
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FROM GEOMETRY TO DYNAMICS: LEARNING
OVERDAMPED LANGEVIN DYNAMICS FROM SPARSE
OBSERVATIONS WITH GEOMETRIC CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

How can we learn the laws underlying the dynamics of stochastic systems when
their trajectories are sampled sparsely in time? Existing methods either require
temporally resolved high-frequency observations, or rely on geometric arguments
that apply only to conservative systems, limiting the range of dynamics they can
recover. Here, we present a new framework that reconciles these two perspec-
tives by reformulating inference as a stochastic control problem. Our method
uses geometry-driven path augmentation, guided by the geometry in the system’s
invariant density to reconstruct likely trajectories and infer the underlying dy-
namics without assuming specific parametric models. Applied to overdamped
Langevin systems, our approach accurately recovers stochastic dynamics even
from extremely undersampled data, outperforming existing methods in synthetic
benchmarks. This work demonstrates the effectiveness of incorporating geometric
inductive biases into stochastic system identification methods.

1 INTRODUCTION

How can we discover the underlying driving forces that govern the behaviour of complex, stochastic
systems when we only measure their state at discrete time points? From pollen motion in a liquid
medium (Einstein, 1905) and chemical reactions (Li, 2020) to population dynamics (Silva-Dias
and López-Castillo, 2018; Fisher and Mehta, 2014) and cell growth (Alonso et al., 2014), many
natural processes evolve following stochastic dynamics, best described by Langevin or stochastic
differential equations (SDEs) of the form

dXt = f(Xt) dt+ σ dWt. (1)
Under this formalism, the deterministic part of the equation f(·) : Rd → Rd, the drift function,

captures the long-term evolution of the state variables, while the stochastic part σ : Rd × Rd, the
diffusion, accounts for the contribution of unresolved degrees of freedom. In practice, however, we
rarely observe these systems at the fine time scales required by existing inference methods.

Recent advances in dynamical system inference have delivered valuable tools for identifying
continuous-time deterministic systems from observations (Cremers and Hübler, 1987; Brunton et al.,
2016; Daniels and Nemenman, 2015; McGoff et al., 2015; Kantz and Schreiber, 2004; Schmidt and
Lipson, 2009). Data-driven (or nonparametric, or equation-free) approaches seek to reconstruct
the governing equations of observed systems directly from state observations, without imposing ex-
plicit assumptions or inductive biases about the underlying dynamical models. They rely on function
approximation to infer the system’s structure from observations, such as basis functions (Acosta,
1995; Small and Tse, 2002; Judd and Mees, 1995; Small and Judd, 1998; Brückner et al., 2020;
Frishman and Ronceray, 2020), symbolic regression (Kaiser et al., 2018; Brunton et al., 2016; Bon-
gard and Lipson, 2007; Daniels and Nemenman, 2015), spectral approximations (Kevrekidis et al.,
2003; Theodoropoulos et al., 2000), Gaussian processes (Alvarez et al., 2009; Sanguinetti et al.,
2006; Särkkä, 2019), or neural networks (Teng, 2018; Bhattoo et al., 2022; Jüngling et al., 2019).
However, extending these methods to stochastic systems remains difficult. In this setting, inference
must disentangle the influence of underlying deterministic forces from random fluctuations, a task
that is particularly difficult when sampling rates are low.
Two dominant perspectives for stochastic inference. Data-driven system identification for
stochastic systems largely follows two tracks. Temporal methods (Fig. 1A.) rely on the tempo-
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Figure 1
Temporal and geometric perspectives for discovering stochastic dynamics and proposed infer-
ence with geometrically guided augmentation. (A.) Temporal methods consider the time-ordering
of observations {Ok}Kk=1 (purple dots) to approximate the drift f(x) with conditional rescaled
state increments f̂(x) = ⟨ dXt

τ |Xt = x⟩. (B.) Geometric methods assume a conservative drift
f(x) = −∇V (x) as the gradient of a potential. (C.) With increasing inter-observation interval τ
performance of temporal methods degrades because Euclidean distances ignore the curvature of the
latent continuous path between consecutive observations. (D.) Path augmentation alternates between
state estimation - by sampling diffusion bridges for each inter-observation interval - and drift infer-
ence. (E.) Commonly used path augmentation methods employ Brownian or Ornstein-Uhlenbeck
bridges that increasingly deviate from the unobserved path as τ grows. (lower) Illustration of the
ground truth (neon green) and geodesic (magenta) continuous path between two observations and
of that assumed during inference with Gaussian likelihood (yellow line). (F.) Geometrically guided
augmentation approximates first the metric induced by the invariant density, constructs geodesics
connecting consecutive observations, and samples geometrically constrained diffusion bridges.

ral ordering of measurements, regressing state increments against states to estimate the drift, which
works when the inter-observation interval (τ ) is small (Batz et al., 2018; Friedrich and Peinke,
1997; Ragwitz and Kantz, 2001). Geometric methods on the other hand, approximate the invariant
density (Batz et al., 2016; Gu et al., 2021) or eigenstructure of the infinitesimal generator of the
diffusion process (Singer and Coifman, 2008; Nüske et al., 2021; Ionides et al., 2006; Talmon and
Coifman, 2015; Dsilva et al., 2016; Berry and Harlim, 2018)) (Fig. 1B.), but are nevertheless lim-
ited to systems with conservative forces (Berry and Harlim, 2015; Batz et al., 2016) or decoupled
state variables (Singer and Coifman, 2008). Each perspective has limitations: temporal approaches
deteriorate with increasing inter-observation intervals (Fig. 1C.), whereas geometric methods are
restricted to conservative flows.

A unifying perspective: reconcile temporal and geometric methods by constraining
with most probable paths extracted from the invariant density. Here, we recast in-
ference into a stochastic control problem and introduce geometry-aware path augmenta-
tion. Our method follows a simple premise that incorporates geometric inductive biases
informed by the system’s invariant density into dynamical inference: we postulate that the
augmented paths should lie in the vicinity of geodesic curves (Fig. 1F. middle, magenta
line) that connect consecutive measurements on the empirical manifold induced by the
observations. To achieve this, (i) we approximate the Riemannian metric induced by the
observations (Fig. 1F.) without the need to predefine the dimensionality of the empirical
manifold, (ii) compute geodesics between consecutive observations through nonparametric
approximation of shortest path distances between consecutive observations according to the
approximated metric, and (iii) estimate the unobserved path between consecutive observa-
tions by generating geometrically constrained diffusion bridges that both respect temporal
order and are guided toward identified geodesics (Fig. 1 F.). Nonparametric estimation of
the drift function based on the augmented paths within an Expectation Maximisation frame-
work (E.M.) (Dempster et al., 1977) results in accurate approximations of the underlying
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stochastic dynamics. Extensive numerical experiments demonstrate the effectiveness of our
proposed method in recovering the true stochastic dynamics, even in challenging scenarios
where existing approaches fail.

2 SETUP AND BACKGROUND

Setting. We consider a system whose state evolves according to Eq. 1. Here, Xt ∈ Rd denotes
the state of the system, f(·) : Rd → Rd is the drift function, σ stands for the diffusion constant
or matrix, and Wt ∈ Rd is a d−dimensional Wiener process representing random noise input or
unresolved degrees of freedom.
Data. We observe the system state at discrete time points tk = kτ at inter-observation intervals of
τ time units, obtaining a time-ordered set of observations {Ok =̇Xtk}Kk=1.
Goal. Our goal is to estimate the drift function f(·) representing the deterministic forces acting on
the system of interest from the discrete state observations {Ok}Kk=1.
Background. Common inference methods for this setting consider observations from the system
path X0:T in (nearly) continuous time (Batz et al., 2018; Friedrich and Peinke, 1997). Under such
conditions, the infinitesimal transition probability of the SDE between observations Xt and Xt+dt

is Gaussian

Pf (X0:T | f) ∝ exp

(
− 1

2 dt

∑
t

∥Xt+dt −Xt − f(Xt)dt∥2D

)
, (2)

where ∥u∥D=̇u⊤ ·D−1 · u, denotes the weighted norm with D=̇σσ⊤ indicating the noise covari-
ance. The likelihood for the drift f given the path X0:T observed during [0, T ], results from the
Radon-Nykodym derivative (likelihood ratio) between Pf (X0:T |f) and the transition probability of
a Wiener path PW(X0:T ) = exp

(
− 1

2dt

∑
t ∥Xt+dt −Xt∥2D

)
as (Liptser and Shiryaev, 2013)

L(X0:T | f) = exp

(
−1

2

∑
t

∥f(Xt)∥2Ddt+
∑
t

⟨f(Xt),Xt+dt −Xt⟩D

)
. (3)

This likelihood has a quadratic form in terms of the drift function. This makes Gaussian process
priors a natural and widely employed approach for modelling f (Ruttor et al., 2013; Hostettler et al.,
2018; Zhao et al., 2020).

However, these approaches rely on small inter-observation intervals τ (Batz et al., 2018). As τ
increases, the EuM approximation becomes inaccurate: transition densities are not Gaussian, and
higher-order remainder terms related to the curvature of the flow field become important (see further
theoretical analysis in Sec. H.2 and c.f. Fig. 5). Attempts to mitigate this problem by introducing
bridge sampling to infer the unobserved path between observations (Batz et al., 2018; Sermaidis
et al., 2013) provide small improvements, because these methods rely on linearised or otherwise
simplified bridge dynamics that do not match the true transition densities (c.f. Sec. E).

Here, we target this large inter-observation interval setting by merging insights from both temporal
and geometric perspectives. Specifically, our approach combines nonlinear bridge sampling with a
geometric approximation of the system’s invariant density as detailed in the following.

3 METHODOLOGY

Core idea. The invariant density of the observed system imposes a low-dimensional structure on the
state space, within which the observations are confined. We propose that this low-dimensional struc-
ture is well approximated by a Riemannian manifoldM∞ ∈ Rm≤d in the ambient space (Sec. G),
and that the ensemble of observations {Ok}Kk=1 offers a reliable discrete approximation to M∞.
We term this observation-based approximation the empirical manifold M. The central premise of
our approach is that unobserved paths between successive observations will be lying either on
or in the vicinity of the empirical manifoldM. In particular, we postulate that unobserved paths
should lie in the vicinity of geodesics that connect consecutive observations onM.

However, while this view of a lower dimensional manifold embedded in a higher dimensional am-
bient space helps to build intuition, for practical purposes we adopt a complementary view of the
low dimensional manifold inspired by (Fröhlich et al., 2021). According to this view, we consider
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the entire observation spaceRd as a smooth Riemannian manifold,M=̇Rd, characterised by a Rie-
mannian metric h. The effect of the nonlinear geometry of the observations is then captured by the
metric h. Thus to approximate the geometric structure of the system’s invariant density, we learn
the Riemannian metric tensor H : Rd → Rd×d and compute the geodesics between consecutive
observations according to the learned metric. Intuitively according to this view the observations
{Ok}Kk=1 introduce distortions in the way we compute distances on the state space. The advantage
of this approach is that we do not have to estimate the dimensionality of the empirical manifold,
which would have been difficult due to the presence of fluctuations in the system’s dynamics. In-
stead, we still operate in the original space and the empirical manifold introduces distortions in the
estimated metric (see Fig. 1F.i.).
Inference framework. Our approach comprises three steps: (α.) Approximation of the geometric
structure of the system’s invariant density with metric learning, (β.) estimation of the (latent) system
state between consecutive observations guided by the invariant density (path augmentation), and
(γ.) data-driven estimation of the drift function (Fig. 1). We perform the two final steps in an iterative
manner within an Expectation Maximisation (E.M.) framework (Dempster et al., 1977).

(α.) Approximating the Riemannian geometry induced by the observations. Although there
are many methods for approximating Riemannian manifolds (Tenenbaum et al., 2000; Balasubra-
manian and Schwartz, 2002; Mead, 1992; Roweis and Saul, 2000), our objective is to obtain a
representation that acts as a local constraint for subsequent state estimation between consecutive
observations. We achieve this in two steps: (i.) We approximate in the ambient spaceRd the metric
h induced by the observations (see Fig. 1F.i.). This identifies regions of the state space with high
observation density (represented with small metric values). (ii.) We construct geodesics between
consecutive observations on the empirical manifold (M=̇Rd,h) (see Fig. 1F.ii.). The geodesics
identify the most probable paths between consecutive observations, and each such path subsequently
functions as a constraint during latent state estimation.

(i.) Approximation of the invariant metric. To approximate the (local) metric h in a nonpara-
metric form at locations x of the state space, we follow Arvanitidis et al. (2019), and consider the
inverse of the weighted local diagonal covariance computed on the K observations as

Hdd(x) =

(
K∑

k=1

wk(x)
(
O(d)

k − x(d)
)2

+ ϵ

)−1

, (4)

with weights wk(x) = exp
(
−∥Ok−x∥2

2

2σ2
M

)
, and A(d) denoting the d-th dimensional component of

the vector A for A ∈ {x,Ok}. The parameter ϵ > 0 is a small value ensuring non-zero diagonals
of the weighted covariance matrix, while σM is a hyper-parameter characterising the curvature of
the approximated manifold.
(ii.) Constructing geodesics between consecutive observations. To compute the geodesic curves
connecting consecutive observations on the empirical manifold, we employ the approximated metric
tensor H(x). We identify the geodesic curve γk

t′ between Ok and Ok+1 as the curve with mini-
mum energy that connects these two points, i.e., as the minimiser of the kinetic energy functional
E(γk

t′) =
∫ 1

0
LM(γk

t′ , γ̇
k
t′) dt′

γk∗
t′ = argmin

γk
t′ ,

γk
0 = Ok,γ

k
1 = Ok+1

∫ 1

0

LM(γk
t′ , γ̇

k
t′)dt

′, with
∫ 1

0

LM(γk
t′ , γ̇

k
t′) dt′ =

1

2

∫ 1

0

∥γ̇k
t′∥2h,

(5)
where LM(γk

t′ , γ̇
k
t′) is an appropriately constructed Lagrangian. The minimising curve of this func-

tional is the same as the minimiser of the curve length functional ℓ(γt′) (c.f. Eq. 33), i.e., the
geodesic (Do Carmo and Flaherty Francis, 1992). This results in a system of second order differen-
tial equations (Eq. 36) (Arvanitidis et al., 2017; Do Carmo and Flaherty Francis, 1992) (Sec. A.3.2)
with boundary conditions γk

0 = Ok and γk
1 = Ok+1 that we solve with a probabilistic differential

equation solver as in (Arvanitidis et al., 2019).

