying r with fixed s. When the rank deficiency r ≤ s holds,
we observe the predicted quadratic convergence. However, when r > s, convergence slowed
significantly. In Figure 4a, we set r = 50 (≤ s = 100). The result shows that our algorithm
outperforms the full-space methods, which supports the discussion in Section 2.3. Moreover,
our method surpasses the other random subspace methods, consistently achieving the fastest
global convergence rate.

Matrix factorization (MF): We evaluate the real-world performance for MF us-
ing MovieLens 100k (Harper & Konstan, 2015): minU∈Rnu×k,V ∈Rk×nv ‖UV −R‖2

F /(nunv),
where R ∈ Rnu×nv and ‖·‖F denotes the Frobenius norm.
We first examine the effect of changing s on each algorithm. Figure 3 shows that despite
varying s, the relative performance among these methods remained consistent, and no par-
ticular method benefited from specific subspace dimensions. This finding justifies our choice
of a fixed subspace dimension (s = 100) for all subspace methods in all the other experi-
ments. Next, the performance of our proposed method is compared against other algorithms,
as shown in Figure 4b. Although RSGD initially exhibits the fastest decrease, likely due to
its advantage of not computing the Hessian, our method soon surpasses RSGD.

Classification: We test classification tasks using cross-entropy loss:

minw∈Rn − 1
N

∑N
i=1
∑K

j=1 I[yi = j] log
(

exp(ϕj
w(xi))

/∑K
k=1 exp(ϕk

w(xi))
)

,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

(a) LER
(dim: 10,000)

(b) MF: MovieLens
(dim: 131,250)

(c) LR: news20
(dim: 10,001)

(d) LR: RCV1
(dim: 10,001)

(e) SR: news20
(dim: 200,020)

(f) SR: scotus
(dim: 130,013)

(g) DNN: MNIST
(dim: 123,818)

(h) DNN: CIFAR-10
(dim: 416,682)

Figure 4: Comparison of our method to existing methods regarding the function value v.s.
computation time. Each plot shows the average ± the standard deviation for five runs.
Algorithms that did not complete a single iteration within the time limit are omitted.

where N is the number of data and its label, K is the number of classes in the classification,
(xi, yi) is the i-th data, and ϕw(xi) = (ϕ1

w(xi), . . . , ϕK
w (xi)) is the model’s predicted logit.

We explore the following specific instances.
• Logistic Regression (LR): K = 2 and ϕ1

w(xi) = wT [xi; 1] (with adaptation for the second
class). News20 (Lang, 1995) and RCV1 datasets (Lewis et al., 2004) were used.

• Softmax Regression (SR): K > 2 and ϕj
w(xi) = wT

j [xi; 1]. News20 (Lang, 1995) and
SCOTUS (Chalkidis et al., 2021) datasets were used.

• Deep Neural Networks (DNN): ϕw(xi) represents the output of a 16-layer fully connected
neural network. MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky, 2009) were used.

In all the experiments (Figures 4c, 4d, 4e, 4f, 4g, 4h) and additional ones in Appendix G,
our algorithm outperforms existing methods. A notable feature of our method is its rapid
escape from flat regions. This can be attributed to the algorithm’s second-order nature, the
homogenization of the subproblem and the utilization of random subspace techniques. In
addition, as discussed in the introduction, the rank-deficient assumptions (Assumptions 2
and 4) reflect scenarios commonly encountered in modern machine learning optimization
problems. Consequently, our method is well-suited to applying Theorems 3.2 and 3.4.

5 Future work

We proposed a new random subspace trust region method and confirmed its usefulness
theoretically and practically. We believe that our proposed method can be made faster by
incorporating various techniques if theoretical guarantees such as convergence rate are not
required. For example, the parameter δ is fixed, once and for all, at the beginning of the
algorithm. In some future work, it would be interesting to develop an adaptive version of
this algorithm where the parameter δ > 0 adapts to the current iterate.
Recently, authors of HSODM (Zhang et al., 2022) have been vigorously using the idea of
HSODM to develop various variants (He et al., 2023) of HSODM, application to stochastic
optimization (Tan et al., 2023), and generalization of the trust region method (Jiang et al.,
2023). We want to investigate whether random subspace methods can be developed similarly.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

References
Satoru Adachi, Satoru Iwata, Yuji Nakatsukasa, and Akiko Takeda. Solving the trust-region

subproblem by a generalized eigenvalue problem. SIAM Journal on Optimization, 27(1):
269–291, 2017.

Albert S. Berahas, Raghu Bollapragada, and Jorge Nocedal. An investigation of Newton-
sketch and subsampled Newton methods. Optim. Methods Softw., pp. 1–20, 2020.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(2), 2012.

Coralia Cartis and Adilet Otemissov. A dimensionality reduction technique for uncon-
strained global optimization of functions with low effective dimensionality. Information
and Inference: A Journal of the IMA, 11(1):167–201, 2021.

Coralia Cartis, Jaroslav Fowkes, and Zhen Shao. A randomised subspace Gauss-Newton
method for nonlinear least-squares. Workshop on “Beyond First-Order Methods in ML
Systems”at the 37th International Conference on Machine Learning. Vienna, Austria,
2020.

Coralia Cartis, Estelle Massart, and Adilet Otemissov. Bound-constrained global optimiza-
tion of functions with low effective dimensionality using multiple random embeddings.
Mathematical Programming, pp. 1–62, 2022.

Coralia Cartis, Estelle Massart, and Adilet Otemissov. Global optimization using random
embeddings. Mathematical Programming, 200:781–829, 2023.

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos,
Daniel M. Katz, and Nikolaos Aletras. Lexglue: A benchmark dataset for legal language
understanding in english. arXiv preprint arXiv:2110.00976, 2021.

Paul G Constantine, Eric Dow, and Qiqi Wang. Active subspace methods in theory and
practice: applications to kriging surfaces. SIAM Journal on Scientific Computing, 36(4):
A1500–A1524, 2014.

Li Deng. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

Kwassi Joseph Dzahini and Stefan M. Wild. Stochastic trust-region algorithm in ran-
dom subspaces with convergence and expected complexity analyses. SIAM Journal on
Optimization, 34(3):2671–2699, 2024. doi: 10.1137/22M1524072.

Jennifer B. Erway and Philip E. Gill. A subspace minimization method for the trust-region
step. SIAM Journal on Optimization, 20(3):1439–1461, 2010. doi: 10.1137/08072440X.

Massimo Fornasier, Karin Schnass, and Jan Vybiral. Learning functions of few arbitrary
linear parameters in high dimensions. Foundations of Computational Mathematics, 12:
229–262, 2012.

Lukas P Fröhlich, Edgar D Klenske, Christian G Daniel, and Melanie N Zeilinger. Bayesian
optimization for policy search in high-dimensional systems via automatic domain selec-
tion. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 757–764. IEEE, 2019.

Terunari Fuji, Pierre-Louis Poirion, and Akiko Takeda. Randomized subspace regu-
larized Newton method for unconstrained non-convex optimization. arXiv preprint
arXiv:2209.04170, 2022.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In International Conference on Machine Learning,
pp. 2232–2241. PMLR, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. RSN: Randomized Sub-
space Newton. Adv. Neural Inf. Process. Syst., 32:616–625, 2019.

Dmitry Grishchenko, Franck Iutzeler, and Jérôme Malick. Proximal gradient methods with
adaptive subspace sampling. Mathematics of Operations Research, 46(4):1303–1323, 2021.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny
subspace. arXiv preprint arXiv:1812.04754, 2018.

Filip Hanzely, Nikita Doikov, Peter Richtárik, and Yurii Nesterov. Stochastic subspace
cubic Newton method. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119, pp. 4027–4038. PMLR, 13–18
Jul 2020.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems (tiis), 5(4):1–19, 2015.

Chang He, Yuntian Jiang, Chuwen Zhang, Dongdong Ge, Bo Jiang, and Yinyu Ye. Ho-
mogeneous second-order descent framework: A fast alternative to newton-type methods.
arXiv preprint arXiv:2311.11489, 2023.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing
hyperparameter importance. In International conference on machine learning, pp. 754–
762. PMLR, 2014.

Yuntian Jiang, Chang He, Chuwen Zhang, Dongdong Ge, Bo Jiang, and Yinyu Ye. A
universal trust-region method for convex and nonconvex optimization. arXiv preprint
arXiv:2311.11489, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Christopher G Knight, Sylvia HE Knight, Neil Massey, Tolu Aina, Carl Christensen, Dave J
Frame, Jamie A Kettleborough, Andrew Martin, Stephen Pascoe, Ben Sanderson, et al.
Association of parameter, software, and hardware variation with large-scale behavior
across 57,000 climate models. Proceedings of the National Academy of Sciences, 104
(30):12259–12264, 2007.

Shimon Kogan, Dimitry Levin, Bryan R. Routledge, Jacob S. Sagi, and Noah A. Smith. Pre-
dicting risk from financial reports with regression. In Proceedings of Human Language
Technologies: the 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 272–280, 2009.

David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. A stochastic subspace
approach to gradient-free optimization in high dimensions. Computational Optimization
and Applications, 79(2):339–368, 2021.

David Kozak, Cesare Molinari, Lorenzo Rosasco, Luis Tenorio, and Silvia Villa. Zeroth-
order optimization with orthogonal random directions. Mathematical Programming, 199,
2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest eigenvalue by the power
and lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and
Applications, 13(4):1094–1122, 1992.

Nicholas Kushmerick. Internet Advertisements. UCI Machine Learning Repository, 1998.
DOI: https://doi.org/10.24432/C5V011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Jonathan Lacotte and Mert Pilanci. Adaptive and oblivious randomized subspace methods
for high-dimensional optimization: Sharp analysis and lower bounds. IEEE Transactions
on Information Theory, 68(5):3281–3303, 2022.

Ken Lang. Newsweeder: Learning to filter netnews. In Machine Learning Proceedings 1995,
pp. 331–339. Elsevier, 1995.

David D. Lewis, Yiming Yang, Tony Russell-Rose, and Fan Li. Rcv1: A new benchmark
collection for text categorization research. Journal of machine learning research, 5(Apr):
361–397, 2004.

Felix Lieder. Solving large-scale cubic regularization by a generalized eigenvalue problem.
SIAM Journal on Optimization, 30(4):3345–3358, 2020.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with sgd training
and sample size. arXiv preprint arXiv:1811.07062, 2018.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):
147–160, 1994.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in Python. the Journal of Machine Learning Research, 12:
2825–2830, 2011.

Mert Pilanci and Martin J. Wainwright. Randomized sketches of convex programs with
sharp guarantees. In International Symposium on Information Theory (ISIT), pp. 921–
925, Piscataway, 2014. IEEE.

Lindon Roberts and Clément W. Royer. Direct search based on probabilistic descent in
reduced spaces. SIAM Journal on Optimization, 33(4):3057–3082, 2023.

Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectangular
matrix. Communications on Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences, 62(12):1707–1739, 2009.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning:
Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical anal-
ysis of the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454,
2017.

Zhen Shao. On random embeddings and their application to optimisation. arXiv preprint
arXiv:2206.03371, 2022.

