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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable in-context learning
(ICL) capabilities. In this study, we explore a surprising phenomenon related to ICL:
LLMs can perform multiple, computationally distinct ICL tasks simultaneously,
during a single inference call, a capability we term “task superposition”. We provide
empirical evidence of this phenomenon across various LLM families and scales
and show that this phenomenon emerges even if we train the model to in-context
learn one task at a time. We offer theoretical explanations that this capability is
well within the expressive power of transformers. We also explore how LLMs
internally compose task vectors during superposition. Furthermore, we show that
larger models can solve more ICL tasks in parallel, and better calibrate their output
distribution. Our findings offer insights into the latent capabilities of LLMs, further
substantiate the perspective of “LLMs as superposition of simulators”, and raise
questions about the mechanisms enabling simultaneous task execution.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains,
with one of the most intriguing being in-context learning (ICL) (Brown et al., 2020; Xie et al., 2022).
ICL enables LLMs to perform tasks during inference without the need to fine-tune for that particular
task, simply by providing a few examples within the input prompt. This ability has sparked significant
interest in the research community, as it suggests that LLMs can adapt to novel tasks on-the-fly, using
the capabilities that they acquired during pretraining, and the context provided.

While ICL has been extensively studied from both theoretical and empirical perspectives (Xie et al.,
2022; Agarwal et al., 2024), many aspects of its underlying mechanisms remain elusive. In this work,
we study a surprising phenomenon related to ICL that, to the best of our knowledge, has not been
thoroughly studied before: LLMs can perform multiple distinct ICL tasks simultaneously, in a single
inference call, a capability we refer to as “task superposition”.

Our study suggests that pretrained autoregressive LLMs such as Llama (Touvron et al., 2023) or
GPT-3.51 (Brown et al., 2020) display superposition of tasks purely in-context2. When presented
with multiple in-context examples from different tasks, in the same prompt, the models can generate
outputs that correspond to solutions for all these individual tasks. For instance, given examples of
addition and translation, the model can concurrently produce correct answers for both tasks, as well
as the composition of these tasks (e.g., the result of addition translated into another language).

Figure 1 illustrates this phenomenon. In Figure 1a (left), given in-context examples of addition in
different languages and the query “91 + 83→”, the model generates probabilities for the correct sum
in various languages, demonstrating its ability to perform addition and translation concurrently.

This discovery aligns and lends further support to the view of LLMs as superposition of simulators
(Janus, 2022; Shanahan et al., 2023; Nardo, 2023) and the Bayesian perspective of ICL proposed by
Xie et al. (2022). While not a mathematically rigorous formulation, we can conceptualize the output

1In particular, gpt-3.5-turbo-instruct.
2For other definitions of superposition, please see Section 2.
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(a) (left) Two-digit addition in a variety of languages. (right) Naming the capital of a given country name,
naming the continent of a given country name or capitalizing the country name.
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(b) (left) Tasks copy(op1), copy(op2) and op1+op2. (right) First or last letter in upper or lower case.

Figure 1: LLMs can perform task superposition. (a) Llama-3 70B and (b) GPT-3.5 Turbo are each
presented with two sets of tasks. For each set of tasks, we show an example prompt such that all
except the last row are in-context examples of one of the tasks and the last row is the query. We
provide 20 in-context task examples for each task in the prompt with order randomized and provide
the probabilities of outputs when correctly performing each task on the query.

of an LLM as a weighted sum of conditional probabilities across possible tasks:

P(output|prompt) ≈
∑
task

P(output|task, prompt)P(task|prompt).

In this conceptual model, P(output|prompt) represents the probability distribution over possi-
ble outputs given the input prompt, a task can be thought of as a latent variable representing
different capabilities the model might possess (e.g., arithmetic, translation, sentiment analysis),
P(output|task, prompt) represents the output probability distribution if the model was specifically
attempting to solve a single task, based on the test example in the prompt, and P(task|prompt)
represents the model’s inferred probability that the prompt specifies a particular task.

While this mental model is a simplification of how an LLM operates, it provides an intuitive way to
support the task superposition phenomenon we observe. Our findings lend support to the idea that
LLMs can simultaneously maintain and utilize multiple task distributions, resulting in outputs that
reflect a combination of relevant tasks.

Our Contributions: Our study makes several key contributions:

1. Through extensive empirical investigation and theoretical results, we demonstrate that task
superposition is prevalent across various pretrained LLM families (GPT3.5, LLama-3, Qwen).

2
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2. We empirically show that task superposition emerges as we train on one task at a time.
3. We provide a theoretical construction showing that Transformers models are indeed capable of

task superposition, and have the capacity to implement multiple tasks in parallel.
4. We explore how LLMs internally compose task vectors (Hendel et al., 2023) during superposition,

and show how convex combinations of task vectors can reproduce the superposition effect.
5. We show that larger models can solve more tasks in parallel and more accurately reflect the

distribution of in-context tasks.

We believe that our findings offer new insights into the latent capabilities of LLMs and raise questions
about the mechanisms enabling simultaneous task execution. We believe this work sheds more light
on the ICL capabilities of frontier language models, and offers a glimpse on potential applications of
task superposition in practical settings.

2 RELATED WORK

Theory and practice of in-context learning. There is rich literature which formalizes in-context
learning under diverse definitions. For example, prior works study in-context learning through a
Bayesian framework for task retrieval (Xie et al., 2022; Panwar et al., 2023; Zhang et al., 2023),
martingales (Falck et al., 2024), optimizers (Akyürek et al., 2023; Oswald et al., 2023; Dai et al.,
2022) and more (Reddy, 2024; Olsson et al., 2022). Other works confirm the theoretical framing of
in-context learning by using it to implement a variety of algorithms and methods (Zhou et al., 2023;
Ahn et al., 2023; Giannou et al., 2023; Wu et al., 2024; Laskin et al., 2022; Zhou et al., 2022), or to
approximate general-purpose computing machines (Giannou et al., 2023; Wei et al., 2022).

To bridge the gap between theory and practice, many works have used these theoretical insights to
study in-context learning behaviors, such as in many-shot in-context learning, (Agarwal et al., 2024),
long-context (Li et al., 2024), or eliciting personas (Choi & Li, 2024). Other works study the factors
that influence how well models can learn through context, such as task diversity (Raventos et al.,
2023; Chan et al., 2022), the balance between pre-training priors and in-context (Wei et al., 2023;
Lin & Lee, 2024), in-context labels (Min et al., 2022; Lyu et al., 2022), and the in-context format
(Lampinen et al., 2022). In-context learning has also been proposed as a means of fine-tuning to
improve non-language tasks (Dinh et al., 2022).

The development of new architectures such as state space models (Gu & Dao, 2023) has further
motivated studying whether in-context learning is prevalent in alternative architectures such as Mamba
(Park et al., 2024; Grazzi et al., 2024; Zeng et al., 2024) or in looped transformers (Yang et al., 2023).

Steering models through in-context learning has been a growing area of interest. Recent work has
hypothesized that in-context learning can be encapsulated by a high-dimensional description of a
task, which can be used to replace, (Hendel et al., 2023) compose (Todd et al., 2024) or augment (Liu
et al., 2024) the latent states of a model, in order to alter its default behavior. Task vectors can be
combined via arithmetic operations to solve a variety of tasks (Ilharco et al., 2023). Prior work has
also been investigating the power of tokens in defining a task (Bai et al., 2024).

Other definitions of superposition. Our findings on superposition are inspired by notions of language
models as multiverse generators (Reynolds & McDonell, 2021; moire, 2021). One consequence of
LLMs as a superposition of tasks is that the outputs may collapse to unintended simulacra, a behavior
known as the “Waluigi effect” (Nardo, 2023).