(β.) Latent state estimation: Geometry-guided augmentation. To estimate the unobserved sys-
tem state between consecutive observations Ok and Ok+1, we perform variational inference (Beal,
2003)(see Sec. A.3). Given a prior diffusion process with drift f̂(·) : Rd → Rd and diffusion σ,
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Figure 2
Geometry-aware path augmentation improves drift inference after two iterations. Es-
timated (red) vs. true (grey) force field with a.) Gaussian likelihood, b.) after one, and c.)
after two augmentations. (Insets) True vs. estimated angles at grid points. d.) Weighted
(by observation density) root mean square error (wRMSE) vs. inter-observation interval τ
for different noise levels σ = {0.25, 0.5} for drift estimated with a Gaussian likelihood
(gaus-circles), after first augmentation (1st-triangles), and after second augmentation (2nd-
squares) for T = 500 (time units). e.) wRMSE across iterations for the presented example.
f.) wRMSE vs. noise amplitude σ for different trajectory durations T = {500, 1000} (time
units) for inter-observation interval τ = 240 (dt). Markers in d.) and f.) indicate augmenta-
tion steps. Error bars: one standard deviation over five independent runs.

we construct an approximating process conditioned i.) to pass through the observations, and ii.) to
respect the local geometry of the invariant density as it is represented by the geodesics. The con-
ditioned process is also a diffusion process with the same diffusion constant and an effective drift
function g(x, t) (Chetrite and Touchette, 2015; Majumdar and Orland, 2015). The path probability
measure QX(X0:T ) induced by the approximating process

QX(X0:T ) : dXt = g (Xt, t) dt+ σdW̄t =
(
f̂(Xt) + u(Xt, t)

)
dt+ σdW̄t, (6)

provides an approximation to the unobserved continuous system state. In Eq. 6
u(·, ·) : Rd ×R+ → Rd is a time-dependent control term that guides the approximating path dis-
tribution through the observations, while staying in the vicinity of the corresponding geodesics be-
tween them.

More precisely, we obtain the controlled drift g (Xt, t) from the solution of the variational problem
of minimising the functional (see Sec. A.3.1)

F [QX ] = KL
(
QX(X0:T )||P(X0:T | f̂)

)
−

K∑
k=1

〈
ln P(Ok | Xtk)

〉
Q
+
〈
∥Γt −X0:T ∥2

〉
Q

=
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥2D + UO(x, t) + β UG(x, t)

]
qt(x) dx dt, (7)

where Γt denotes the sequence of K geodesics indexed by time t, Γt=̇{γk
t′}t=(k−1)τ+t′τ , where

γk
t′ is the geodesic connecting Ok and Ok+1, and t′ ∈ [0, 1] denotes a rescaled time variable, and β

is a weighting term. In Eq. 7, the term UO(x, t) = −
∑
tk

ln P(Ok | x) δ(t− tk) forces the augmen-

tation to pass through the observations at each bridge boundary, while UG(x, t)=̇∥Γt − x∥2
guides the latent path towards the identified geodesics.

This minimisation can be construed as a stochastic control problem (Opper, 2019) with the objective
to identify a time-dependent drift adjustment u(x, t) := g(x, t)− f̂(x) for the system with drift f̂(x)
so that the controlled dynamics fulfil the path constraints UO(x, t) and UG(x, t).
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Figure 3
Comparison of geometry-aware inference
against inference with Ornstein-Uhlenbeck
augmentation. Weighted root mean square error
(wRMSE) vs. different inter-observation intervals
τ for different noise amplitudes for moderate inter-
observation intervals with a.) σ = 0.25 and b.)
σ = 0.50, and for large inter-observation intervals
with c.) σ = 0.50 and d.) σ = 0.75, where only
one observation per oscillation period is available.
Error bars indicate one standard deviation over five
independent runs.

The optimal time-dependent control for
the interval between Ok and Ok+1 results
from the solution of the backward equa-
tion (Kappen, 2005a; Maoutsa and Opper,
2022)

∂ϕt(x)

∂t
= −L†

f̂
ϕt(x) + UG(x, t)ϕt(x),

(8)
with terminal condition ϕtk+1

(x) =

χ(x) = δ(x − Ok+1) and with L†
f̂

de-
noting the adjoint Fokker-Planck opera-
tor for the process of Eq. 26. As shown
in Maoutsa and Opper (2022) the optimal
drift adjustment u(x, t) can be expressed
in terms of the difference of the logarith-
mic gradients of two probability flows

u∗(x, t) = D
(
∇ ln qT−t(x)−∇ ln ρt(x)

)
,

(9)
where ρt fulfils the forward (filtering) par-
tial differential equation (PDE)

∂ρt(x)

∂t
= Lf̂ρt(x)− UG(x, t)ρt(x),

(10)
while qt is the solution of a time-reversed PDE with initial condition q0(x) ∝ ρT (x)χ(x)

∂qt(x)

∂t
= −∇ ·

[(
D ∇ ln ρT−t(x)− f̂(x, T − t)

)
qt(x)

]
+

D

2
∇2qt(x). (11)

Thus, for each interval [Ok,Ok+1] we identify the posterior path measure (minimiser of Eq. 37) by
solving such a stochastic control problem for the time-varying control u(x, t) of Eq. 9. This results
in a set of K − 1 independent optimal control problems, that are solved in parallel for efficiency.

(γ.) Estimating the drift. We approximate the drift function in a model independent framework
by imposing a Gaussian process prior on the function values f ∼ Po(f) = GP(mf , kf ), where mf

and kf denote the mean and covariance function of the Gaussian process. The optimal measure for
the drift Qf is a Gaussian process given by (Batz et al., 2018)

Qf ∝ Po exp

(
−1

2

∫
∥f(x)∥2DA(x)− 2⟨f(x), B(x)⟩Ddx

)
, (12)

with A(x)=̇

∫ T

0

qt(x)dt and B(x)=̇

∫ T

0

qt(x)g(x, t)dt, where qt(x) denotes the marginal density

of the constrained process’ state obtained by the state estimation. The function g(x, t) denotes the
effective (time-dependent) drift of the constrained process (Eq. 6), resulting from the solution of the
individual control problems accounting for the observations and the invariant geometry.

4 RESULTS
Revealing stochastic dynamics in model systems. To demonstrate the effectiveness of our ap-
proach, we inferred the stochastic dynamics of model systems, and compared the resulting estimates
to those obtained from: (i.) Gaussian process regression without state estimation (GP), (ii.) path
augmentation with Ornstein-Uhlenbeck dynamics (OU) (Batz et al., 2018), (iii.) sparse variational
inference with state estimation (SVISE) (Course and Nair, 2023a), (iv.) basis function approxima-
tion of Kramers-Moyal coefficients, i.e. the drift function (KM-basis) (Nabeel et al., 2025), and (v.)
latent SDE inference with amortized reparameterization with (LatentSDE+GP-pre) and without
pre-training (LatentSDE) (Course and Nair, 2023b), (vi.) metric flow matching (MFM) (Kapus-
niak et al., 2024)(with RBF (Arvanitidis et al., 2021) and LAND metric (Arvanitidis et al., 2019)
metric approximations), (vii.) generalized Schrödinger bridge matching (GSBM) (Liu et al., 2023),
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Van der Pol

wRMSE ↓ total duration
T τ = 80× dt τ = 120× dt τ = 160× dt τ = 200× dt τ = 240× dt τ = 280 ×dt

σ= 0.25

GP 500 0.642 ± 0.006 0.879 ± 0.005 1.083 ± 0.015 1.258 ± 0.011 1.399 ± 0.003 1.528 ± 0.0153
SVISE 500 1.465 ± 0.009 0.857 ± 0.021 0.740 ± 0.072 0.592 ± 0.026 0.587± 0.112 0.824± 0.003

KM-basis 500 0.368± 0.054 0.452 ± 0.011 0.671 ± 0.023 1.588 ± 0.021 1.751 ± 0.008 1.735 ± 0.020
LatentSDE 500 1.091 ±0.316 1.091 ± 0.039 1.098 ± 0.023 1.089 ± 0.036 1.088 ± 0.038 1.091 ± 0.039

LatentSDE+GP-pre 500 1.095 ± 0.038 1.085 ± 0.039 1.101 ± 0.034 1.089 ± 0.038 1.106 ± 0.045 1.102 ± 0.039
GSBM 500 1.518 ± 0.033 1.435 ± 0.055 - - - -

[SF]2M 1500 1.741 ± 0.304 1.801 ± 0.226 1.745 ± 0.322 1.583 ± 0.132 1.816 ± 0.228 1.721 ± 0.094
MFMRBF 1500 1.462 ± 0.007 1.469 ± 0.005 1.470 ± 0.012 1.469 ± 0.008 1.469 ± 0.006 1.466 ± 0.008

MFMLAND 1500 1.463 ± 0.007 1.469 ± 0.005 1.469 ± 0.012 1.469 ± 0.008 1.469 ± 0.006 1.467 ± 0.008
GeometricRBF (our) 500 0.419 ± 0.052 0.458 ± 0.063 0.493 ± 0.031 0.517 ± 0.022 0.657 ± 0.040 1.001 ± 0.077

Geometric (our) 500 0.474 ± 0.034 0.413± 0.016 0.514± 0.068 0.578± 0.022 0.687 ± 0.032 0.993 ± 0.037

σ= 0.50

GP 500 0.691 ± 0.029 0.916 ± 0.014 1.114 ± 0.15 1.272 ± 0.030 1.409 ± 0.019 1.542 ± 0.044
SVISE 500 1.235 ± 0.083 0.9935± 0.015 0.7505 ± 0.052 0.736 ± 0.072 1.3565 ± 0.278 1.425 ± 0.086

KM-basis 500 0.495 ± 0.010 0.727 ± 0.008 0.890 ± 0.024 1.683 ± 0.020 1.744 ± 0.038 1.732 ± 0.065
LatentSDE 500 1.158 ± 0.036 1.151 ± 0.045 1.160 ± 0.032 1.151± 0.036 1.146 ± 0.033 1.176 ± 0.046

LatentSDE+GP-pre 500 1.158 ± 0.045 1.159 ± 0.034 1.159 ± 0.027 1.151± 0.034 1.150 ± 0.028 1.191 ± 0.052
GSBM 500 6.106 ± 2.988 4.818 ± 3.060 4.738 ± 3.304 4.875 ± 3.222 9.076 ± 1.451 26.187 ± 18.804

[SF]2M 1500 1.869 ± 0.482 1.813 ± 0.286 1.484 ± 0.096 1.876 ± 0.247 1.753 ± 0.158 1.707 ± 0.233
MFMRBF 1500 1.516 ± 0.011 1.525 ± 0.006 1.538 ± 0.009 1.537 ± 0.017 1.528 ± 0.015 1.544 ± 0.019

MFMLAND 1500 1.517 ± 0.011 1.526 ± 0.006 1.536 ± 0.009 1.537 ± 0.017 1.528 ± 0.015 1.545 ± 0.019
GeometricRBF (our) 500 0.653 ± 0.014 0.690 ± 0.026 0.694 ± 0.026 0.761 ± 0.050 0.798 ± 0.047 0.933 ± 0.160

Geometric (our) 500 0.462± 0.019 0.541± 0.023 0.621± 0.012 0.675± 0.030 0.750± 0.038 0.865± 0.057

Table 1
Performance comparison in terms of weighted root mean square error (wRMSE) of considered
frameworks for different noise conditions σ and inter-observation intervals τ for the Van der Pol
system.
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Figure 4
Geometry-aware inference provides accurate
drift estimation for different empirical mani-
fold geometries resulting from different param-
eter regimes of the Van der Pol system. (a.-
b.)Empirical manifold for the Van der Pol system
with different µ parameters. Notice the different
scales on the axes. (c.-d.) Inference performance
of the proposed framework against inter-observation
interval τ . Error bars indicate one standard devia-
tion over five independent runs.

(viii.) simulation-free Schrödinger bridges
via score and flow matching ([SF]2M) (Tong
et al., 2023a) (c.f. Sec. J.2). We tested
our method on non-conservative systems in-
ducing diverse types of invariant geometries:
(a.) a Van der Pol system, (b.) an out-
of-equilibrium process with harmonic trap-
ping and circulation and a Gaussian re-
pulsive obstacle in the centre introduced
in Frishman and Ronceray (2020), (c.) a
Hopf system, and (d.) a Selkov glycolysis
model (Selkov, 1968) (see Sec. J). For most
settings, the proposed framework outper-
formed existing methods, especially for large
inter-observation intervals (Table 2 and 1).

We quantified the quality of the inference
in terms of weighted root mean square er-
ror (wRMSE) between the estimated and
ground truth drift functions evaluated on a
d−dimensional grid spanning the state space
volume of the observations. The weights for
each grid point were obtained from a ker-
nel density estimation of the observations.
Thus misalignment of ground truth and esti-
mated dynamics were penalised stronger for
regions of the state space visited more fre-
quently by the observed process.
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Out of equilibrium system Hopf Selkov

wRMSE ↓ τ = 150 τ = 200 τ = 250 ×dt τ = 200 τ = 300 τ = 400 ×dt τ = 100 τ = 200 ×dt

GP 2.632 ± 0.007 3.387 ± 0.012 3.733 ± 0.011 0.781 ± 0.006 0.969 ± 0.015 1.069 ± 0.006 0.550 ± 0.021 0.682 ± 0.040
SVISE 35.204 ± 39.888 3.462 ± 0.129 7.540 ± 7.602 2.113 ± 0.658 4.960 ± 2.687 3.936 ± 1.063 5.793 ± 0.028 2.028 ± 0.045

LatentSDE 2.348 ± 0.032 2.340 ± 0.047 2.356 ± 0.042 1.168 ± 0.052 1.161 ± 0.053 1.173 ± 0.046 0.742 ± 0.022 0.747 ± 0.021
Geometric (ours) 2.762 ± 0.132 3.034 ± 0.143 2.693 ± 0.992 0.210 ± 0.013 0.237 ± 0.010 0.255 ± 0.028 0.414 ± 0.245 0.682 ± 0.071

Table 2
Performance comparison in terms of wRMSE for the considered frameworks for three different
nonlinear dynamical systems and for increasing inter-observation interval τ . Numbers indicate mean
wRMSE and standard deviation of five independent runs for each setting.

For a system with a drift function following Van der Pol dynamics, we found that only after two E.M.
iterations, the estimated force field (red arrows) is well aligned to the true force field that generated
the observations (grey arrows) (Fig. 2a.). For comparison we demonstrate also the result of the
estimation with Gaussian likelihood (GP), which results in a flow field orthogonal to the ground
truth one.