Jiyuan Tan, Chenyu Xue, Chuwen Zhang, Qi Deng, Dongdong Ge, and Yinyu Ye. A
homogenization approach for gradient-dominated stochastic optimization. arXiv preprint
arXiv:2311.11489, 2023.

Roman Vershynin. High-dimensional probability, volume 47. Cambridge university press,
2018.

Martin J. Wainwright. Basic tail and concentration bounds, pp. 21 ‒ 57. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal of Artificial
Intelligence Research, 55:361–387, 2016.

Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and Rong Ge. Dissecting hes-
sian: Understanding common structure of hessian in neural networks. arXiv preprint
arXiv:2010.04261, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Yinyu Ye and Shuzhong Zhang. New results on quadratic minimization. SIAM Journal on
Optimization, 14(1):245–267, 2003.

Chuwen Zhang, Dongdong Ge, Chang He, Bo Jiang, Yuntian Jiang, Chenyu Xue, and Yinyu
Ye. A homogenous second-order descent method for nonconvex optimization. arXiv
preprint arXiv:2211.08212v3, 2022.

Chuwen Zhang, Dongdong Ge, Chang He, Bo Jiang, Yuntian Jiang, Chenyu Xue, and Yinyu
Ye. A homogenous second-order descent method for nonconvex optimization. arXiv
preprint arXiv:2211.08212v5, 2024.

Jim Zhao, Aurelien Lucchi, and Nikita Doikov. Cubic regularized subspace newton for
non-convex optimization. arXiv preprint arXiv:2406.16666, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A Existing work: HSODM

Homogeneous Second-Order Descent Method (HSODM) proposed by Zhang et al. (2022) is
a type of trust region method, which globally converges to an ε–SOSP at a rate of O(ε−3/2)
and locally converges at a quadratic rate. The algorithm determines the descent direction
based on the solution of the eigenvalue problem obtained by homogenizing the trust region
subproblem. The algorithm procedure is described below.
At each iteration, HSODM minimizes the homogenized quadratic model. In other words, it
solves the following subproblem:

min
‖[v;t]‖≤1

[
v
t

]> [
Hk gk

g>
k −δ

] [
v
t

]
, (A.0.1)

where δ ≥ 0 is a parameter appropriately determined according to the required accuracy.
The motivation behind is to force the Hessian matrix Hk to have negative curvature. To do
that (see Ye & Zhang (2003)), we homogenize the second order Taylor expansion, mk(d), of
f(xk + d):

mk(d) = g>
k d + 1

2
d>Hkd.

By rewriting d = v
t , we have

t2
(

mk(d)− 1
2

δ

)
= t2

(
g>

k (v/t) + 1
2

(v/t)>Hk(v/t)− 1
2

δ

)
= tg>

k v + 1
2

v>Hkv − 1
2

δt2

=
[
v
t

]> [
Hk gk

g>
k −δ

] [
v
t

]
.

Notice that (A.0.1) can be regarded as a problem of finding the leftmost eigenvector of
a matrix. Hence, the randomized Lanczos algorithm (Kuczyński & Woźniakowski, 1992)
can be utilized to solve (A.0.1). The solution of (A.0.1) is denoted by [vk; tk]. Using this
solution, HSODM calculates the direction as follows:

dF
k =

{
vk/tk, if |tk|> ν
sign(−g>

k vk)vk, if |tk| ≤ ν
,

where ν ∈ (0, 1/2) is an arbitrary parameter.
Then, the algorithm updates the iterates according to the following rule:

xk+1 =
{

xk + ηkdk, if
∥∥dF

k

∥∥ > ∆
xk + dk, if

∥∥dF
k

∥∥ ≤ ∆ .

Here, ηk denotes the step size, and ∆ ∈ [0,
√

2/2] is a parameter set to the appropriate value
to achieve the desired accuracy. If the first condition ‖dF

k‖ > ∆ is met, the step size can be
either set to ηk = ∆/‖dF

k‖ or determined by a line search. If the second condition ‖dF
k‖ > ∆

is satisfied, this algorithm can either terminate and output xk+1, thereby obtaining an ε–
SOSP, or reset both δ and ν to 0 and continue, thereby achieving local quadratic convergence.
These steps are shown in Algorithm 2.

B Preparation of the theoretical analysis

B.1 Existing lemmas

We introduce two important properties of random projections. The first property is that
random projections approximately preserve norms with high probability. Formally, the
following Johnson-Lindenstrauss (JL) lemma holds:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 2 Homogeneous Second-Order Descent Method (HSODM) (Zhang et al., 2022)
1: function HSODM(n, δ, ∆, ν, max_iter)
2: for k = 1, . . . , max_iter do
3: (tk, vk)← solve_subproblem(gk, Hk, δ)

4: dk ←
{

vk/tk, if |tk| > ν
sign(−g̃>

k ṽk)vk, otherwise
5: if ‖dk‖ > ∆ then
6: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search
7: xk+1 ← xk + ηkdk

8: else
9: xk+1 ← xk + dk

10: terminate ▷ or continue with (δ, ν)← (0, 0) for local convergence

Lemma B.1. [Lemma 5.3.2 in Vershynin (2018)] Let P ∈ Rs×n be a random Gaussian
matrix and C be an absolute constant. Then, for any x ∈ Rn and any ξ ∈ (0, 1), the
following inequality holds with probability at least 1− 2 exp

(
−Cξ2s

)
:

(1− ξ) ‖x‖ ≤ ‖Px‖ ≤ (1 + ξ) ‖x‖ .

The second property is described by the following lemma, which states that P > is an ap-
proximate isometry with high probability.
Lemma B.2 (Theorem 4.6.1, Exercie 4.6.2, 4.6.3 in Vershynin (2018)). Let P ∈ Rs×n be a
random Gaussian matrix and C be an absolute constant. The following inequality holds with
probability at least 1− 2 exp(−s):

∀y ∈ Rs,

(√
n

s
− C

)
‖y‖ ≤

∥∥P >y
∥∥ ≤ (√n

s
+ C

)
‖y‖.

We recall the following lemma from Nesterov (2018).
Lemma B.3. Suppose Assumption 1 holds. Then for any x, y ∈ Rn, we have

|f(y)− f(x)−∇f(x)>(y − x)| ≤ L

2
‖y − x‖2,

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ ≤ M

2
‖y − x‖2,∣∣∣∣f(y)− f(x)−∇f(x)>(y − x)− 1

2
(y − x)>∇2f(x)(y − x)

∣∣∣∣ ≤ M

6
‖y − x‖3. (B.1.1)

B.2 The optimality conditions of the dimension-reduced subproblem

We recall the fundamental property in probability theory. For any events E1 and E2, we
have

Pr [E1 ∩ E2] ≥ 1− (1− Pr [E1])− (1− Pr [E2]) .

This is used throughout this paper without further explicit mention. The optimality con-
ditions of the dimension-reduced subproblem (2.2.1) are given by the following statements:
there exists a non-negative random variable θk such that

(
F̃k + θkI

) [ṽk

tk

]
= 0, (B.2.1)

F̃k + θkI � 0, (B.2.2)
θk (‖[ṽk; tk]‖ − 1) = 0, (B.2.3)

where

F̃k =
[

H̃k g̃k

g̃>
k −δ

]
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

It immediately follows from (B.2.2) that

λmin(F̃k) ≥ −θk. (B.2.4)
We also obtain from (B.2.2)

δ ≤ θk, (B.2.5)

by considering the direction [0, · · · , 0, 1]>.
We directly deduce the following result from (B.2.1).
Corollary B.1. (B.2.1) implies the following equations(

H̃k + θkI
)

ṽk = −tkg̃k, (B.2.6)
g̃>

k ṽk = tk (δ − θk) .

Furthermore, if tk = 0, then (
H̃k + θkI

)
ṽk = 0, (B.2.7)

g̃>
k ṽk = 0

hold. If tk 6= 0, then

g̃>
k

ṽk

tk
= δ − θk, (B.2.8)(

H̃k + θkI
) ṽk

tk
= −g̃k (B.2.9)

hold.

We also obtain a slightly stronger inequality δ < θk under an additional condition.
Lemma B.4. If gk 6= 0, then δ < θk holds with probability 1.

Proof. We first prove the following inequality:
λmin(F̃k) < −δ. (B.2.10)

To prove this inequality, it suffices to show that F̃k + δI has negative curvature. Let us
define

f(η, t) =
[
−ηg̃k

t

]> (
F̃k + δI

) [−ηg̃k

t

]
= η2g̃>

k (H̃k + δI)g̃k − 2ηt ‖g̃k‖2
.

Then for any fixed t > 0, we have

f(0, t) = 0,
∂f(0, t)

∂η
= −2t‖g̃k‖2.

Since gk 6= 0, we have ‖g̃k‖ 6= 0 with probability 1, which implies ∂f(0,t)
∂η < 0. Thus, for

sufficiently small η > 0, we have that f(η, t) < 0. This shows that F̃k + δI has negative
curvature. Finally, by combining (B.2.4) and (B.2.10), the proof is completed.

C Pure random subspace variant of HSODM

Unlike the pure random subspace variant of HSODM6, RSHTR excludes the parameter ν
present in HSODM. This exclusion is because our theoretical analysis in the fixed-radius
strategy, which we focus on, does not depend on ν. Therefore, we discussed it under ν → +0
for clarity. This section discusses that similar theoretical guarantees can be provided for
any ν ∈ (0, 1/2) as in the case of ν → +0.

6Here, we cite the algorithm used in Zhang et al. (2022). Notice that in the newest version,
Zhang et al. (2024), the stopping criterion is written differently, but it is equivalent to the one in
Zhang et al. (2022).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Algorithm 3 Pure random subspace variant of HSODM
1: function RSHTR(s, n, δ, ∆, ν, max_iter)
2: global_mode = True
3: for k = 1, . . . , max_iter do
4: Pk ← s× n random Gaussian matrix with each element being from N (0, 1/s)
5: g̃k ← Pkgk

6: (tk, ṽk)← optimal solution of (2.2.1) by eigenvalue computation
7:

(
g̃k, H̃k, δ

)
8: dk ←

{
P >

k ṽk/tk, if |tk| > ν
sign(−g̃>

k ṽk)P >
k ṽk, otherwise

9: if ‖dk‖ > ∆ then
10: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search
11: xk+1 ← xk + ηkdk

12: else
13: xk+1 ← xk + dk

14: terminate ▷ or continue with (δ, ν, global_mode)← (0, 0, False) for local
conv.

C.1 Analysis on fixed radius strategy

Here, we consider the case of a fixed step size, ∆. When |tk| < ν, dk is given by dk = P >
k ṽk.

Lemma C.1. Suppose that Assumption 1 holds. Let ν ∈ (0, 1/2), dk = P >
k ṽk and ηk =

∆/‖dk‖. If |tk| < ν, gk 6= 0 and ‖dk‖ > ∆ , then we have

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3

with probability at least 1− 2 exp(−s).