Superposition has been defined in various related contexts of learning models. Feature superposition
(Elhage et al., 2022) refers to a neural network’s ability to represent multiple learned concept in
a single neuron. Though our discovery of task superposition describes the same abstract idea, we
stress that it is distinct from feature superposition because task superposition is most apparent in
the final output of a model. Feature superposition is a microscopic-level observation whereas task
superposition is a macroscopic-level observation.

Superposition is also described as a way to store multiple models in a single set of parameters
(Cheung et al., 2019), processing multiple inputs simultaneously (Shen et al., 2024a; Murahari et al.,
2022). In our work, we demonstrate task superposition directly as a result of language pre-training,
without the necessity of additional adapters or decoding strategies.
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capital continent capitalization other
0.00

0.25

0.50

0.75

pr
ob

ab
ilit

y

(b) Capital name, continent name and capitalization as in Figure 1a (right).
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(c) copy(op1), copy(op2), and op1+op2 as in Figure 1b (left).
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(d) First or last letter in upper or lower cases as in Figure 1b (right).

Figure 2: Distributions (0/25/50/75/100-percentiles) of probabilities for correct outputs of each task.
For every set of tasks, we tested with 100 prompts and for each prompt, every task has 20 random
in-context task examples with order randomized like in Figure 1. Category other is the sum of
probabilities of all other outputs. Gray dashed line in each figure is the ideal probability if we assume
the model perfectly calibrates its output distribution to the distribution of in-context task examples.
With uniform distribution of task examples, the dashed lines are at 0.25 (4 tasks setting) and 0.33 (3
tasks setting).

3 LLMS ARE A SUPERPOSITION OF MULTIPLE IN-CONTEXT LEARNERS

In this section, we want to investigate if existing pre-trained models exhibit superposition of multiple
tasks and whether this phenomenon is common (i.e., whether we can observe this phenomenon on a
variety set of tasks and different families of LLMs).

Finding 1: LLMs can in-context learn multiple tasks in superposition when provided with
prompts of a mixture of task examples.

We denote K by the number of tasks and consider four different settings of task mixtures.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1. Numerical addition and addition in English, French or Spanish (K = 4). Example prompt
is shown in Figure 1a (left).

2. Given a name of a country, name the capital, continent or capitalize the country name
(K = 3). Example prompt is shown in 1a (right).

3. Given input “{op1}@{op2}”, copy op1, op2 or add op1 and op2 (K = 3). Example
prompt is shown in Figure 1b (left).

4. Given a word, output first letter or last letter in lower or upper cases (K = 4). Example
prompt is shown in 1b (right).

We provide GPT-3.5 (Brown et al., 2020), Llama-3 70B (AI@Meta, 2024) and Qwen-1.5 72B (Bai
et al., 2023a) with prompts of uniform mixture of tasks (each task has 20 examples in the prompt
ordered randomly). For each prompt consisting of in-context task examples (e.g., “11 + 26→ 37”
for the first task in the first setting) and a query (e.g., “91 + 83→”), we calculate the probabilities of
outputs when correctly performing each task on the query and plot the distribution of probabilities
for each task in Figure 2. Details on calculating the probabilities is in Appendix B.

Figure 2 reveals that in all four sets of tasks, all models have non-negligible median values of
probabilities for at least two tasks. This indicates that the models can in-context learn multiple tasks
in superposition when provided with prompts of a mixture of task examples.

We can also observe that, even though every task in a prompt has an equal number of in-context
examples (20 examples), LLMs do not calibrate their output distribution perfectly with the in-context
task example distribution and they still have bias on what task to perform. For example, Figure 2a
shows that Llama-3 70B prefers performing numerical addition over addition in other languages,
Qwen-1.5 72B prefers addition in English while GPT-3.5 does not have a strong preference over a
single task. On the other hand, in Figure 2b GPT-3.5 has a strong preference over the capital task.

Additionally, some tasks are “harder” than other tasks. For example, in Figure 2d, all models assign
near-zero probability for task answers of last letter and last letter cap. The category
other has relatively high values, indicating a high noise when prompted with in-context examples
of this setting. In contrast, in Figure 2c, category other has very small values, indicating that all
models most of the time would correctly assign the output probabilities to the correct answers.

4 TASK SUPERPOSITION IN MODELS TRAINED FROM SCRATCH

In Section 3 we investigated task superposition in pre-trained LLMs at inference time. We further
investigate how task superposition emerges in LLMs during training. Specifically, if we train the
model to in-context learn one task at a time, can it perform task superposition when provided with
prompts containing examples of multiple tasks?

To answer this question, we train a small GPT-2 model (6 heads, 6 layers, ∼14million pa-
rameters) (Radford et al., 2019) to learn a family of retrieval tasks. The input has the form
“{ch1}{ch2}{ch3}{ch4}{ch5}{ch6}{ch7}{ch8}→” where ch1, ..., ch8 are distinct sin-
gle characters. We consider 8 retrieval tasks – ret1, ..., ret8 – where ret1 is to output ch1
and so on. The model is trained to in-context learn one task (retrieve one of {ch1, ...,ch8}) at a
time in training. Namely, during training, the model is only provided with text data such that each
prompt only contains in-context examples of a single randomly chosen task (and different prompts
can correspond to different tasks).

Concretely, for each sample, we randomly select task t ∈ {ret1, ...,ret8} and inputs
x(1), ...,x(m), where each x(j) is an eight-character long string. We then form the sequence
s = [x(1), gt(x

(1)), ...,x(m), gt(x
(m))] where gt(x

(j)) is the output of performing task t on x(j).
We train the model Mθ parametrized by θ using ICL training. In particular, we minimize the following
objective:

min
θ

Es

 1

m− 1

m−1∑
j=1

CE(Mθ(sj ⊕ x(j+1)), gt(x
(j+1)))

 , (1)

where sj ⊕ x(j+1) ≡ [x(1), gt(x
(1)), ...,x(j), gt(x

(j)),x(j+1)] and CE is the cross-entropy loss.
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(a) Trained on retrieval tasks and tested on
prompts with mixture of in-context examples
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(b) Trained on addition tasks and tested on
prompts with mixture of in-context examples

of plus2 and plus6.

Figure 3: We consider two different settings of tasks: (a) given an eight-character length string as
input, consider ret1, ..., ret8 where ret1 is to retrieve the first character and so on; and (b)
given a two-digit integer as an input, consider plus0, ..., plus9 where plus0 is to add 0 on the
input and so on. After training, for each setting, we select two tasks ad we provide the model with
prompts containing in-context examples from these two tasks and vary the mixture ratio λ such that
the in-context task example distribution for two tasks is [λ, 1−λ]. We plot λ on x-axis and the output
probabilities of task answers for each task on y-axis.

After training, we provide the model with prompts containing in-context examples of two tasks (in
particular, we choose ret2 and ret6) and see if the model performs task superposition. We vary
the proportion of in-context examples of two tasks and plot the output distributions in Figure 3a.

Similarly, we consider a second setting involving 10 tasks. Given a two digit integer input num,
task plus0 outputs num, task plus1 outputs num+ 1 and so on, up to task plus9. The model is
trained to in-context learn one of plus0,..., plus9 at a time, following the procedure above. During
inference time, the model is tested with prompts containing a mixture of in-context examples from
tasks plus2 and plus6. We vary the mixture ratio and show the output distributions in Figure 3b.

Finding 2: Transformers can in-context learn multiple tasks in superposition even if
trained to in-context learn one task at a time.

