
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVERYTHING EVERYWHERE ALL AT ONCE: LLMS CAN
IN-CONTEXT LEARN MULTIPLE TASKS IN SUPERPOSI-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable in-context learning
(ICL) capabilities. In this study, we explore a surprising phenomenon related to ICL:
LLMs can perform multiple, computationally distinct ICL tasks simultaneously,
during a single inference call, a capability we term “task superposition”. We provide
empirical evidence of this phenomenon across various LLM families and scales
and show that this phenomenon emerges even if we train the model to in-context
learn one task at a time. We offer theoretical explanations that this capability is
well within the expressive power of transformers. We also explore how LLMs
internally compose task vectors during superposition. Furthermore, we show that
larger models can solve more ICL tasks in parallel, and better calibrate their output
distribution. Our findings offer insights into the latent capabilities of LLMs, further
substantiate the perspective of “LLMs as superposition of simulators”, and raise
questions about the mechanisms enabling simultaneous task execution.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains,
with one of the most intriguing being in-context learning (ICL) (Brown et al., 2020; Xie et al., 2022).
ICL enables LLMs to perform tasks during inference without the need to fine-tune for that particular
task, simply by providing a few examples within the input prompt. This ability has sparked significant
interest in the research community, as it suggests that LLMs can adapt to novel tasks on-the-fly, using
the capabilities that they acquired during pretraining, and the context provided.

While ICL has been extensively studied from both theoretical and empirical perspectives (Xie et al.,
2022; Agarwal et al., 2024), many aspects of its underlying mechanisms remain elusive. In this work,
we study a surprising phenomenon related to ICL that, to the best of our knowledge, has not been
thoroughly studied before: LLMs can perform multiple distinct ICL tasks simultaneously, in a single
inference call, a capability we refer to as “task superposition”.

Our study suggests that pretrained autoregressive LLMs such as Llama (Touvron et al., 2023) or
GPT-3.51 (Brown et al., 2020) display superposition of tasks purely in-context2. When presented
with multiple in-context examples from different tasks, in the same prompt, the models can generate
outputs that correspond to solutions for all these individual tasks. For instance, given examples of
addition and translation, the model can concurrently produce correct answers for both tasks, as well
as the composition of these tasks (e.g., the result of addition translated into another language).

Figure 1 illustrates this phenomenon. In Figure 1a (left), given in-context examples of addition in
different languages and the query “91 + 83→”, the model generates probabilities for the correct sum
in various languages, demonstrating its ability to perform addition and translation concurrently.

This discovery aligns and lends further support to the view of LLMs as superposition of simulators
(Janus, 2022; Shanahan et al., 2023; Nardo, 2023) and the Bayesian perspective of ICL proposed by
Xie et al. (2022). While not a mathematically rigorous formulation, we can conceptualize the output

1In particular, gpt-3.5-turbo-instruct.
2For other definitions of superposition, please see Section 2.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(20x) Task 1:

(20x) Task 2:

(20x) Task 3:

(20x) Task 4:

Numerical addition

Addition in English

Addition in French

Addition in Spanish

Andorra la Vella:

Europe:

ANDORRA:

23.10%

23.07%

37.92%

174:

one hundred and seventy-four

cent soixante-quatorze:

ciento setenta y cuatro:	

52.17%

13.16%

11.10%

21.69%

Output Probabilities (Llama-3)

11 + 26 ->

33 + 13 ->

62 + 54 ->

74 + 59 ->

69 + 10 ->

40 + 43 ->

24 + 40 ->

30 + 25 ->

91 + 83 ->

37

quarante-six

one hundred and sixteen

133

setenta y nueve

ochenta y tres

soixante-quatre

fifty-five

Prompt

Capital name

Continent name

Capitalization

(20x) Task 1:

(20x) Task 2:

(20x) Task 3:

Dominica ->

New Zealand ->

Nauru ->

Zimbabwe ->

Latvia ->

Spain ->

Lebanon ->

Montenegro ->

Andorra ->

Roseau

Wellington

NAURU

Africa

Europe

SPAIN

Asia

MONTENEGRO

Prompt

Output Probabilities (Llama-3)

(a) (left) Two-digit addition in a variety of languages. (right) Naming the capital of a given country name,
naming the continent of a given country name or capitalizing the country name.

(20x) Task 1:

(20x) Task 2:

(20x) Task 3:

Copy the first operand

Copy the second operand

Add two operands

o:

a:

O:

A:

11.18%

13.01%

38.41%

12.69%

Output Probabilities (GPT-3.5)

52:

17:

69:

30.29%

30.93%

37.21%

Output Probabilities (GPT-3.5)

First letter in lower case

Last letter in lower case

First letter in upper case

Last letter in upper case

(20x) Task 1:

(20x) Task 2:

(20x) Task 3:

(20x) Task 4:

concentralize->

goatstone ->

pretry ->

delegalizing ->

marshalling ->

philatelical ->

nonextractive->

supercharged ->

odontalgia ->

C

g

y

d

G

L

E

s

Prompt

73 @ 95 = 
67 @ 88 = 
60 @ 79 = 
68 @ 20 = 
67 @ 27 = 
51 @ 81 = 
25 @ 17 =

10 @ 29 = 
52 @ 17 =

95 
155 
79 
88 
67 
132 
17

10

Prompt

(b) (left) Tasks copy(op1), copy(op2) and op1+op2. (right) First or last letter in upper or lower case.

Figure 1: LLMs can perform task superposition. (a) Llama-3 70B and (b) GPT-3.5 Turbo are each
presented with two sets of tasks. For each set of tasks, we show an example prompt such that all
except the last row are in-context examples of one of the tasks and the last row is the query. We
provide 20 in-context task examples for each task in the prompt with order randomized and provide
the probabilities of outputs when correctly performing each task on the query.

of an LLM as a weighted sum of conditional probabilities across possible tasks:

P(output|prompt) ≈
∑
task

P(output|task, prompt)P(task|prompt).

In this conceptual model, P(output|prompt) represents the probability distribution over possi-
ble outputs given the input prompt, a task can be thought of as a latent variable representing
different capabilities the model might possess (e.g., arithmetic, translation, sentiment analysis),
P(output|task, prompt) represents the output probability distribution if the model was specifically
attempting to solve a single task, based on the test example in the prompt, and P(task|prompt)
represents the model’s inferred probability that the prompt specifies a particular task.

While this mental model is a simplification of how an LLM operates, it provides an intuitive way to
support the task superposition phenomenon we observe. Our findings lend support to the idea that
LLMs can simultaneously maintain and utilize multiple task distributions, resulting in outputs that
reflect a combination of relevant tasks.

Our Contributions: Our study makes several key contributions:

1. Through extensive empirical investigation and theoretical results, we demonstrate that task
superposition is prevalent across various pretrained LLM families (GPT3.5, LLama-3, Qwen).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2. We empirically show that task superposition emerges as we train on one task at a time.
3. We provide a theoretical construction showing that Transformers models are indeed capable of

task superposition, and have the capacity to implement multiple tasks in parallel.
4. We explore how LLMs internally compose task vectors (Hendel et al., 2023) during superposition,

and show how convex combinations of task vectors can reproduce the superposition effect.
5. We show that larger models can solve more tasks in parallel and more accurately reflect the

distribution of in-context tasks.

We believe that our findings offer new insights into the latent capabilities of LLMs and raise questions
about the mechanisms enabling simultaneous task execution. We believe this work sheds more light
on the ICL capabilities of frontier language models, and offers a glimpse on potential applications of
task superposition in practical settings.

2 RELATED WORK

Theory and practice of in-context learning. There is rich literature which formalizes in-context
learning under diverse definitions. For example, prior works study in-context learning through a
Bayesian framework for task retrieval (Xie et al., 2022; Panwar et al., 2023; Zhang et al., 2023),
martingales (Falck et al., 2024), optimizers (Akyürek et al., 2023; Oswald et al., 2023; Dai et al.,
2022) and more (Reddy, 2024; Olsson et al., 2022). Other works confirm the theoretical framing of
in-context learning by using it to implement a variety of algorithms and methods (Zhou et al., 2023;
Ahn et al., 2023; Giannou et al., 2023; Wu et al., 2024; Laskin et al., 2022; Zhou et al., 2022), or to
approximate general-purpose computing machines (Giannou et al., 2023; Wei et al., 2022).

To bridge the gap between theory and practice, many works have used these theoretical insights to
study in-context learning behaviors, such as in many-shot in-context learning, (Agarwal et al., 2024),
long-context (Li et al., 2024), or eliciting personas (Choi & Li, 2024). Other works study the factors
that influence how well models can learn through context, such as task diversity (Raventos et al.,
2023; Chan et al., 2022), the balance between pre-training priors and in-context (Wei et al., 2023;
Lin & Lee, 2024), in-context labels (Min et al., 2022; Lyu et al., 2022), and the in-context format
(Lampinen et al., 2022). In-context learning has also been proposed as a means of fine-tuning to
improve non-language tasks (Dinh et al., 2022).

The development of new architectures such as state space models (Gu & Dao, 2023) has further
motivated studying whether in-context learning is prevalent in alternative architectures such as Mamba
(Park et al., 2024; Grazzi et al., 2024; Zeng et al., 2024) or in looped transformers (Yang et al., 2023).

Steering models through in-context learning has been a growing area of interest. Recent work has
hypothesized that in-context learning can be encapsulated by a high-dimensional description of a
task, which can be used to replace, (Hendel et al., 2023) compose (Todd et al., 2024) or augment (Liu
et al., 2024) the latent states of a model, in order to alter its default behavior. Task vectors can be
combined via arithmetic operations to solve a variety of tasks (Ilharco et al., 2023). Prior work has
also been investigating the power of tokens in defining a task (Bai et al., 2024).

Other definitions of superposition. Our findings on superposition are inspired by notions of language
models as multiverse generators (Reynolds & McDonell, 2021; moire, 2021). One consequence of
LLMs as a superposition of tasks is that the outputs may collapse to unintended simulacra, a behavior
known as the “Waluigi effect” (Nardo, 2023).