Proof. By Corollary B.1, we have

ṽ>
k H̃kṽk = −θk‖ṽk‖2 − tkṽ>

k g̃k, (C.1.1)
ṽ>

k g̃k = tk(δ − θk). (C.1.2)

Since we have δ < θk with probability 1 from Lemma B.4, it follows that

sign(−g̃>
k ṽk) = sign(tk) (C.1.3)

with probability 1. Therefore we obtain

d>
k Hkdk = ṽ>

k H̃kṽk (by definition of dk)
= −θk‖ṽk‖2 − tkṽ>

k g̃k (by (C.1.1))
= −θk‖ṽk‖2 − t2

k(δ − θ) (by (C.1.2)), (C.1.4)
g>

k dk = sign(−g̃>
k ṽk)g̃>

k ṽk (by definition of dk)
= sign(−g̃>

k ṽk)tk(δ − θk) (by (C.1.2))
= |tk|(δ − θk) (by (C.1.3)). (C.1.5)

Since ‖dk‖ > ∆, it follows that ηk = ∆/‖dk‖ ∈ (0, 1). Thus, we have ηk − η2
k/2 ≥ 0. Hence(

ηk −
η2

k

2

)
(δ − θk) ≤ 0. (C.1.6)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Algorithm 4 Backtracking Line Search
1: function BacktrackLineSearch(xk, dk, γ > 0, β ∈ (0, 1))
2: ηk = 1
3: while True do
4: if f(xk + ηkdk)− f(xk) ≤ −γηk‖dk‖3/6 then
5: return ηk

6: else
7: ηk ← βηk

Hence, the following inequality holds with probability at least 1− 2 exp(−s).

f(xk+1)− f(xk) = f(xk + ηkdk)− f(xk)

≤ ηkg>
k dk + η2

k

2
d>

k Hkdk + M

6
η3

k‖dk‖3 (by (B.1.1))

= ηk|tk|(δ − θk)− η2
k

2
θk‖ṽk‖2 − η2

k

2
t2
k(δ − θk) + M

6
η3

k‖dk‖3 (by (C.1.4) and (C.1.5))

≤ ηkt2
k(δ − θk)− η2

k

2
θk‖ṽk‖2 − η2

k

2
t2
k(δ − θk) + M

6
η3

k‖dk‖3 (by 0 ≤ |tk| ≤ 1)

=
(

ηk −
η2

k

2

)
t2
k(δ − θk)− η2

k

2
θk‖ṽk‖2 + M

6
η3

k‖dk‖3

≤ −η2
k

2
θk ‖ṽk‖2 + M

6
η3

k‖dk‖3 (by (C.1.6))

≤ −η2
k

2
θk ·

1
(
√

n/s + C)2
‖dk‖2 + M

6
η3

k‖dk‖3 (by Lemma B.2)

≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3 (by (B.2.5) and ηk = ∆/‖dk‖) .

This completes the proof.

We now consider the case where |tk| ≥ ν. In this case, dk is given by dk = P >
k ṽk/tk. Since

|tk| ≥ ν implies tk 6= 0, we have the following result by using the same argument as in the
proof of Lemma D.2.
Lemma C.2. Suppose Assumption 1 holds. Let dk = P >

k ṽk/tk. If |tk| ≥ ν, ‖dk‖ > ∆ and
ηk = ∆/‖dk‖, then

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3

holds with probability at least 1− 2 exp(−s).

By Lemmas C.1 and C.2, we can state that, when ‖dk‖ > ∆ holds, the objective function
value decreases by at least 1

2(
√

n/s+C)2
∆2δ − M

6 ∆3 at each iteration, with probability at
least 1− 2 exp(−s).

C.2 Analysis considering a line search strategy

In this subsection, we analyze the case where the step size is selected by the line search
algorithm shown in Algorithm 4. Specifically, we show that Algorithm 4 guarantees a
sufficient decrease in the function value, similar to the fixed step size case. As in the previous
subsection, we consider the cases |tk| < ν and |tk| ≥ ν separately, providing a guarantee of
function value decrease for each case (Lemma C.3 and Lemma C.4, respectively).
Lemma C.3. Suppose that Assumption 1 holds. Let ν ∈ (0, 1/2), |tk| < ν, dk =
sign(−g̃>

k ṽk)P >
k ṽk, β ∈ (0, 1), γ > 0, and ηk be chosen by Algorithm 4. Then, with probability

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

at least 1− 2 exp(−s), the number of iterations of Algorithm 4 is bounded above by⌈
logβ

(
3δ

M + γ

(√
n

s
+ C

)−3)⌉
,

and the decrease in the function value is bounded as follows:

f(xk+1)− f(xk) ≤ −min

{√
3γ

16

(√
n

s
− C

)3

,
9γβ3δ3

2(M + γ)3(
√

n/s + C)6

}
.

Proof. If the line search terminates with j = 0, i.e., ηk = 1, then

f(xk + ηkdk)− f(xk) ≤ −γ

6
η3

k‖dk‖3

≤ −γ

6
‖P >

k ṽk‖3

≤ −γ

6

(√
n

s
− C

)3

‖ṽk‖3 (by Lemma B.2)

≤ −
√

3γ

16

(√
n

s
− C

)3

(since ‖ṽk‖ =
√

1− |tk|2 ≥
√

1− ν2 =
√

3/2).

If the line search does not terminate at iteration j ≥ 0, then f(xk + ηkdk) − f(xk) >
−γ

6 η3
k‖dk‖3. Following the proof of Lemma C.1, we have

−γ

6
η3

k‖dk‖3 < f(xk + ηkdk)− f(xk)

≤ −η2
k

2
θk

(√
n

s
+ C

)−2

‖dk‖2 + M

6
η3

k‖dk‖3

≤ −η2
k

2
δ

(√
n

s
+ C

)−2

‖dk‖2 + M

6
η3

k‖dk‖3 (by (B.2.5)).

This implies ηk > 3δ
(M+γ)‖dk‖

(√
n
s + C

)−2 and j < logβ

(
3δ

(M+γ)‖dk‖
(√

n
s + C

)−2
)

. Since
‖dk‖ = ‖P >

k ṽk‖ ≤
(√

n
s + C

)
‖ṽk‖ ≤

(√
n
s + C

)
due to Lemma B.2 and ‖ṽk‖ ≤ 1, the num-

ber of line search iterations jk is bounded above by
⌈
logβ

(
3δ

M+γ

(√
n
s + C

)−3
)⌉

. Moreover,
the decrease in the function value can be bounded as follows:

f(xk + ηkdk)− f(xk) ≤ −γ

6
η3

k‖dk‖3

= −γ

6
β3jk‖dk‖3

≤ − 9γβ3δ3

2(M + γ)3(
√

n/s + C)6
,

where the last inequality follows from βjk−1 ≥ 3δ
(M+γ)‖dk‖

(√
n
s + C

)−2. Note that since we
used only Lemma B.2 as a probabilistic result, the probability that this proof holds is at
least 1− 2 exp(−s).

Lemma C.4. Suppose Assumption 1 holds. Let ν ∈ (0, 1/2), |tk| ≥ ν, dk = P >
k ṽk/tk, ‖dk‖ ≥

∆, β ∈ (0, 1), γ > 0, and ηk be chosen by Algorithm 4. Then, with probability at least
1− 2 exp(−s), the number of iterations of Algorithm 4 is bounded above by⌈

logβ

(
3δν

M + γ

(√
n

s
+ C

)−3)⌉
,

and the decrease in the function value is bounded as follows:

f(xk+1)− f(xk) ≤ −min

{
γ∆3

6
,

9γβ3δ3

2(M + γ)3(
√

n/s + C)6

}
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Proof. If the line search terminates with j = 0, i.e., ηk = 1, then

f(xk + ηkdk)− f(xk) ≤ −γ

6
η3

k‖dk‖3

≤ −γ

6
∆3 (since ‖dk‖ ≥ ∆).

If the line search does not terminate at iteration j ≥ 0, then f(xk + ηkdk) − f(xk) >
−γ

6 η3
k‖dk‖3. Following the proof of Lemma C.2, we have

−γ

6
η3

k‖dk‖3 < f(xk + ηkdk)− f(xk)

≤ −η2
k

2
θk

(√
n

s
+ C

)−2

‖dk‖2 + M

6
η3

k‖dk‖3

≤ −η2
k

2
δ

(√
n

s
+ C

)−2

‖dk‖2 + M

6
η3

k‖dk‖3 (by (B.2.5)).

This implies ηk > 3δ
(M+γ)‖dk‖

(√
n
s + C

)−2 and j < logβ

(
3δ

(M+γ)‖dk‖
(√

n
s + C

)−2
)

. There-

fore, the number of line search iterations jk is bounded above by
⌈
logβ

(
3δν

M+γ

(√
n
s + C

)−3
)⌉

.
Here, we have used the fact that

‖dk‖ =
∥∥∥∥P >

k

ṽk

tk

∥∥∥∥
≤
(√

n

s
+ C

)
‖ṽk‖
|tk|

(by Lemma B.2)

=
(√

n

s
+ C

) √
1− |tk|2
|tk|

≤
(√

n

s
+ C

)
1
ν

(since |tk| ≥ ν).

The decrease in the function value can be bounded as follows:

f(xk + ηkdk)− f(xk) ≤ −γ

6
η3

k‖dk‖3

= − 9γβ3δ3

2(M + γ)3(
√

n/s + C)6
,

where the last inequality follows from βjk−1 ≥ 3δ
(M+γ)‖dk‖

(√
n
s + C

)−2. Note that since we
used only Lemma B.2 as a probabilistic result, the probability that this proof holds is at
least 1− 2 exp(−s).

From the above two lemmas (Lemmas C.3 and C.4), we can bound the number of line search
iterations and the decrease in the function value for general tk as follows.
Corollary C.1. Suppose Assumption 1 holds. Let ν ∈ (0, 1/2), β ∈ (0, 1), γ > 0, ∆ > 0,
and δ > 0. Then, with probability at least 1− 2 exp(−s), the number of linesearch iterations
of Algorithm 4 is bounded above by⌈

logβ

(
3δν

M + γ

(√
n

s
+ C

)−3)⌉
,

and the decrease in the function value is bounded as follows:

f(xk+1)− f(xk) ≤ −min

{√
3γ

16

(√
n

s
− C

)3

,
γ∆3

6
,

9γβ3δ3

2(M + γ)3(
√

n/s + C)6

}
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

D Proofs for theoretical analysis

D.1 Analysis of the case where ‖dk‖ > ∆

Let us consider the case where ‖dk‖ > ∆ and evaluate the amount of decrease of the objective
function value at each iteration (Lemmas D.1 and D.2, leading to Lemma 3.1). Note that,
under ‖dk‖ > ∆, the update rule is given by

xk+1 = xk + ηkdk,

ηk = ∆/‖dk‖.

First, we consider the case where tk = 0. In this case, dk is given by dk = P >
k ṽk.

Lemma D.1. Suppose that Assumption 1 holds. Let dk = P >
k ṽk and ηk = ∆/‖dk‖. If

tk = 0, gk 6= 0 and ‖dk‖ > ∆ , then we have

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3

with probability at least 1− 2 exp(−s).