We performed systematic estimations for this system under different noise conditions σ, observed
at different inter-observation intervals τ for different lengths of trajectories T (see Sec. J). For the
examined noise amplitudes (Fig. 2 f.), the proposed path augmentation algorithm improves the naive
estimation with Gaussian assumptions within two iterations (Fig. 2). For increasing noise the im-
provement contributed by our approach decreases (Fig. 2f.), as the invariant geometry is less well
defined, but is still considerable.

Impact of the geometry of empirical manifold. We performed inference for different parame-
ter values of the Van der Pol system (µ = 1 (as above) and µ = 0.5 and µ = 2), that result in
asymmetries of the invariant density (Fig. 4). We observed that the performance of all inference
frameworks deteriorates for increasing asymmetry (larger dynamic range along one dimension), yet
our method still delivered more accurate predictions compared to the other considered frameworks.
Approximating the invariant geometry with a different metric learning method does not confer any
considerable performance difference for our approach (c.f. Table 1 GeometricRBF where we em-
ployed the metric introduced in Arvanitidis et al. (2021) and further developed in Kapusniak et al.
(2024), where a positive linear combination of Gaussian RBFs centred at selected cluster centres is
used to estimate a diagonal metric.)

Impact of noise amplitude. For systems with small dynamical noise (small σ), geodesics approx-
imate the manifold structure better, however the path integral control is limited by the control costs
proportional to inverse noise covariance. Our framework had comparable accuracy for all inter-
observation lengths, but improvement was small for small lengths since in that setting the estimation
with Gaussian likelihood already provides a good approximation of the ground truth drift.

We compared our method to the approach proposed in Batz et al. (2018). In this work, the authors
perform augmentation with Ornstein-Uhlenbeck bridges, i.e. assuming linear underlying dynamics.
We found that our approach delivered more accurate estimates for larger inter-observation intervals.
For inter-observation intervals with only one observation per oscillation period (Fig. 3c.,d.), our ap-
proach delivered better results by considering additionally knowledge of the direction of movement
in the state space (c.f. Sec. J). The variance of estimates of the proposed method was smaller com-
pared to Batz et al. due to consistency imposed by conditioning on the invariant geometry of the
system. Predictions improve with longer observation intervals T , and for decreasing noise amplitude
σ. In both settings the invariant geometry is more well approximated by the empirical manifold.

State estimation with linear (Ornstein-Uhlenbeck) dynamics (Batz et al., 2018), is in general less
capable of correctly estimating the latent system state and subsequently correctly approximating the
unknown drift function especially as the length of the inter-observation interval τ increases.

Effects of noise miss-estimation. We further investigated the impact of noise misestimation on
the accuracy of drift inference (S.I. Fig. 6). Our findings indicate that after two augmentations
conditioned on the invariant geometry, small inaccuracies in the employed dynamical noise during
the simulation of augmented paths have a negligible effect on the overall accuracy of the inferred
drift. In particular, for small inter-observation intervals, the inference procedure remains highly
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robust to misestimated noise amplitudes. As the inter-observation intervals increase, the effect of
noise deviations on performance remains minimal, provided the noise used in the augmentation
deviates by at most ±0.1 from the true noise amplitude. Thus, stochastic dynamics may still be
identified even with inaccurate or misestimated diffusion constants.

Additional results are provided in the Supplement (see Sec. I).

5 DISCUSSION

Discovering unknown driving forces governing stochastic systems poses still a significant challenge,
despite extensive existing research on that frontier. Our work demonstrates the benefits of integrating
information from both the temporal and geometric structure of the observed data. Our findings
showed a substantial improvement in estimating the underlying stochastic dynamics, especially in
sparsely sampled, nonlinear systems driven by non-conservative forces.

We introduced geometric inductive biases into inference of stochastic systems by treating the deter-
ministic flow field as a scaffold upon which system states fluctuate. We approximated this scaffold
in terms of distortions of a metric induced by the system’s measurements. This approach ef-
fectively approximates the low-dimensional invariant density (empirical manifold) without the need
to project to a lower dimensional space, whose dimensionality would be hard to estimate due to
the presence of fluctuations. The key insight is that geodesics computed on the empirical manifold
with respect to the approximated metric constitute the most probable path of the unknown system
between consecutive observations in the Onsager-Machlup sense. Using these geodesics as con-
trol constraints, we formulated a path-augmentation scheme that bridges sparse observations with
trajectories consistent with both the temporal order and the geometry of the data.

Widely used inference methods, predominantly developed within the statistics community, often
employ path (data) augmentation to approximate transition densities between successive observa-
tions. However, this approach suffers from several challenges: 1.) First, the unobserved information
between successive observations is an infinite-dimensional object, requiring the solution of a com-
plex and computationally intensive problem (bridge sampling) (Gronau et al., 2017). We addressed
this challenging problem using the computationally efficient framework developed in Maoutsa and
Opper (2022). 2.) Second, direct drift estimation from sparse observations results in estimated dy-
namics that significantly deviate from the ground truth. Thereby consecutive observations of the
system have small probability under the law of the estimated SDE. This discrepancy, in turn, leads
to several computational difficulties: i) Most bridge sampling schemes become too computationally
demanding, or even fail, when attempting to generate transition densities between atypical states for
the considered stochastic dynamics. For instance, the method of (Maoutsa and Opper, 2021) suc-
cessfully generates transition densities between atypical states only for conservative systems through
a reweighting with Brownian bridge dynamics. Alternatively, an exceedingly large number of sam-
ples would be required for accurate numerical approximation. ii) Second, iterative algorithms, such
as Expectation Maximisation, which exhibit only local convergence (Romero et al., 2019), may
converge to inaccurate solutions, when the initial estimation significantly deviates from the ground
truth.

To overcome these limitations, we proposed incorporating the information ingrained in the local
geometric structure of the observations into the state estimation (path augmentation). This approach
is motivated by the observation that commonly employed path augmentation methods often yield
transition densities that deviate substantially from the true underlying densities when observations
are sparse (Fig. 1E.). This discrepancy arises from the fact that these approaches rely on trivial
stochastic dynamics that fail to adequately capture the curvature of the ground truth transition densi-
ties when the observed system is nonlinear (see also theoretical analysis in Sec. H.2). Our numerical
experiments demonstrate that, indeed, the proposed approach effectively recovers the underlying
drift function for systems with steady-state probability currents (Ding et al., 2020).

Relation to Schrödinger bridge sampling. The framework we employed for the augmentation re-
lies on a deterministic particle formulation of the path integral control formalism (Kappen, 2005b).
This framework can be connected to the dynamic Schrödinger bridge problem, if we consider trans-
ferring probability mass between two Dirac measures or very narrow Gaussians that sit on each
observation, considering additionally a potential that constraints the intermittent dynamics similar

9
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to the one considered in Neklyudov et al. (2023a). Thus, in principle, one can employ one of the
recently developed alternative frameworks that solve the dynamic Schrödinger bridge problem for
path augmentation The recent Bridge and Flow Matching frameworks (Lipman et al., 2022; Al-
bergo et al., 2023; Shi et al., 2023; Liu et al., 2023) correspond to the control problem we formulate
in the SI Eq. 32, without the control constraints. In contrast, the Generalised Schrödinger Bridge
Matching (GSBM) framework proposed by Liu et al. (2023) uses a cost functional that is equiva-
lent to the controlled cost we employ to construct our augmentations. In this setting, the penalty
term corresponds to the geodesic proximity constraint used in our framework. The GSBM could, in
principle, replace the particle-based framework we use. However, here, we employed a framework
that relies on particle representations of the involved densities, which can be later easily employed
to formulate the Monte Carlo approximations of the integrals involved in the Gaussian process in-
ference for the drift (Eq. 42). Yet, the Gaussian variant of the GSBM framework that incorporates
time-dependent penalty constraints (analogous to our geodesic constraints), might be an interesting
avenue to explore for potential incorporation in our framework (Tong et al., 2023a).

Similarly, for approximating the metric induced by the observations, we employed the frame-
work of Arvanitidis et al. (2019), while we could have employed alternative metric learning ap-
proaches (Scarvelis and Solomon, 2022; Hauberg et al., 2012; Barua et al., 2025; Gruffaz and Sassen,
2025). However, the framework of Arvanitidis et al. (2019) perfectly fits the purposes of our work,
because it employs a non-parametric (kernel) estimation for approximating the metric and computes
the geodesics through GP regression. This allows to evaluate the geodesic equation at different in-
crements, that is necessary for imposing the time dependent geodesic constraint. A similar metric
approximation has been recently employed in Kapusniak et al. (2024) for metric flow matching, i.e.,
for augmentation that respects the geometry of the dataset. While our approach has a similar flavour
to this work, our framework additionally requires the augmented data to be temporary ordered and
to respect the stochastic flow of the estimated system. This results in learning a global drift that
approximates the underlying stochastic dynamics, instead of learning a local drift that transports a
snapshot of states from some initial to a final configuration.

Limitations. The proposed approach relies on the geometric characterisation of the invariant den-
sity of the system’s dynamics. This requires sufficiently long observation windows to accurately
characterise said density and correctly approximate the unobserved paths with geodesic curves.
Thus, our approach is limited to systems where the invariant density can be approximated by a
manifold where we can identify geodesics. An alternative method worth exploring would consider
the learned invariant metric directly in the dynamics of the augmented process. Moreover, we have
considered here inference of stochastic differential equations with known state independent diffu-
sion. While this approach might seem limited, several processes with state dependent diffusion
functions can be transformed into processes with state independent diffusions (Beskos et al., 2006a;
Roberts and Stramer, 2001) through the Lamberti transform if they fulfil the appropriate conditions
for the drift function.
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6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. A detailed description of
our methodology, including the inference framework and the geometry-aware path augmentation
procedure, is provided in Section 2 of the main text and further elaborated in Appendix A. All
theoretical aspects of our work, including the construction of the invariant metric, geodesics, and the
stochastic control formulation, are presented in full in the supplementary material (Appendix A.3,
A.3.2, and H). The implementation details of the Expectation–Maximisation scheme and Gaussian
process inference are also included in the appendix. Our numerical experiments, benchmarks, and
additional analyses (e.g., noise misestimation) are reported in the Supplement.
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Schütte. Data-driven approximation of the Koopman generator: Model reduction, system identi-
fication, and control. Physica D: Nonlinear Phenomena, 406:132416, 2020. (cited on page: 33)

Richard Stanton. A nonparametric model of term structure dynamics and the market price of interest
rate risk. The Journal of Finance, 52(5):1973–2002, 1997. (cited on page: 33)

Lars P Hansen and Jose A Scheinkman. Back to the future: Generating moment implications for
continuous-time Markov processes, 1993. (cited on page: 33)

Mario Ragwitz and Holger Kantz. Ragwitz and Kantz reply. Physical Review Letters, 89(14):
149402, 2002. (cited on page: 33)

17

https://doi.org
https://link.springer.com/article/10.1007/BF01609446
https://link.springer.com/article/10.1007/BF01609446
https://link.springer.com/chapter/10.1007/BFb0088735
https://link.springer.com/chapter/10.1007/BFb0088735
https://link.springer.com/chapter/10.1007/978-1-4615-7035-6_18
https://doi.org/10.48550/arXiv.2209.03868
https://link.springer.com/chapter/10.1007/BFb0103810
https://doi.org
https://doi.org/10.48550/arXiv.1807.05748
https://doi.org/10.1515/zna-1997-8-907
https://doi.org/10.1103/PhysRevX.10.031018
https://doi.org/10.1103/PhysRevX.10.031018
https://doi.org/10.1063/1.5018409
https://doi.org/10.1063/1.5018409
https://www.nature.com/articles/s41598-022-25638-9
https://www.nature.com/articles/s41598-022-25638-9
https://doi.org
https://doi.org
https://www.jstor.org/stable/3532619
https://www.jstor.org/stable/3532619
https://doi.org/10.1016/j.physd.2020.132416
https://doi.org/10.1016/j.physd.2020.132416
https://doi.org/10.1111/j.1540-6261.1997.tb02748.x
https://doi.org/10.1111/j.1540-6261.1997.tb02748.x
https://www.jstor.org/stable/2171800
https://www.jstor.org/stable/2171800
https://doi.org/10.1103/PhysRevLett.89.149402


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

D Kleinhans, R Friedrich, A Nawroth, and J Peinke. An iterative procedure for the estimation of
drift and diffusion coefficients of Langevin processes. Physics Letters A, 346(1-3):42–46, 2005.
(cited on page: 33)

David Kleinhans and Rudolf Friedrich. Maximum likelihood estimation of drift and diffusion func-
tions. Physics Letters A, 368(3-4):194–198, 2007. (cited on page: 33)

Bjørn Eraker. MCMC analysis of diffusion models with application to finance. Journal of Business
& Economic Statistics, 19(2):177–191, 2001. (cited on page: 33)

Monica Billio, Alain Monfort, and Christian Robert. The simulated likelihood ratio method. Institut
National de la Statistique et des Etudes Economiques, 1998. (cited on page: 33)

Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. Learning interpretable
continuous-time models of latent stochastic dynamical systems. In International conference on
machine learning, pages 1726–1734. PMLR, 2019. (cited on page: 33)

Prakhar Verma, Vincent Adam, and Arno Solin. Variational Gaussian process diffusion processes.
In International Conference on Artificial Intelligence and Statistics, pages 1909–1917. PMLR,
2024. (cited on page: 33)

Cédric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford, and John Shawe-Taylor. Variational
inference for diffusion processes. Advances in Neural Information Processing Systems, 20:17–24,
2007. (cited on page: 33)

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients
for Stochastic Differential Equations, 2020. (cited on page: 33)

Yury A Kutoyants and Jurij A Kutojanc. Statistical inference for ergodic diffusion processes.
Springer Science & Business Media, 2004. (cited on page: 34)

Ronald R Coifman, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz Nadler, Frederick Warner,
and Steven W Zucker. Geometric diffusions as a tool for harmonic analysis and structure defi-
nition of data: Diffusion maps. Proceedings of the National Academy of Sciences of the United
States of America, 102(21):7426–7431, 2005. (cited on page: 34)
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A DRIFT INFERENCE FOR HIGH AND LOW FREQUENCY OBSERVATIONS

Effective dynamics of systems with many degrees of freedom or inherently stochastic are often
described in terms of a stochastic differential equation (SDE)

dXt = f(Xt)dt+ η(t)dt = f(Xt)dt+ σdWt, (13)

where the drift f(·) : Rd → Rd describes the deterministic forces acting on the system, while the
delta-correlated Gaussian white noise term η(t), ⟨η(t)η(t′)⟩ = σδ(t − t′) describes the effect of
stochastic forces as a product of a diffusion matrix (or constant) σ : Rd×d that accounts for the
magnitude of the stochastic forces acting on the system, and a d-dimensional Wiener process Wt

that contributes random influences.