Superposition has been defined in various related contexts of learning models. Feature superposition
(Elhage et al., 2022) refers to a neural network’s ability to represent multiple learned concept in
a single neuron. Though our discovery of task superposition describes the same abstract idea, we
stress that it is distinct from feature superposition because task superposition is most apparent in
the final output of a model. Feature superposition is a microscopic-level observation whereas task
superposition is a macroscopic-level observation.

Superposition is also described as a way to store multiple models in a single set of parameters
(Cheung et al., 2019), processing multiple inputs simultaneously (Shen et al., 2024a; Murahari et al.,
2022). In our work, we demonstrate task superposition directly as a result of language pre-training,
without the necessity of additional adapters or decoding strategies.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

add add in en add in fr add in es other
0.00

0.25

0.50

0.75

pr
ob

ab
ilit

y

GPT-3.5 Llama-3 70B Qwen-1.5 72B

(a) Addition in original numerical form and in different languages as in Figure 1a (left).

capital continent capitalization other
0.00

0.25

0.50

0.75

pr
ob

ab
ilit

y

(b) Capital name, continent name and capitalization as in Figure 1a (right).

copy(op1) copy(op2) op1+op2 other
0.00

0.25

0.50

0.75

pr
ob

ab
ilit

y

(c) copy(op1), copy(op2), and op1+op2 as in Figure 1b (left).

first letter last letter first letter cap. last letter cap. other
0.00

0.25

0.50

0.75

pr
ob

ab
ilit

y

(d) First or last letter in upper or lower cases as in Figure 1b (right).

Figure 2: Distributions (0/25/50/75/100-percentiles) of probabilities for correct outputs of each task.
For every set of tasks, we tested with 100 prompts and for each prompt, every task has 20 random
in-context task examples with order randomized like in Figure 1. Category other is the sum of
probabilities of all other outputs. Gray dashed line in each figure is the ideal probability if we assume
the model perfectly calibrates its output distribution to the distribution of in-context task examples.
With uniform distribution of task examples, the dashed lines are at 0.25 (4 tasks setting) and 0.33 (3
tasks setting).

3 LLMS ARE A SUPERPOSITION OF MULTIPLE IN-CONTEXT LEARNERS

In this section, we want to investigate if existing pre-trained models exhibit superposition of multiple
tasks and whether this phenomenon is common (i.e., whether we can observe this phenomenon on a
variety set of tasks and different families of LLMs).

Finding 1: LLMs can in-context learn multiple tasks in superposition when provided with
prompts of a mixture of task examples.

We denote K by the number of tasks and consider four different settings of task mixtures.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1. Numerical addition and addition in English, French or Spanish (K = 4). Example prompt
is shown in Figure 1a (left).

2. Given a name of a country, name the capital, continent or capitalize the country name
(K = 3). Example prompt is shown in 1a (right).

3. Given input “{op1}@{op2}”, copy op1, op2 or add op1 and op2 (K = 3). Example
prompt is shown in Figure 1b (left).

4. Given a word, output first letter or last letter in lower or upper cases (K = 4). Example
prompt is shown in 1b (right).

We provide GPT-3.5 (Brown et al., 2020), Llama-3 70B (AI@Meta, 2024) and Qwen-1.5 72B (Bai
et al., 2023a) with prompts of uniform mixture of tasks (each task has 20 examples in the prompt
ordered randomly). For each prompt consisting of in-context task examples (e.g., “11 + 26→ 37”
for the first task in the first setting) and a query (e.g., “91 + 83→”), we calculate the probabilities of
outputs when correctly performing each task on the query and plot the distribution of probabilities
for each task in Figure 2. Details on calculating the probabilities is in Appendix B.

Figure 2 reveals that in all four sets of tasks, all models have non-negligible median values of
probabilities for at least two tasks. This indicates that the models can in-context learn multiple tasks
in superposition when provided with prompts of a mixture of task examples.

We can also observe that, even though every task in a prompt has an equal number of in-context
examples (20 examples), LLMs do not calibrate their output distribution perfectly with the in-context
task example distribution and they still have bias on what task to perform. For example, Figure 2a
shows that Llama-3 70B prefers performing numerical addition over addition in other languages,
Qwen-1.5 72B prefers addition in English while GPT-3.5 does not have a strong preference over a
single task. On the other hand, in Figure 2b GPT-3.5 has a strong preference over the capital task.

Additionally, some tasks are “harder” than other tasks. For example, in Figure 2d, all models assign
near-zero probability for task answers of last letter and last letter cap. The category
other has relatively high values, indicating a high noise when prompted with in-context examples
of this setting. In contrast, in Figure 2c, category other has very small values, indicating that all
models most of the time would correctly assign the output probabilities to the correct answers.

4 TASK SUPERPOSITION IN MODELS TRAINED FROM SCRATCH

In Section 3 we investigated task superposition in pre-trained LLMs at inference time. We further
investigate how task superposition emerges in LLMs during training. Specifically, if we train the
model to in-context learn one task at a time, can it perform task superposition when provided with
prompts containing examples of multiple tasks?

To answer this question, we train a small GPT-2 model (6 heads, 6 layers, ∼14million pa-
rameters) (Radford et al., 2019) to learn a family of retrieval tasks. The input has the form
“{ch1}{ch2}{ch3}{ch4}{ch5}{ch6}{ch7}{ch8}→” where ch1, ..., ch8 are distinct sin-
gle characters. We consider 8 retrieval tasks – ret1, ..., ret8 – where ret1 is to output ch1
and so on. The model is trained to in-context learn one task (retrieve one of {ch1, ...,ch8}) at a
time in training. Namely, during training, the model is only provided with text data such that each
prompt only contains in-context examples of a single randomly chosen task (and different prompts
can correspond to different tasks).

Concretely, for each sample, we randomly select task t ∈ {ret1, ...,ret8} and inputs
x(1), ...,x(m), where each x(j) is an eight-character long string. We then form the sequence
s = [x(1), gt(x

(1)), ...,x(m), gt(x
(m))] where gt(x

(j)) is the output of performing task t on x(j).
We train the model Mθ parametrized by θ using ICL training. In particular, we minimize the following
objective:

min
θ

Es

 1

m− 1

m−1∑
j=1

CE(Mθ(sj ⊕ x(j+1)), gt(x
(j+1)))

 , (1)

where sj ⊕ x(j+1) ≡ [x(1), gt(x
(1)), ...,x(j), gt(x

(j)),x(j+1)] and CE is the cross-entropy loss.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

ie
s

ret2
ret6
other

(a) Trained on retrieval tasks and tested on
prompts with mixture of in-context examples

of ret2 and ret6.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

ie
s

plus2
plus6
other

(b) Trained on addition tasks and tested on
prompts with mixture of in-context examples

of plus2 and plus6.

Figure 3: We consider two different settings of tasks: (a) given an eight-character length string as
input, consider ret1, ..., ret8 where ret1 is to retrieve the first character and so on; and (b)
given a two-digit integer as an input, consider plus0, ..., plus9 where plus0 is to add 0 on the
input and so on. After training, for each setting, we select two tasks ad we provide the model with
prompts containing in-context examples from these two tasks and vary the mixture ratio λ such that
the in-context task example distribution for two tasks is [λ, 1−λ]. We plot λ on x-axis and the output
probabilities of task answers for each task on y-axis.

After training, we provide the model with prompts containing in-context examples of two tasks (in
particular, we choose ret2 and ret6) and see if the model performs task superposition. We vary
the proportion of in-context examples of two tasks and plot the output distributions in Figure 3a.

Similarly, we consider a second setting involving 10 tasks. Given a two digit integer input num,
task plus0 outputs num, task plus1 outputs num+ 1 and so on, up to task plus9. The model is
trained to in-context learn one of plus0,..., plus9 at a time, following the procedure above. During
inference time, the model is tested with prompts containing a mixture of in-context examples from
tasks plus2 and plus6. We vary the mixture ratio and show the output distributions in Figure 3b.

Finding 2: Transformers can in-context learn multiple tasks in superposition even if
trained to in-context learn one task at a time.

Remarkably, from Figure 3a and 3b, GPT-2 trained from scratch to in-context learn one task at a
time can generalize to simultaneously performing multiple tasks and calibrate the output probabilities
according to the in-context task example distribution when provided with a mixture of in-context
examples. For example, in Figure 3a at the mixture ratio λ = 0.5, meaning that 50 percent of the
examples in the prompt is from task ret2 and the other 50% comes from task ret6, we can see the
output probabilities for task answers of ret2 and ret6 being roughly [0.5, 0.5]. We can observe
similar behavior in Figure 3b.

5 TRANSFORMERS HAVE THE CAPACITY TO PERFORM TASK SUPERPOSITION

In this section, we explore whether Transformers have the inherent expressivity to perform multiple
tasks in superposition with a single inference call. To this end, we provide a theoretical construction
of a Transformer which, given the ability to implement multiple tasks, performs task superposition
depending on the examples given in-context.

Theorem 1. A seven layer transformer with embedding dimension O(d+ log(mn)) with K heads
per attention layer can perform K tasks on vectors of dimension d in superposition, with weighting
based on m different in-context examples each of length n .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The proof of Theorem 1 is provided in Appendix D.4. Note that while this does not guarantee that
training a Transformer will actually find these parameters, it does indicate that Transformers are
expressive enough to perform task superposition at test time. Below we outline the main ideas used
in the proof.

Prediction based on multiple tasks. Assume that we are given m in-context samples
(x

(j)
1 , . . . ,x

(j)
n−2, ‘=’,y(j))mj=1 where ‘=’ represents a specific value used only for preceding the

label, and a set of k different Transformers TFi which can implement the T different desired tasks,
where each deterministic task is denoted as gi(x(j)) with i ∈ [k] and j ∈ [m], i.e. y(j) = gi(x

(j))
for some task i dependent on sample j. Using the weights of each TFi, we can compute outputs of
the following form:
. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 0 . . .
...