Proof. By tk = 0 and Corollary B.1, we have

ṽ>
k H̃kṽk = −θk‖ṽk‖2, (D.1.1)

ṽ>
k g̃k = 0. (D.1.2)

Therefore we obtain

d>
k Hkdk = ṽ>

k H̃kṽk (by definition of dk)
= −θk‖ṽk‖2 (by (D.1.1)), (D.1.3)

g>
k dk = sign(−g̃>

k ṽk)g̃>
k ṽk (by definition of dk)

= 0 (by (D.1.2)). (D.1.4)

Hence, the following inequality holds with probability at least 1− 2 exp(−s).

f(xk+1)− f(xk) = f(xk + ηkdk)− f(xk)

≤ ηkg>
k dk + η2

k

2
d>

k Hkdk + M

6
η3

k‖dk‖3 (by (B.1.1))

= 0− η2
k

2
θk‖ṽk‖2 + M

6
η3

k‖dk‖3 (by (D.1.3) and (D.1.4))

≤ −η2
k

2
θk ·

1
(
√

n/s + C)2
‖dk‖2 + M

6
η3

k‖dk‖3 (by Lemma B.2)

≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3 (by (B.2.5) and ηk = ∆/‖dk‖) .

This ends the proof.

Next, we consider the case where tk 6= 0. In this case, dk is given by dk = P >
k ṽk/tk.

Lemma D.2. Suppose Assumption 1 holds. Let dk = P >
k ṽk/tk. If tk 6= 0, ‖dk‖ > ∆ and

ηk = ∆/‖dk‖, then

f(xk+1)− f(xk) ≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3

holds with probability at least 1− 2 exp(−s).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Proof. Since tk 6= 0, we obtain from (B.2.9)

ṽ>
k

tk
H̃k

ṽk

tk
= −θk

‖ṽk‖2

t2
k

− g̃>
k ṽk

tk
. (D.1.5)

Therefore, it follows that

d>
k Hkdk = ṽ>

k

tk
H̃k

ṽk

tk

= −θk
‖ṽk‖2

t2
k

− g̃>
k ṽk

tk
(by (D.1.5))

= −θk
‖ṽk‖2

t2
k

− g>
k dk (by definition of dk) , (D.1.6)

g>
k dk = δ − θk (by (B.2.8))

≤ 0 (by (B.2.5)) . (D.1.7)

Since ηk = ∆/‖dk‖ ∈ (0, 1), we have ηk − η2
k/2 ≥ 0. Thus we obtain(

ηk −
η2

k

2

)
g>

k dk ≤ 0 (by (D.1.7)) . (D.1.8)

Therefore, the following inequality holds with probability at least 1− 2 exp(−s).

f(xk+1)− f(xk) = f(xk + ηkdk)− f(xk)

≤ ηkg>
k dk + η2

k

2
d>

k Hkdk + M

6
η3

k‖dk‖3 (by (B.1.1))

= ηkg>
k dk + η2

k

2

(
−θk
‖ṽk‖2

t2
k

− g>
k dk

)
+ M

6
η3

k‖dk‖3 (by (D.1.6))

=
(

ηk −
η2

k

2

)
g>

k dk −
η2

k

2
θk
‖ṽk‖2

t2
k

+ M

6
η3

k‖dk‖3

≤ −η2
k

2
θk
‖ṽk‖2

t2
k

+ M

6
η3

k‖dk‖3 (by (D.1.8))

≤ −η2
k

2
θk ·

1
(
√

n/s + C)2
‖dk‖2 + M

6
η3

k‖dk‖3 (by Lemma B.2)

≤ − 1
2(
√

n/s + C)2
∆2δ + M

6
∆3 (by (B.2.5) and ηk = ∆/‖dk‖) .

By Lemmas D.1 and D.2, we can state that, when ‖dk‖ > ∆ holds, the objective function
value decreases by at least 1

2(
√

n/s+C)2
∆2δ− M

6 ∆3 at each iteration with probability at least
1− 2 exp(−s). This proves Lemma 3.1.

D.2 Analysis of the case where ‖dk‖ ≤ ∆

Now we consider the case where RSHTR satisfies ‖dk‖ ≤ ∆ at the k-th iteration and outputs
xk+1 = xk + dk. To investigate the property of xk+1, we analyze ‖gk+1‖ and λmin(H̃k+1).
We first derive an upper and lower bound on the eigenvalues of ∇2f(x).
Lemma D.3. Suppose Assumption 1 holds. Then for all x ∈ Rn,

λmin(∇2f(x)) ≥ −L, (D.2.1)
λmax(∇2f(x)) ≤ L

hold.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Proof. Let v be a unit eigenvector corresponding to the smallest eigenvalue. By definition
of ∇2f(x), we have

∇2f(x)v = lim
h→0

∇f(x + hv)−∇f(x)
h

.

To bound the right-hand side, we use the L-Lipschitz property. We obtain

‖∇2f(x)v‖ ≤ lim
h→0

‖∇f(x + hv)−∇f(x)‖
|h|

≤ L‖hv‖
|h|

= L‖v‖.

Finally, since ‖∇2f(x)v‖ = |λmin(∇2f(x))|‖v‖, we obtain λmin(∇2f(x)) ≥ −L. The proof
of the second inequality is similar.

Next, we derive upper and lower bounds on the eigenvalues of H̃k.
Lemma D.4. Suppose Assumption 1 holds. Then we have

λmin
(
H̃k

)
≥ −

(√
n

s
+ C

)2

L, (D.2.2)

λmax
(
H̃k

)
≤
(√

n

s
+ C

)2

L (D.2.3)

with probability at least 1− 2 exp(−s).

Proof. Let us consider the first inequality. Let E =
{

x̃ ∈ Rs
∣∣ x̃>H̃kx̃ < 0

}
. Then we have

λmin
(
H̃k

)
≥ min

{
0, min

x̃∈E

x̃>H̃kx̃

‖x̃‖2

}
. (D.2.4)

By Lemma B.2, we have

‖P >
k x̃‖2 ≤

(√
n

s
+ C

)2

‖x̃‖2 (D.2.5)

with probability at least 1− 2 exp(−s). Therefore, we obtain

min
{

0, min
x̃∈E

x̃>H̃kx̃

‖x̃‖2

}
≥
(√

n

s
+ C

)2

min
{

0, min
x̃∈E

x̃>PkHkP >
k x̃

‖P >
k x̃‖2

}
(by (D.2.5))

≥
(√

n

s
+ C

)2

min
{

0, min
x∈Rn

x>Hkx

‖x‖2

}
(by Im(P >

k) ⊂ Rn)

=
(√

n

s
+ C

)2

min {0, λmin (Hk)}

≥ −
(√

n

s
+ C

)2

L (by (D.2.1)).

Hence, by (D.2.4), the first inequality (D.2.2) holds with probability at least 1− 2 exp(−s).
The proof of (D.2.3) is similar.

Using this lemma, we can derive an upper bound for ‖gk‖. It should be noted that this is
an auxiliary lemma and not an upper bound for ‖gk+1‖, the norm of the gradient at the
output of RSHTR.
Lemma D.5. Suppose that Assumption 1 holds. If ‖dk‖ ≤ ∆ ≤ 1

2
√

2 , then

‖gk‖ ≤ 8∆

((√
n

s
+ C

)2

L + δ

)
with probability at least 1− 2 exp

(
−C

4 s
)
− 2 exp(−s).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Proof. The proof for the case of gk = 0 is trivial. Thus, in the following argument, we
suppose that gk 6= 0. By gk 6= 0, we have θk − δ > 0 with probability 1 by Lemma B.4.
Applying the Schur complement property to (B.2.2), we obtain

H̃k + θkIs −
1

θk − δ
g̃kg̃>

k � 0.

Hence,
θk − δ

‖gk‖2 g̃>
k

(
H̃k + θkIs −

1
θk − δ

g̃kg̃>
k

)
g̃k ≥ 0.

The inequality can be rewritten as

(θk − δ) g̃>
k H̃kg̃k

‖gk‖2 + (θk − δ)θk
‖g̃k‖2

‖gk‖2 −
‖g̃k‖4

‖gk‖2 ≥ 0.

By multiplying by ‖gk‖2/‖g̃k‖2 and applying θk = (θk − δ) + δ, it follows that

(θk − δ)2 + (θk − δ)
(

g̃>
k H̃kg̃k

‖g̃k‖2 + δ

)
− ‖g̃k‖2 ≥ 0. (D.2.6)

Moreover, by (B.2.8) in Corollary B.1, we deduce

θk − δ = −g>
k dk ≤ ‖gk‖‖dk‖ ≤ ∆‖gk‖. (D.2.7)

Let us define
h(t) = t2 +

(
g̃>

k H̃kg̃k

‖g̃k‖2 + δ

)
t− ‖g̃k‖2.

Since we have h(0) = −‖g̃k‖2 < 0 holds with probability 1, as gk 6= 0, we deduce that
h(t) = 0 has a positive root. Let us denote it by t2. From θk − δ > 0 and h(θk − δ) ≥ 0
due to (D.2.6), we obtain t2 ≤ θk − δ. Since h(t) is monotonically increasing in t2 ≤ t, by
(D.2.7), we have

h(∆‖gk‖) = ∆2‖gk‖2 +
(

g̃>
k H̃kg̃k

‖g̃k‖2 + δ

)
∆‖gk‖ − ‖g̃k‖2 ≥ 0.

By Lemma B.1, we have 1
2‖gk‖ ≤ ‖g̃k‖ with probability at least 1− 2 exp

(
−C

4 s
)
. It follows

that
∆2‖gk‖2 +

(
g̃>

k H̃kg̃k

‖g̃k‖2 + δ

)
∆‖gk‖ −

‖gk‖2

4
≥ 0.

This implies (
1
4
−∆2

)
‖gk‖ ≤

(
g̃>

k H̃kg̃k

‖g̃k‖2 + δ

)
∆.

Since we have ∆ ≤ 1
2

√
2 , the left side is bounded from below by ‖gk‖

8 . Moreover, from

(D.2.3), the right side is bounded from above by
((√

n
s + C

)2
L + δ

)
∆ with probability at

least 1− 2 exp(−s). Thus we conclude that

‖gk‖ ≤ 8∆

((√
n

s
+ C

)2

L + δ

)
holds with probability at least 1− 2 exp

(
−C

4 s
)
− 2 exp(−s).

We have the following additional auxiliary lemma.
Lemma D.6. If tk 6= 0, dk = P >

k ṽk/tk, ‖dk‖ ≤ ∆, then we have

‖Hkdk + gk‖ ≤
2δ∆ + 2‖gk‖∆2√

n/s− C

with probability at least 1− 2 exp
(
−C

4 s
)
− 2 exp(−s).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Proof. By Lemma B.1 and Lemma B.2, we have
1
2
‖Hkdk + gk‖ ≤ ‖Pk (Hkdk + gk)‖ , (D.2.8)

‖dk‖ = ‖P
>
k ṽk‖
|tk|

≥
(√

n

s
− C

)
‖ṽk‖
|tk|

(D.2.9)

with probability at least 1− 2 exp
(
−C

4 s
)
− 2 exp (−s). Hence,

‖Hkdk + gk‖ ≤ 2 ‖Pk (Hkdk + gk)‖ (by (D.2.8))

= 2θk

∥∥∥∥ ṽk

tk

∥∥∥∥ (by (B.2.9) in Corollary B.1)

≤ 2θk√
n/s− C

‖dk‖ (by (D.2.9))

≤ 2δ∆ + 2‖gk‖∆2√
n/s− C

(by (D.2.7) and ‖dk‖ ≤ ∆).

Proof of Lemma 3.2

Proof. This is proved by the following inequalities.