Remarkably, from Figure 3a and 3b, GPT-2 trained from scratch to in-context learn one task at a
time can generalize to simultaneously performing multiple tasks and calibrate the output probabilities
according to the in-context task example distribution when provided with a mixture of in-context
examples. For example, in Figure 3a at the mixture ratio λ = 0.5, meaning that 50 percent of the
examples in the prompt is from task ret2 and the other 50% comes from task ret6, we can see the
output probabilities for task answers of ret2 and ret6 being roughly [0.5, 0.5]. We can observe
similar behavior in Figure 3b.

5 TRANSFORMERS HAVE THE CAPACITY TO PERFORM TASK SUPERPOSITION

In this section, we explore whether Transformers have the inherent expressivity to perform multiple
tasks in superposition with a single inference call. To this end, we provide a theoretical construction
of a Transformer which, given the ability to implement multiple tasks, performs task superposition
depending on the examples given in-context.

Theorem 1. A seven layer transformer with embedding dimension O(d+ log(mn)) with K heads
per attention layer can perform K tasks on vectors of dimension d in superposition, with weighting
based on m different in-context examples each of length n .

6
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The proof of Theorem 1 is provided in Appendix D.4. Note that while this does not guarantee that
training a Transformer will actually find these parameters, it does indicate that Transformers are
expressive enough to perform task superposition at test time. Below we outline the main ideas used
in the proof.

Prediction based on multiple tasks. Assume that we are given m in-context samples
(x

(j)
1 , . . . ,x

(j)
n−2, ‘=’,y(j))mj=1 where ‘=’ represents a specific value used only for preceding the

label, and a set of k different Transformers TFi which can implement the T different desired tasks,
where each deterministic task is denoted as gi(x(j)) with i ∈ [k] and j ∈ [m], i.e. y(j) = gi(x

(j))
for some task i dependent on sample j. Using the weights of each TFi, we can compute outputs of
the following form:
. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 0 . . .
...

...
...

...
. . . 0 . . . 0 0 0 . . .

→

. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 ∥g1(x(j))− y(j)∥1 . . .
...

...
...

...
. . . 0 . . . 0 0 ∥gT (x(j))− y(j)∥1 . . .


We use the l1 norm to aggregate the prediction, in case that the task is multi-dimensional. These
differences are used to identify tasks, as ∥gi(x(j))−y(j)∥1 ≈ 0 for y(j) coming from task i. Different
heads at each layer in the model are used to execute each of the tasks in parallel using the weights
from TFi. In Appendix D we construct tasks where an arbitrary function gi(x

(j)
l ) is implemented

using ReLUs for some fixed l that is task-specific.

Creating task identifiers. Having the differences between the implemented function and the
label, we first use the ReLUs to clean up the vectors vk so that only the positions in each vector
that are associated with a task are maintained and the rest are set to 13. We thus create the vectors
(v′

k)i = ∥gk(x
(j)
1:l−1)− x

(j)
l ∥1 and (v′

∗)∗ = 1 otherwise. Now we use ReLUs to threshold and create
an indicator vectors 1{∥gk(x

(j)
1:l−1)−x

(j)
l ∥1≈0} which identify the task, i.e.,these are task identifiers.

Notice that if the task is correctly predicted then the difference should be close to 0 (up to some
error), while if the task is not identified the corresponding value would not be 0; the rest of the
rows would be 1. We have created one vector for each task, which has 1 in the position of the
corresponding task if the task was identified in the context.

Averaging and task superposition. As a last step, we average all the task identifiers and place the
result in the last column, in which the next prediction will happen. We then use the averaged task
identifier to weight the prediction of each task based on it, as in task superposition. If the task has
been identified multiple times in the context, it would be assigned a higher weight/probability.

6 TASK SUPERPOSITION THROUGH THE LENS OF TASK VECTORS

While in Section 5 we provide an existential result by constructing a Transformer that performs task
superposition and shows that task superposition is well within the expressive power of Transformers,
we would like to further investigate how task superposition manifest in pretrained LLMs internally. In
this section we explore the underlying mechanisms that LLMs employ during task superposition. In
particular, we focus our empirical study on task vectors (Hendel et al., 2023) where the detailed imple-
mentation is in Appendix C. Task vectors are vectors in the embedding space and are found to encode
the algorithm that a model internally implements to solve a task given in-context demonstrations.

We want to investigate if there is any relation between the task vectors of each individual task and the
task vectors of a mixture of task examples in the prompt. To this end, we consider two sets of tasks:

(a) copy(op1), copy(op2) and op1+op2 as in Figure 1b (left).

(b) Given a two-digit integer, task to fr translates it to French, task to de translates it to
German and task to it translates it to Italian.

3This step is not mandatory, but it ensures that we have no values over which we have no control. We leave
as future work an error analysis on how these values could affect the task identifiers.
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Figure 4: Task vectors of Llama-3 8B projected onto two axes chosen by LDA for two sets of
tasks: (a) copy(op1), copy(op2) and op1+op2 and (b) to fr, to de and to it. For tasks
t1, t2, t3, we use “P(t1)/P(t2)/P(t3)” to denote different levels of task mixtures, e.g., “0.50/0.50/0.00”
represents the case where the in-context task examples are 50% t1, 50% t2 and 0% t3.

For each set of tasks, we collect the task vectors for each individual task and task vectors extracted
from prompts that contain examples of different tasks. In Figure 4, we project task vectors along two
axes chosen by linear discriminant analysis (LDA).

Finding 3: LLMs internally combine task vectors during task superposition.

Interestingly, we observe that the locations of task vectors of a mixture of tasks strongly correlate with
the locations of task vectors for each individual task and the in-context task example distribution (the
mixture ratio for examples of different tasks). For example, if the prompt includes an equal number of
in-context examples from each task, the task vectors are roughly centered in the middle; if the prompt
only contains in-context examples of two tasks, then the task vectors roughly lie on the connecting
line between task vectors of two individual tasks. We argue that this observation is indicative of the
fact that, when prompted with a mixture of in-context task examples, LLMs internally combine task
vectors.

As we observe signs that LLMs internally compose task vectors, we want to further investigate whether
we can reproduce the task superposition phenomenon by patching in a convex combination of task
vectors. For example, for tasks copy(op1) and copy(op2), we first extract the corresponding
task vectors Vcopy(op1) and Vcopy(op2) on Llama-3 8B using the method described in Appendix C.
We then make a convex combination of the two task vectors with parameter λ that controls the ratio:

Vinterpolate,λ = λ · Vcopy(op1) + (1− λ) · Vcopy(op2).

Finding 4: Convex combinations of task vectors produce task superposition.

For a new query (in this scenario in the form “{op1}@{op2}=”), we patch the vector Vinterpolate,λ
into the model at the task vector layer. We calculate the model output probabilities that correspond to
each task while we vary λ. For each λ, we use 100 different queries and plot the average probabilities
in the top row of Figure 5. As a comparison, in the bottom rows of Figure 5, we plot the corresponding
output probabilities when providing the models with prompts containing mixture of task examples
where the mixture ratio is controlled by λ.

In top row of Figure 5, we observe that patching convex combinations of task vectors into the model
produces task superposition. We would also like to point out that in Figure 5b, although irrelevant
outputs sum up to a large probability, the task answers for two tasks to de and to it in most cases
will still be the top-2 answers.

Comparing the top rows and the bottom rows, we can see that top rows (the scenario of interpolating
task vectors of individual tasks) have larger probabilities of irrelevant output (category other).
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Figure 5: On Llama-3 8B, we vary the proportion, λ, between two tasks and observe how the output
probabilities for the correct answers change. The proportion λ is varied in two ways: (1) in the top
row, we plot the output from patching in a convex combination of task vectors for two tasks. (2) in
the bottom row, we plot the output from a mixed proportion of in-context examples for the two tasks.
Subplot (a) shows the output probabilities from mixing two copy tasks and (b) shows the probabilities
from mixing two translate tasks.