...
...

...
. . . 0 . . . 0 0 0 . . .

→

. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 ∥g1(x(j))− y(j)∥1 . . .
...

...
...

...
. . . 0 . . . 0 0 ∥gT (x(j))− y(j)∥1 . . .

We use the l1 norm to aggregate the prediction, in case that the task is multi-dimensional. These
differences are used to identify tasks, as ∥gi(x(j))−y(j)∥1 ≈ 0 for y(j) coming from task i. Different
heads at each layer in the model are used to execute each of the tasks in parallel using the weights
from TFi. In Appendix D we construct tasks where an arbitrary function gi(x

(j)
l) is implemented

using ReLUs for some fixed l that is task-specific.

Creating task identifiers. Having the differences between the implemented function and the
label, we first use the ReLUs to clean up the vectors vk so that only the positions in each vector
that are associated with a task are maintained and the rest are set to 13. We thus create the vectors
(v′

k)i = ∥gk(x
(j)
1:l−1)− x

(j)
l ∥1 and (v′

∗)∗ = 1 otherwise. Now we use ReLUs to threshold and create
an indicator vectors 1{∥gk(x

(j)
1:l−1)−x

(j)
l ∥1≈0} which identify the task, i.e.,these are task identifiers.

Notice that if the task is correctly predicted then the difference should be close to 0 (up to some
error), while if the task is not identified the corresponding value would not be 0; the rest of the
rows would be 1. We have created one vector for each task, which has 1 in the position of the
corresponding task if the task was identified in the context.

Averaging and task superposition. As a last step, we average all the task identifiers and place the
result in the last column, in which the next prediction will happen. We then use the averaged task
identifier to weight the prediction of each task based on it, as in task superposition. If the task has
been identified multiple times in the context, it would be assigned a higher weight/probability.

6 TASK SUPERPOSITION THROUGH THE LENS OF TASK VECTORS

While in Section 5 we provide an existential result by constructing a Transformer that performs task
superposition and shows that task superposition is well within the expressive power of Transformers,
we would like to further investigate how task superposition manifest in pretrained LLMs internally. In
this section we explore the underlying mechanisms that LLMs employ during task superposition. In
particular, we focus our empirical study on task vectors (Hendel et al., 2023) where the detailed imple-
mentation is in Appendix C. Task vectors are vectors in the embedding space and are found to encode
the algorithm that a model internally implements to solve a task given in-context demonstrations.

We want to investigate if there is any relation between the task vectors of each individual task and the
task vectors of a mixture of task examples in the prompt. To this end, we consider two sets of tasks:

(a) copy(op1), copy(op2) and op1+op2 as in Figure 1b (left).

(b) Given a two-digit integer, task to fr translates it to French, task to de translates it to
German and task to it translates it to Italian.

3This step is not mandatory, but it ensures that we have no values over which we have no control. We leave
as future work an error analysis on how these values could affect the task identifiers.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

20 10 0 10 20
Component 1

15

10

5

0

5

10

15

20

Co
m

po
ne

nt
 2

1/0/0
0/1/0
0/0/1
0.50/0.50/0.00
0.50/0.00/0.50
0.00/0.50/0.50
0.33/0.33/0.33

(a) copy(op1) / copy(op2) / op1+op2

10 5 0 5
Component 1

2

0

2

4

6

8

10

12

Co
m

po
ne

nt
 2

1/0/0
0/1/0
0/0/1
0.50/0.50/0.00
0.50/0.00/0.50
0.00/0.50/0.50
0.33/0.33/0.33

(b) to fr / to de / to it

Figure 4: Task vectors of Llama-3 8B projected onto two axes chosen by LDA for two sets of
tasks: (a) copy(op1), copy(op2) and op1+op2 and (b) to fr, to de and to it. For tasks
t1, t2, t3, we use “P(t1)/P(t2)/P(t3)” to denote different levels of task mixtures, e.g., “0.50/0.50/0.00”
represents the case where the in-context task examples are 50% t1, 50% t2 and 0% t3.

For each set of tasks, we collect the task vectors for each individual task and task vectors extracted
from prompts that contain examples of different tasks. In Figure 4, we project task vectors along two
axes chosen by linear discriminant analysis (LDA).

Finding 3: LLMs internally combine task vectors during task superposition.

Interestingly, we observe that the locations of task vectors of a mixture of tasks strongly correlate with
the locations of task vectors for each individual task and the in-context task example distribution (the
mixture ratio for examples of different tasks). For example, if the prompt includes an equal number of
in-context examples from each task, the task vectors are roughly centered in the middle; if the prompt
only contains in-context examples of two tasks, then the task vectors roughly lie on the connecting
line between task vectors of two individual tasks. We argue that this observation is indicative of the
fact that, when prompted with a mixture of in-context task examples, LLMs internally combine task
vectors.

As we observe signs that LLMs internally compose task vectors, we want to further investigate whether
we can reproduce the task superposition phenomenon by patching in a convex combination of task
vectors. For example, for tasks copy(op1) and copy(op2), we first extract the corresponding
task vectors Vcopy(op1) and Vcopy(op2) on Llama-3 8B using the method described in Appendix C.
We then make a convex combination of the two task vectors with parameter λ that controls the ratio:

Vinterpolate,λ = λ · Vcopy(op1) + (1− λ) · Vcopy(op2).

Finding 4: Convex combinations of task vectors produce task superposition.

For a new query (in this scenario in the form “{op1}@{op2}=”), we patch the vector Vinterpolate,λ
into the model at the task vector layer. We calculate the model output probabilities that correspond to
each task while we vary λ. For each λ, we use 100 different queries and plot the average probabilities
in the top row of Figure 5. As a comparison, in the bottom rows of Figure 5, we plot the corresponding
output probabilities when providing the models with prompts containing mixture of task examples
where the mixture ratio is controlled by λ.

In top row of Figure 5, we observe that patching convex combinations of task vectors into the model
produces task superposition. We would also like to point out that in Figure 5b, although irrelevant
outputs sum up to a large probability, the task answers for two tasks to de and to it in most cases
will still be the top-2 answers.

Comparing the top rows and the bottom rows, we can see that top rows (the scenario of interpolating
task vectors of individual tasks) have larger probabilities of irrelevant output (category other).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

in
te

rp
ol

at
io

n
in

-c
on

te
xt

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

P(
an

s)

copy(op1) copy(op2) other

0.00 0.25 0.50 0.75 1.00
lambda

0.00

0.25

0.50

0.75

1.00

P(
an

s)

(a) Tasks: copy(op1) and copy(op2)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

P(
an

s)

to_de to_it other

0.00 0.25 0.50 0.75 1.00
lambda

0.00

0.25

0.50

0.75

1.00

P(
an

s)

(b) Tasks: translate to de and to it

Figure 5: On Llama-3 8B, we vary the proportion, λ, between two tasks and observe how the output
probabilities for the correct answers change. The proportion λ is varied in two ways: (1) in the top
row, we plot the output from patching in a convex combination of task vectors for two tasks. (2) in
the bottom row, we plot the output from a mixed proportion of in-context examples for the two tasks.
Subplot (a) shows the output probabilities from mixing two copy tasks and (b) shows the probabilities
from mixing two translate tasks.

Task vector interpolation also produces less of a linear relationship between λ and the output
probabilities. This shows that while convex combinations of task vectors are sufficient for producing
task superposition, this does not fully explain task superposition. We leave it to future work to
investigate other mechanistic explanations of task superposition.

7 TASK SUPERPOSITION CAPABILITIES AS THE MODEL SCALES

Finding 5: Within the same LLM family, bigger models can solve more tasks in parallel
and better calibrate to ICL distribution.

We want to further investigate how models’ task superposition capabilities changes as the model size
scales. In particular, we investigate two questions: 1) whether larger models can perform more tasks
in-context and 2) whether larger models can align their output distribution more closely with the
distribution of task examples provided in the prompt. We chose the Qwen-1.5 model family since it
contains several model sizes ranging from 0.5B to 14B parameters.

We first introduce a quantity which captures the capability of a model to perform multiple tasks.
Given a prompt that contains examples of K tasks, we define r to be the number of these tasks whose
correct answers appear among the model’s top-K most likely outputs. Note that r ≤ K.

To see how close the model align the output distribution with the distribution of task examples, we
use KL-divergence defined below:

KL(P||D) =
∑
x∈X

P(x) log
(
P(x)
D(x)

)
, (2)

where P is the models’ probabilities on the outputs when correctly performing each task on the query
and D is the in-context task example distribution. For example the prompt in Figure 1a (left) gives
P = [0.5217, 0.1316, 0.1110, 0.2169, ...] and D = [0.25, 0.25, 0.25, 0.25, 0, ...].

We consider the setting of K = 6 different tasks: given an input of the form “{num}→” where num
is a two-digit integer, we consider 6 tasks that output (1) num itself, (2) negation of num, (3) num+1,
(4) num− 1, (5) num× 2 and (6) num2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We choose the number of in-context examples m = 60 (each task has 10 examples) and configure
the prompt with three different in-context task example distributions D1,D2 and D3. In particular,
D1 is the uniform distribution, D2 has probability 0.5 on the third task and 0.1 on other tasks, and
D3 is a distribution with probabilities alternating between 0.25 and 0.083.

For each in-context task examples distribution Di, we generate 100 prompts and for each prompt we
calculate the probabilities of outputs when correctly performing each task. The average values of r
and KL-divergence under three distributions are shown in Figure 6.

0.5B 1.8B 4B 7B 14B
0
1
2
3
4
5
6

r

D1
D2
D3

(a) r (the number of tasks whose correct answers
appear in top-K most likely outputs).

0.5B 1.8B 4B 7B 14B
0

1

2

3

4

5

KL
 d

iv
er

ge
nc

e

D1
D2
D3

(b) KL divergence.