‖gk+1‖ ≤ ‖gk+1 −Hkdk − gk‖+ ‖Hkdk + gk‖

≤ M

2
‖dk‖2 + 2δ∆ + 2‖gk‖∆2√

n/s− C
(by Lemma D.6)

≤ M

2
∆2 + 1√

n/s− C

(
2δ∆ + 16∆3

((√
n

s
+ C

)2

L + δ

))
(by Lemma D.5).

The second and the third inequalities both hold with probability at least 1− 2 exp
(
−C

4 s
)
−

2 exp (−s). Therefore, this lemma holds with probability at least 1 − 4 exp
(
−C

4 s
)
−

4 exp (−s).

Proof of Lemma 3.3

Proof. By (B.2.2) and Cauchy’s interlace theorem, we have H̃k + θkI � 0. With (D.2.7)
and Lemma D.5, it follows that

−θk ≥ −

[
8∆2

((√
n

s
+ C

)2

L + δ

)
+ δ

]
with probability at least 1− 2 exp

(
−C

4 s
)
− 2 exp (−s). This implies

H̃k � −

[
8∆2

((√
n

s
+ C

)2

L + δ

)
+ δ

]
I. (D.2.10)

We can now bound H̃k+1 and obtain

H̃k+1 � H̃k − ‖H̃k+1 − H̃k‖I
� H̃k −M∆I (by Assumption 1 and ‖dk‖ ≤ ∆)

� −

[
8∆2

((√
n

s
+ C

)2

L + δ

)
+ δ + M∆

]
I (by (D.2.10)).

This completes the proof.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

D.3 Proof of Theorem 3.1

Proof. Let us consider how many times we iterate the case where |dk| > ∆ at most. Ac-
cording to Lemma D.1 and Lemma D.2, the objective function decreases by at least

1

2
(√

n/s + C
)2 ∆2δ − M

6
∆3 = ε3/2

3M2

with probability at least 1− 2 exp (−s). Since the total amount of decrease does not exceed
D := f(x0) − infx∈Rn f(x), the number of iterations for the case where ‖dk‖ > ∆ is at
most b3M2Dε−3/2c with probability at least 1 − 2b3M2Dε−3/2c exp (−s). Also, since the
algorithm terminates once it enters the case ‖dk‖ ≤ ∆, the total number of iterations is at
most Uε = b3M2Dε−3/2c+ 1 at least with the same probability as the above.

We can compute an ε–FOSP with probability at least 1− 4 exp
(
−C

4 s
)
− 4 exp (−s), which

can be easily checked by applying Lemma 3.2 to the given δ and ∆.
Therefore, RSHTR converges in b3M2Dε−3/2c + 1 = O(ε−3/2) iterations with probability
at least

1− 2b3M2Dε−3/2c exp (−s)− 4 exp
(
−C

4
s

)
− 4 exp (−s)

≥ 1− 4 exp
(
−C

4
s

)
− (2Uε + 2) exp (−s) .

Notice that by Theorem 3.1 and Lemma 3.2, we obtain that
gk∗+1 ≤ O(

√
n/sε),

where k∗ denotes the last iteration, k, where ‖dk‖ > ∆. Therefore, in order to obtain a
ε-FOSP, we need to scale down ε by

√
s/n. We obtain therefore an iteration complexity of

O

((√
s

n
ε

)−3/2)
= O

((n

s

)3/4
ε−3/2

)
.

D.4 ε–SOSP under the assumption of Shao (2022)

Let us introduce the following assumption.
Assumption 5. Let ξ ∈ (0, 1) and define r = rank(∇2f(x∗)), λ1 as the maximum non-zero
eigenvalues of ∇2f(x∗), and λr as the minimum non-zero eigenvalues of ∇2f(x∗). Then,
the following inequality holds

1− ξ + 16r − 1
s

1 + ξ

1− ξ

λ1

λr
≥ 0.

By the contraposition of (Shao, 2022, Lemma 5.6.6), under Assumption 5, the lower bound
on the minimum eigenvalue of H∗ is proportional to the lower bound on the minimum
eigenvalue of P ∗H∗P ∗> with high probability. Therefore, Lemma 3.3 leads to the following
theorem.
Theorem D.1 (Global convergence to an ε–SOSP under Assumption 5). Suppose Assump-
tions 1 and 5 hold. Set ε, δ and ∆ the same as Theorem 3.1, i.e.,

0 < ε ≤ M2

8
, δ =

(√
n

s
+ C

)2√
ε and ∆ =

√
ε

M
.

Then RSHTR converges to an ε–SOSP in at most O(ε−3/2) iterations with probability at
least

(0.9999)r−1
(

1− 2 exp
(
−sξ2

C3

))
− 6 exp

(
−C

4
s

)
− (2Uε + 2) exp (−s) ,

where Uε := b3M2Dε−3/2c+ 1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Proof. By Theorem 3.1, RSHTR converges to an ε–FOSP in at most O(ε−3/2) iterations
with probability at least,

1− 4 exp
(
−C

4
s

)
− (2Uε + 2) exp (−s) .

Let x∗ denotes the ε–FOSP. We now proceed to prove that x∗ is also an ε–SOSP as well.
By applying Lemma 3.3 to the given δ and ∆, we have

λmin
(
P ∗H∗P ∗>) ≥ −[8ε

M2

(√
n

s
+ C

)2 (
L +
√

ε
)

+
(√

n

s
+ C

)2√
ε +
√

ε

]
(D.4.1)

with probability at least 1− 2 exp
(
−C

4 s
)
− 2 exp (−s). Hence, by using the contraposition

of (Shao, 2022, Lemma 5.6.6) and denoting κH = min{0, λ1/λr}, we have

λmin (H∗) ≥ −
(

1− ξ + 16r − 1
s

1 + ξ

1− ξ
κH

)−1

·

[
8ε

M2

(√
n

s
+ C

)2 (
L +
√

ε
)

+
(√

n

s
+ C

)2√
ε +
√

ε

]
= Ω(−

√
ε)

with probability at least (0.9999)r−1
(

1− 2 exp
(
− sξ2

C3

))
. This shows that x∗ is an ε–SOSP

and the lower bound on the probability is given as follows:

(0.9999)r−1
(

1− 2 exp
(
−sξ2

C3

))
−
(

4 exp
(
−C

4
s

)
+ (2Uε + 2) exp (−s)

)
−
(

2 exp
(
−C

4
s

)
+ 2 exp (−s)

)
≥ (0.9999)r−1

(
1− 2 exp

(
−sξ2

C3

))
− 6 exp

(
−C

4
s

)
− (2Uε + 4) exp (−s) .

Proof of Lemma 3.4

Proof. H∗ can be expressed as H∗ = U∗D∗U∗> using an orthogonal matrix U∗ and a
diagonal matrix D∗. Here,

D∗ = diag(λ1, . . . , λr)

is the diagonal matrix with eigenvalues λ1, . . . , λr. Note that λr+1 = · · · = λn = 0. Hence,
it follows that

P ∗H∗P ∗> = P ∗U∗D∗U∗>P ∗>

= P̂ ∗D∗P̂ ∗>

= P̂ ∗
1 D∗

1P̂ ∗>
1 , (D.4.2)

where P̂ ∗
1 is the first r columns of P̂ ∗, and D∗

1 is the leading principal minor of order r of
D∗. Here, P̂ ∗ is also a random Gaussian matrix due to the orthogonality of U∗. Therefore,
P̂ ∗

1 is full column rank with probability 1. This implies that

∀y ∈ Rr,∃x ∈ Rs s.t. P̂ ∗>
1 x = y (D.4.3)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

with probability 1. Hence, the following holds with probability 1.

λmin(H∗) = min
z∈Rn

z>H∗z

‖z‖2

= min
y∈Rr

y>D∗
1y

‖y‖2

≥ min
x∈Rs

x>P̂ ∗
1 D∗

1P̂ ∗>
1 x

‖P ∗>
1 x‖2 (by (D.4.3))

≥ min

{
min
x∈E

x>P̂ ∗
1 D∗

1P̂ ∗>
1 x

‖P ∗>
1 x‖2 , 0

}
where E :=

{
x ∈ Rs | x>P̂ ∗

1 D∗
1P̂ ∗>

1 x < 0
}

≥ min

min
x∈E

1

σmin

(
P̂ ∗

1

)2
x>P̂ ∗

1 D∗
1P̂ ∗>

1 x

‖x‖2 , 0

(
by‖P̂ ∗>

1 x‖2 ≥ σmin

(
P̂ ∗

1

)
‖x‖
)

= 1

σmin

(
P̂ ∗

1

)2 min
{

λmin

(
P̂ ∗

1 D∗
1P̂ ∗>

1

)
, 0
}

= 1

σmin

(
P̂ ∗

1

)2 min
{

λmin
(
P ∗H∗P ∗>) , 0

}
(by (D.4.2)) .

Moreover, by (Rudelson & Vershynin, 2009, Theorem 1.1), we have

∀ζ > 0, Pr

[
σmin

(
P̂ ∗

1

)
≥ ζ

(
1−

√
r − 1

s

)]
≥ 1− (C̄ζ)s−r+1 − e−c̄s

for some constants C̄, c̄. Therefore, for any ζ > 0, the following inequality holds with
probability at least 1− (C̄ζ)s−r+1 − e−c̄s.

λmin(H∗) ≥ 1

ζ2
(

1−
√

r−1
s

)2 min
{

λmin
(
P ∗H∗P ∗>) , 0

}
.

Proof of Theorem 3.2

Proof. By following the same argument as in the proof of Theorem D.1 up to (D.4.1), we
obtain

λmin
(
P ∗H∗P ∗>) ≥ Ω(−

√
ε)

with probability at least 1 − 6 exp
(
−C

4 s
)
− (2Uε + 4) exp (−s). Applying Lemma 3.4 with

ζ = C̄/e, we have λmin(H∗) ≥ Ω (−
√

ε) with probability at least

1− 6 exp
(
−C

4
s

)
− (2Uε + 4) exp (−s)− exp (−s + r − 1)− exp(−c̄s)

for some constant c̄. This completes the proof.

D.5 Local convergence

We note that under Assumption 3, there exists µ > 0 and R̄ > 0 such that
∀x ∈ B(x̄, R̄), ∇2f(x) � µI, (D.5.1)

where B(x, R) := {y ∈ Rn | ‖y − x‖ ≤ R}. Let us first discuss the special case, xk = x̄,
which is equivalent to gk = 0 by convexity from Assumption 3.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Lemma D.7. Suppose that Assumption 3 holds. If gk = 0, then xk+1 = xk with probability
1.

Lemma D.7 states that the iterates do not move away from x̄ once it is reached. Since
staying at x̄ achieves any local convergence rate, we ignore this case.

Proof. By applying (B.2.6) to gk = 0, we have (H̃k + θkI)ṽk = 0. This implies that ṽk = 0
or (−θk, ṽk) is an eigenpair of H̃k.
We show that the latter case is impossible by supposing it and leading to a contradiction.
Suppose that (−θk, ṽk) is an eigenpair of H̃k. This implies λmin

(
H̃k

)
≤ −θk ≤ 0. Thus, we

get

∃y ∈ Rs \ {0} s.t. y>H̃ky

‖y‖2 ≤ 0.