Often the detailed equation that governs the evolution of the state of the system is unknown. There-
fore, understanding a system of interest often requires identification from time series observations
of its state. In more practical terms, given some prior probability for the drift function, we want
to compute the posterior probability P(f |{Ok}Kk=1) that identifies the unknown drift function of
Eq. 13 that most likely gave rise to the observations of the system state {Ok}Kk=1. The exact relation-
ship between the observations and the system state will be defined more precisely in the following.

When a system is observed nearly continuously (inter-observation interval length τ much smaller
than the characteristic time scale of the system τ ≪ τchar), temporal methods regress the system state
Xt against the state increments Yt=̇

Xt+τ−Xt

τ to identify the drift function (Friedrich and Peinke,
1997; Ragwitz and Kantz, 2001). In a Bayesian framework, this corresponds to Gaussian process
regression with a Gaussian likelihood (SI A.1). However, for large inter-observation intervals τ ,
these methods fail (Batz et al., 2018), as the Gaussian likelihood assumption is invalid for general
nonlinear systems with sparse observations (Fig.1C.). In such cases, the likelihood is a path integral
over continuous trajectories of the unobserved process (SI A.2), making Gaussian-based estimates
inaccurate (Fig. 1C.).

This underwhelming performance has motivated the development of methods that combine state es-
timation (or path augmentation) and dynamical inference. These methods reconstruct continuous
paths to approximate transition densities between observations, enabling inference by estimating the
system’s state between observations. However, for large time intervals, transition densities are usu-
ally analytically intractable, except in a few trivial cases of scalar or linear processes. As a result,

22
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the prevailing strategy is to approximate transition densities by sampling marginal distributions of
diffusion bridges, which are diffusion processes constrained by their initial and terminal states (Go-
lightly and Wilkinson, 2008; Papaspiliopoulos et al., 2012; Sermaidis et al., 2013; Beskos et al.,
2006b; Chib et al., 2006). Yet, existing methods employ path augmentation with simplified bridge
dynamics (e.g., Brownian (Chib et al., 2006; Golightly and Wilkinson, 2008) or Ornstein-Uhlenbeck
bridges (Batz et al., 2018)) that do not accurately reflect the underlying transition densities for non-
linear systems (Fig. 1E.).

An alternative path augmentation strategy would obtain a coarse drift estimate, typically achieved
by assuming a Gaussian likelihood between observations (see SI Eq. 16), and would subsequently
employ a stochastic bridge sampler (De Bortoli et al., 2021; Maoutsa and Opper, 2022; 2021) to
construct stochastic bridges using the coarsely estimated nonlinear drift. However, for large inter-
observation intervals, the coarsely estimated drift function often deviates significantly from the true
function that generated the observations. Consequently, the observations frequently fall into low-
probability regions of the estimated diffusion dynamics (Fig. 1 E.), rendering the construction of
diffusion bridges either too computationally demanding or impossible (Liu et al., 2020).

A.1 HIGH FREQUENCY OBSERVATIONS

In an optimal but rather practically unrealistic scenario, we would observe the system (path) X0:T in
(nearly) continuous time, and thus we would try to identify the drift from P(f |X0:T ). In such a case,
the infinitesimal transition probabilities of the diffusion process between consecutive time-points are
Gaussian, i.e.,

Pf (X0:T | f) ∝ exp

(
− 1

2dt

∑
t

∥Xt+dt −Xt − f(Xt)dt∥2D

)
. (14)

Here we have introduced the weighted norm ∥u∥D=̇u⊤ ·D−1 ·u, with D=̇σσ⊤ indicating the noise
covariance.

In turn, the transition probabilities of a discretised drift-less process (a Wiener path) PW(X0:T ) with
same diffusion σ is

PW(X0:T ) = exp

(
− 1

2dt

∑
t

∥Xt+dt −Xt∥2D

)
. (15)

We can thus express the likelihood for the drift f as the likelihood ratio between the transition
probabilities of Eq. 14 and Eq. 15, which for diffusion processes is expressed by the Radon-
Nykodym derivative between Pf (X0:T |f) and PW(X0:T ) for paths X0:T within the time interval
[0, T ] (Liptser and Shiryaev, 2013)

L(X0:T | f) = exp

(
−1

2

∑
t

∥f(Xt)∥2Ddt+
∑
t

⟨f(Xt),Xt+dt −Xt⟩D

)
, (16)

where for brevity we have introduced the notation ⟨u, v⟩D=̇u⊤ · D−1 · v for the weighted inner
product with respect to the inverse noise covariance D−1. This expression results from applying the
Girsanov theorem on the path measures induced by a process with drift f and a Wiener process, with
same diffusion σ, and employing an Euler-Maruyama discretisation on the continuous path X0:T .

The likelihood of a continuously observed path of the SDE (Eq. 16) has a quadratic form in terms
of the drift function. Therefore a Gaussian measure over function values (Gaussian process) is a
natural conjugate prior for this likelihood. Thus, to identify the drift in a non-parametric form, we
assume a Gaussian process prior for the function values f ∼ P0(f) = GP(mf , kf ), where mf and
kf denote the mean and covariance function of the Gaussian process (Ruttor et al., 2013). The prior
measure can be written as

P0(f) = exp

(
−1

2

∫ ∫
f(x)

(
kf (X,X′)

)−1
f(X′)dXdX′

)
, (17)

if we consider a zero mean Gaussian process mf = 0.
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Bayesian inference for the drift function f requires the computation of a probability distribution in
the function space, the posterior probability distribution Pf (f | X0:T ). From the Bayes’ rule the
posterior can be written as

Pf (f | X0:T ) =
P0(f)L(X0:T | f)

Z
∝ P0(f)L(X0:T | f), (18)

where Z denotes a normalising factor defined as

Z =

∫
P0(f)L(X0:T | f)Df , (19)

where Df denotes integration over the Hilbert space f : H0[f ] < ∞ . Here we have expressed
the prior probability over functions as P0(f) = e−H0[f ]. In Ruttor et al. (2013) the authors show
that in this continuous-time setting, nonparametric estimation of the drift can be attained through
a Gaussian process regression (Rasmussen, 2003) with the objective to identify the mapping from
the system state Xt to state increments dXt. More precisely, we consider as the regressor the N
observations of the system state Xt and as the associated response variables the state increments

Yt =
Xt+dt −Xt

dt
, (20)

and select the kernel function of the Gaussian process as kf (X,X′).

If we denote with X = {Xt}T−dt
t=0 and Y = {Yt}T−dt

t=0 the set of state observations and observation
increments, the mean of the posterior process over drift functions f can be expressed as

f̄(x) = kf (x,X )⊤
(
K +

D

dt
IN

)−1

Y, (21)

where we abused the notation and denoted with kf (x,X ) the vector resulting from evaluating the
kernel kf at points x and {Ok}K−1

k=1 . Similarly K = kf (X ,X ) stands for the (K − 1) × (K − 1)
matrix resulting from evaluation of the kernel on all observation pairs. In a similar vein, the posterior
variance can be written as

Σ2(x) = kf (x,x)− kf (x,X )⊤
(
K +

D

dt

)−1

kf (x,X ), (22)

where the term D/dt plays the role of observation noise.

A.2 LOW FREQUENCY OBSERVATIONS

As the inter-observation interval increases (low frequency observations), the validity of the Gaus-
sian likelihood used in drift estimation diminishes as the transition density is no longer Gaussian.
Consequently, methods for drift estimation with Gaussian assumptions (Friedrich and Peinke, 1997;
Ruttor et al., 2013) become increasingly inaccurate. To discount the effects of low frequency sam-
pling, Lade (Lade, 2009) proposed a method to compute finite-time corrections for drift estimates,
which has been mainly applied to one-dimensional problems (Honisch and Friedrich, 2011). In
parallel, the statistics community has proposed path augmentation techniques that involve sampling
with a simplified system’s dynamics between time-consecutive observations to augment the ob-
served trajectory to a nearly continuous-time path (Golightly and Wilkinson, 2008; Papaspiliopou-
los et al., 2012; Sermaidis et al., 2013; Beskos et al., 2006b; Chib et al., 2006). However, for large
inter-observation intervals and nonlinear systems, the augmented trajectories match poorly the un-
derlying path statistics and these methods often exhibit poor convergence rates or fail to identify the
correct dynamics (Figure 1 c. and d.). We note that path augmentation using Ornstein-Uhlenbeck
bridges and local linearisation of the ground truth dynamics provides a reasonable approximation
of the underlying transition density up to a certain inter-observation interval. Nevertheless, during
inference, the ground truth dynamics is unknown, and the proposed local linearisations based on
inaccurate drift estimates (Batz et al., 2018) perform poorly in this sparsely sampled regime.
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As the inter-observation interval τ increases, if the system is nonlinear, the likelihood assumed be-
tween two consecutive observations is no longer Gaussian, but is rather expressed as a path integral

P(O1:K | f) =
∫

P(O1:K | X0:T )P(X0:T | f)D(X0:T ), (23)

where O1:K=̇{Ok}Kk=1 identifies the set of K observations collected within the interval [0, T ],
P(X0:T | f) the prior path probability resulting from a diffusion process with drift f(x), D(X0:T )
identifies the formal volume element on the path space, and P(O1:K | X0:T ) stands for the likeli-
hood of observations given the latent path X0:T .

However, the path integral of Eq. 23 is in general intractable for nonlinear systems.
thus we need to simultaneously estimate the drift and latent state of the diffusion pro-
cess, i.e., to approximate the joint posterior measure of latent paths and drift functions
P(X0:T , f | O1:K). Therefore we consider the unobserved continuous path X0:T as la-
tent random variables and employ an Expectation Maximisation (EM) algorithm to identify
a maximum a posteriori estimate for the drift function. More precisely, we follow an it-
erative algorithm, where at each iteration n we alternate between the two following steps:
An Expectation step, where given a drift estimate f̂n(x) we construct an approximate posterior
over the latent variables Q(X0:T ) ≈ P(X0:T | O1:K , f̂n(x)), and compute the expected log-
likelihood of the augmented path

L
(
f̂n(x), Q

)
= EQ

[
lnL

(
X0:T ,O1:K | f̂n(x)

)]
. (24)

A Maximisation step, where we update the drift estimation by maximising the expected log likeli-
hood

fn+1(x) = argmax
f

[
L
(
fn(x), Q

)
− ln P0

(
fn(x)

)]
. (25)

In Eq. 25, P0 denotes the Gaussian process prior over function values.

A.3 APPROXIMATE POSTERIOR OVER PATHS.

To obtain an approximate posterior over the latent paths we perform variational inference (Beal,
2003). In this section, we first formulate the approximate posterior over paths (conditional distribu-
tion for the path given the observations) by considering only individual observations as constraints
(Section A.3.1). However, this approach results computationally taxing calculations during path
augmentation, since the observations are atypical states of the initially estimated drift. To over-
come this issue, we subsequently extend the formalism (Section A.3.2) to incorporate constraints
that consider also the local geometry of the observations.

A.3.1 APPROXIMATE POSTERIOR OVER PATHS WITHOUT GEOMETRIC CONSTRAINTS

Given a drift function (or a drift estimate) f̂(x) we can apply variational techniques to approximate
the posterior measure over the latent path conditioned on the observations O1:K . We consider
that the prior process (the process without considering the observations O1:K) is described by the
equation

P(X0:T | f̂) : dXt = f̂(Xt)dt+ σdWt. (26)

We will define an approximating (posterior) process that is conditioned on the observations. The
conditioned process is also a diffusion process with the same diffusion as Eq. 26 but with a modi-
fied, time-dependent drift g(x, t) that accounts for the observations (Chetrite and Touchette, 2015;
Majumdar and Orland, 2015). We identify the approximate posterior measure Q with the posterior
measure induced by an approximating process that is conditioned by the observations O1:K (Opper,
2019), with governing equation

Q(X0:T ) : dXt = g(Xt, t)dt+ σ dWt =
(
f̂(Xt) + u(Xt, t)

)
dt+ σ dWt. (27)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

The effective drift g(Xt, t) of Eq. 27 may be obtained from the solution of the variational problem
of minimising the free energy

F [Q] = KL
(
Q(X0:T )||P(X0:T | f̂)

)
−

K∑
k=1

〈
ln P(Ok | Xtk)

〉
Q
. (28)

By applying the Cameron-Girsanov-Martin theorem we can express the Kullback-Leibler divergence
between the two path measures induced by the diffusions with drift f̂(x) and g(x, t) as

KL
(
Q(X0:T )||P(X0:T |f̂)

)
=

〈
ln

 dQ(X0:T )

dP
(
X0:T |f̂

)
〉

Q

(29)

=

〈(
−1

2

∫ T

0

∥f̂(Xt)− g(Xt, t)∥2Ddt+
∫ T

0

f̂(Xt)− g(Xt, t)

D
dWt

)〉
Q

=

〈(
−1

2

∫ T

0

∥f̂(Xt)− g(Xt, t)∥2Ddt+ VT

)〉
Q

(30)

=
1

2

T∫
0

∫
∥g(x, t)− f̂(x)∥2D qt(x) dx dt+ C, (31)

where qt(x) stands for the marginal density for Xt of the approximate process. In the third line
we have introduced the random variable VT =

∫ T

0
f̂(Xt)−g(Xt,t)

D dWt. Under the assumption that
the function ℓ(Xt) = f̂(Xt)− g(Xt, t) is bounded, piece-wise continuous, and in L2[0,∞) , VT

follows the distribution N
(
VT | 0,

∫ T

0
ℓ2(s)ds

)
, which for a given T will result into a constant C.

Thus the second term in Eq. 31 is not relevant for the minimisation of the free energy and will be
omitted.

We can thus express the free energy of Eq. 28 as (Opper, 2019)

F [Q] =
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥2D + U(x, t)

]
qt(x) dx dt, (32)

where the term U(x, t) accounts for the observations U(x, t) = −
∑
tk

ln P(Ok | x) δ(t− tk).

The minimisation of the functional of the free energy can be construed as a stochastic control
problem (Opper, 2019) with the objective to identify a time-dependent drift adjustment u(x, t) :=
g(x, t) − f̂(x) for the system with drift f̂(x) so that the controlled dynamics fulfil the constraints
imposed by the observations.