Figure 6: (a) Average number of tasks completed, r, and (b) KL divergence for Qwen-1.5 model family
under ICL distributions D1,D2 and D3 where D1 is the uniform distribution, D2 has probability 0.5
on the third task and 0.1 on other tasks, andD3 is a distribution with probabilities alternating between
0.25 and 0.083.

In Figure 6a, we can observe that bigger models have higher r values (except for task distribution
D2, 4B model has slightly lower r than that of the 1.8B model). This shows bigger models will
have more correct answers of tasks show up in their top-K probable outputs and therefore they can
solve more tasks at the same time. In Figure 6b, we can see that for larger models like Qwen-1.5
7B and Qwen-1.5 14B, the KL-divergence values are small, and for each model, the differences
between KL-divergence values under in-context task example distributions D1, D2 and D3 are small.
This indicates that bigger models can better calibrate their output distribution to the in-context task
example distribution.

8 LIMITATIONS AND FUTURE DIRECTIONS

One limitation of our work is the current gap between the demonstrated capability of LLMs to
perform task superposition and its practical application in real-world scenarios. While we have shown
that LLMs possess the capacity to execute multiple tasks simultaneously, conventional decoding
algorithms are not equipped to fully leverage this capability. This limitation stems from what we
term ”generation collapse,” a phenomenon where, after the first token is generated, the model tends
to converge on predicting tokens for a single task, effectively negating its ability for multi-task
execution.

This collapse presents a substantial challenge in harnessing the full power of task superposition. It
highlights a critical area for future research: developing decoding strategies that can maintain the
model’s multi-task state throughout the generation process. Recent work by Shen et al. (2024b) offers
some hope that this direction may be fruitful, by proposing a “superposed decoding” algorithm. Their
method efficiently generates multiple streams of tokens from a single inference pass by utilizing
superposed token embeddings. While this approach represents a significant step forward, it also
highlights the potential for further innovation in this area.

9 CONCLUSION

We report on the discovery of task superposition, which is the ability of LLMs to simultaneously
solve distinct tasks from in-context examples. Task superposition is present in a variety of pretrained
models, and becomes more accurate at predicting the distribution of tasks as the model size increases.
We also find evidence that while displaying task superposition, models internally mix the task vectors
of each individual task. We hope that our findings will contribute to understanding in-context learning
mechanisms and enhance our knowledge of LLMs overall.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D. Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra Faust, and Hugo
Larochelle. Many-shot in-context learning, 2024.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. arXiv preprint arXiv:2306.00297, 2023.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models, May 2023. URL http:
//arxiv.org/abs/2211.15661. arXiv:2211.15661 [cs].

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023a.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection, 2023b.

Yu Bai, Heyan Huang, Cesare Spinoso-Di Piano, Marc-Antoine Rondeau, Sanxing Chen, Yang Gao,
and Jackie Chi Kit Cheung. Identifying and analyzing task-encoding tokens in large language
models. (arXiv:2401.11323), February 2024. doi: 10.48550/arXiv.2401.11323. URL http:
//arxiv.org/abs/2401.11323. arXiv:2401.11323 [cs].

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Brian Cheung, Alex Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Superposi-
tion of many models into one, June 2019. URL http://arxiv.org/abs/1902.05522.
arXiv:1902.05522 [cs].

Hyeong Kyu Choi and Yixuan Li. Picle: Eliciting diverse behaviors from large language models with
persona in-context learning. (arXiv:2405.02501), May 2024. doi: 10.48550/arXiv.2405.02501.
URL http://arxiv.org/abs/2405.02501. arXiv:2405.02501 [cs].

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can gpt learn in-
context? language models secretly perform gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559, 2022.

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Shashank Rajput, Michael Gira, Jy-yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for
non-language machine learning tasks. arXiv preprint arXiv:2206.06565, 2022.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2401.11323
http://arxiv.org/abs/2401.11323
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1902.05522
http://arxiv.org/abs/2405.02501

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy Models of Superpo-
sition, September 2022. URL http://arxiv.org/abs/2209.10652. arXiv:2209.10652
[cs].

Fabian Falck, Ziyu Wang, and Chris Holmes. Is in-context learning in large language models
bayesian? a martingale perspective. (arXiv:2406.00793), June 2024. URL http://arxiv.
org/abs/2406.00793. arXiv:2406.00793 [cs, stat].

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers, 2023.

Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is mamba capable
of in-context learning? (arXiv:2402.03170), April 2024. doi: 10.48550/arXiv.2402.03170. URL
http://arxiv.org/abs/2402.03170. arXiv:2402.03170 [cs].

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
(arXiv:2312.00752), December 2023. doi: 10.48550/arXiv.2312.00752. URL http://arxiv.
org/abs/2312.00752. arXiv:2312.00752 [cs].

Roee Hendel, Mor Geva, and Amir Globerson. In-Context Learning Creates Task Vectors, October
2023. URL http://arxiv.org/abs/2310.15916. arXiv:2310.15916 [cs].

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing Models with Task Arithmetic, March 2023. URL
http://arxiv.org/abs/2212.04089. arXiv:2212.04089 [cs].

Janus. Simulators, 2022. URL https://www.lesswrong.com/posts/
vJFdjigzmcXMhNTsx/.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY Chan, Kory Matthewson, Michael Henry
Tessler, Antonia Creswell, James L McClelland, Jane X Wang, and Felix Hill. Can language
models learn from explanations in context? arXiv preprint arXiv:2204.02329, 2022.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. (arXiv:2404.02060), April 2024. doi: 10.48550/arXiv.2404.02060. URL
http://arxiv.org/abs/2404.02060. arXiv:2404.02060 [cs].

Ziqian Lin and Kangwook Lee. Dual Operating Modes of In-Context Learning, February 2024. URL
http://arxiv.org/abs/2402.18819. arXiv:2402.18819 [cs].

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering. (arXiv:2311.06668), February
2024. doi: 10.48550/arXiv.2311.06668. URL http://arxiv.org/abs/2311.06668.
arXiv:2311.06668 [cs].

Xinxi Lyu, Sewon Min, Iz Beltagy, Luke Zettlemoyer, and Hannaneh Hajishirzi. Z-icl: Zero-shot
in-context learning with pseudo-demonstrations. arXiv preprint arXiv:2212.09865, 2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? (arXiv:2202.12837), October 2022. doi: 10.48550/arXiv.2202.12837. URL http:
//arxiv.org/abs/2202.12837. arXiv:2202.12837 [cs].

moire. Language models are multiverse generators, January 2021. URL https://generative.
ink/posts/language-models-are-multiverse-generators/.

12

http://arxiv.org/abs/2209.10652
http://arxiv.org/abs/2406.00793
http://arxiv.org/abs/2406.00793
http://arxiv.org/abs/2402.03170
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2310.15916
http://arxiv.org/abs/2212.04089
https://www.lesswrong.com/posts/vJFdjigzmcXMhNTsx/
https://www.lesswrong.com/posts/vJFdjigzmcXMhNTsx/
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2402.18819
http://arxiv.org/abs/2311.06668
http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2202.12837
https://generative.ink/posts/language-models-are-multiverse-generators/
https://generative.ink/posts/language-models-are-multiverse-generators/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vishvak Murahari, Carlos E. Jimenez, Runzhe Yang, and Karthik Narasimhan. Datamux: Data
multiplexing for neural networks. (arXiv:2202.09318), November 2022. doi: 10.48550/arXiv.2202.
09318. URL http://arxiv.org/abs/2202.09318. arXiv:2202.09318 [cs].

Cleo Nardo. The waluigi effect (mega-post), 2023. URL https://www.lesswrong.com/
posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers Learn In-Context by Gradient Descent. In
Proceedings of the 40th International Conference on Machine Learning, pp. 35151–35174. PMLR,
July 2023. URL https://proceedings.mlr.press/v202/von-oswald23a.html.
ISSN: 2640-3498.

Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian prism,
June 2023. URL https://arxiv.org/abs/2306.04891v2.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. (arXiv:2402.04248), April 2024. doi: 10.48550/arXiv.2402.04248. URL
http://arxiv.org/abs/2402.04248. arXiv:2402.04248 [cs].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Allan Raventos, Mansheej Paul, Feng Chen, and Surya Ganguli. The effects of pretraining task
diversity on in-context learning of ridge regression. In ICLR Workshop on Mathematical and
Empirical Understanding of Foundation Models (ME-FoMo), 2023.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=aN4Jf6Cx69.

Laria Reynolds and Kyle McDonell. Multiversal views on language models, February 2021. URL
http://arxiv.org/abs/2102.06391. arXiv:2102.06391 [cs].

Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models.
Nature, 623(7987):493–498, 2023.

Ethan Shen, Alan Fan, Sarah M. Pratt, Jae Sung Park, Matthew Wallingford, Sham M. Kakade, Ari
Holtzman, Ranjay Krishna, Ali Farhadi, and Aditya Kusupati. Superposed decoding: Multiple
generations from a single autoregressive inference pass. (arXiv:2405.18400), May 2024a. doi: 10.
48550/arXiv.2405.18400. URL http://arxiv.org/abs/2405.18400. arXiv:2405.18400
[cs].

Ethan Shen, Alan Fan, Sarah M Pratt, Jae Sung Park, Matthew Wallingford, Sham M Kakade, Ari
Holtzman, Ranjay Krishna, Ali Farhadi, and Aditya Kusupati. Superposed decoding: Multiple
generations from a single autoregressive inference pass. arXiv preprint arXiv:2405.18400, 2024b.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models. (arXiv:2310.15213), February 2024. doi: 10.48550/
arXiv.2310.15213. URL http://arxiv.org/abs/2310.15213. arXiv:2310.15213 [cs].

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. Advances in Neural Information Processing
Systems, 35:12071–12083, 2022.