Since y 6= 0, we have 0 < ‖P >
k y‖ with probability 1. Therefore, ‖y2‖/‖P >

k y‖2 > 0 follows.
Thus, by multiplying (D.5.2) by ‖y2‖/‖P >

k y‖2 > 0, we obtain

∃y ∈ Rs s.t. y>H̃ky

‖P >
k y‖2 ≤ 0.

By taking z = P >
k y, it follows that

∃z ∈ Rn s.t. z>Hkz

‖z‖2 ≤ 0.

Therefore λmin(Hk) ≤ 0 follows. However, this contradicts Assumption 3.
From the above argument, we have ṽk = 0. Since ṽk = 0 implies tk 6= 0 from (B.2.3), dk is
defined as:

dk = P >
k ṽk/tk = 0.

Therefore, ‖dk‖ ≤ ∆ holds and xk+1 = xk + dk = xk follows.

Next, we show that in a sufficiently small neighborhood of a local minimizer, we have
‖dk‖ ≤ ∆. To this end, we first present the following auxiliary lemma.
Lemma D.8. Under Assumption 3, tk 6= 0 with probability 1.

Proof. Suppose on the contrary that tk = 0, then (−θk, ṽk) is an eigenpair of H̃k by (B.2.7)
in Corollary B.1. Thus we have λmin(H̃k) ≤ −θk < −δ ≤ 0 with probability 1 by gk 6= 0
and Lemma B.4. This implies that

∃y ∈ Rs s.t. y>H̃ky

‖y‖2 < 0. (D.5.2)

Note that ‖y‖ 6= 0 and ‖P >
k y‖ 6= 0 hold since the numerator and denominator of (D.5.2)

are both non-zero. By multiplying (D.5.2) by ‖y‖2/‖P >
k y‖2 > 0, it follows that

∃y ∈ Rs s.t. y>H̃ky

‖P >
k y‖2 < 0.

By considering z = P >
k y, we obtain

∃z ∈ Rn s.t. z>Hkz

‖z‖2 < 0.

Therefore λmin(Hk) < 0 follows. However, this contradicts Assumption 3. The proof is
completed.

By Lemma D.8, under Assumption 3, we have dk = P >
k

ṽk

tk
with probability 1. This leads to

the following lemma.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Lemma D.9. Under Assumption 3, we have ‖dk‖ ≤ ∆ for sufficiently large k with proba-
bility at least 1− 2 exp

(
−C

4 s
)
− 4 exp (−s).

Proof. From Lemma D.8 and (B.2.9), we have the following with probability 1.

ṽk

tk
= −(H̃k + θkI)−1g̃k.

Therefore, by multiplying P >
k from the left, it follows that

dk = P >
k

ṽk

tk
= −P >

k (H̃k + θkI)−1g̃k.

Thus, we obtain

‖dk‖ ≤ ‖P >
k ‖‖(H̃k + θkI)−1‖‖g̃k‖

≤ ‖P >
k ‖‖(H̃k + θkI)−1‖‖gk‖/2 (by Lemma B.1)

≤
√

n/s + C
2

‖(H̃k + θkI)−1‖‖gk‖ (by Lemma B.2) .

Here the second and third inequalities hold with probability at least 1−2 exp
(
−C

4 s
)

and 1−
2 exp (−s) respectively. By Lemma D.10 and (D.5.1), we have H̃k +θkI �

(√
n
s − C

)2
µ+θk

with probability at least 1− 2 exp (−s). Hence, we have

‖dk‖ ≤
(
√

n/s + C)/2
(
√

n/s− C)2µ + θk

‖gk‖

≤
(
√

n/s + C)/2
(
√

n/s− C)2µ
‖gk‖

≤
(
√

n/s + C)
2(
√

n/s− C)2

‖gk‖
µ

.

We have ‖gk‖ → 0 by Assumption 3, which leads to ‖dk‖ ≤ ∆ for sufficiently large k.

Here, we present an auxiliary lemma for the proof of Theorem 3.3.
Lemma D.10. We have

λmin
(
H̃k

)
≥
(√

n

s
− C

)2

λmin(Hk),

λmax
(
H̃k

)
≤
(√

n

s
+ C

)2

λmax(Hk)

with probability at least 1− 2 exp (−s).

Proof. It follows that for any x ∈ Rn, we have x>Hkx
‖x‖2 ≥ λmin(Hk). Therefore, by set-

ting x = P >
k y, we have y>PkHkP >

k y

‖P >
k

y‖2 ≥ λmin(Hk) for any y ∈ Rs. Using Lemma B.2, we

have
(√

n
s − C

)2 ‖y‖2 ≤ ‖P >
k y‖2 with probability at least 1 − 2 exp (−s). This implies the

following inequality holds.

y>PkHkP >
k y

‖y‖2 ≥
(√

n

s
− C

)2

λmin(Hk).

This inequality holds for any y ∈ Rs, which proves the first equation. The proof of the
second equation follows a similar argument.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

D.5.1 Proof of Theorem 3.3

Proof. √
H̄(xk+1 − x̄) =

√
H̄(xk+1 − xk) +

√
H̄(xk − x̄)

=
√

H̄dk +
√

H̄(xk − x̄)

= −
√

H̄P >
k (H̃k + θkI)−1Pkgk +

√
H̄(xk − x̄)

= −
√

H̄P >
k (H̃k + θkI)−1PkHk(xk − x̄)

−
√

H̄P >
k (H̃k + θkI)−1Pk(gk −Hk(xk − x̄k))

+
√

H̄(xk − x̄)

= −A−B +
√

H̄(xk − x̄).
Here, we define

A :=
√

H̄P >
k (H̃k + θkI)−1PkHk(xk − x̄)

and

B :=
√

H̄P >
k (H̃k + θkI)−1Pk(gk −Hk(xk − x̄k)).

To bound B, we give a bound to ‖P >
k (PkHkP >

k + θkI)−1Pk‖. By Lemma D.10, PkHkP >
k is

invertible with probability at least 1− 2 exp (−s). Therefore, we have:

‖P >
k (PkHkP >

k + θkI)−1Pk‖ ≤ ‖P >
k (PkHkP >

k)−1Pk‖. (D.5.3)
Moreover, the right-hand side satisfies the following inequality.

‖P >
k (PkHkP >

k)−1Pk‖ ≤ ‖P >
k ‖2

((√
n

s
− C

)2

λmin(Hk)

)−1

(by Lemma D.10)

≤
(
√

n/s + C)2

(
√

n/s− C)2

1
µ

(by Lemma B.2 and (D.5.1)). (D.5.4)

Here, the first and the second inequalities both hold with probability at least 1−2 exp (−s).
Therefore, combining (D.5.3) and (D.5.4), we have

‖P >
k (PkHkP >

k + θkI)−1Pk‖ ≤
(
√

n/s + C)2

(
√

n/s− C)2
· 1

µ
(D.5.5)

with probability at least 1− 6 exp (−s).
By Taylor expansion at x̄ of ∇f , we obtain ‖gk −Hk(xk − x̄)‖ = O(‖xk − x̄‖2). Combining
this with (D.5.5), we get B = O(‖xk − x̄‖2) with probability at least 1− 6 exp (−s).
Next, to bound A, we further decompose A = A1 + A2 such that

A1 :=
√

H̄P >
k (PkH̄P >

k + θkI)−1PkH̄(xk − x̄)

A2 :=
√

H̄P >
k (PkH̄P >

k + θkI)−1Pk(Hk − H̄)(xk − x̄).

Since ‖Hk − H̄‖ tends to 0 and (D.5.5), we have ‖A2‖ = o(‖xk − x̄‖). This leads to∥∥∥√H̄(xk+1 − x̄)
∥∥∥ ≤ ∥∥∥−A1 +

√
H̄(xk − x̄)

∥∥∥+ o(‖xk − x̄‖),

which holds with probability at least 1 − 6 exp (−s). Therefore, it remains to bound∥∥∥−A1 +
√

H̄(xk − x̄)
∥∥∥. This is further decomposed as ‖A3 −A4‖, where

A3 :=
(

I −
√

H̄P >
k (PkH̄P >

k)−1Pk

√
H̄
)√

H̄(xk − x̄),

A4 :=
√

H̄P >
k

(
(PkH̄P >

k + θkI)−1 − (PkH̄P >
k)−1)PkH̄(xk − x̄).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Here, ‖A4‖ = o(‖xk− x̄‖) holds for the following reason. By (B.2.8), Lemma D.8 and δ = 0,
we have θk = −gkdk with probability 1 and thus

‖θk‖ ≤ ‖gk‖‖dk‖
≤ ∆‖gk‖ (by Lemma D.9)

with probability at least 1 − 2 exp
(
−C

4 s
)
− 4 exp (−s). This leads to θk → 0 since ‖gk‖

tends to 0. Therefore,
∥∥(PkH̄P >

k + θkI)−1 − (PkH̄P >
k)−1

∥∥ tends to 0, which implies ‖A4‖ =
o(‖xk−x̄‖). Hence, it remains to bound ‖A3‖. Using the fact that

√
H̄P >

k (PkH̄P >
k)−1Pk

√
H̄

is an orthogonal projection, this is bounded from above by√
1− λmin(H̄)

2λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥ .

Thus we obtain that∥∥∥√H̄(xk+1 − x̄)
∥∥∥ ≤√1− λmin(H̄)

2λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥+ o(‖xk − x̄‖).

Therefore, when√
1− λmin(H̄)

4λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥−√1− λmin(H̄)

2λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥ ≥ o(‖xk−x̄‖),

we have that ∥∥∥√H̄(xk+1 − x̄)
∥∥∥ ≤√1− λmin(H̄)

4λmax(PkH̄P >
k)

∥∥∥√H̄(xk − x̄)
∥∥∥ . (D.5.6)

Notice that the condition above is implied when√
1− λmin(H̄)

4λmax(PkH̄P >
k)
−

√
1− λmin(H̄)

2λmax(PkH̄P >
k)
≥ o(‖xk − x̄‖)√

λmin(H̄)‖xk − x̄‖
.

Thus, we obtain (D.5.6) for sufficiently large k.

Since we have, by Lemma D.10, λmax(PkH̄P >
k) ≤

(√
n
s + C

)2
λmax(H̄) with probability at

least 1− 2 exp (−s), the upper bound can be rewritten as∥∥∥√H̄(xk+1 − x̄)
∥∥∥ ≤√1− λmin(H̄)

4λmax(H̄)(
√

n/s + C)2

∥∥∥√H̄(xk − x̄)
∥∥∥ .

Since the probabilistically valid properties that we used in this proof are Lemmas B.2, D.8,
D.10 and D.9, the probability lower bound is given by 1− 2 exp

(
−C

4 s
)
− 8 exp (−s).