A.3.2 APPROXIMATE POSTERIOR OVER PATHS WITH GEOMETRIC CONSTRAINTS

The previously described construction of the approximate measure in terms of stochastic bridges is
relevant when the observations have non vanishing probability under the law of the prior diffusion
process of Eq. 26. However, when the prior process (with the estimated drift f̂ ) differs consider-
ably from the process that generated the observations, such a construction might either provide a
bad approximation of the underlying path measure, or show slow numerical convergence in the con-
struction of the diffusion bridges. To overcome this issue, we consider here additional constraints
for the posterior process that force the paths of the posterior measure to respect the local geometry
of the observations. In the following we provide a brief introduction on the basics of Riemannian
geometry and consequently continue with the geometric considerations of the proposed method.

Riemannian geometry. A d-dimensional Riemannian manifold (Do Carmo and Flaherty Fran-
cis, 1992; Lee, 2018) (M,h) embedded in a d-dimensional ambient space X = Rd is a smooth
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curved d-dimensional surface endowed with a smoothly varying inner product (Riemannian) metric
h : x → ⟨·|·⟩x on TxM. A tangent space TxM is defined at each point x ∈ M. The Rieman-
nian metric h defines a canonical volume measure on the manifoldM. Intuitively this characterises
how to compute inner products locally between points on the tangent space of the manifoldM, and
therefore determines also how to compute norms and thus distances between points onM.

A coordinate chart (G,ϕ) provides the mapping from an open set G on M to an open set V in
the Euclidean space. The dimensionality of the manifold is d if for each point x ∈ M there exists
a local neighborhood G ⊂ Rd. We can represent the metric h on the local chart (G,ϕ) by the
positive definite matrix (metric tensor) H(x) = (hi,j)x,0≤i,j,≤d =

(
⟨ ∂
∂xi
| ∂
∂xj
⟩x
)
0≤i,j,≤d

at each

point x ∈ G.

For v,w ∈ TxM and x ∈ G, their inner product can be expressed in terms of the matrix represen-
tation of the metric h on the tangent space TxM as ⟨v|w⟩x = v⊤H(x)w, where H(x) ∈ Rd×d

.

The length of a curve γ : [0, 1] →M on the manifold is defined as the integral of the norm of the
tangent vector

ℓ(γt′) =

∫ 1

0

∥γ̇t′∥gdt′ =
∫ 1

0

√
γ̇⊤
t′ H(γt′)γ̇t′dt′, (33)

where the dotted letter indicates the velocity of the curve γ̇t′ = ∂t′γt′ . A geodesic curve is a locally
length minimising smooth curve that connects two given points on the manifold.

Riemannian geometry of observations. For approximating the posterior over paths we take into
account the geometry of the invariant density as it is represented by the observations. To that end,
we consider systems whose dynamics induce invariant (inertial) manifolds that contain the global at-
tractor of the system and on which system trajectories concentrate (Wiggins, 1994; Mohammed and
Scheutzow, 1999; Girya and Chueshov, 1995; Fenichel and Moser, 1971; Arnold, 1990; Carverhill,
1985). We assume thus that the continuous-time trajectories X0:T ∈ Rd of the underlying system
concentrates on an invariant manifoldM ∈ Rm≤d of dimensionality m (possibly) smaller than d.
The discrete-time observations Ok are thus samples of the manifoldM. The central premise of our
approach is that unobserved paths between successive observations will be lying either on or
in the vicinity of the manifoldM. In particular, we postulate that unobserved paths should lie in
the vicinity of geodesics that connect consecutive observations onM. To that end we propose a
path augmentation framework that constraints the augmented paths to lie in the vicinity of identified
geodesics between consecutive observations.

However, while this view of a lower dimensional manifold embedded in a higher dimensional am-
bient space helps to build our intuition for the proposed method, for computational purposes we
adopt a complementary view inspired by the discussion in (Fröhlich et al., 2021). According to
this view, we consider the entire observation spaceRd as a smooth Riemannian manifold,M=̇Rd,
characterised by a Riemannian metric h. The effect of the nonlinear geometry of the observations is
then captured by the metric h. Thus to approximate the geometric structure of the system’s invari-
ant density, we learn the Riemannian metric tensor H : Rd → Rd×d and compute the geodesics
between consecutive observations according to the learned metric. Intuitively according to this view
the observations {Ok}Kk=1 introduce distortions in the way we compute distances on the state space.

In effect this approach does not reduce the dimensionality of the space we operate, but changes
the way we compute inner products and thus distances, lengths, and geodesic curves on M. The
alternative perspective of working on a lower dimensional manifold would strongly depend on the
correct assessment of the dimensionality of said manifold. For example, one could use a Variational
Autoencoder to approximate the observation manifold and subsequently obtain the Riemannian met-
ric from the embedding of the manifold mediated by the decoder. However, our preliminary results
of such an approach revealed that such a method requires considerable fine tuning to adapt to the
characteristics of each dynamical system and is sensitive to the estimation of the dimensionality of
the approximated manifold.

To learn the Riemannian metric and compute the geodesics we follow the framework proposed by
Arvanitidis et al. in (Arvanitidis et al., 2019). In particular, we approximate the local metric induced
by the observations at location x of the state space, in a non-parametric form by the inverse of the
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weighted local diagonal covariance computed on the observations as (Arvanitidis et al., 2019)

Hdd(x) =

(
K∑
i=1

wi(x)
(
x
(d)
i − x(d)

)2
+ ϵ

)−1

, (34)

with weights wi(x) = exp
(
−∥xi−x∥2

2

2σ2
M

)
, and x(d) denoting the d-th dimensional component of the

vector x. The parameter ϵ > 0 ensures non-zero diagonals of the weighted covariance matrix, while
σM characterises the curvature of the manifold.

Between consecutive observations for each interval [Ok,Ok+1], we identify the geodesic
γk
t′ as the energy minimising curve, i.e., as the minimiser of the kinetic energy functional
E(γk

t′) =
∫ 1

0
LM(γk

t′ , γ̇
k
t′) dt′

γk∗
t′ = argmin

γk
t′ ,γ

k
0=Ok,γk

1=Ok+1

∫ 1

0

LM(γk
t′ , γ̇

k
t′) dt′,

with
∫ 1

0

LM(γk
t′ , γ̇

k
t′)dt

′ =
1

2

∫ 1

0

∥γ̇k
t′∥2h, (35)

where LM(γk
t′ , γ̇

k
t′) denotes the Lagrangian. The minimising curve of this functional is the same

as the minimiser of the curve length functional ℓ(γt′) (Eq. 33), i.e., the geodesic (Do Carmo and
Flaherty Francis, 1992).

By applying calculus of variations, the minimising curve of the functional E(γk
t′) can be obtained

from the Euler-Lagrange equations, resulting in the following system of second order differential
equations (Arvanitidis et al., 2017; Do Carmo and Flaherty Francis, 1992)

γ̈t
k = −1

2
H(γk

t )
−1

(
2
(
I ⊗ (γ̇t

k)⊤
) ∂vec[H(γk

t )]

∂γk
t

γ̇t
k − ∂vec[H(γk

t )]
⊤

∂γk
t

(
γ̇t

k ⊗ γ̇tk
))

, (36)

with boundary conditions γk
0 = Ok and γk

1 = Ok+1, where ⊗ stands for the Kroenecker product,
and vec[A] denotes the vectorisation operation of matrix A through stacking the columns of A into
a vector. We follow Arvanitidis et al. (2019) and obtain the geodesics by approximating the solution
of the boundary value problem of Eq. 36 with a probabilistic differential equation solver.

Extended free energy functional. We denote the collection of individual geodesics by
Γt=̇{γk

t′}t=(k−1)τ+t′τ , where γk
t′ is the geodesic connecting Ok and Ok+1, and t′ ∈ [0, 1] de-

notes a rescaled time variable. Additional to the constraints imposed in the previously explained
setting (Sec A.3.1), here we add an extra term in the free energy UG(x, t)=̇∥Γt − x∥2 that accounts
for the local geometry of the invariant density, and guides the latent path towards the geodesic curves
γk
t′ that connect consecutive observations

F [Q] =
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥D + UO(x, t) + βUG(x, t)

]
qt(x) dx dt. (37)

Here we denote the observation term by UO(x, t)=̇−
∑

tk
ln P(Ok|x)δ(t−tk), while β stands for a

weighting constant that determines the relative weight of the geometric term in the control objective.

Following (Opper, 2019), for each inter-observation interval [Ok,Ok+1] we identify the poste-
rior path measure (minimiser of Eq. 37) by the solution of a stochastic optimal control prob-
lem (Maoutsa and Opper, 2022) with the objective to obtain a time-dependent drift adjustment
u(x, t) := g(x, t)− f̂(x) for the system with drift f̂(x) with initial and terminal constraints defined
by UO(x, t), and additional path constraints UG(x, t).

For the case of exact observations, i.e., for an observation process ψ(x) = x, we can compute the
drift adjustment for each of the K−1 inter-observation intervals independently. Thus for each inter-
val between consecutive observations, we identify the optimal control u(x, t) required to construct
a stochastic bridge following the dynamics of Eq. 26 with initial and terminal states the respective
observations Ok and Ok+1.
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The optimal drift adjustment for such a stochastic control problem for the inter-observation interval
between Ok and Ok+1 can be obtained from the solution of the backward equation (see (Maoutsa
and Opper, 2022))

∂ϕt(x)

∂t
= −L†

f̂
ϕt(x) + UG(x, t)ϕt(x), (38)

with terminal condition ϕT (x) = χ(x) = δ(x −Ok+1) and with L†
f̂

denoting the adjoint Fokker-
Planck operator for the process of Eq. 26. As shown in (Maoutsa and Opper, 2022) the optimal drift
adjustment u(x, t) can be expressed in terms of the difference of the logarithmic gradients of two
probability flows

u∗(x, t) = D
(
∇ ln qT−t(x)−∇ ln ρt(x)

)
, (39)

where ρt fulfils the forward (filtering) partial differential equation (PDE)

∂ρt(x)

∂t
= Lf̂ρt(x)− UG(x, t)ρt(x), (40)

while qt is the solution of a time-reversed PDE that depends on the logarithmic gradient of ρt(x)

∂qt(x)

∂t
= −∇ ·

[(
σ2∇ ln ρT−t(x)− f(x, T − t)

)
qt(x)

]
+

σ2

2
∇2qt(x), (41)

with initial condition q0(x) ∝ ρT (x)χ(x) .

For the numerical solution of the control problem we use the numerical framework accompany-
ing Maoutsa and Opper (2022), where the path constraints associated with the geodesic curves are
imposed through the two staged process for particle propagation described in the paper for path
constraints, with the particle reweighting being performed through optimal transport implemented
using the PyEMD python toolbox (Pele and Werman, 2009).

More precisely, according to this framework we propagate a particle representation of the proba-
bility density ρt(x) according to the filtering equation of Eq. 40. This follows the dynamics of
the uncontrolled process with drift f̂ and particle reweighting at each time step as determined by
the path constrained (potential) UG(x, t), that quantifies the proximity to the geodesic at each time
point. In the particle representation we apply this reweighting in the form of a deterministic optimal
transportation of the particles (Reich, 2013).

A.4 APPROXIMATE POSTERIOR OVER DRIFT FUNCTIONS.

For a fixed path measure Q, the optimal measure for the drift Qf is a Gaussian process given by

Qf ∝ Pf exp

(
−1

2

∫
∥f(x)∥2DA(x)− 2⟨f(x), B(x)⟩Ddx

)
, (42)

with

A(x)=̇

∫ T

0

qt(x)dt,

and

B(x)=̇

∫ T

0

qt(x)g(x, t)dt,

where qt(x) denotes the marginal constrained density of the state Xt. The function g(x, t) denotes
the effective drift.

We assume a Gaussian process prior for the unknown function f , i.e., f ∼ P0(f) = GP(mf , kf )
where mf and kf denote the mean and covariance function of the Gaussian process. Following Rut-
tor et al. (Ruttor et al., 2013), we employ a sparse kernel approximation for the drift f by optimising
the function values over a sparse set of S inducing points {Zi}Si=1. We obtain the resulting drift
from

f̂S(x) = kf (x,Z) (I + ΛKS)
−1

d, (43)
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where we have defined introduced the notation KS=̇kf (Z,Z)

Λ =
1

σ2
K−1

S

(∫
kf (Z,x)A(x)kf (x,Z)dx

)
K−1

S . (44)

d =
1

σ2
K−1

S

(∫
kf (Z,x)B(x)dx

)
K−1

S , (45)

The associated variance results similarly from the equation

Σ2
S(x) = kf (x,x)− kf (x,Z) (I + ΛKS)

−1
Λ kf (Z,x). (46)

We employ a sample based approximation of the densities in Eq. 42 resulting from the particle
sampling of the path measure Q resulting from the geometric augmentation, i.e. the integrals over∫
qt(x) are over the samples of the augmented paths. Thus by representing the densities by samples,

we can rewrite the density pt(x) in terms of a sum of Dirac delta functions centered around the
particles positions

pt(x) ≈
1

N

N∑
j=1

δ(x− Xj(t)),

and replace the Riemannian integrals with summation over particles, i.e. perform a Monte Carlo
integration. Here Xj(t) represents the position of the j-th particle at time point t.

B SPARSE GAUSSIAN PROCESS ESTIMATION

Since the amount of required observations for accurate drift estimation is generally large for systems
with nonlinear dynamics, regular Gaussian process regression becomes computationally intensive.
Its computational complexity scales asO(N3) with the number of observations N due to the N×N
kernel matrix inversions required for inference (c.f. Eq.22 and Rasmussen (2003)). Therefore,
Ruttor et al. (2013) employ the sparse (low dimensional approximation) counterpart of Gaussian
process regression (Titsias, 2009; Csató and Opper, 2002) that reduces significantly the computation
time by reducing the computational complexity to O(NM2), where M ≪ N denotes the number
of selected sparse (inducing) points. Here we present briefly the derivation.

For sparse Gaussian process drift inference, we augment the distributions with M inducing points
z = [z1, . . . , zM ] with inducing values u = [f(zm)]

M
m=1 that are jointly Gaussian distributed with

the latent function values {f(Xt)}Tt=0.

As demonstrated previously the true posterior for function values f is expressed as a product

Pf (f) =
1

Z
Po(f)e

−A(f), (47)

where Z a normalisation constant, A(f) = 1
2 f

TΛf − aT f a quadratic form of f (see Eq. 16), while
Po(f) denotes a prior Gaussian measure. Thus the posterior Pf (f) is also Gaussian.