13

http://arxiv.org/abs/2202.09318
https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://proceedings.mlr.press/v202/von-oswald23a.html
https://arxiv.org/abs/2306.04891v2
http://arxiv.org/abs/2402.04248
https://openreview.net/forum?id=aN4Jf6Cx69
http://arxiv.org/abs/2102.06391
http://arxiv.org/abs/2405.18400
http://arxiv.org/abs/2310.15213

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? In International
Conference on Learning Representations (ICLR), 2024.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. (arXiv:2111.02080), July 2022. doi: 10.48550/arXiv.2111.
02080. URL http://arxiv.org/abs/2111.02080. arXiv:2111.02080 [cs].

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Yuchen Zeng, Wonjun Kang, Yicong Chen, Hyung Il Koo, and Kangwook Lee. Can mllms perform
text-to-image in-context learning? (arXiv:2402.01293), April 2024. doi: 10.48550/arXiv.2402.
01293. URL http://arxiv.org/abs/2402.01293. arXiv:2402.01293 [cs].

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-
context learning learn? bayesian model averaging, parameterization, and generalization.
(arXiv:2305.19420), October 2023. doi: 10.48550/arXiv.2305.19420. URL http://arxiv.
org/abs/2305.19420. arXiv:2305.19420 [cs, stat].

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi.
Teaching algorithmic reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

14

http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2402.01293
http://arxiv.org/abs/2305.19420
http://arxiv.org/abs/2305.19420

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A NOTATIONS

Notation Description
K Number of tasks
l Length of a task’s output
ℓ layer ℓ for a model
m Number of in-context examples
n Length of each in-context example
V Token vocabulary

gi(·) Operation performed by Task i
x(j) Data for example j
y(j) Label for example j
sm m in-context examples
f(·) Model (predictor)
p Positional encodings

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS ON CALCULATING PROBABILITIES

In this section we provide details on how we calculate probabilities of different outputs given a
prompt in our setting.

Notations. Let V be the token vocabulary, LM be an LLM, T be the tokenizer. We use “...” to
represent a string, <...> to represent a single token where the content within the angle brackets
is an integer representing token’s index in vocabulary. For example, token <266> corresponds to
“at”. We use [<...>, ..., <...>] to represent a sequence of tokens. Given a tokenizer, we
use two functions tok(·) and detok(·) to tokenize strings and detokenize tokens. For example
tok(“superposition”) = [<9712>,<3571>] and detok([<16>,<10>,<16>,<28>,<17>]) =
“1+1=2”.

In our in-context learning setting, an input string consists of in-context examples (separated by the
delimiter “\n”) and a query. For example, an example prompt can be “1+1=2\n2+2=4\n3+3=”.

We view an LLM as a next-token predictor that outputs a probability distribution over the token
space given input and there is a corresponding P(·|·) such that given a sequence of tokens [v1, ..., vM]
where vj ∈ V , P(u | [v1, ..., vM]) measures the probability of the next token being u where u ∈ V .

Measuring the probabilities of task answers. Let I be the input prompt. For example, in the
example in Figure 1a (left), the prompt is “11+26->37\n33+13->quarante-six\n ...30+25->fifty-
five\n91+83->”. We consider four tasks: 1) numerical addition, 2) addition in English, 3) addition
in French and 4) addition in Spanish. The corresponding task answers (the output of correctly
performing task on the query) are “174”, “one hundred and seventy-four”, “cent soixante-quatorze”
and “ciento setenta y cuatro”, respectively. We want to measure the probability of each task answer.

Let o be a task answer in string. Let [v1, ..., vM] := tok(I) and let [u1, ..., uN] := tok(o). Then
the probability of the task answer o given prompt I can be calculated as

P(u1 | [v1, ..., vM])

N∏
j=2

P(uj | [v1, ..., vM , u1, ..., uj−1]). (3)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS ON TASK VECTORS

We use the task vector definition from Hendel et al. (2023). For example, for task copy(op1) in
Figure 1b (left), the procedure to collect the task vector consists of

1. Collect a dataset of 100 ICL sample prompts. Each prompt consists of m = 60 in-context
examples of a particular task and a query x(m+1). Each task example (x(j),y(j)) follows
the form “{op1}@{op2}={op1}”, where x(j) has the form “{op1}@{op2}=” and y(j)

is performing task copy(op1) on x(j), namely op1.

2. For each prompt ≡ s = [x(1),y(1), ...,x(m),y(m),x(m+1)] in the dataset, we feed s into
the transformer model f , and extract the feature (which is a vector) at the last “=” token in
layer ℓ. Call this vector f(s; ℓ). Then we average f(s; ℓ) across all prompt s to get v(ℓ) for
layer ℓ.

3. Now for each layer ℓ we have a vector v(ℓ). We run a forward pass with one query x
in the form “{op1}@{op2}=” and we patch in v(ℓ) at the “=” token position in layer ℓ,
simulating the effect of a complete context. We repeat this process 100 times for different
query x and get an accuracy accℓ of performing task copy(op1) with vector v(ℓ).

4. The task vector layer ℓ∗ is selected by

ℓ∗ = argmax
ℓ

accℓ,

and we define the task vector Vcopy(op1) := v = v(ℓ∗).

Here we record the task vector layer where task vectors are extracted in Section 6.

Task Task vector layer
copy(op1), copy(op2), op1+op2 14

to de(op1), to fr(op1), to it(op1) 19

Table 1: Task vector layer for various tasks considered in Section 6.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D CONSTRUCTION DISPLAYING SUPERPOSITION

In this section we construct a Transformer that is performing superposition of multiple tasks at
inference. For this purpose, we first construct a Transformer that copies from n-tuple in-context
examples the i-th one, as well as any function using the ReLU layers. We then create indicator
vectors, for each task, which show whether a specific task is present in-context or not. As a last step,
we combine these indicator vectors to create the superposition of different tasks. Notice that using
the parallel heads of the transformer architecture we can process each task independently until the
last step in which the predictions are combined.

D.1 OVERVIEW

Here we provide a brief overview of how the construction is implemented, while latter we provide
the corresponding details.

Prediction based on multiple tasks. Assume that we are given m in-context samples
(x

(j)
1 , . . . ,x

(j)
n−2, ‘=’,y(j))mj=1 where ‘=’ represents a specific value used only for preceding the

label, and a set of k different Transformers TFi which can implement the T different desired tasks,
where each deterministic task is denoted as gi(x(j)) with i ∈ [k] and j ∈ [m], i.e. y(j) = gi(x

(j))
for some task i dependent on sample j. Using the weights of each TFi, we can compute outputs of
the following form:
. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 0 . . .
...

...
...

...
. . . 0 . . . 0 0 0 . . .

→

. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 ∥g1(x(j))− y(j)∥1 . . .
...

...
...

...
. . . 0 . . . 0 0 ∥gT (x(j))− y(j)∥1 . . .

We use the l1 norm to aggregate the prediction, in case that the task is multi-dimensional. These
differences are used to identify tasks, as ∥gi(x(j))−y(j)∥1 ≈ 0 for y(j) coming from task i. Different
heads at each layer in the model are used to execute each of the tasks in parallel using the weights
from TFi. In Appendix D we construct tasks where an arbitrary function gi(x

(j)
l) is implemented

using ReLUs for some fixed l that is task-specific.

Creating task identifiers. Having the differences between the implemented function and the
label, we first use the ReLUs to clean up the vectors vk so that only the positions in each vector
that are associated with a task are maintained and the rest are set to 14. We thus create the vectors
(v′

k)i = ∥gk(x
(j)
1:l−1)− x

(j)
l ∥1 and (v′

∗)∗ = 1 otherwise. Now we use ReLUs to threshold and create
an indicator vectors 1{∥gk(x

(j)
1:l−1)−x

(j)
l ∥1≈0} which identify the task, i.e. these are task identifiers.

Notice that if the task is correctly predicted then the difference should be close to 0 (up to some
error), while if the task is not identified the corresponding value would not be 0; the rest of the
rows would be 1. We have created one vector for each task, which has 1 in the position of the
corresponding task if the task was identified in the context.

Averaging and task superposition. As a last step, we average all the task identifiers and place the
result in the last column, in which the next prediction will happen. We then use the averaged task
identifier to weight the prediction of each task based on it, as in task superposition. If the task has
been identified multiple times in the context, it would be assigned a higher weight/probability.

D.2 TASK IDENTIFICATION

The first task for performing task superposition based on in-context examples is to define a set of
tasks that the model is able to implement.

First, the outputs of tasks need to be identified.

4This step is not mandatory, but it ensures that we have no values over which we have no control. We leave
as future work an error analysis on how these values could affect the task identifiers

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma 1. Consider the following input

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 1 0 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .

 ,

where x
(j)
i ∈ Rd−1 before the positional encodings are added, with one additional dimension that

represents if the symbol is an ‘equals’ symbol. Then, a 1-layer transformer with a single attention
head and embedding dimension O(d+ log(mn)) can output

X =

[
x
(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 1 0 . . . 0 0 1 0 . . .

]
Proof. With positional encodings appended, let the input have the following structure:

X =

x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 1 0 0 . . .
pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn . . . pjn pjn+1 . . . pjn+n−3 pjn+n−2 pjn+n−1 p(j+1)n . . .

(4)

To rotate the second row one position to the right, use the following matrices.

WQ = [0 0 0 I]
WK = [0 0 CI 0]

WV =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

The pair WQ and WK attend tokens to the token directly to the right. The value matrix simply filters
only the second row in-place. A second head can used to clear the original 1s, resulting in

X =

x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .
pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn . . . pjn pjn+1 . . . pjn+n−3 pjn+n−2 pjn+n−1 p(j+1)n . . .

 ,

(5)
as desired.

Implementation of functions. To illustrate a set of operations that could be implemented with a
transformer, we consider approximating functions as sums of ReLUs; we use a result from Bai et al.
(2023b), which we present below.
Definition 1 (Definition 12 in Bai et al. (2023b)). A function g : Rk → R is (ϵ, R,M,C)-
approximable by sum of ReLUs, if there exists an ”(M,C)-sum of ReLUs” function

fM,C(x) =

M∑
m=1

cmReLU(a⊤
m[x; 1]) with

M∑
m=1

|cm| ≤ C, max
m∈[M]

∥am∥1 ≤ 1, am ∈ Rk+1, cm ∈ R

such that supx∈[−R,R]k]

∣∣g(x)− f(M,C)(x)
∣∣ ≤ ϵ.