D.5.2 Local quadratic convergence

Let ȳ = Rx̄, where we recall that x̄ be the strict local minimizer of f . Then the following
properties hold:

f(x) = f(R>Rx) = l(Rx),
∇f(x) = ∇f(Πx) = Π>∇f(x) = Π∇f(x), (D.5.7)

‖∇f(x)‖ =
√
‖∇f(x)>∇f(x)‖2 =

√
‖∇f(x)>Π∇f(x)‖ = ‖R∇f(x)‖,

∃ρ > 0 s.t. ‖∇l(y)‖ ≥ ρ‖y − ȳ‖,
∃γ > 0 s.t. ‖∇f(x)‖ ≥ γ‖R(x− x̄)‖ (γ = σmin(R>)ρ). (D.5.8)

Next, we show some lemmas regarding Lipschitz continuity.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Lemma D.11. Suppose Assumptions 1 and 4 hold. There exist constants Ll, Ml > 0 such
that for any y1, y2 ∈ Rr, the following inequalities hold:

‖∇l(y1)−∇l(y2)‖ ≤ Ll‖y1 − y2‖, (D.5.9)
‖∇2l(y1)−∇2l(y2)‖ ≤Ml‖y1 − y2‖. (D.5.10)

Proof. Since l(y) = f(R>y), by the Lipschitz continuity of f , we have

‖∇l(y1)−∇l(y2)‖ =
∥∥∥R ∇f(x)|x=R>y1

−R ∇f(x)|x=R>y2

∥∥∥
≤ ‖R‖

∥∥∥∇f(x)|x=R>y1
− ∇f(x)|x=R>y2

∥∥∥
≤ ‖R‖L

∥∥R>y1 −R>y2
∥∥

≤ ‖R‖2
L ‖y1 − y2‖ .

Moreover, we have

‖∇2l(y1)−∇2l(y2)‖ =
∥∥∥R
(
∇2f(x)

∣∣
x=R>y1

− ∇2f(x)
∣∣
x=R>y2

)
R>
∥∥∥

≤ ‖R‖2
∥∥∥∇2f(x)

∣∣
x=R>y1

− ∇2f(x)
∣∣
x=R>y2

∥∥∥
≤ ‖R‖2

M
∥∥R>y1 −R>y2

∥∥
≤ ‖R‖3

M ‖y1 − y2‖ .

Therefore, by setting Ll = ‖R‖2
L and Ml = ‖R‖3

M , the lemma is proved.

Lemma D.12. Suppose Assumptions 1 and 4 hold. There exists a constant LΠ > 0 such
that for any x1, x2 ∈ Rn, the following inequality holds:

‖∇f(x1)−∇f(x2)‖Π ≤ LΠ‖x1 − x2‖Π.

Proof. Since

‖∇f(x1)−∇f(x2)‖Π =
√∥∥∥(∇f(x1)−∇f(x2))> Π (∇f(x1)−∇f(x2))

∥∥∥
=
√∥∥∥(∇f(x1)−∇f(x2))> (Π∇f(x1)−Π∇f(x2))

∥∥∥
=
√∥∥∥(∇f(x1)−∇f(x2))> (∇f(x1)−∇f(x2))

∥∥∥ (by (D.5.7))

≤ ‖∇f(x1)−∇f(x2)‖

=
∥∥∥R>

(
∇l(y)|y=Rx1

− ∇l(y)|y=Rx2

)∥∥∥
≤ Ll ‖R‖ ‖Rx1 −Rx2‖ ,

the lemma is proved by setting LΠ = Ll ‖R‖.

From this lemma, it immediately follows that ‖gk‖ = ‖gk‖Π = O(‖xk − x̄‖Π).
In the following, we analyze the convergence rate of ‖xk−x̄‖Π, which leads to the convergence
rate of f(xk)− f(x̄). First, note that t 6= 0 (a.s.) is derived from the fact that the Hessian
is positive semi-definite near x̄. However, the proof is omitted since it is similar to that of
Lemma D.8. This implies dk = P >

k
ṽk

tk
.

Next, we show two auxiliary lemmas.
Lemma D.13. Suppose Assumption 4 holds. The following inequality holds with probability
at least 1− 4 exp

(
−C

4 s
)
.

‖Hkdk + gk‖ ≤ 4‖gk‖Π‖dk‖2
Π

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Proof. Let UR be an orthogonal matrix whose first r rows are given by R. It follows that
URP >

k has the same distribution as P >
k , meaning that each element of URP >

k is distributed
according to N (0, 1/s). As RP >

k is the first r rows of URP >
k , RP >

k is an r×s random matrix
with elements independently drawn from N (0, 1/s). Hence, we can apply Lemma B.1 to
RP >

k and we have
‖Hkdk + gk‖ ≤ 2‖Pk(Hkdk + gk)‖ (by Lemma B.1)

≤ 4‖RP >
k Pk(Hkdk + gk)‖ (by Lemma B.1) (D.5.11)

with probability at least 1− 4 exp
(
−C

4 s
)
. By multiplying RP >

k to both sides of (B.2.8), we
obtain

RP >
k Pk(Hkdk + gk) = −θkRdk. (D.5.12)

Thus we have
‖Hkdk + gk‖ ≤ 4‖RP >

k Pk(Hkdk + gk)‖ (by (D.5.11))
= 4‖ − θkRdk‖ (by (D.5.12))
= 4θk‖Rdk‖
= 4θk‖dk‖Π. (D.5.13)

Moreover, from (B.2.8) and δ = 0, we have
θk = −g>

k dk

= −(Πgk)>dk

= −(Rgk)>(Rdk)
≤ ‖gk‖Π‖dk‖Π. (D.5.14)

Combining (D.5.13) and (D.5.14), we obtain
‖Hkdk + gk‖ ≤ 4‖gk‖Π‖dk‖2

Π.

Lemma D.14. Suppose Assumptions 1 and 4 hold. The following inequality holds:

‖gk+1 − (Hkdk + gk)‖ ≤ 1
2

Ml‖dk‖2
Π.

Proof. By considering the Taylor expansion of t 7→ ∇f(xk + tdk), we obtain the following
equation:

gk+1 = gk +
∫ 1

0
∇2f(xk + tdk)dkdt.

By subtracting Hkdk + gk from both sides, we obtain

gk+1 − (Hkdk + gk) =
∫ 1

0

(
∇2f(xk + tdk)−Hk

)
dkdt.

By evaluating the norm of both sides, we obtain the following inequality:

‖gk+1 − (Hkdk + gk)‖ ≤
∫ 1

0

∥∥(∇2f(xk + tdk)−Hk

)
dk

∥∥ dt

=
∫ 1

0

∥∥∥R>
(
∇2l(y)

∣∣
y=R(xk+tdk) − ∇

2l(y)
∣∣
y=Rxk

)
Rdk

∥∥∥ dt

≤
∫ 1

0
‖R‖

∥∥∥(∇2l(y)
∣∣
y=R(xk+tdk) − ∇

2l(y)
∣∣
y=Rxk

)∥∥∥ ‖Rdk‖ dt

≤ ‖R‖
∫ 1

0
Ml ‖R(xk + tdk)−Rxk‖ ‖Rdk‖ dt (by (D.5.10))

= Ml ‖R‖ ‖Rdk‖2
∫ 1

0
tdt

= 1
2

Ml ‖R‖ ‖dk‖2
Π .

Thus, the lemma is proved.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Proof of Theorem 3.4

Proof. At first, we will show the first inequality in Theorem 3.4. The following inequality
holds:
‖xk+1 − x̄‖Π ≤

1
γ
‖gk+1‖ (by (D.5.8))

≤ 1
γ

(‖Hkdk + gk‖+ ‖gk+1 − (Hkdk + gk)‖)

≤ 1
γ

(
4‖gk‖Π‖dk‖2

Π + 1
2

Ml‖R‖‖dk‖2
Π

)
(by Lemma D.13 and Lemma D.14)

= 1
γ

(
4‖xk − x̄‖Π + 1

2
Ml‖R‖

)
‖dk‖2

Π (by ‖gk‖Π = O(‖xk − x̄‖Π)).

(D.5.15)
Now, we have

‖dk‖Π ≤ ‖xk+1 − x̄‖Π + ‖xk − x̄‖Π

≤ 1
γ

(
4‖xk − x̄‖Π + 1

2
Ml‖R‖

)
‖dk‖2

Π + ‖xk − x̄‖Π,

which can be rearranged as(
1− ‖dk‖Π

γ

(
4‖xk − x̄‖Π + 1

2
Ml‖R‖

))
‖dk‖Π ≤ ‖xk − x̄‖Π.

Since ‖xk − x̄‖Π → 0 and ‖dk‖Π → 0, for sufficiently large k, we have 1
2‖dk‖Π ≤ ‖xk − x̄‖Π.

Combining this with (D.5.15), for sufficiently large k, we obtain

‖xk+1 − x̄‖Π ≤
4
γ

(
4‖xk − x̄‖Π + 1

2
Ml‖R‖

)
‖xk − x̄‖2

Π

≤ 4Ml‖R‖
γ

‖xk − x̄‖2
Π (since k is sufficiently large).

Therefore, we have derived the first statement in Theorem 3.4. Next, we move to the next
inequality in Theorem 3.4.

f(xk)− f(x̄) =
∫ 1

0
(∇f(x̄ + t(xk − x̄))−∇f(x̄))> (xk − x̄)dt

=
∫ 1

0

(
∇l(y)|y=R(x̄+t(xk+1−x̄)) − ∇l(y)|y=Rx̄

)>
R(xk+1 − x̄)dt.

(D.5.16)
(D.5.16) is bounded above by∫ 1

0

∥∥∥∇l(y)|y=R(x̄+t(xk−x̄)) − ∇l(y)|y=Rx̄

∥∥∥ ‖R(xk − x̄)‖ dt

≤ Ll‖R(xk − x̄)‖2
∫ 1

0
tdt (by (D.5.9))

= Ll

2
‖xk − x̄‖2

Π. (D.5.17)

(D.5.16) is bounded below by∣∣∣∣∫ 1

0

(
∇l(y)|y=R(x̄+t(xk−x̄)) − ∇l(y)|y=Rx̄

)> tR(xk − x̄)
t

dt

∣∣∣∣
≥
∫ 1

0

2ρ‖tR(xk − x̄)‖2

t
dt (by strong convexity of l)

= 2ρ‖xk − x̄‖2
Π

∫ 1

0
tdt

= ρ‖xk − x̄‖2
Π.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Algorithm 5 RSHTR: Random Subspace Homogenized Trust Region Method (variant)
1: function RSHTR(s, n, δ, ∆, max_iter)
2: global_mode = True
3: for k = 1, . . . , max_iter do
4: Pk ← s× n random Gaussian matrix with each element being from N (0, 1/s)
5: g̃k ← Pkgk

6: (tk, ṽk)← optimal solution of (2.2.1) by eigenvalue computation

7: dk ←
{

P >
k ṽk/tk, if tk 6= 0

P >
k ṽk, otherwise

8: if global_mode and ‖dk‖ > ∆ then
9: ηk ← ∆/‖dk‖ ▷ or get from backtracking line search

10: yk+1 ← xk + ηkdk

11: if f(yk+1) < f(xk) then
12: xk+1 = yk+1
13: else
14: xk+1 = xk

15: end if
16: else
17: xk+1 ← xk + dk

18: terminate ▷ or continue with (δ, global_mode)← (0, False) for local
convergence

We are now ready to prove the theorem.

f(xk+1)− f(x̄) ≤ Ll

2
‖xk+1 − x̄‖2

Π (by (D.5.17))

≤ 8LlM
2
l ‖R‖2

γ2 ‖xk − x̄‖4
Π (by Theorem 3.4)

≤ 8LlM
2
l ‖R‖2

γ2ρ2 (f(xk)− f(x̄))2.