Task vector interpolation also produces less of a linear relationship between λ and the output
probabilities. This shows that while convex combinations of task vectors are sufficient for producing
task superposition, this does not fully explain task superposition. We leave it to future work to
investigate other mechanistic explanations of task superposition.

7 TASK SUPERPOSITION CAPABILITIES AS THE MODEL SCALES

Finding 5: Within the same LLM family, bigger models can solve more tasks in parallel
and better calibrate to ICL distribution.

We want to further investigate how models’ task superposition capabilities changes as the model size
scales. In particular, we investigate two questions: 1) whether larger models can perform more tasks
in-context and 2) whether larger models can align their output distribution more closely with the
distribution of task examples provided in the prompt. We chose the Qwen-1.5 model family since it
contains several model sizes ranging from 0.5B to 14B parameters.

We first introduce a quantity which captures the capability of a model to perform multiple tasks.
Given a prompt that contains examples of K tasks, we define r to be the number of these tasks whose
correct answers appear among the model’s top-K most likely outputs. Note that r ≤ K.

To see how close the model align the output distribution with the distribution of task examples, we
use KL-divergence defined below:

KL(P||D) =
∑
x∈X

P(x) log
(
P(x)
D(x)

)
, (2)

where P is the models’ probabilities on the outputs when correctly performing each task on the query
and D is the in-context task example distribution. For example the prompt in Figure 1a (left) gives
P = [0.5217, 0.1316, 0.1110, 0.2169, ...] and D = [0.25, 0.25, 0.25, 0.25, 0, ...].

We consider the setting of K = 6 different tasks: given an input of the form “{num}→” where num
is a two-digit integer, we consider 6 tasks that output (1) num itself, (2) negation of num, (3) num+1,
(4) num− 1, (5) num× 2 and (6) num2.

9
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We choose the number of in-context examples m = 60 (each task has 10 examples) and configure
the prompt with three different in-context task example distributions D1,D2 and D3. In particular,
D1 is the uniform distribution, D2 has probability 0.5 on the third task and 0.1 on other tasks, and
D3 is a distribution with probabilities alternating between 0.25 and 0.083.

For each in-context task examples distribution Di, we generate 100 prompts and for each prompt we
calculate the probabilities of outputs when correctly performing each task. The average values of r
and KL-divergence under three distributions are shown in Figure 6.

0.5B 1.8B 4B 7B 14B
0
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r
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(a) r (the number of tasks whose correct answers
appear in top-K most likely outputs).
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(b) KL divergence.

Figure 6: (a) Average number of tasks completed, r, and (b) KL divergence for Qwen-1.5 model family
under ICL distributions D1,D2 and D3 where D1 is the uniform distribution, D2 has probability 0.5
on the third task and 0.1 on other tasks, andD3 is a distribution with probabilities alternating between
0.25 and 0.083.

In Figure 6a, we can observe that bigger models have higher r values (except for task distribution
D2, 4B model has slightly lower r than that of the 1.8B model). This shows bigger models will
have more correct answers of tasks show up in their top-K probable outputs and therefore they can
solve more tasks at the same time. In Figure 6b, we can see that for larger models like Qwen-1.5
7B and Qwen-1.5 14B, the KL-divergence values are small, and for each model, the differences
between KL-divergence values under in-context task example distributions D1, D2 and D3 are small.
This indicates that bigger models can better calibrate their output distribution to the in-context task
example distribution.

8 LIMITATIONS AND FUTURE DIRECTIONS

One limitation of our work is the current gap between the demonstrated capability of LLMs to
perform task superposition and its practical application in real-world scenarios. While we have shown
that LLMs possess the capacity to execute multiple tasks simultaneously, conventional decoding
algorithms are not equipped to fully leverage this capability. This limitation stems from what we
term ”generation collapse,” a phenomenon where, after the first token is generated, the model tends
to converge on predicting tokens for a single task, effectively negating its ability for multi-task
execution.

This collapse presents a substantial challenge in harnessing the full power of task superposition. It
highlights a critical area for future research: developing decoding strategies that can maintain the
model’s multi-task state throughout the generation process. Recent work by Shen et al. (2024b) offers
some hope that this direction may be fruitful, by proposing a “superposed decoding” algorithm. Their
method efficiently generates multiple streams of tokens from a single inference pass by utilizing
superposed token embeddings. While this approach represents a significant step forward, it also
highlights the potential for further innovation in this area.

9 CONCLUSION

We report on the discovery of task superposition, which is the ability of LLMs to simultaneously
solve distinct tasks from in-context examples. Task superposition is present in a variety of pretrained
models, and becomes more accurate at predicting the distribution of tasks as the model size increases.
We also find evidence that while displaying task superposition, models internally mix the task vectors
of each individual task. We hope that our findings will contribute to understanding in-context learning
mechanisms and enhance our knowledge of LLMs overall.
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A NOTATIONS

Notation Description
K Number of tasks
l Length of a task’s output
ℓ layer ℓ for a model
m Number of in-context examples
n Length of each in-context example
V Token vocabulary

gi(·) Operation performed by Task i
x(j) Data for example j
y(j) Label for example j
sm m in-context examples
f(·) Model (predictor)
p Positional encodings
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B IMPLEMENTATION DETAILS ON CALCULATING PROBABILITIES

In this section we provide details on how we calculate probabilities of different outputs given a
prompt in our setting.

Notations. Let V be the token vocabulary, LM be an LLM, T be the tokenizer. We use “...” to
represent a string, <...> to represent a single token where the content within the angle brackets
is an integer representing token’s index in vocabulary. For example, token <266> corresponds to
“at”. We use [<...>, ..., <...>] to represent a sequence of tokens. Given a tokenizer, we
use two functions tok(·) and detok(·) to tokenize strings and detokenize tokens. For example
tok(“superposition”) = [<9712>,<3571>] and detok([<16>,<10>,<16>,<28>,<17>]) =
“1+1=2”.

In our in-context learning setting, an input string consists of in-context examples (separated by the
delimiter “\n”) and a query. For example, an example prompt can be “1+1=2\n2+2=4\n3+3=”.

We view an LLM as a next-token predictor that outputs a probability distribution over the token
space given input and there is a corresponding P(·|·) such that given a sequence of tokens [v1, ..., vM ]
where vj ∈ V , P(u | [v1, ..., vM ]) measures the probability of the next token being u where u ∈ V .

Measuring the probabilities of task answers. Let I be the input prompt. For example, in the
example in Figure 1a (left), the prompt is “11+26->37\n33+13->quarante-six\n ...30+25->fifty-
five\n91+83->”. We consider four tasks: 1) numerical addition, 2) addition in English, 3) addition
in French and 4) addition in Spanish. The corresponding task answers (the output of correctly
performing task on the query) are “174”, “one hundred and seventy-four”, “cent soixante-quatorze”
and “ciento setenta y cuatro”, respectively. We want to measure the probability of each task answer.

Let o be a task answer in string. Let [v1, ..., vM ] := tok(I) and let [u1, ..., uN ] := tok(o). Then
the probability of the task answer o given prompt I can be calculated as

P(u1 | [v1, ..., vM ])

N∏
j=2

P(uj | [v1, ..., vM , u1, ..., uj−1]). (3)
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C IMPLEMENTATION DETAILS ON TASK VECTORS

We use the task vector definition from Hendel et al. (2023). For example, for task copy(op1) in
Figure 1b (left), the procedure to collect the task vector consists of

1. Collect a dataset of 100 ICL sample prompts. Each prompt consists of m = 60 in-context
examples of a particular task and a query x(m+1). Each task example (x(j),y(j)) follows
the form “{op1}@{op2}={op1}”, where x(j) has the form “{op1}@{op2}=” and y(j)

is performing task copy(op1) on x(j), namely op1.