To employ sparse Gaussian process inference, we approximate Pf with Qf = GP (mq(·), kq(·, ·)),
with mean and variance functions to be calculated, depending only on the smaller subset (M ≪ N )
of inducing function values u,

Qf (f) ∝ R(u)Po(f). (48)
The effective likelihood R(u) is chosen as the minimiser of the Kullback-Leibler divergence
KL (Qf ||Pf ).

We may now express the prior Po(f) and the approximate marginal Qf (f) in terms of the inducing
points

Po(f) = Po(f |u)Po(u), (49)
and

Qf (f) = Qf (f |u)Qf (u) = Po(f |u)Qf (u), (50)
under the assumption that the posterior conditional Qf (f |u) matches the prior conditional Po(f |u).
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We select the effective likelihood R(u) as the minimiser of the relative entropy between Qf and Pf

KL (Qf ||Pf ) =

∫
Qf (f) ln

Qf (f)

Pf (f)
df

=

∫
Po(f |u)Qf (u) ln

Po(f)R(u)
1
ZPo(f)e−A(f)

dfdu

=

∫
Po(f |u)Qf (u) ln

Po(f)R(u)
1
ZPo(f |u)e−A(f |u)Po(u)

dfdu

=

∫
Po(f |u)Qf (u) ln

Po(u)R(u)
1
Z e−A(f |u)Po(u)

dfdu

=

∫
Po(f |u)Qf (u) ln

R(u)
1
Z e−A(f |u) dfdu

= lnZ +

∫
Qf (u) ln

(
elnR(u)

e−Eo[A(f |u)]

)
du.

(51)

In Eq. 51 in the second line, we have introduced Eq. 47-Eq. 50. In the third line we have introduced
P0(f)

P0(f |u) = P0(u) from Eq. 49. In the final line we rearranged the terms that do not depend on
f outside of the integral over f , moved the lnZ term out of the integration over u, and denoted
⟨·⟩0 =

∫
P0(f |u) df .

To minimise the relative entropy KL [Qf ||Pf ] we conclude that the optimal choice for the effective
likelihood R(u) is

R(u) ∝ e−⟨A(f |u)⟩o . (52)

Given the quadratic form of A(f) we may write the conditional expectation in Eq. 52 as a quadratic
form too

⟨A(f |u)⟩o =
1

2
⟨f |u⟩⊤o Λ ⟨f |u⟩o +

1

2
Tr (Covo[f |u]Λ)− a⊤⟨f |u⟩o

=
1

2
⟨f |u⟩⊤o Λ ⟨f |u⟩o − a⊤⟨f |u⟩o + const.,

(53)

where in the last line we take into account that the term Tr (Covo[f |u]Λ) is independent of the sparse
function values u (c.f. Ruttor et al. (2013)). In Eq. 53 Λ =̇ diag

[
∆tD−1, . . . ,∆tD−1

]
.

In particular, the conditional expectation of function values f conditioned on the inducing point
function values u ≡ U at inducing point locations z ≡ Z equals

f̄s(x) = ⟨f |u⟩o = k(x,Z)k(Z,Z)−1U , (54)

while the covariance equals

(Σs)2(x) = k(x,x)− k(x,Z)k(Z,Z)−1k(Z,x), (55)

where we have employed similar notation for the kernel functions as in Eqs. 21-22.

C THEORETICAL EVIDENCE THAT MAY SUPPORT THE USE OF GEODESICS AS
GEOMETRIC CONSTRAINTS

The Onsager-Machlup functional for diffusion processes has been known in theoretical physics as
a characteriser of the most probable path (MPP) between two pre-defined states of the process.
In (Onsager and Machlup, 1953), Onsager and Machlup used the thermal fluctuations of a diffusion
process to show that the probability density of a path γ ∈ C1

(
[0, T ],Rd

)
inRd over finite interval

can be expressed as a Boltzmann factor

P(γ) ∼ exp

[
−
∫ T

0

L(γ(t), γ̇(t))dt

]
, (56)
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where

L(γ(t), γ̇(t)) =
1

2
∥ γ̇(t)− f(γ(t))

D
∥2 + 1

2
∇ · f(γ(t)).1 (57)

The function L(γ(t), γ̇(t)) is known as the Onsager-Machlup function (action), while its integral
over time is known as Onsager-Machlup action functional. It has been used as Lagrangian in Euler-
Lagrange minimisation schemes to identify the most probable path (MPP) of a diffusion process
between two given points in the state space (Graham, 1977; Stratonovich, 1971).

Stratonovich (Stratonovich, 1971) considered the probability that a sample of a multidimensional
diffusion process will lie in the vicinity of (within a tube of infinitesimal thickness around) an ide-
alised smooth path in the state space. To compute this probability he constructed a probability
functional which is identical to the Onsager-Machlup functional considered as Lagrangian for the
diffusion process. Duerr et al. (Dürr and Bach, 1978) considered scalar diffusion processes and
constructed the Onsager-Machlup function from the asymptotic limit of the transition probability
between the starting and end state of the path using a Girsanov transformation.

Considering Brownian motions defined on a Riemannian manifold (M,g) with associated Rie-
mannian metric g, the Onsager-Machlup functional can be expressed as the integral over the La-
grangian (Takahashi and Watanabe, 1981; Graham, 1980; Grong and Sommer, 2022)

L(γ, γ̇) =
1

2
∥γ̇(t)∥2g −

1

12
S(γ(t)), (58)

where ∥ · ∥g denotes the Riemannian norm on the tangent space TXM of the manifold with respect
to the metric g, and S(·) stands for the scalar curvature of the manifold at each point. The first term
is the Lagrangian used to identify geodesic curves on manifolds (c.f. A.3.2)

In our proposed formalism, for computational purposes we have assumed the entire Rd as smooth
manifold. We can identify the first term of Eq. 58 with the Lagrangian we optimised for computing
the geodesics on the manifold (Rd,g), where g is the metric learned from the observations.

However the system we observed was a diffusion process defined in Rd with an Euclidean metric.
Constructing a path augmentation scheme that guides the augmented paths towards the geodesics
of a diffusion defined with respect to a different metric raises questions about the validity of our
approach. Here we should note that diffusions with a general state dependent diffusion coefficient
σ ∈ Rd×m, and m-dimensional Brownian motion, can be considered as evolving on the manifold(
Rd,g

)
, with the associated metric g =

(
σσ⊤)−1

(Capitaine, 2000). Thus it may be possible to
associate the metric learned from the data with the metric arising from a state dependent diffusion by
applying a transformation akin to an inverse Lamperti transform (Øksendal, 2003) to transform our
learned SDE to one that would have induced the learned metric due to the state dependent diffusion.
The existence of such a transformation would justify the proposed method. Our empirical results
demonstrate that such a transformation may be possible.

D DOES THE PROPOSED APPROACH INVALIDATE THE MARKOVIAN
PROPERTY OF THE DIFFUSION PROCESS?

The proposed path augmentation seemingly invalidates the Markovian property of the diffusion
process. According to the Markov property of the diffusion of Eq. 1, the system state Xkτ+δt

should depend only the state Xkτ , i.e., the observation Ok. The proposed augmentation makes the
state Xkτ+δt depending not only on the next observation Ok+1 = X(k+1)τ , but also on past and
future states that lie in the vicinity of these observations.

We effectively construct the augmented paths to compute the likelihood of a drift estimate. To
compute this likelihood we require to evaluate the transition probabilities between consecutive ob-
servations. Since for general nonlinear systems the transition probabilities are in general intractable,
we have to resort to numerical approximations. Ideally we would approximate the transition density

1Onsager and Machlup’s initial work concentrated around linear processes and therefore the functional
initially introduced by the did not include the second term with the divergence of f as this is a constant for
linear f . It was later added to the OM function to account for trajectory entropy corrections (Taniguchi and
Cohen, 2007; Adib, 2008)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

with a bridge sampler that would consider the nonlinear estimated SDE conditioned to pass though
consecutive observations. However for coarse drift estimates, the observations have zero probability
under the law of the estimated SDE, and construction of those bridges would result either in very
taxing computations or would fail altogether. Instead, here, we compute the likelihood of a ”cor-
rected” estimate (the correction resulting from the invariant density) under which the observations
have non-zero probability, and subsequently re-estimate the drift on the augmented path with this
”corrected” estimate. By taking into account the local geometry of the observations, we provide
systematic corrections for the misestimated drift function to generate the augmented paths. This ef-
fectively nudges the augmentation process towards the second observation of each inter-observation
interval through the path constraint that forces the augmented paths towards the geodesics.

E RELATED WORK AND POSITIONING OF THE PRESENT WORK

Here, we briefly review further related work on inference or modelling of SDEs and position our
work further with respect to the existing literature.

▷ Modelling general SDEs from state observations. As already mentioned in the Introduction
and in Sec. A existing inference methods for SDEs can be broadly clustered in temporal and ge-
ometric methods, where the former accounts for the temporal order of the observations, while the
latter approximate the invariant system density and discard any time information.

Temporal methods rely on the Euler-Maruyama discretisation of the SDE paths approximating
conditional expectations of state increments (i.e. the Krammers Moyal coefficients). They model
the drift either in terms of Gaussian processes (Ruttor et al., 2013; Batz et al., 2018; Hostettler et al.,
2018; Zhao et al., 2020; Yildiz et al., 2018), basis functions (Nabeel et al., 2025; Ragwitz and Kantz,
2001; Friedrich and Peinke, 1997; Peinke et al., 1997; Friedrich et al., 2000; Ferretti et al., 2020) or
libraries of functions (Boninsegna et al., 2018; Huang et al., 2022), kernel regression (Lamouroux
and Lehnertz, 2009; Jiang and Knight, 1997), dynamic mode decomposition to learn the eigenfunc-
tions of the Koopman operator (Klus et al., 2020), by approximating the central moments of the
transition densities (Stanton, 1997), or by applying generalised methods of moments (Hansen and
Scheinkman, 1993).

As explicitly detailed in Sec. A, most temporal methods do not provide accurate drift estimates when
the interval between observations is large. The two prevailing approaches to mitigate this finite-
sampling rate effects is to either account for the systematic bias introduced by the finite sampling
rate by estimating an explicit correction term for the inferred drift (Ragwitz and Kantz, 2001; 2002;
Kleinhans et al., 2005; Kleinhans and Friedrich, 2007), or by performing state estimation for the
unobserved paths (also known as path or data augmentation) and then estimating the drift from the
continuous paths.

The former approach works only for scalar systems, while the latter employs simplified bridge dy-
namics (e.g., Brownian (Chib et al., 2006; Eraker, 2001; Sermaidis et al., 2013) or Ornstein Uhlen-
beck (Batz et al., 2018; Billio et al., 1998) bridges) that are analytically tractable or computationally
non-demanding. However, for large τ and for nonlinear systems, these simplified bridge dynamics
match poorly the underlying path statistics. (Fig. 1 D.). It is important to mention here, that path
augmentation with Ornstein Uhlenbeck bridges similar to Batz et al. (2018) provides a good ap-
proximation of the underlying transition density, when the underlying linear process employed for
each bridge has a drift that comes from the local linearisation of the ground truth drift function.
However, during inference the true dynamics are unknown and the local linearisations on inaccurate
drift estimates employed in Batz et al. (2018) provide imprecise approximations for large τ .

Alternative methods, employ variational inference (Batz et al., 2016; Opper, 2019; Duncker et al.,
2019; Verma et al., 2024) and approximate the posterior path measure with a tractable Gaussian
process induced by a time–varying linear SDE. This results in ODEs for the posterior mean and
covariance matrix and an ELBO that is optimized directly (Archambeau et al., 2007; Duncker et al.,
2019).

Building on the building on a prolific line of work on neural ODEs, neural SDEs (Li et al., 2020)
employ gradient-based stochastic variational inference and the stochastic adjoint sensitivity method
to compute gradients of solutions of stochastic equations with respect to their parameters. Building
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on these methods, Course and Nair (2023b) remove the need for adjoint-based gradient computa-
tions by combining amortized inference with a reparametrization of the ELBO by assuming a latent
linear process that generates the latent path.

Geometric approaches on the other hand, discard the temporal structure of the observations, and
treat them as samples of the invariant density. Thereby these methods either employ density estima-
tion to identify the drift as the gradient of a potential Kutoyants and Kutojanc (2004), or resort to
spectral approximations of the generator of the diffusion process through manifold learning.

Manifold learning methods employ often the diffusion maps algorithm, introduced by Coiffman and
colleagues Singer and Coifman (2008), to learn the dominant part of the spectrum of the transfer
operator of the observed diffusion process Coifman et al. (2005); Nadler et al. (2006); Giannakis
(2019); Ferguson et al. (2011); Talmon and Coifman (2015). In essence, these methods, learn
from the data the few leading eigenfunctions of the Laplace–Beltrami operator that captures the
Riemannian geometry of the observations, and consider them as a parametrisation of the manifold
representing the invariant density.

▷ Modelling SDEs from population level snapshots/boundary conditions. With recent com-
putational advances in optimal transport, a growing body of work focuses on the implementation
of Schrödinger bridge sampling methods, including formulations with additional path constraints.
These mostly generative methods aim to transport the data distribution from some initial boundary
condition to a terminal one, typically by learning the underlying stochastic equation to perform this
transport through Schrödinger bridge sampling (Lipman et al., 2022; Pooladian et al., 2023; Albergo
et al., 2023; Albergo and Vanden-Eijnden, 2022). Flow matching (Lipman et al., 2022) identifies
the probability flow ODE that pushes forward an initial Gaussian density to a target one by solv-
ing a regression problem. The method relies on analytically tractable probability paths that provide
closed-form regression targets for learning the velocity field, resulting in simulation-free training of
deterministic flows. However, the framework is restricted to Gaussian distributions since the em-
ployed objective becomes intractable for general source distributions. Conditional flow matching
(CFM) (Tong et al., 2023b) generalizes flow matching by introducing conditional probability paths
between paired samples, allowing the marginal velocity field to be learned with regression without
requiring explicit evaluation of the marginal densities or restrictive assumptions on the source distri-
bution. Generalized Schrödinger Bridge Matching (GSBM) (Liu et al., 2023) follows an alternating
optimisation scheme that learns both drift and marginals. Given prescribed boundary conditions
for initial and terminal densities, the framework minimises a kinetic energy term, and formulates the
resulting problem in terms of a stochastic optimal control problem conditioned on the boundary con-
ditions and a path cost that accounts for additional constraints. Action matching (Neklyudov et al.,
2023b) introduces a simulation-free variational objective that identifies a time-dependent scalar po-
tential (entropic action) st, whose gradient∇st transports the densities from the initial to the bound-
ary condition through the continuity equation. In its entropic formulation the∇st can be considered
as the drift of the underlying SDE, whose marginals match the boundary conditions. However, by
construction, the framework can recover only gradient drifts and is therefore not suitable for iden-
tifying general stochastic systems with stationary probability currents. In contrast, simulation-free
score and flow matching ([SF]2M ) (Tong et al., 2023a) jointly learns the probability-flow ODE and
the score function by regressing against closed-form quantities derived from conditional Brownian
bridge paths, facilitating simulation-free identification of general Schrödinger bridge dynamics with
non-gradient drifts.