E Convergence theorems under Algorithm 5

We provide additional theoretical considerations regarding subspace dimension s such as s <
Ω(log n). In practice, s = Ω(log n) is sufficiently small, and Algorithm 1 works effectively;
this analysis is primarily of theoretical interest.
While setting s = o(log n) means that the success probability of each iteration is no longer
high, the algorithm can simply retry until success. Specifically, in this section, we present
a slight modification (see Algorithm 5) of Algorithm 1, where line 11-line 15 are added
to decrease the value of the objective function f at every iteration. For Algorithm 1, we
can prove the convergence to an ε-FOSP with arbitrarily high probability under the same
hypothesis even for small s independent of the dimension n (s needs only to be greater than
some constant). Notice that all the results proved for Algorithm 1 also hold for Algorithm
5. This is because the probability that the function decreases at each iteration is already
taken into account in the probabilistic results that we prove.
Theorem E.1 (Global convergence to an ε–FOSP). Suppose that Assumption 1 holds. Let

0 < ε ≤ M2

8 , δ =
(√

n
s + C

)2√
ε and ∆ =

√
ε

M .

Then modified RSHTR (Algorithm 5) outputs an ε–FOSP in at most O
(
ε−3/2) iterations

with probability at least

1− exp
(
−1

8
(1− δs)Uε

)
− 4 exp

(
−C

4
s

)
− 4 exp (−s) ,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

where C and C are absolute constants, Uε := b 6
δs

M2 (f(x0)− infx∈Rn f(x)) ε−3/2c+ 1, and
δs := 1− 2 exp(−s).

Proof. Let us consider how many times we iterate the case where |dk| > ∆ at most. Ac-
cording to Lemma D.1 and Lemma D.2, the objective function decreases by at least

1

2
(√

n/s + C
)2 ∆2δ − M

6
∆3 = ε3/2

3M2

with probability at least 1 − 2 exp (−s). Let Yk ∈ {0, 1} be a random variable equal to 1
if and only the objective function decreases at least by the above quantity. Then, after K
iterations, the objective function decreases by at least:

ε3/2

3M2

K∑
k=1

Yk.

Since, for all k, E[Yk] ≥ 1−2 exp(−s) := 1−δs, we have by a Chernoff bound (see Vershynin
(2018)) that for all δ ∈ (0, 1),

P

(
K∑

k=1

Yk ≥ (1− δ)(1− δs)K

)
≥ 1− exp

(
−δ2

2
(1− δs)K

)
.

Hence with probability at least 1 − exp
(
− 1

8 (1− δs)K
)
, after K iterations, the objective

function decreases by at least
ε3/2

6M2 (1− 2 exp(−s))K.

Since the total amount of decrease does not exceed D := f(x0)−infx∈Rn f(x), we deduce that
the number of iterations for the case where ‖dk‖ > ∆ is at most b 6M2Dε−3/2

1−2 exp(−s)c. Also, since
the algorithm terminates once it enters the case ‖dk‖ ≤ ∆, the total number of iterations is
at most Uε = b 6M2Dε−3/2

1−2 exp(−s)c+ 1 at least.

We can compute an ε–FOSP with probability at least 1− 4 exp
(
−C

4 s
)
− 4 exp (−s), which

can be easily checked by applying Lemma 3.2 to the given δ and ∆.

Therefore, RSHTR converges in b 6M2Dε−3/2

1−2 exp(−s)c+ 1 = O(ε−3/2) iterations with probability at
least

1− exp
(
−1

8
(1− δs)Uε

)
− 4 exp

(
−C

4
s

)
− 4 exp (−s) ,

where Uε = b 6M2Dε−3/2

1−2 exp(−s)c+ 1.

F Experimental Details

Throughout all experiments, the parameters of the algorithms were set as follows:
• HSODM: (δ, ∆, ν) = (10−3, 10−3, 10−1)
• RSGD: s = 100
• RSRN: (γ, c1, c2, s) = (1/2, 2, 1, 100)
• RSHTR: (δ, ∆, ν, s) = (10−3, 10−3, 10−1, 100)
Here, we denote the dimensionality of subspace as s.
The dataset and other details of each task are described below.

F.1 Matrix factorization

In this task, no preprocessing is performed. We chose 50 as the feature dimension k. Here
is the dataset we used for this task.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

MovieLens 100k (Harper & Konstan, 2015)
• Shape of R: (943, 1682)
• Problem dimension: 131,250
• Source: downloaded using scikit-learn (Pedregosa et al., 2011)

F.2 Logistic regression

In this task, all datasets were preprocessed as follows:
• 10,000 features were selected to limit the problem dimensionality for the datasets with

features more than 10,000.
• 1,000 samples were selected to save the computational resource for the datasets with

samples of more than 1,000.
Here is a list of the datasets we used for this task.

news20.binary (Kogan et al., 2009)
• Problem dimension: 10,001
• Source: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

rcv1.binary (Lewis et al., 2004)
• Problem dimension: 10,001
• Source: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Internet Advertisements (Kushmerick, 1998)
• Problem dimension: 1,558
• Source: https://archive.ics.uci.edu/dataset/51/internet+advertisements

F.3 Softmax regression

In this task, all datasets were preprocessed in the same way as F.2.
• For datasets with more than 10,000 features, the first 10,000 features were selected to

limit problem dimensionality.
• For datasets with more than 1,000 samples, 1,000 samples were selected to conserve

computational resources.
Here is a list of the datasets we used for this task.

news20 (Lang, 1995)
• Number of classes: 20
• Problem dimension: 200,020
• Source: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multiclass.html

SCOTUS (Chalkidis et al., 2021)
• Number of classes: 13
• Problem dimension: 130,013
• Source: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multiclass.html

F.4 Deep Neural Networks

In this task, we used a 16-layer fully connected neural network with bias terms and the
widths of each layer are:

[input_dim, 128, 64, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, output_dim]

39

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/dataset/51/internet+advertisements
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

We utilized subsets of 1,000 images from each of the following datasets. Here is a list of the
datasets we used for this task. When using the test data, we sampled an additional 1000
data points.

MNIST (Deng, 2012)
• Input dimension: 28× 28 = 784
• Output dimension: 10
• Problem dimension: 123,818
• Source: downloaded using scikit-learn (Pedregosa et al., 2011)

CIFAR-10 (Krizhevsky, 2009)
• Input dimension: 32× 32× 3 = 3, 076
• Output dimension: 10
• Problem dimension: 416,682
• Source: downloaded using scikit-learn (Pedregosa et al., 2011)

G Additional Numerical Experiments

In all experiments in this section, the proposed method exhibited the fastest convergence.

Matrix factorization with mask (MFM): We first recall matrix factorization (without
mask) formulation:

min
U∈Rnu×k,V ∈Rk×nv

‖UV −R‖2
F /(nunv),

where R ∈ Rnu×nv and ‖·‖2
F denotes the squared Frobenius norm. The masked version

of the problem introduces a mask matrix X ∈ {0, 1}nu×nv to handle missing entries in R.
Using this mask matrix, MFM is formulated as

min
U∈Rnu×k,V ∈Rk×nv

‖(UV −R)�X‖2
F /(nunv),

where Xij = 1 if Rij is not null and Xij = 0 otherwise and the symbol � denotes element-
wise multiplication. The problem dimension is calculated as n = (nu + nv)k. The result of
MFM on MovieLens 100k dataset (Harper & Konstan, 2015) is shown in Figure 5a.

Classification: The formulation of this task is the same as Section 4. The result of
logistic regression on the Internet Advertisement dataset (Kushmerick, 1998) is shown in
Figure 5b.

(a) MFM: MovieLens 100k (dim=131,250) (b) Logistic reg.: Internet Ads (dim=1,558)

Figure 5: Comparison of our method to existing methods regarding the function value v.s.
computation time. Each plot shows the average ± the standard deviation for five runs.
Algorithms that did not complete a single iteration within the time limit are omitted.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Classification Accuracy To compare several methods from perspectives other than the
loss function, we also evaluated train and test classification accuracies at the end of training
(4,000 seconds for MNIST and 16,000 seconds for CIFAR-10), where training was stopped
due to the time limit. The results are presented in Table 2. While the limited training data
restricts generalization and results in moderate test accuracy, our approach still demon-
strates superior performance compared to other methods.

Table 2: Train and test accuracies on MNIST and CIFAR-10 datasets. Our method,
RSHTR, achieved the highest accuracy on both datasets.

MNIST CIFAR-10
Algorithm Train Test Train Test
RSGD 0.412 0.355 0.315 0.146
RSRN 0.735 0.376 0.523 0.150
RSHTR 0.998 0.680 0.959 0.211

Comparison with Heuristic Algorithms We conducted further experiments to evalu-
ate the performance of our algorithm against popular heuristics used in training deep neural
networks. Specifically, we compared our proposed method with Adam (Kingma, 2014) and
AdaGrad (Duchi et al., 2011) on the MNIST and CIFAR-10 datasets for classification using
a neural network. The formulation of the task is the same as Section 4. What differs is that,
to ensure a meaningful comparison with fast optimization methods beyond random subspace
methods, we adjusted the subspace dimension of our proposed algorithm to a smaller value
than used in Section 4. The result and the hyperparameter settings are shown in Figure 6.
While our proposed method does not surpass Adam in terms of convergence speed, it demon-
strates superior numerical stability. This is likely attributed to the method’s ability to avoid
directions with rapidly increasing gradient norm by utilizing Hessian information. Further-
more, our method can match or outperform AdaGrad in convergence speed depending on
the parameter settings. Specifically, when using numerically stable parameters for Ada-
Grad, our method exhibits a faster convergence rate. Moreover, our method saves time to
tune hyperparameters due to its consistent stability across different hyperparameter choices.
Conversely, Adam and AdaGrad can become drastically unstable with increased learning
rates aimed at faster convergence, necessitating trial and error for parameter optimization.

(a) DNN: MNIST (dim=123,818) (b) DNN: CIFAR-10 (dim=416,682)

Figure 6: Comparison of our method to heuristic algorithms.

41

	Introduction
	Existing random subspace algorithms for nonconvex optimization

	Proposed method
	Existing algorithm: HSODM
	Random Subspace Homogenized Trust Region: RSHTR
	Total computational complexity and space complexity

	Theoretical analysis
	Global convergence to an –FOSP
	Global convergence to an –SOSP
	Local linear convergence
	Local convergence for strongly convex f in its effective subspace

	Numerical experiments
	Future work
	Existing work: HSODM
	Preparation of the theoretical analysis
	Existing lemmas
	The optimality conditions of the dimension-reduced subproblem

	Pure random subspace variant of HSODM
	blueAnalysis on fixed radius strategy
	blueAnalysis considering a line search strategy

	Proofs for theoretical analysis
	Analysis of the case where dk >
	Analysis of the case where dk
	Proof of Theorem 3.1
	–SOSP under the assumption of shao-2022
	Local convergence
	Proof of Theorem 3.3
	Local quadratic convergence

	blueConvergence theorems under Algorithm 5
	Experimental Details
	Matrix factorization
	Logistic regression
	Softmax regression
	Deep Neural Networks

	Additional Numerical Experiments