2. For each prompt ≡ s = [x(1),y(1), ...,x(m),y(m),x(m+1)] in the dataset, we feed s into
the transformer model f , and extract the feature (which is a vector) at the last “=” token in
layer ℓ. Call this vector f(s; ℓ). Then we average f(s; ℓ) across all prompt s to get v(ℓ) for
layer ℓ.

3. Now for each layer ℓ we have a vector v(ℓ). We run a forward pass with one query x
in the form “{op1}@{op2}=” and we patch in v(ℓ) at the “=” token position in layer ℓ,
simulating the effect of a complete context. We repeat this process 100 times for different
query x and get an accuracy accℓ of performing task copy(op1) with vector v(ℓ).

4. The task vector layer ℓ∗ is selected by

ℓ∗ = argmax
ℓ

accℓ,

and we define the task vector Vcopy(op1) := v = v(ℓ∗).

Here we record the task vector layer where task vectors are extracted in Section 6.

Task Task vector layer
copy(op1), copy(op2), op1+op2 14

to de(op1), to fr(op1), to it(op1) 19

Table 1: Task vector layer for various tasks considered in Section 6.
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D CONSTRUCTION DISPLAYING SUPERPOSITION

In this section we construct a Transformer that is performing superposition of multiple tasks at
inference. For this purpose, we first construct a Transformer that copies from n-tuple in-context
examples the i-th one, as well as any function using the ReLU layers. We then create indicator
vectors, for each task, which show whether a specific task is present in-context or not. As a last step,
we combine these indicator vectors to create the superposition of different tasks. Notice that using
the parallel heads of the transformer architecture we can process each task independently until the
last step in which the predictions are combined.

D.1 OVERVIEW

Here we provide a brief overview of how the construction is implemented, while latter we provide
the corresponding details.

Prediction based on multiple tasks. Assume that we are given m in-context samples
(x

(j)
1 , . . . ,x

(j)
n−2, ‘=’,y(j))mj=1 where ‘=’ represents a specific value used only for preceding the

label, and a set of k different Transformers TFi which can implement the T different desired tasks,
where each deterministic task is denoted as gi(x(j)) with i ∈ [k] and j ∈ [m], i.e. y(j) = gi(x

(j))
for some task i dependent on sample j. Using the weights of each TFi, we can compute outputs of
the following form:
. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 0 . . .
...

...
...

...
. . . 0 . . . 0 0 0 . . .

→

. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 ∥g1(x(j))− y(j)∥1 . . .
...

...
...

...
. . . 0 . . . 0 0 ∥gT (x(j))− y(j)∥1 . . .


We use the l1 norm to aggregate the prediction, in case that the task is multi-dimensional. These
differences are used to identify tasks, as ∥gi(x(j))−y(j)∥1 ≈ 0 for y(j) coming from task i. Different
heads at each layer in the model are used to execute each of the tasks in parallel using the weights
from TFi. In Appendix D we construct tasks where an arbitrary function gi(x

(j)
l ) is implemented

using ReLUs for some fixed l that is task-specific.

Creating task identifiers. Having the differences between the implemented function and the
label, we first use the ReLUs to clean up the vectors vk so that only the positions in each vector
that are associated with a task are maintained and the rest are set to 14. We thus create the vectors
(v′

k)i = ∥gk(x
(j)
1:l−1)− x

(j)
l ∥1 and (v′

∗)∗ = 1 otherwise. Now we use ReLUs to threshold and create
an indicator vectors 1{∥gk(x

(j)
1:l−1)−x

(j)
l ∥1≈0} which identify the task, i.e. these are task identifiers.

Notice that if the task is correctly predicted then the difference should be close to 0 (up to some
error), while if the task is not identified the corresponding value would not be 0; the rest of the
rows would be 1. We have created one vector for each task, which has 1 in the position of the
corresponding task if the task was identified in the context.

Averaging and task superposition. As a last step, we average all the task identifiers and place the
result in the last column, in which the next prediction will happen. We then use the averaged task
identifier to weight the prediction of each task based on it, as in task superposition. If the task has
been identified multiple times in the context, it would be assigned a higher weight/probability.

D.2 TASK IDENTIFICATION

The first task for performing task superposition based on in-context examples is to define a set of
tasks that the model is able to implement.

First, the outputs of tasks need to be identified.

4This step is not mandatory, but it ensures that we have no values over which we have no control. We leave
as future work an error analysis on how these values could affect the task identifiers
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Lemma 1. Consider the following input

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 1 0 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .

 ,

where x
(j)
i ∈ Rd−1 before the positional encodings are added, with one additional dimension that

represents if the symbol is an ‘equals’ symbol. Then, a 1-layer transformer with a single attention
head and embedding dimension O(d+ log(mn)) can output

X =

[
x
(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 1 0 . . . 0 0 1 0 . . .

]
Proof. With positional encodings appended, let the input have the following structure:

X =


x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 1 0 0 . . .
pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn . . . pjn pjn+1 . . . pjn+n−3 pjn+n−2 pjn+n−1 p(j+1)n . . .


(4)

To rotate the second row one position to the right, use the following matrices.

WQ = [0 0 0 I]
WK = [0 0 CI 0]

WV =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


The pair WQ and WK attend tokens to the token directly to the right. The value matrix simply filters
only the second row in-place. A second head can used to clear the original 1s, resulting in

X =


x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .
pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn . . . pjn pjn+1 . . . pjn+n−3 pjn+n−2 pjn+n−1 p(j+1)n . . .

 ,

(5)
as desired.

Implementation of functions. To illustrate a set of operations that could be implemented with a
transformer, we consider approximating functions as sums of ReLUs; we use a result from Bai et al.
(2023b), which we present below.
Definition 1 (Definition 12 in Bai et al. (2023b)). A function g : Rk → R is (ϵ, R,M,C)-
approximable by sum of ReLUs, if there exists an ”(M,C)-sum of ReLUs” function

fM,C(x) =

M∑
m=1

cmReLU(a⊤
m[x; 1]) with

M∑
m=1

|cm| ≤ C, max
m∈[M ]

∥am∥1 ≤ 1, am ∈ Rk+1, cm ∈ R

such that supx∈[−R,R]k]

∣∣g(x)− f(M,C)(x)
∣∣ ≤ ϵ.

Definition 2 (Definition A.1 in Bai et al. (2023b)). We say a function g : Rk → R is (R,Cl)-smooth
if for s = ⌈(k − 1)/2⌉+ 2, g ∈ C25 on [−R,R]k and

sup
x∈[−R,R]k

∥∥∇ig(x)
∥∥
∞ = sup

x∈[−R,R]k
max

j1,...,ji∈[k]

∣∣∂xj1,...,xji
g(x)

∣∣ ≤ Li

for all i = 0, 1, 2 with max0≤i≤s LiR
i ≤ Cl.

5Ci denotes that a function is i times differentiable with continuous i-th derivative.
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Proposition 1 (Proposition A.1 in Bai et al. (2023b)). For any ϵ > 0, R ≥ 1, Cl > 0, we have that:
Any (R,Cl)-smooth function, g : R→ R is (ϵ, R,M,C)-approximable by sum of ReLUs (Definition
1) with M ≤ C(k)C2

l log(1 + Clϵ)/ϵ
2.

Lemma 2. For any function g : Rk → R that is (R,Cl)-smooth, there exists a transformer with two
layers, one head and width O(log(n) + d), where d satisfies the requirements of Prop. 1, such that
given as input

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 1 0 . . . 0 0 1 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .

 ,

it outputs

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

∗ . . . ∗ ∗ . . . ∗ ∗ ∗ ∗ . . .

0 . . . g̃(x
(j−1)
i )− y(j−1) ∗ . . . ∗ ∗ g̃(x

(j)
i )− y(j) ∗ . . .


where |g̃(x)− g(x)| ≤ ϵ and for some i ∈ [1, . . . , n− 2].

Proof. We consider that the positional encodings are added in the input and we have

X =


x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .
1 . . . 1 1 . . . 1 1 1 1 . . .

pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn+1−s . . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s p(j+1)n+1−s . . .


(6)

where we fix some positional encodings pk where p⊤
k pk is larger than p⊤

k pl by some threshold for
k ̸= l. The encodings used here are the binary representations of k ∈ {−1, 1}log(mn). Further, we
consider 1s in the positions with the results of the task to differentiate the context of the task and the
result of the task. Define s = n− i, the distance between the result and the associated value in the
context.

In the first layer, we use the MLP’s to create g̃ according to Proposition 1

X =



x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .

g̃(x
(1)
1 ) . . . g̃(x

(j)
1 ) g̃(x

(j)
2 ) . . . g̃(x

(j)
n−2) g̃(=) g̃(y(j)) g̃(x

(j+1)
1 ) . . .

0 . . . 0 0 . . . 0 0 0 0 . . .
1 . . . 1 1 . . . 1 1 1 1 . . .

pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn+1−s . . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s p(j+1)n+1−s . . .


(7)

The next operation is a shift of the sequence of g̃(·)’s to the right by s. This will align the desired
output g̃(x(j)

i ) with the observed output y(j). Consider the following weight matrices

WQ = [. . . 0 0 I] (8)

WK = [. . . 0 CI 0] (9)

WV =


0 0 0 . . . 0
0 0 0 . . . 0
0 0 I . . . 0
...

...
...

...
0 0 0 . . . 0

 (10)

for some large constant C to decrease error from the softmax attending to the incorrect tokens. This
produces (within a small error induced by using a softmax)
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(X⊤W⊤
KWQX)i,j = p⊤

n+ipn−s+j (11)

σS(X
⊤W⊤

KWQX)i,j = 1{n+i=n−s+j} = 1{i=j−s} (12)

WV X =


. . . 0 0 . . . 0 0 0 . . .
. . . 0 0 . . . 0 0 0 . . .

. . . g̃(x
(j)
1 ) g̃(x

(j)
2 ) . . . g̃(x

(j)
n−2) g̃(=) g̃(y(j)) . . .

...
...

...
...

...
. . . 0 0 . . . 0 0 0 . . .

 (13)

WV XσS(X
⊤W⊤

KWQX) =


. . . 0 0 . . . 0 0 0 . . .
. . . 0 0 . . . 0 0 0 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i ) . . .

...
...

...
...

...
. . . 0 0 . . . 0 0 0 . . .

 (14)

X +WV XσS(X
⊤W⊤

KWQX) =



. . . x
(j)
1 x

(j)
2 . . . x

(j)
n−1 = y(j) . . .

. . . 0 0 . . . 0 0 1 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i ) . . .

. . . 0 0 . . . 0 0 0 . . .

. . . 1 1 . . . 1 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s . . .


(15)
(16)

Each matrix above only shows the slice that contains the j-th in-context example. This is repeated for
each of the other in-context examples.

As a final step with an MLP, subtract row 1 from row 3 to achieve the following output:

. . . x
(j)
1 x

(j)
2 . . . x

(j)
n−1 = y(j) . . .

. . . 0 0 . . . 0 0 1 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i )− y(j) . . .

. . . 0 0 . . . 0 0 0 . . .

. . . 1 1 . . . 1 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s . . .


(17)

Copy Tasks As has been experimentally investigated, the situation where a specific position within
the context is copied as the label can be easily implemented by setting g(x) = x. The dependence
on the subscript i within the construction is what allows the position copied to vary.

D.2.1 IDENTIFYING IF TASK’S OUTPUT MATCHES THE IN-CONTEXT EXAMPLE

Lemma 3. A three layer transformer with ReLU MLPs and embedding dimension O(d+ log(mn))
can calculate the proportion of in context examples that come from a specific task, where m is the
number of in-context examples, each of length n and dimension d.

Proof. We now have a matrix of the following form.
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. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(18)

If the task is correct, than f(x
(j)
· ) − y(j) ≈ 0, with some small error coming from softmaxs and

function approximation error. First, we find the L1-norm of f(x(j)
· ) − y(j) using an MLP. For

calculating ∥z∥1 for arbitrary z, we can use

∥z∥1 =

d∑
i=1

ReLU(zi)− ReLU(−zi) (19)

which can be done in a single 1-layer MLP. Thus, we have

. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . ∗ ∗ . . . ∗ ∥f(x(j)
· )− y(j)∥1 . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(20)

Notice that if some task has different dimension than another task, the “extra” rows would be zero
and will not affect the result.

For clarity, we set all ∗ values in the ∥ · ∥1 row to 1s. These will cause the following δ̂ in the following
set these to 0. This operation can be omitted as the construction handles these trash values at a later
layer.

Let b represent the value of the flag in the second row marking the y vectors and let x represent the
values in the row with ∥f(x(j))− y(j)∥1. The following ReLUs set the * values to 1.

x←− x+ 1− ReLU(x− Cb)− ReLU(Cb− C + 1) (21)

for some large constant C. When b = 0, this reduces to x+ 1− x = 1, and when b = 1, this reduces
to x+ 1− 1 = x, as desired.



. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
· )− y(j)∥1 . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(22)

Now define a thresholding function δ̂(z) that satisfies δ̂(0) = 1 and δ̂(z) = 0 for z >> 0. One such
function used here is

δ̂C(z) = ReLU(1− Cz) (23)
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for some constant C, where larger C captures a narrower neighborhood of 0.

However, a slight change needs to be added to δ̂C . In the same row as ∥f(x(j))− y(j)∥ are many
values that need to be discarded. Let b be the bit for the current column marking if the column
contains an x or a y. We use instead

δ̂C(b, z) = ReLU(b− Cz) (24)

This will be zero whenever b = 0 and z ≥ 0. We then have as output



. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
· )− y(j)∥1 . . .

. . . 0 0 . . . 0 δ̂C(∥f(x(j)
· )− y(j)∥1) . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(25)

Importantly, δ̂C(∥f(x(j)
· )−y(j)∥1) = 1 when f(·) is the correct task and δ̂C(∥f(x(j)

· )−y(j)∥1) = 0
when f(·) disagrees by more than 1

C in L1-norm.

Lastly, for the next step in the construction, we need to average these soft indicators δ̂ to see how
common f is within the context. This is done with an attention layer. Let WQ select the row with all
1s multiplied by some large constant C, and let WK select the row with flags for results y. Then

X⊤W⊤
KWQX =



...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
C C . . . C C
...

...
...

...


(26)

σS(X
⊤W⊤

KWQX) ≈



...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0

1/m 1/m . . . 1/m 1/m
...

...
...

...


(27)

where a 1/m will appear in every row corresponding to a result y. Let the value matrix select the
row containing δ̂(∥f(x(j) − y(j))∥1). Denote p = 1

m

∑m
j=1 δ̂(∥f(x(j) − y(j))∥1). Without causal

masking, we would have as output
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. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
· )− y(j)∥1 . . .

. . . 0 0 . . . 0 δ̂C(∥f(x(j)
· )− y(j)∥1) . . .

. . . p p . . . p p . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(28)

However, with causal masking, we can only guarantee that p will appear in the columns containing
the most recent example being queried. Thankfully, this is all that is needed.