Geometry aware generative methods. Metric flow matching (MFM) generalizes CFM by learn-
ing interpolants that account for the geometry of the data. However, MFM does not assume a
stochastic underlying process, as our framework does, only a deterministic interpolation (transport)
that respects the data manifold. However, by assuming a specific noise amplitude for the underlying
SDE, one can consider the flow field as generated by the effective drift of a probability flow ODE
associated with the considered SDE and make inferences about the underlying drift function. This is
the approach we followed when comparing the performance of MFM to our framework in Table 1.

Approximating observation geometry in the ambient space. In our work, we approximate the
geometry induced by the observations by endowing the ambient space Rd with an observation-
dependent Riemannian metric H(x) (Eq. 4) that encodes the local anisotropy of the data distribution.
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In our framework this metric acts as a constraint for data-augmentation and as a geometric inductive
bias for drift function inference: augmented paths are encouraged to remain in regions where the
metric H(x) induces smaller distances, i.e. in the vicinity of geodesics computed with respect to
this metric, thereby aligning the augmented paths with the empirical observation geometry.

This perspective connects to a growing body of work that approximates Riemannian metrics di-
rectly in the ambient space as a proxy for the unknown curved low-dimensional data manifold,
instead of first estimating its intrinsic dimensionality and then constructing explicit low-dimensional
embeddings.

In parallel, an increasing body of literature focuses on endowing generative models with geometric
constraints or inductive biases. While most methods function in an autoencoder-like setting, by
learning an embedding function for projecting to a lower dimensional space that respects prescribed
or learned geometric constraints (Duque et al., 2022; Kalatzis et al., 2020; Arvanitidis et al., 2017)
geometry, ”Riemannian” methods, similar to our proposed method, operate in the ambient space by
directly a Riemannian geometry embedded there and define normalizing flows or other generative
processes directly on the manifold of interest. Mathieu and Nickel (2020) introduce a framework
for continuous normalizing flows defined in the ambient space, respecting a prescribed Riemannian
geometry. Similarly, De Bortoli et al. (2022) proposed a score-based generative model that models
target densities with support on prescribed Riemannian manifolds in terms of a time-reversal of
Langevin dynamics.

Metric flow matching (Kapusniak et al., 2024) interpolates data distributions that respect the
geodesic interpolants computed according to the metric induced by the observations. The method
employs a data-adapted metric in the ambient space to design interpolants (geodesic curves) with low
kinetic energy under the approximated geometry, and constrains the generative paths to respect man-
ifold induced by the data samples. Our construction is conceptually similar with these approaches,
in that we also avoid explicit low-dimensional embeddings and instead approximate the observa-
tion manifold through a Riemannian metric living in the ambient space. However, in contrast to
methods focused on deterministic transport or simulation-free matching, we use the learned metric
to regularise continuous-time diffusion bridges and drift inference, through the stochastic controlled
geometric augmentation, so that the recovered stochastic dynamics are geometrically consistent with
the geometry of the observation-induced invariant measure.

Positioning of the present work. Our approach combines the nonparametric flexibility of
Gaussian-process–based drift inference from time-series data with recent geometric ideas for
population-level SDE modelling. Similar to Metric Flow Matching (Kapusniak et al., 2024), we
posit that augmented trajectories should remain on the manifold induced by the observations: both
frameworks estimate a data-adapted Riemannian metric and construct interpolants (geodesics and
bridges) that respect this geometry. MFM learns the underlying ODE necessary to transport an
initial distribution to a target one under the data-adapted metric, while our framework assumes un-
derlying stochastic dynamics. Nevertheless, once the diffusion is known or coarsely estimated, one
can interpret the inferred ODE as a probability flow ODE and make inferences about the underlying
drift function of a stochastic system. The GSBM framework (Liu et al., 2023) employs a stochastic
control objective that is similar to the objective we consider for constructing the augmented paths.
However, unlike our framework, GSBM does not introduce geometric constraints for the augmented
paths. However, the path constraint they consider can be formulated with geometric considera-
tions as we did in our comparisons here. Finally, whereas these methods typically learn a drift that
transports a single source distribution to a single terminal snapshot, yielding thus a locally valid
dynamics, our method, akin to multi-marginal bridge sampling (Shen et al., 2024), fits a sequence
of bridges across multiple time points to recover a single global drift consistent with the underlying
drift dynamics.

F GEOMETRIC CONSTRAINTS ON INFERENCE

Our method bridges the gap between approaches that rely only on the temporal structure of observa-
tions and those that approximate the invariant density, while ignoring temporal order. Motivated by
advances in geometric statistics (Miolane et al., 2020; Sommer, 2020), and the growing interest on
the concept of manifold hypothesis (Fefferman et al., 2016; Shnitzer et al., 2020), i.e., the considera-
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tion that the state of multi-dimensional dynamical systems often resides in low-dimensional regions
of the state space, several recent methods integrate geometric and temporal constraints in stochastic
system identification. In Langevin regression framework (Callaham et al., 2021), the Kramers-
Moyal (KM) coefficients are estimated and low sampling effects are accounted for by solving an
adjoint Fokker-Planck equation, with regularisation via moment matching (Lade, 2009).Tong et al.
(2020) consider the manifold of the observations for inference of cellular dynamics. Their method
employs dynamic optimal transport to interpolate between measured distributions constrained to lie
in the vicinity of the observations. While sharing similar intuitions with our method, Tong et al.
do not employ SDE modelling for inherently stochastic cellular dynamics and do not consider the
underlying geometry of the observations, relying solely on constraints penalizing pairwise distances
between them. Shnitzer et al. (Shnitzer et al., 2020; 2016) employ diffusion maps to approximate
the eigenfunctions of the backward Kolmogorov operator (the generator of the stochastic Koopman
operator (Giannakis, 2019; Črnjarić-Žic et al., 2020)). By evolving the dominant operator eigen-
spectrum with a Kalman filter, they account for the temporal order of observations. However, their
approach is limited to conservative systems and requires the presence of a spectral gap in the ap-
proximated operator’s spectrum.

G THEORETICAL JUSTIFICATION FOR RIEMANNIAN MANIFOLD
APPROXIMATION OF THE INVARIANT DENSITY

Our method is based on the argument that the invariant density2 of the observed system im-
poses a low-dimensional structure on the state space, within which the observations are confined.
We propose that this low-dimensional structure is well approximated by a Riemannian manifold
M∞ ∈ Rm≤d and that the observations {Ok}Kk=1 offer a reliable discrete approximation toM∞.

We employ the notion of a ”low-dimensional structure” as a concise way to refer to the fact that
for many dissipative dynamical systems, the invariant measure has support on a subset of the state
space with dimension smaller than the ambient space dimension. This phenomenon arises due to
the dissipative nature of these systems, which causes volume contraction in the state space, resulting
in trajectories concentrating asymptotically on attractors of lower dimension than the state space
dimension. To provide further justification on this, in the following section, we start by building
intuition from deterministic dynamical systems and then generalise to stochastic dynamics.

G.1 DIMENSIONALITY OF INVARIANT MEASURES INDUCED BY DETERMINISTIC DYNAMICS

We consider a dissipative deterministic dynamical system of the form

ẋt = f(xt), xt ∈ Rd, (59)

generating a semiflow (Φt)t≥0. Under standard assumptions, the dynamics admit an invariant prob-
ability measure µ describing the distribution of states along long-term typical trajectories. From an
ergodic perspective, µ is the natural object characterising the asymptotic behaviour of the system.
For almost every initial condition in µ, the empirical measure

1

T

∫ T

0

δxt
dt (60)

converges (in the weak sense) to µ.

For dissipative systems, phase–space volumes contract along typical trajectories, so the Lebesgue
measure is not invariant under the dynamics, i.e. state space volume is not preserved when pushed
forward through the flow (Ruelle, 1979). This implies that the system state does not explore the
ambient space uniformly. Instead, trajectories concentrate asymptotically on subsets of state space
of vanishing Lebesgue measure. In fact, this concentration phenomenon persists even in chaotic
systems, where, although trajectories separate exponentially along unstable directions, contraction
along stable directions dominates the evolution of infinitesimal volumes in the state space.

2In the following the discussion concentrates around invariant measures. We point out here that the invariant
density is the Radon-Nikodym derivative of the invariant measure with respect to some reference measure, often
the Lebesgue measure if it exists (Maharam, 1969).
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The resulting invariant measure µ typically has an effective dimension smaller than the ambient
space dimension. To quantify this, we require a notion of dimensionality that remains meaning-
ful when the Lebesgue measure vanishes. The Hausdorff dimension (Ruelle, 1989; Young, 2002;
Ott, 2002) lends itself for such a purpose since it naturally extends from sets to probability mea-
sures (Young, 1982). More precisely, the Hausdorff dimension of an invariant measure µ is defined
as the smallest Hausdorff dimension among all measurable sets containing µ

dimH(µ) = inf
{
dimH(A) : µ(A) = 1

}
. (61)

A useful aspect of this formulation is its local interpretation. Under mild regularity assumptions,
dimH(µ) can be characterised by the scaling of probability mass around typical points under µ. If,
for almost every x,

µ(Bε(x)) ∼ ε dµ as ε→ 0, (62)
then dµ = dimH(µ). Thus, this dimension reflects how probability mass concentrates across scales.

In (smooth) deterministic dynamical systems, the interplay between expansion and contraction along
different directions governs this local scaling behaviour. This is well characterised by Lyapunov ex-
ponents that quantify the exponential deformation of infinitesimal neighbourhoods, while the metric
(Kolmogorov-Sinai) entropy hµ quantifies the rate at which trajectories generate information. Well
known results in ergodic theory (Ledrappier and Young, 1985) show that the Hausdorff dimension
of an invariant measure can be expressed directly in terms of these quantities, and is strictly smaller
than the ambient space dimension d in dissipative systems with non-trivial Lyapunov exponents,
i.e. both positive and negative exponents.

More precisely, according to the Oseledets’ theorem (Oseledets, 1968), the system has a Lyapunov
spectrum λ1 ≥ · · · ≥ λd, and dissipativity implies on average volume contraction, i.e.

d∑
i=1

λi < 0. (63)

Ledrappier and Young (1985) formulate an expression for the Hausdorff dimension of the invari-
ant measure µ in terms of the Lyapunov exponents {λi}di=1 and the Kolmogorov-Sinai entropy
hµ (Bárány and Käenmäki, 2017)

dimH(µ) = k +
hµ −

∑k
i=1 λi

|λk+1|
, (64)

where k is the largest integer for which
∑k

i=1 λi ≥ hµ. This relation holds under standard smooth-
ness and hyperbolicity assumptions (for instance for C1+α systems with non-zero Lyapunov expo-
nents almost everywhere). Intuitively, k here quantifies the number of expanding dimensions needed
to characterise the system’s entropy.

Since the sum of all Lyapunov exponents is negative (Eq. 63), and the metric entropy is bounded by
the sum of positive Lyapunov exponents (Ruelle, 1978)

0 ≤ hµ ≤
∑
λi>0

λi, (65)

the equality of Eq. 64 implies
dimH(µ) < d, (66)

indicating that the invariant measure concentrates on a subset of the state space, whose Hausdorff
dimension is strictly smaller than the ambient space dimension d.

G.2 DIMENSIONALITY OF INVARIANT MEASURES INDUCED BY STOCHASTIC DYNAMICS

We now consider stochastic dynamical systems of the form

dXt = f(Xt)dt+ σ dWt, (67)

similar to the systems we discuss in the main text. Under mild conditions on f and σ, the correspond-
ing Markov semigroup admits a unique invariant probability measure µσ , which coincides with the
stationary solution of the associated Fokker–Planck equation (Risken, 1996).
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The additive noise regularises the deterministic invariant measure, yet its density concentrates ex-
ponentially around A as σ → 0. For non-degenerate noise σ, the Hörmander condition ensures
that µσ is absolutely continuous with respect to the Lebesgue measure, and thus possesses a smooth
invariant density (Hörmander, 1967). However, the invariant measure µσ of the stochastic system of
Eq. 67 satisfies the following exponential concentration inequality around the deterministic attractor
A for sufficiently small noise amplitude σ

µσ

(
{x ∈ Rd : dist(x,A) > δ}

)
≤ C(δ) exp

(
−c(δ)

σ2

)
, (68)

for all δ > 0, where C(δ), c(δ) > 0 denote δ-dependent constants, that are nevertheless independent
of noise amplitude σ (see Theorem 4.2.1 (Kifer, 1988)). This exponential concentration indicates
that, although µσ is absolutely continuous with respect to the Lebesgue measure for σ > 0, it
becomes increasingly confined near A as σ → 0. The effective dimension of µσ approaches that
of the invariant measure of the deterministic system µ0, while remaining bounded above by the
ambient dimension d. (Kifer, 1988; Arnold, 2006).

In this sense, stochasticity does not destroy the low-dimensional structure induced by the deter-
ministic dynamics, but thickens the invariant measure around the deterministic attractor geometry.
Thus even though µσ is smooth, its effective dimension can still be low-dimensional in the sense
of mass being tightly concentrated near a lower-dimensional skeleton determined by the underlying
stochastic dynamics.
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H THEORETICAL JUSTIFICATION OF GEOMETRIC AUGMENTATION FOR
LARGE INTER-OBSERVATION INTERVALS

In the following sections we provide a theoretical analysis justifying our choice to employ geometric
path augmentation to improve inference in the large inter-observation limit. In particular, in Sec H.1,
we revisit the fact that inference starting from the Euler-Maruyama discretisation deteriorates for
increasing inter-observation interval. Then we study the terms in the remainder of the discretisation
that become important when the time step (or inter-observation interval) is large, and connect these
terms with the geometry of the unknown vector field. We show that for non-linear systems the
remainder contains terms related to the curvature of the flow, and that neglecting these terms amounts
to assuming a vector field with straight flow-lines in-between observations. This introduces a bias
in inference that is linear in the step size. By approximating the curvature by means of controlled
path augmentation with reference the geodesic curves of the invariant manifold, our method partially
accounts for these remainder terms.