Definition 2 (Definition A.1 in Bai et al. (2023b)). We say a function g : Rk → R is (R,Cl)-smooth
if for s = ⌈(k − 1)/2⌉+ 2, g ∈ C25 on [−R,R]k and

sup
x∈[−R,R]k

∥∥∇ig(x)
∥∥
∞ = sup

x∈[−R,R]k
max

j1,...,ji∈[k]

∣∣∂xj1,...,xji
g(x)

∣∣ ≤ Li

for all i = 0, 1, 2 with max0≤i≤s LiR
i ≤ Cl.

5Ci denotes that a function is i times differentiable with continuous i-th derivative.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proposition 1 (Proposition A.1 in Bai et al. (2023b)). For any ϵ > 0, R ≥ 1, Cl > 0, we have that:
Any (R,Cl)-smooth function, g : R→ R is (ϵ, R,M,C)-approximable by sum of ReLUs (Definition
1) with M ≤ C(k)C2

l log(1 + Clϵ)/ϵ
2.

Lemma 2. For any function g : Rk → R that is (R,Cl)-smooth, there exists a transformer with two
layers, one head and width O(log(n) + d), where d satisfies the requirements of Prop. 1, such that
given as input

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 1 0 . . . 0 0 1 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .

 ,

it outputs

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

∗ . . . ∗ ∗ . . . ∗ ∗ ∗ ∗ . . .

0 . . . g̃(x
(j−1)
i)− y(j−1) ∗ . . . ∗ ∗ g̃(x

(j)
i)− y(j) ∗ . . .

where |g̃(x)− g(x)| ≤ ϵ and for some i ∈ [1, . . . , n− 2].

Proof. We consider that the positional encodings are added in the input and we have

X =

x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .
1 . . . 1 1 . . . 1 1 1 1 . . .

pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn+1−s . . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s p(j+1)n+1−s . . .

(6)

where we fix some positional encodings pk where p⊤
k pk is larger than p⊤

k pl by some threshold for
k ̸= l. The encodings used here are the binary representations of k ∈ {−1, 1}log(mn). Further, we
consider 1s in the positions with the results of the task to differentiate the context of the task and the
result of the task. Define s = n− i, the distance between the result and the associated value in the
context.

In the first layer, we use the MLP’s to create g̃ according to Proposition 1

X =

x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .

g̃(x
(1)
1) . . . g̃(x

(j)
1) g̃(x

(j)
2) . . . g̃(x

(j)
n−2) g̃(=) g̃(y(j)) g̃(x

(j+1)
1) . . .

0 . . . 0 0 . . . 0 0 0 0 . . .
1 . . . 1 1 . . . 1 1 1 1 . . .

pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn+1−s . . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s p(j+1)n+1−s . . .

(7)

The next operation is a shift of the sequence of g̃(·)’s to the right by s. This will align the desired
output g̃(x(j)

i) with the observed output y(j). Consider the following weight matrices

WQ = [. . . 0 0 I] (8)

WK = [. . . 0 CI 0] (9)

WV =

0 0 0 . . . 0
0 0 0 . . . 0
0 0 I . . . 0
...

...
...

...
0 0 0 . . . 0

 (10)

for some large constant C to decrease error from the softmax attending to the incorrect tokens. This
produces (within a small error induced by using a softmax)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(X⊤W⊤
KWQX)i,j = p⊤

n+ipn−s+j (11)

σS(X
⊤W⊤

KWQX)i,j = 1{n+i=n−s+j} = 1{i=j−s} (12)

WV X =

. . . 0 0 . . . 0 0 0 . . .
. . . 0 0 . . . 0 0 0 . . .

. . . g̃(x
(j)
1) g̃(x

(j)
2) . . . g̃(x

(j)
n−2) g̃(=) g̃(y(j)) . . .

...
...

...
...

...
. . . 0 0 . . . 0 0 0 . . .

 (13)

WV XσS(X
⊤W⊤

KWQX) =

. . . 0 0 . . . 0 0 0 . . .
. . . 0 0 . . . 0 0 0 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i) . . .

...
...

...
...

...
. . . 0 0 . . . 0 0 0 . . .

 (14)

X +WV XσS(X
⊤W⊤

KWQX) =

. . . x
(j)
1 x

(j)
2 . . . x

(j)
n−1 = y(j) . . .

. . . 0 0 . . . 0 0 1 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i) . . .

. . . 0 0 . . . 0 0 0 . . .

. . . 1 1 . . . 1 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s . . .

(15)
(16)

Each matrix above only shows the slice that contains the j-th in-context example. This is repeated for
each of the other in-context examples.

As a final step with an MLP, subtract row 1 from row 3 to achieve the following output:

. . . x
(j)
1 x

(j)
2 . . . x

(j)
n−1 = y(j) . . .

. . . 0 0 . . . 0 0 1 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i)− y(j) . . .

. . . 0 0 . . . 0 0 0 . . .

. . . 1 1 . . . 1 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s . . .

(17)

Copy Tasks As has been experimentally investigated, the situation where a specific position within
the context is copied as the label can be easily implemented by setting g(x) = x. The dependence
on the subscript i within the construction is what allows the position copied to vary.

D.2.1 IDENTIFYING IF TASK’S OUTPUT MATCHES THE IN-CONTEXT EXAMPLE

Lemma 3. A three layer transformer with ReLU MLPs and embedding dimension O(d+ log(mn))
can calculate the proportion of in context examples that come from a specific task, where m is the
number of in-context examples, each of length n and dimension d.

Proof. We now have a matrix of the following form.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
·)− y(j) . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .

(18)

If the task is correct, than f(x
(j)
·) − y(j) ≈ 0, with some small error coming from softmaxs and

function approximation error. First, we find the L1-norm of f(x(j)
·) − y(j) using an MLP. For

calculating ∥z∥1 for arbitrary z, we can use

∥z∥1 =

d∑
i=1

ReLU(zi)− ReLU(−zi) (19)

which can be done in a single 1-layer MLP. Thus, we have

. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
·)− y(j) . . .

. . . ∗ ∗ . . . ∗ ∥f(x(j)
·)− y(j)∥1 . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .

(20)

Notice that if some task has different dimension than another task, the “extra” rows would be zero
and will not affect the result.

For clarity, we set all ∗ values in the ∥ · ∥1 row to 1s. These will cause the following δ̂ in the following
set these to 0. This operation can be omitted as the construction handles these trash values at a later
layer.

Let b represent the value of the flag in the second row marking the y vectors and let x represent the
values in the row with ∥f(x(j))− y(j)∥1. The following ReLUs set the * values to 1.

x←− x+ 1− ReLU(x− Cb)− ReLU(Cb− C + 1) (21)

for some large constant C. When b = 0, this reduces to x+ 1− x = 1, and when b = 1, this reduces
to x+ 1− 1 = x, as desired.

. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
·)− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
·)− y(j)∥1 . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .

(22)

Now define a thresholding function δ̂(z) that satisfies δ̂(0) = 1 and δ̂(z) = 0 for z >> 0. One such
function used here is

δ̂C(z) = ReLU(1− Cz) (23)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

for some constant C, where larger C captures a narrower neighborhood of 0.

However, a slight change needs to be added to δ̂C . In the same row as ∥f(x(j))− y(j)∥ are many
values that need to be discarded. Let b be the bit for the current column marking if the column
contains an x or a y. We use instead

δ̂C(b, z) = ReLU(b− Cz) (24)

This will be zero whenever b = 0 and z ≥ 0. We then have as output

. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
·)− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
·)− y(j)∥1 . . .

. . . 0 0 . . . 0 δ̂C(∥f(x(j)
·)− y(j)∥1) . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .

(25)

Importantly, δ̂C(∥f(x(j)
·)−y(j)∥1) = 1 when f(·) is the correct task and δ̂C(∥f(x(j)

·)−y(j)∥1) = 0
when f(·) disagrees by more than 1

C in L1-norm.

Lastly, for the next step in the construction, we need to average these soft indicators δ̂ to see how
common f is within the context. This is done with an attention layer. Let WQ select the row with all
1s multiplied by some large constant C, and let WK select the row with flags for results y. Then

X⊤W⊤
KWQX =

...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
C C . . . C C
...

...
...

...

(26)

σS(X
⊤W⊤

KWQX) ≈

...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0

1/m 1/m . . . 1/m 1/m
...

...
...

...

(27)

where a 1/m will appear in every row corresponding to a result y. Let the value matrix select the
row containing δ̂(∥f(x(j) − y(j))∥1). Denote p = 1

m

∑m
j=1 δ̂(∥f(x(j) − y(j))∥1). Without causal

masking, we would have as output

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
·)− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
·)− y(j)∥1 . . .

. . . 0 0 . . . 0 δ̂C(∥f(x(j)
·)− y(j)∥1) . . .

. . . p p . . . p p . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .

(28)

However, with causal masking, we can only guarantee that p will appear in the columns containing
the most recent example being queried. Thankfully, this is all that is needed.

D.3 TASK EXECUTION

Lemma 4. A two layer transformer, with embedding dimension O(d+ log(mn)) can perform a task
and weight its output by the proportion of examples of that task seen within the context.

Now that the proportions of each task have been identified in the context, the task itself needs to be
executed for the new example being queried. To simplify notation, let the input to this step be

X =

. . . x

(m)
1 x

(m)
2 . . . x

(m)
n−2 =

. . . ∗ ∗ . . . ∗ ∗

. . . p p . . . p p

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

 (29)

Following the same process as outlined above, although with slightly different positional encodings,
calculate f(x(m)) and place that result in the final column being decoded. These need to be added at
the beginning of the construction, but are only introduced here for clarity.

. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . p p . . . p p

. . . ∗ ∗ . . . ∗ f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0

(30)

We will transform the row containing all p to be able to approximately multiply p by f(x(m)). Using
the second to last row, perform p −→ 1− p. Using the last two rows, clear out the rest of that row and
fill it with −C for some large constant C. We then have

. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . −C −C . . . p 1− p

. . . ∗ ∗ . . . ∗ f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0

(31)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Further, use the second-to-last row to clear out all ∗ in the rows below.

. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . −C −C . . . p 1− p

. . . 0 0 . . . 0 f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0

(32)

These previous operations can all be done in a single MLP.

Lastly, use an attention layer where WK selects the row with the −Cs, WQ selects the row with all
1s, and WV selects the f(x(m)). For the last token xL,

X⊤W⊤
KWQxL =

...
−C
−C

...
p

1− p

[1] =

...
−C
−C

...
p

1− p

(33)

σS(X
⊤W⊤

KWQxL) ≈

...
−∞
−∞

...
p

1− p

=

...
0
0
...
1

1+e1−2p

1− 1
1+e1−2p

(34)

WV xLσS(X
⊤W⊤

KWQxL) =

...
0

1
1+e1−2p0+ (1− 1

1+e1−2p)f(x
(m))

0
...

 (35)

xL +WV xLσS(X
⊤W⊤

KWQxL) =

x
(m)
n−1
∗

1− p
1

1+e1−2p f(x
(m))

0
∗
1
1
0

(36)

Importantly, we are left with 1
1+e1−2p f(x

(m)). The factor 1
1+e1−2p is approximately p, especially

around 1
2 . This multiplication can also be calculated more accurately with approximations using

ReLUs or sigmoids, but for brevity and following experimental evidence of a sigmoid shape in task
superpositions, these options are ommited.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D.4 SUPERPOSED TASKS WITH PARALLEL HEADS

The above construction works for a single task, where the output is weighted by the proportions of
the task within the context. To complete the construction of a transformer that does superposition of
tasks, each of these models needs to be placed within the same overall transformer. This is described
here.

Let there be a collection of tasks {ti}Ti=1 which can be executed by transformers with model weights
represented by subscripts (·i). With the input to each transformer being X(i), the overall input matrix
is given by vertically stacking these matrices.

X =

X1

X2

...
XT−1

XT

 (37)

Similarly, define each MLP’s weights and biases as

W = diag(W1, . . . ,WT) b =

b1
...
bT

 (38)

This puts every MLP to be independent of each other. Lastly, we need to change the attention layers.
This requires the use of one head per task. In each of the following, W (i) is a weight matrix for head
i, (W)i is the weight matrix for task i in its individual transformer, and each matrix below is in the
i-th block.

W
(i)
V =

...
0

(WV)i
0
...

⊤

W
(i)
K =

...
0

(WK)i
0
...

⊤

W
(i)
Q =

...
0

(WQ)i
0
...

⊤

(39)

In all, this model executes multiple tasks in superposition by using parallel streams of heads that each
performs a single task. Task identification can happen through the same mechanism as task execution
by comparing the output of the task on each in context example with the true output.

For context related tasks, there needs to be positional encodings that allow for looking back a fixed
number of tokens. For context agnostic tasks, a wide MLP can be used to approximate arbitrary
non-linear transformations of the input. Each of these tasks only require a small number of layers,
significantly smaller than those of modern LLMs. It may be possible that LLMs do certain tasks with
different combinations of layers.

Also, if we take the feature p from each parallel stream, this creates the following task identifier.

v =

p1
p2
...
pT

 (40)

Interpolating between the pure tasks, represented by unit vectors, different amounts of each task will
appear in the superposition in roughly equal proportions to those found in v.

Lastly, we restate this construction formally.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Theorem 1. A seven layer transformer with embedding dimension O(d+ log(mn)) with K heads
per attention layer can perform k tasks on vectors of dimension d in superposition, with weighting
based on m different in-context examples each of length n .

Proof. Using in succession each of Lemma 1, Lemma 2, Lemma 3, and Lemma 4, a transformer with
the desired properties can execute k tasks in parallel. Lemma 1 identifies positions within the context
that contain the labels y. Lemma 2 then uses function approximation to perform arbitrary tasks
within the architecture, which are then used by 3 to find the proportions of each task and aggregate
them into a single task identifier. Lastly, Lemma 4 uses this task identifier to create a weighted sum
of outputs from the different tasks based on their in-context proportions.

Remark. Transformers of greater depth than seven layers can also represent this construction by
setting the weights in all other layers for the non residual part to zero.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENT AND ANALYSIS OF TASK SUPERPOSITION IN
PRETRAINED MODELS

add add in en other
0.0

0.5

1.0

Pr
ob

ab
ilit

y
1.001.001.00

0.000.000.00 0.000.000.00

add add in en other

0.34
0.47

0.10

0.63
0.52

0.84

0.010.010.03

GPT-3.5 Llama-3 70B Qwen-1.5 72B

(a) (left) All task examples from task add; (right) equal number of task examples from add and add in en.

capital continent other
0.0

0.5

1.0

Pr
ob

ab
ilit

y

1.000.990.99

0.000.000.00 0.000.010.01

capital continent other

0.90

0.43
0.24

0.07

0.47
0.63

0.010.040.05

(b) (left) All task examples from task capital; (right) equal number of task examples from capital and
continent.

copy(op1) copy(op2) other
0.0

0.5

1.0

Pr
ob

ab
ilit

y

1.001.001.00

0.000.000.00 0.00-0.000.00

copy(op1) copy(op2) other

0.690.590.59

0.33
0.440.41

0.000.000.00

(c) (left) All task examples from task copy(op1); (right) equal number of task examples from copy(op1)
and copy(op2).

first letter first letter cap other
0.0

0.5

1.0

Pr
ob

ab
ilit

y

1.001.000.99

0.000.000.00 0.00-0.000.01

first letter first letter cap other

0.90

0.500.53

0.10

0.500.47

0.000.000.01

(d) (left) All task examples from task first letter; (right) equal number of task examples from
first letter and first letter cap.

Figure 7: For each subplot, we consider two tasks task1 and task2 and on the left side we plot
the median probability for task answers where all task examples in prompts are from task1; on the
right side we plot the median probability for task answer where task examples from task1 and from
task2 in prompts are equal.

E.1 IS SUPERPOSITION REALLY HAPPENING?

In Figure 2 we plot distributions of probabilities for each task in four settings. Note that in setting 3
(corresponds to Figure 2c), the other category has low probabilities for all models but for settings
1, 2 and 4 (correspond to Figure 2a, 2b and 2d respectively), the other category is not always low.
A natural question to ask is:

For the non-zero probabilities we observe on each task answer, are they indications of task
superposition or by-products of prediction noise?

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

We set up an experiment to investigate this. For each setting, we select two tasks task1 and task2;
then we consider two scenarios: (1) we provide prompts where all task examples come from task1
and (2) we provide prompts where half of the task examples come from task1 and the other half of
task examples come from task2; in both scenarios we measure the probabilities for task answers of
task1 and task2 and see how these probabilities change between scenario (1) and (2). For each
scenario, we test it on 100 prompts (each task has 10 in-context examples) and plot the median of
task answers in Figure 7. As is shown in Figure 7 left side, where there is no task example from
task2 in the prompt, the probabilities for task answers of task2 are near 0 for all models; on the
right side, where there is an equal number of task examples that are from task1 and task2, the
probabilities for task answers of task2 increase significantly. This indicates that when we provide
prompts that mix task examples from different tasks, the prediction on each task answer is more than
just pure prediction noise.

E.2 MORE ANALYSIS ON OTHER CATEGORY IN MODEL’S OUTPUT DISTRIBUTION

In Figure 2, in settings 1, 2 and 4 (correspond to Figure 2a, 2b and 2d respectively), since there
are also non-negligible probabilities on the other category (and it is a summation of all other
probabilities), we further investigate the probabilities in other category. In particular, for each
prompt, we use beam search (where we stop searching when we encounter “\n”) to find answers
that have top-(K + 1) probabilities and record the maximum probability of the answer that is not
one of the task answers. In Figure 8, we plot the median of such probability along with medians of
probabilities of each task answer.

add add in en add in fr add in es max non task answer
0.0

0.2

0.4

pr
ob

ab
ilit

y

0.23

0.39

0.05

0.19
0.24

0.34
0.25

0.16

0.01
0.11 0.10

0.01 0.02 0.00 0.03

GPT-3.5 Llama-3 70B Qwen-1.5 72B

(a) Setting 1: Addition in original numerical form and in different languages.

capital continent capitalization max non task answer
0.0

0.2

0.4

pr
ob

ab
ilit

y

0.50

0.17
0.10 0.09

0.23

0.35

0.07

0.25

0.09
0.04 0.07 0.07

(b) Setting 2: Capital name, continent name and capitalization.

first letter last letter first letter cap. last letter cap. max non
 task answer

0.0

0.2

0.4

pr
ob

ab
ilit

y

0.18 0.18 0.16

0.05 0.03 0.03

0.32

0.22 0.24

0.00 0.02 0.02 0.05 0.03 0.04

(c) Setting 4: First or last letter in upper or lower cases.

Figure 8: For each subplot, we plot the medians of probabilities for each task answer and the median
of the maximum probability of the answer that is not one of the task answers.
In Figure 8a (setting 1), for GPT-3.5 and Llama-3, we can observe that the medians of the probabilities
for most probable non-task-answer are significantly lower than that of each task answer. This indicates
that the models are effectively performing task superposition across the four tasks, with any other

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

answer having a low probability. For Qwen-1.5, however, the median probabilities of task answers
for add, add in fr, add in es and the most probable non-task-answer are relatively low. This
may be attributed to the model’s limited ability to perform the add in fr and add in es tasks.