D.3 TASK EXECUTION

Lemma 4. A two layer transformer, with embedding dimension O(d+ log(mn)) can perform a task
and weight its output by the proportion of examples of that task seen within the context.

Now that the proportions of each task have been identified in the context, the task itself needs to be
executed for the new example being queried. To simplify notation, let the input to this step be

X =


. . . x

(m)
1 x

(m)
2 . . . x

(m)
n−2 =

. . . ∗ ∗ . . . ∗ ∗

. . . p p . . . p p

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

 (29)

Following the same process as outlined above, although with slightly different positional encodings,
calculate f(x(m)) and place that result in the final column being decoded. These need to be added at
the beginning of the construction, but are only introduced here for clarity.



. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . p p . . . p p

. . . ∗ ∗ . . . ∗ f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0


(30)

We will transform the row containing all p to be able to approximately multiply p by f(x(m)). Using
the second to last row, perform p −→ 1− p. Using the last two rows, clear out the rest of that row and
fill it with −C for some large constant C. We then have



. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . −C −C . . . p 1− p

. . . ∗ ∗ . . . ∗ f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0


(31)
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Further, use the second-to-last row to clear out all ∗ in the rows below.



. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . −C −C . . . p 1− p

. . . 0 0 . . . 0 f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0


(32)

These previous operations can all be done in a single MLP.

Lastly, use an attention layer where WK selects the row with the −Cs, WQ selects the row with all
1s, and WV selects the f(x(m)). For the last token xL,

X⊤W⊤
KWQxL =



...
−C
−C

...
p

1− p


[1] =



...
−C
−C

...
p

1− p


(33)

σS(X
⊤W⊤

KWQxL) ≈



...
−∞
−∞

...
p

1− p


=



...
0
0
...
1

1+e1−2p

1− 1
1+e1−2p


(34)

WV xLσS(X
⊤W⊤

KWQxL) =



...
0

1
1+e1−2p0+ (1− 1

1+e1−2p )f(x
(m))

0
...

 (35)

xL +WV xLσS(X
⊤W⊤

KWQxL) =



x
(m)
n−1
∗

1− p
1

1+e1−2p f(x
(m))

0
∗
1
1
0


(36)

Importantly, we are left with 1
1+e1−2p f(x

(m)). The factor 1
1+e1−2p is approximately p, especially

around 1
2 . This multiplication can also be calculated more accurately with approximations using

ReLUs or sigmoids, but for brevity and following experimental evidence of a sigmoid shape in task
superpositions, these options are ommited.
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D.4 SUPERPOSED TASKS WITH PARALLEL HEADS

The above construction works for a single task, where the output is weighted by the proportions of
the task within the context. To complete the construction of a transformer that does superposition of
tasks, each of these models needs to be placed within the same overall transformer. This is described
here.

Let there be a collection of tasks {ti}Ti=1 which can be executed by transformers with model weights
represented by subscripts (·i). With the input to each transformer being X(i), the overall input matrix
is given by vertically stacking these matrices.

X =


X1

X2

...
XT−1

XT

 (37)

Similarly, define each MLP’s weights and biases as

W = diag(W1, . . . ,WT ) b =

b1
...
bT

 (38)

This puts every MLP to be independent of each other. Lastly, we need to change the attention layers.
This requires the use of one head per task. In each of the following, W (i) is a weight matrix for head
i, (W )i is the weight matrix for task i in its individual transformer, and each matrix below is in the
i-th block.

W
(i)
V =


...
0

(WV )i
0
...



⊤

W
(i)
K =


...
0

(WK)i
0
...



⊤

W
(i)
Q =


...
0

(WQ)i
0
...



⊤

(39)

In all, this model executes multiple tasks in superposition by using parallel streams of heads that each
performs a single task. Task identification can happen through the same mechanism as task execution
by comparing the output of the task on each in context example with the true output.

For context related tasks, there needs to be positional encodings that allow for looking back a fixed
number of tokens. For context agnostic tasks, a wide MLP can be used to approximate arbitrary
non-linear transformations of the input. Each of these tasks only require a small number of layers,
significantly smaller than those of modern LLMs. It may be possible that LLMs do certain tasks with
different combinations of layers.

Also, if we take the feature p from each parallel stream, this creates the following task identifier.

v =


p1
p2
...
pT

 (40)

Interpolating between the pure tasks, represented by unit vectors, different amounts of each task will
appear in the superposition in roughly equal proportions to those found in v.

Lastly, we restate this construction formally.
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Theorem 1. A seven layer transformer with embedding dimension O(d+ log(mn)) with K heads
per attention layer can perform k tasks on vectors of dimension d in superposition, with weighting
based on m different in-context examples each of length n .

Proof. Using in succession each of Lemma 1, Lemma 2, Lemma 3, and Lemma 4, a transformer with
the desired properties can execute k tasks in parallel. Lemma 1 identifies positions within the context
that contain the labels y. Lemma 2 then uses function approximation to perform arbitrary tasks
within the architecture, which are then used by 3 to find the proportions of each task and aggregate
them into a single task identifier. Lastly, Lemma 4 uses this task identifier to create a weighted sum
of outputs from the different tasks based on their in-context proportions.

Remark. Transformers of greater depth than seven layers can also represent this construction by
setting the weights in all other layers for the non residual part to zero.
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E ADDITIONAL EXPERIMENT AND ANALYSIS OF TASK SUPERPOSITION IN
PRETRAINED MODELS
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ob

ab
ilit

y
1.001.001.00

0.000.000.00 0.000.000.00
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GPT-3.5 Llama-3 70B Qwen-1.5 72B

(a) (left) All task examples from task add; (right) equal number of task examples from add and add in en.
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(b) (left) All task examples from task capital; (right) equal number of task examples from capital and
continent.
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(c) (left) All task examples from task copy(op1); (right) equal number of task examples from copy(op1)
and copy(op2).
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(d) (left) All task examples from task first letter; (right) equal number of task examples from
first letter and first letter cap.

Figure 7: For each subplot, we consider two tasks task1 and task2 and on the left side we plot
the median probability for task answers where all task examples in prompts are from task1; on the
right side we plot the median probability for task answer where task examples from task1 and from
task2 in prompts are equal.

E.1 IS SUPERPOSITION REALLY HAPPENING?

In Figure 2 we plot distributions of probabilities for each task in four settings. Note that in setting 3
(corresponds to Figure 2c), the other category has low probabilities for all models but for settings
1, 2 and 4 (correspond to Figure 2a, 2b and 2d respectively), the other category is not always low.
A natural question to ask is:

For the non-zero probabilities we observe on each task answer, are they indications of task
superposition or by-products of prediction noise?

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

We set up an experiment to investigate this. For each setting, we select two tasks task1 and task2;
then we consider two scenarios: (1) we provide prompts where all task examples come from task1
and (2) we provide prompts where half of the task examples come from task1 and the other half of
task examples come from task2; in both scenarios we measure the probabilities for task answers of
task1 and task2 and see how these probabilities change between scenario (1) and (2). For each
scenario, we test it on 100 prompts (each task has 10 in-context examples) and plot the median of
task answers in Figure 7. As is shown in Figure 7 left side, where there is no task example from
task2 in the prompt, the probabilities for task answers of task2 are near 0 for all models; on the
right side, where there is an equal number of task examples that are from task1 and task2, the
probabilities for task answers of task2 increase significantly. This indicates that when we provide
prompts that mix task examples from different tasks, the prediction on each task answer is more than
just pure prediction noise.

E.2 MORE ANALYSIS ON OTHER CATEGORY IN MODEL’S OUTPUT DISTRIBUTION

In Figure 2, in settings 1, 2 and 4 (correspond to Figure 2a, 2b and 2d respectively), since there
are also non-negligible probabilities on the other category (and it is a summation of all other
probabilities), we further investigate the probabilities in other category. In particular, for each
prompt, we use beam search (where we stop searching when we encounter “\n”) to find answers
that have top-(K + 1) probabilities and record the maximum probability of the answer that is not
one of the task answers. In Figure 8, we plot the median of such probability along with medians of
probabilities of each task answer.
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(a) Setting 1: Addition in original numerical form and in different languages.
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(b) Setting 2: Capital name, continent name and capitalization.
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(c) Setting 4: First or last letter in upper or lower cases.

Figure 8: For each subplot, we plot the medians of probabilities for each task answer and the median
of the maximum probability of the answer that is not one of the task answers.
In Figure 8a (setting 1), for GPT-3.5 and Llama-3, we can observe that the medians of the probabilities
for most probable non-task-answer are significantly lower than that of each task answer. This indicates
that the models are effectively performing task superposition across the four tasks, with any other
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answer having a low probability. For Qwen-1.5, however, the median probabilities of task answers
for add, add in fr, add in es and the most probable non-task-answer are relatively low. This
may be attributed to the model’s limited ability to perform the add in fr and add in es tasks.

In Figure 8b (setting 2), we see that for all models, the median probability of the most probable
non-task-answer is lower than that of each task answer. A possible explanation for the most probable
non-task-answer still having a probability around 0.07 is the presence of related tasks: (1) CAPITAL,
which returns the capital of a country in uppercase, (2) CONTINENT, which returns the continent of
a country in uppercase, and (3) identity, which directly returns the country name. If these task
answers are excluded when calculating the top-(K + 1) probabilities, and the maximum probability
of the non-task-answer is recalculated, the median probability drops to less than 0.02 for Qwen-1.5
and Llama-3, and less than 0.001 for GPT-3.5. This suggests that while the models may not always
strictly perform task superposition on the provided tasks, they may perform compositions of the
tasks. We think it is an interesting direction for the future work to study the relation between task
superposition and task composition.

In Figure 8c (setting 4), we notice that the medians of the maximum non-task-answer probabil-
ity are slightly higher than (or comparable to) those of the task answers for last letter and
last letter cap. This could be due to the fact that these tasks are more challenging for the mod-
els. On the other hand, the medians of most probable non-task-answer probability are significantly
lower than that of task answers for first letter and first letter cap, where we consider
the model is performing task superposition on.

E.3 MEASURING ACCURACY IN TASK SUPERPOSITION

We further investigate how task superposition affect task performance. In particular, for a prompt
consisting examples of K tasks (each task has an equal number of task examples), we define a task
being correctly performed if its task answer lies in the top-K answers (that we use beam search to
find). We compare the accuracy against individual task accuracy where we provide prompts consisting
of task examples of only 1 task and define the task being correctly performed if the task answer is the
top-1 answer.

We calculate accuracy in K = 1 case and K > 1 case using 100 prompts and show the result in Table
2. We find that as we increase the number of tasks, all models exhibit an accuracy decrease in correctly
performing each individual task. Notably, however, the accuracy degradation of Llama3-70B is less
than that of Llama2-70B across most tasks. We believe this is indicative that improved model training
techniques lead to better preservation of task superposition,
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Model K = 1 K = 4

t1 t2 t3 t4 t1 t2 t3 t4

GPT-3.5 100 99 85 91 95 (−5) 90 (−9) 84 (−1) 84 (−7)
Llama-3 70B 100 99 97 99 100 (0) 99 (0) 96 (−1) 92 (−7)
Llama-2 70B 100 96 69 77 88 (−12) 96 (0) 63 (−6) 46 (−31)
Qwen-1.5 72B 100 94 52 70 66 (−34) 91 (−3) 28 (−24) 34 (−36)

(a) Setting 1: Addition in original numerical form and in different languages where t1= add, t2= add in en,
t3 = add in fr, t4 = add in es.

Model K = 1 K = 3

t1 t2 t3 t1 t2 t3

GPT-3.5 100 100 100 93 (−7) 62 (−38) 56 (−44)
Llama-3 70B 100 100 100 82 (−18) 90 (−10) 83 (−17)
Llama-2 70B 97 94 90 75 (−22) 75 (−19) 50 (−40)
Qwen-1.5 72B 100 99 91 65 (−35) 87 (−12) 48 (−43)

(b) Setting 2: Naming the capital, continent and capitalize the country name where t1 = capital, t2 =
continent, t3 = capitalization.

Model K = 1 K = 3

t1 t2 t3 t1 t2 t3

GPT-3.5 100 100 100 100 (0) 97 (−3) 97 (−3)
Llama-3 70B 100 100 100 99 (−1) 100 (0) 99 (−1)
Llama-2 70B 100 100 95 95 (−5) 99 (−1) 84 (−11)
Qwen-1.5 72B 100 100 99 100 (0) 98 (−2) 98 (−1)

(c) Setting 3: t1 = copy(op1), t2 = copy(op2) and t3 = op1+op2.

Model K = 1 K = 4

t1 t2 t3 t4 t1 t2 t3 t4

GPT-3.5 100 87 100 54 94 (−6) 56 (−31) 97 (−3) 12 (−42)
Llama-3 70B 100 63 100 40 99 (−1) 29 (−34) 99 (−1) 13 (−27)
Llama-2 70B 100 55 100 38 99 (−1) 35 (−20) 97 (−3) 7 (−31)
Qwen-1.5 72B 100 62 100 34 89 (−11) 30 (−32) 100 (0) 15 (−19)

(d) Setting 4: First or last letter in upper or lower cases where t1 = first letter, t2 = last letter,
t3 = first letter cap, t4 = last letter cap.

Table 2: Accuracy for each task in percentage, with the delta change given in parenthesis. For each
setting we calculate the accuracy with prompts consisting of task examples of only one task (K = 1
case) and with prompts consisting of examples from multiple tasks (K > 1 case).
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F ADDITIONAL FIGURES
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Figure I: Accuracy for each choice of the intermediate layer ℓ on task ret2 and plus2.
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(b) plus1 / plus5 / plus7

Figure II: Task vectors projected onto two axes chosen by LDA for two sets of tasks: (a) ret1,
ret5 and ret7 and (b) plus1, plus5 and plus7.
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(a) Tasks: ret1 and ret7
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(b) Tasks: plus2 and plus5

Figure III: We vary the proportion, λ, between two tasks and observe how the output probabilities
for the correct answers change. The proportion λ is varied in two ways: (1) in the top row, we plot
the output from patching in a convex combination of task vectors for two tasks. (2) in the bottom
row, we plot the output from a mixed proportion of in-context examples for the two tasks. Subplot (a)
shows the output probabilities from mixing two retrieval tasks and (b) shows the probabilities from
mixing two addition tasks.
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(c) (left) Euclidean distances between centroids and (right) corresponding medians of the task answer probability
in setting of (a).
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(d) (left) Euclidean distances between centroids and (right) corresponding medians of the task answer probability
in setting of (b).

Figure IV: Task vectors of Llama-3 8B projected onto two axes chosen by LDA for two sets
of tasks: (a) copy(op1), copy(op2) and op1+op2 and (b) capital, continent and
capitalization; centroids and Euclidean distance between centroids of mixtures and centroids
of non-mixtures are labeled. In (c) and (d), left side shows Euclidean distances from centroids of each
mixture clusters to centroids of non-mixture clusters, and right side shows medians of probability for
each task answer when provided with prompts of task mixture.
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Figure V: We vary the proportion, λ, between two tasks and observe how the output probabilities of a
1-head transformer for the correct answers change. The proportion λ is varied on two tasks: plus2
and plus5.
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