In Figure 8b (setting 2), we see that for all models, the median probability of the most probable
non-task-answer is lower than that of each task answer. A possible explanation for the most probable
non-task-answer still having a probability around 0.07 is the presence of related tasks: (1) CAPITAL,
which returns the capital of a country in uppercase, (2) CONTINENT, which returns the continent of
a country in uppercase, and (3) identity, which directly returns the country name. If these task
answers are excluded when calculating the top-(K + 1) probabilities, and the maximum probability
of the non-task-answer is recalculated, the median probability drops to less than 0.02 for Qwen-1.5
and Llama-3, and less than 0.001 for GPT-3.5. This suggests that while the models may not always
strictly perform task superposition on the provided tasks, they may perform compositions of the
tasks. We think it is an interesting direction for the future work to study the relation between task
superposition and task composition.

In Figure 8c (setting 4), we notice that the medians of the maximum non-task-answer probabil-
ity are slightly higher than (or comparable to) those of the task answers for last letter and
last letter cap. This could be due to the fact that these tasks are more challenging for the mod-
els. On the other hand, the medians of most probable non-task-answer probability are significantly
lower than that of task answers for first letter and first letter cap, where we consider
the model is performing task superposition on.

E.3 MEASURING ACCURACY IN TASK SUPERPOSITION

We further investigate how task superposition affect task performance. In particular, for a prompt
consisting examples of K tasks (each task has an equal number of task examples), we define a task
being correctly performed if its task answer lies in the top-K answers (that we use beam search to
find). We compare the accuracy against individual task accuracy where we provide prompts consisting
of task examples of only 1 task and define the task being correctly performed if the task answer is the
top-1 answer.

We calculate accuracy in K = 1 case and K > 1 case using 100 prompts and show the result in Table
2. We find that as we increase the number of tasks, all models exhibit an accuracy decrease in correctly
performing each individual task. Notably, however, the accuracy degradation of Llama3-70B is less
than that of Llama2-70B across most tasks. We believe this is indicative that improved model training
techniques lead to better preservation of task superposition,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Model K = 1 K = 4

t1 t2 t3 t4 t1 t2 t3 t4

GPT-3.5 100 99 85 91 95 (−5) 90 (−9) 84 (−1) 84 (−7)
Llama-3 70B 100 99 97 99 100 (0) 99 (0) 96 (−1) 92 (−7)
Llama-2 70B 100 96 69 77 88 (−12) 96 (0) 63 (−6) 46 (−31)
Qwen-1.5 72B 100 94 52 70 66 (−34) 91 (−3) 28 (−24) 34 (−36)

(a) Setting 1: Addition in original numerical form and in different languages where t1= add, t2= add in en,
t3 = add in fr, t4 = add in es.

Model K = 1 K = 3

t1 t2 t3 t1 t2 t3

GPT-3.5 100 100 100 93 (−7) 62 (−38) 56 (−44)
Llama-3 70B 100 100 100 82 (−18) 90 (−10) 83 (−17)
Llama-2 70B 97 94 90 75 (−22) 75 (−19) 50 (−40)
Qwen-1.5 72B 100 99 91 65 (−35) 87 (−12) 48 (−43)

(b) Setting 2: Naming the capital, continent and capitalize the country name where t1 = capital, t2 =
continent, t3 = capitalization.

Model K = 1 K = 3

t1 t2 t3 t1 t2 t3

GPT-3.5 100 100 100 100 (0) 97 (−3) 97 (−3)
Llama-3 70B 100 100 100 99 (−1) 100 (0) 99 (−1)
Llama-2 70B 100 100 95 95 (−5) 99 (−1) 84 (−11)
Qwen-1.5 72B 100 100 99 100 (0) 98 (−2) 98 (−1)

(c) Setting 3: t1 = copy(op1), t2 = copy(op2) and t3 = op1+op2.

Model K = 1 K = 4

t1 t2 t3 t4 t1 t2 t3 t4

GPT-3.5 100 87 100 54 94 (−6) 56 (−31) 97 (−3) 12 (−42)
Llama-3 70B 100 63 100 40 99 (−1) 29 (−34) 99 (−1) 13 (−27)
Llama-2 70B 100 55 100 38 99 (−1) 35 (−20) 97 (−3) 7 (−31)
Qwen-1.5 72B 100 62 100 34 89 (−11) 30 (−32) 100 (0) 15 (−19)

(d) Setting 4: First or last letter in upper or lower cases where t1 = first letter, t2 = last letter,
t3 = first letter cap, t4 = last letter cap.

Table 2: Accuracy for each task in percentage, with the delta change given in parenthesis. For each
setting we calculate the accuracy with prompts consisting of task examples of only one task (K = 1
case) and with prompts consisting of examples from multiple tasks (K > 1 case).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

F ADDITIONAL FIGURES

0 1 2 3 4 5
Layer

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(a) ret2

0 1 2 3 4 5
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) plus2

Figure I: Accuracy for each choice of the intermediate layer ℓ on task ret2 and plus2.

5.0 2.5 0.0 2.5 5.0 7.5 10.0
Component 1

28

26

24

22

20

18

16

14

Co
m

po
ne

nt
 2

1/0/0
0/1/0
0/0/1
0.50/0.50/0.00
0.50/0.00/0.50
0.00/0.50/0.50
0.33/0.33/0.33

(a) ret1 / ret5 / ret7

12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
Component 1

6

4

2

0

2

4

6

8

10

Co
m

po
ne

nt
 2

1/0/0
0/1/0
0/0/1
0.50/0.50/0.00
0.50/0.00/0.50
0.00/0.50/0.50
0.33/0.33/0.33

(b) plus1 / plus5 / plus7

Figure II: Task vectors projected onto two axes chosen by LDA for two sets of tasks: (a) ret1,
ret5 and ret7 and (b) plus1, plus5 and plus7.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

in
te

rp
ol

at
io

n
in

-c
on

te
xt

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

P(
an

s)

ret1 ret7 other

0.00 0.25 0.50 0.75 1.00
lambda

0.00

0.25

0.50

0.75

1.00

P(
an

s)

(a) Tasks: ret1 and ret7

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
P(

an
s)

plus2 plus5 other

0.00 0.25 0.50 0.75 1.00
lambda

0.00

0.25

0.50

0.75

1.00

P(
an

s)

(b) Tasks: plus2 and plus5

Figure III: We vary the proportion, λ, between two tasks and observe how the output probabilities
for the correct answers change. The proportion λ is varied in two ways: (1) in the top row, we plot
the output from patching in a convex combination of task vectors for two tasks. (2) in the bottom
row, we plot the output from a mixed proportion of in-context examples for the two tasks. Subplot (a)
shows the output probabilities from mixing two retrieval tasks and (b) shows the probabilities from
mixing two addition tasks.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

20 10 0 10 20
Component 1

15

10

5

0

5

10

15

Co
m

po
ne

nt
 2

5.70

5.98

4.03

3.66

3.79

5.99

3.34

6.13

3.33

1/0/0
0/1/0
0/0/1
0.50/0.50/0.00
0.50/0.00/0.50
0.00/0.50/0.50
0.33/0.33/0.33

(a) copy(op1) / copy(op2) / op1+op2

10 5 0 5 10
Component 1

10

5

0

5

10

Co
m

po
ne

nt
 2

2.69

4.52

4.13

2.57

4.54

2.33

3.623.95

3.34

1/0/0
0/1/0
0/0/1
0.50/0.50/0.00
0.50/0.00/0.50
0.00/0.50/0.50
0.33/0.33/0.33

(b) capital / continent / capitalization

uniform mixture 0.5 copy(op1)
0.5 copy(op2)

0.5 copy(op1)
0.5 op1+op2

0.5 copy(op2)
0.5 op1+op2

Mixtures

0

2

4

6

8

10

Di
st

an
ce

copy(op1)
copy(op2)
op1+op2

uniform mixture 0.5 copy(op1)
0.5 copy(op2)

0.5 copy(op1)
0.5 op1+op2

0.5 copy(op2)
0.5 op1+op2

Mixtures

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

copy(op1)
copy(op2)
op1+op2

(c) (left) Euclidean distances between centroids and (right) corresponding medians of the task answer probability
in setting of (a).

uniform mixture 0.5 capital
0.5 continent

0.5 capital
0.5 capitalization

0.5 continent
0.5 capitalization

Mixtures

0

2

4

6

8

10

Di
st

an
ce

capital
continent
capitalization

uniform mixture 0.5 capital
0.5 continent

0.5 capital
0.5 capitalization

0.5 continent
0.5 capitalization

Mixtures

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

capital
continent
capitalization

(d) (left) Euclidean distances between centroids and (right) corresponding medians of the task answer probability
in setting of (b).

Figure IV: Task vectors of Llama-3 8B projected onto two axes chosen by LDA for two sets
of tasks: (a) copy(op1), copy(op2) and op1+op2 and (b) capital, continent and
capitalization; centroids and Euclidean distance between centroids of mixtures and centroids
of non-mixtures are labeled. In (c) and (d), left side shows Euclidean distances from centroids of each
mixture clusters to centroids of non-mixture clusters, and right side shows medians of probability for
each task answer when provided with prompts of task mixture.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
lambda

0.00
0.25
0.50
0.75
1.00

P(
an

s)

plus2 plus5 other

Figure V: We vary the proportion, λ, between two tasks and observe how the output probabilities of a
1-head transformer for the correct answers change. The proportion λ is varied on two tasks: plus2
and plus5.

35

	Introduction
	Related Work
	LLMs are a superposition of multiple in-context learners
	Task superposition in models trained from scratch
	Transformers have the capacity to perform task superposition
	Task superposition through the lens of task vectors
	Task superposition capabilities as the model scales
	Limitations and future directions
	Conclusion
	Notations
	Implementation details on calculating probabilities
	Implementation details on task vectors
	Construction displaying superposition
	Overview
	Task Identification
	Identifying if Task's Output Matches the In-context Example

	Task Execution
	Superposed Tasks with Parallel Heads

	Additional experiment and analysis of task superposition in pretrained models
	Is superposition really happening?
	More analysis on other category in model's output distribution
	Measuring accuracy in task superposition

	Additional Figures