H.1 INFERENCE PERFORMANCE DETERIORATES WITH INCREASING INTER-OBSERVATION
INTERVAL FOR EXISTING FRAMEWORKS

Figure 5
Increasing observation interval be-
tween successive observations τ
deteriorates performance quanti-
fied by increasing weighted root
mean squared error (wRMSE) for
Gaussian process-based inference.
Weighted root mean square error be-
tween estimated and ground truth
drift vector fields for increasing ob-
servation interval τ between sub-
sequent observations for different
noise conditions (indicated by differ-
ent hues). Observations were col-
lected from a Van der Pol oscillator
system simulated with dt = 0.01 for
T = 500 time units. Error bars indi-
cate one standard deviation over ten
independent realizations.

We computed the weighted root mean square error (wRMSE) between ground truth flow fields
and estimated ones for several commonly applied inference frameworks. We observed that the
performance of all of them deteriorates once the inter-observation interval becomes large.

We started with the method that motivated our research, approximating drift functions through Gaus-
sian processes, the method outlined in Ruttor et al. (2013). The method approximates the drift
functions with Gaussian process regression, using the system state Xt as the regressor and state in-
crements as the response variable Yt=̇

Xt+τ−Xt

τ . This is the Bayesian counterpart of earlier methods
encountered in physics literature (Friedrich and Peinke, 1997; Ragwitz and Kantz, 2001), providing
additionally uncertainty estimation through the Gaussian process approximation.

As is evident from Figure 5 the discrepancy between ground truth and estimated vector fields in-
creases for increasing temporal distance between successive observations. This should be under-
stood, under the consideration that inference of the drift based on regression on state increments
results from an approximation relying on a truncated Ito-Taylor expansion. This is also the starting
point of the Euler Maruyama discretisation. As the time interval between successive steps of this
approximation increases, the truncated approximation does not longer hold, and higher order terms
should be considered.
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H.2 INFERENCE BASED ON EULER-MARUYAMA DISCRETISATION DOES NOT ACCOUNT FOR
THE CURVATURE OF THE TRAJECTORIES IN THE STATE SPACE

To be more precise, a general SDE of the form
dXt = f(Xt, t)dt+ σ(Xt, t)dWt. (69)

is a shorthand for the integral equation

Xt = Xt0 +

∫ t

t0

f(Xs, s) ds+
∫ t

t0

σ(Xs, s) dWs, (70)

where as previously in this manuscript, we consider the stochastic integrals in the Itô sense. (Here
we start from a more general formulation of the stochastic equation with both diffusion and drift
terms being state- and time-dependent to highlight that also for more general SDEs our geometric
argument is valid.)

Applying the Itô formula on each integrand, and integrating from t0 to t, we obtain the Itô-Taylor
expansion of Eq. 69

f(Xt, t) =f(Xt0 , t0) +

∫ t

t0

∂f(Xs, s)

∂s
ds+

∫ t

t0

∑
u

∂f(Xs, s)

∂X(u)
fu(Xs, s) ds

+

∫ t

t0

∑
u

∂f(Xs, s)

∂X(u)
[σ(Xs, s) dWs]u +

∫ t

t0

1

2

∑
u,v

∂2f(Xs, s)

∂X(u)∂X(v)

[
σ(Xs, s)σ

⊤(Xs, s)
]
uv

ds

=f(Xt0 , t0) +

∫ t

t0

L†
sf(Xs, s) ds+

∑
ν

∫ t

t0

LW,νf(Xs, s) dW (ν)
s , (71)

and

σ(Xt, t) =σ(Xt0 , t0) +

∫ t

t0

∂σ(Xs, s)

∂s
ds+

∫ t

t0

∑
u

∂σ(Xs, s)

∂X(u)
fu(Xs, s) ds

+

∫ t

t0

∑
u

∂σ(Xs, s)

∂X(u)
[σ(Xs, s) dWs]u +

∫ t

t0

1

2

∑
u,v

∂2σ(Xs, s)

∂X(u)∂X(v)

[
σ(Xs, s)σ

⊤(Xs, s)
]
uv

ds

=σ(Xt0 , t0) +

∫ t

t0

L†
sσ(Xs, s) ds+

∑
ν

∫ t

t0

LW,νσ(Xs, s) dW (ν)
s , (72)

where we have used the fact that the product of stochastic differentials due to the Ito isometry and
multiplication rules equals the noise covariance times the time step

dX
(u)
t dX

(v)
t =

[
σσ⊤]

uv
dt,

where

dX(u)
s = fu ds+

m∑
j=1

σuj dW
(j)
s ,

while the superscripts/subscripts u, v indicate dimensional components.

In the above equations, we have introduced the operators acting on test-functions h : RD → RD

L†
th =

∂h

∂t
+
∑
u

∂h

∂X(u)
fu +

1

2

∑
u,v

∂2h

∂X(u)∂X(v)

[
σ(Xs, s)σ

⊤(Xs, s)
]
uv

(73)

and
LW,vh =

∑
u

∂h

∂X(u)
σuv, for v = 1, . . . , n. (74)

With these expressions, the original integral equation for Xt can be written as
Xt = Xt0 + f(Xt0 , t0)(t− t0) + σ(Xt0 , t0) (Wt −Wt0)+ (75)

R1 =


+

∫ t

t0

∫ s

t0

L†
uf(Xu, u) du ds+

∑
ν

∫ t

t0

∫ s

t0

LW,νf(Xu, u) dW (ν)
u ds

+

∫ t

t0

∫ s

t0

L†
uσ(Xu, u) du dWs +

∑
ν

∫ t

t0

∫ s

t0

LW,νσ(Xu, u) dW (ν)
u dWs.
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In the last equation, dropping the terms in the remainder R1 results in the Euler–Maruyama integra-
tion scheme (Jentzen and Kloeden, 2011). Introducing the discrete time and noise increments

∆tn = tn+1 − tn =

∫ tn+1

tn

ds, ∆Wn = Wtn+1 −Wtn =

∫ tn+1

tn

dWs, (76)

we result in the discrete time equation commonly used for numerical integration of SDEs

Xn+1 = Xn + f(Xn, tn)∆tn + σ∆Wn. (77)

This is also the starting point of most inference methods that employ the regression scheme men-
tioned above by approximating the drift as

f̂(Xn, tn) ≈
Xn+1 −Xn

∆t
∼ N

(
0,
σσ⊤

∆t

)
. (78)

This discretisation is a zero-order approximation of the true dynamics, and assumes that f(·) remains
constant throughout the interval ∆t, i.e. throughout the inter-observation interval τ in the inference
setting. However as τ increases, higher-order terms in the remainder R1 of the Itô-Taylor expansion
become significant, since the assumption that the drift is approximately constant over τ does not
hold.

We can glean onto the terms that become important once the inter-observation interval becomes
large, by applying the Itô formula onto each one of the integrands in R1 separately for the spe-
cific setting we consider in this manuscript, i.e. that of time-independent drift function f(x) and
constant diffusion matrix σ. In the following, we demonstrate that the leading-order error of this
approximation is governed by the intrinsic geometry of the drift vector field. This provides fur-
ther insight and a geometric explanation for the deterioration of inference methods for increasing
inter-observation interval τ .

In short we show that, inference methods based on the Euler-Maruyama discretisation-based in-
ference effectively assume that the vector field between consecutive observations Xn and Xn+1

does not change. Our analysis shows this is equivalent to assuming trajectories are straight lines
(Jf f ∥ f ) and the Itô correction is constant. In reality, trajectories curve (Jf f has also a perpen-
dicular component), and this curvature itself changes along the vector field. The Euler-Maruyama
discretisation-based inference scheme systematically misses these higher-order geometric features,
leading to biased drift estimates.

H.2.1 FIRST REMAINDER TERM R1,a

We denote the first term of the reminder by R1,a

R1,a =

∫ t

t0

∫ s

t0

L†
uf(Xu) du ds. (79)

Applying Itô’s formula to the integrand L†
t f(Xu, u), we get

dL†
uf(Xu) =

∂

∂u
L†
uf(Xu) du+

d∑
j=1

∂L†
uf

∂X(j)
(Xu) dX(j)

u +
1

2

d∑
j,k=1

∂2L†
uf

∂X(j)∂X(k)
(Xu)

[
σσ⊤]

jk
du.

(80)

Plugging in the original equation dX(j)
u = fj du+

∑m
ν=1 σjν dW (ν)

u , and integrating over the time
from t0 to u

L†
uf(Xu) = L†

t0f(Xt0) +

∫ u

t0

 ∂

∂w
(L†

wf(Xw)) +
∑
j

∂(L†
wf)

∂X(j)
fj +

1

2

∑
j,k

∂2(L†
wf)

∂X(j)∂X(k)
[σσ⊤]jk

 dw

+

∫ u

t0

∑
j

∂(L†
wf)

∂X(j)
[σdWw]j dw. (81)
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Applying Fubini’s theorem in the original double integral, we change the order of integration∫ t

t0

∫ s

t0

ϕ(u) du ds =
∫ t

t0

(t− u)ϕ(u) du, (82)

and we obtain

R1,a =

∫ t

t0

∫ s

t0

L†
uf(Xu) du ds =

∫ t

t0

(t− u)


∑
j

∂L†
uf

∂X(j)
fj︸ ︷︷ ︸

R1
1,a

+
1

2

∑
j,k

∂2L†
uf

∂X(j)∂X(k)
[σσ⊤]jk︸ ︷︷ ︸

R2
1,a

 du

+

∫ t

t0

(t− u)
∑
j

∂L†
uf

∂X(j)
[σ dWu]j︸ ︷︷ ︸

R3
1,a

+
τ2

2
L†
t f(Xt0). (83)

In the previous equation we have dropped the term ∂
∂w

(
L†
w f(Xw)

)
that is equal to zero and that

would require the drift f to be time-dependent to be non-negligible.

First component R 1
1,a of remainder term R1,a: Flow curvature term. The Backward Kol-

mogorov generator applied to a vector field f can be written as

L†f = Jf f +
1

2
∆Df . (84)

In Eq. 84, Jf =̇∇f denotes the Jacobian of f , D=̇σσ⊤ the noise covariance, and
∆D =̇

∑
j,k Djk ∂

2
X(j)X(k) is the noise-covariance weighted Laplacian operator. Thus each compo-

nent of L†f comprises the directional derivative of the drift Jf f plus an anisotropic/noise-covariance
weighted Laplacian of f , which in component-wise form is expressed as[

L†f
]
i
=
∑
k

∂fi
∂X(k)

fk +
1

2

∑
k,ℓ

Dkℓ
∂2fi

∂X(k)∂X(ℓ)
. (85)

Differentiating wrt to X(j) yields

∂

∂X(j)

[
L†f
]
i
=
∑
k

∂2fi
∂X(j)∂X(k)

fk +
∑
k

∂fi
∂X(k)

∂fk
∂X(j)

+
1

2

∑
k,ℓ

Dkℓ
∂3fi

∂X(j)∂X(k)∂X(ℓ)
,

(86)
and thus we rewrite the i-th component of the term R 1

1,a as

[
R 1

1,a

]
i
=

∫ t

t0

(t−u)

∑
j,k

∂2fi
∂X(j)∂X(k)

fk fj +
∑
j,k

∂fi
∂X(k)

∂fk
∂X(j)

fj +
1

2

∑
j,k,ℓ

Dkℓ
∂3fi

∂X(j)∂X(k)∂X(ℓ)
fj


i

du.

(87)

The third-order state-derivative in the last summand of Eq. 87, indicates that this last term is inactive
for linear or quadratic drift functions f .

We re-write again this part of the remainder in a more compact vector notation in terms of the
directional derivative of (Jf f) and 1

2 ∆Df along the vector field as

R 1
1,a =

∫ t

t0

(t− u)
[
∇(Jf f) · f︸ ︷︷ ︸
flow curvature

+ ∇
(
1
2 ∆Df

)
· f︸ ︷︷ ︸

diffusive term along the flow

]
du. (88)

This part of the remainder captures two geometric effects that standard inference methods neglect:
the intrinsic curvature of deterministic flow trajectories in state space, and the systematic bias
introduced by the spatial variation of both drift and diffusion along these trajectories, when both
drift and diffusion are assumed as constant between inter-observation intervals.
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• To understand the first term, ∇(Jf f) · f , from a geometric perspective, let us consider a
deterministic dynamical system with dynamics ẋt = f(xt). A trajectory initiated from an
initial condition x0 traces a streamline in the state space Rd. We express the acceleration
of this trajectory in terms of the directional derivative

ẍt =
d
dt
f(xt) = Jf (xt) · f(xt) = Jf · f . (89)

The acceleration vector admits a natural orthogonal decomposition comprising a compo-
nent parallel to the vector field f and an orthogonal component to f

Jf · f = P∥(f)Jf · f + P⊥(f)Jf · f . (90)

Here P∥(f(x)) =
f(x)f⊤(x)
∥f(x)∥2 and P⊥(f(x)) = I−P∥(f(x)) stand for the parallel and orthog-

onal projectors. The parallel component quantifies the rate of change of speed along the
trajectory (tangential acceleration), whilst the perpendicular component defines the curva-
ture vector κflow(x) (Kühnel, 2002), which quantifies the bending of the trajectories

κflow(x) =
P⊥(f(x))Jf (x)f(x)

∥f(x)∥2
. (91)

When κflow = 0, the trajectories are straight lines in the state space, while when
∥κflow∥ > 0 they are curved.
The term ∇(Jf f) · f quantifies the evolution of the trajectory curvature 3 as the system
moves along the flow field. From Eq. 87 we have for each dimensional component i of this
term

[∇(Jf f) · f ]i =
∑
j,k

∂2fi
∂X(j)∂X(k)

fkfj +
∑
j,k

∂fi
∂X(k)

∂fk
∂X(j)

fj

= [f⊤(∇2fi)f ] + [J2
f f ]i.

(92)

We observe that this term captures the effects of how both second-order spatial variation of
the flow field (the Hessian ∇2fi) and the Jacobian of the acceleration (J2

f f ) influence the
evolution of trajectories.

– In Eq. 92, the first sub-term, f⊤(∇2fi)f , represents the second directional deriva-
tive (or quadratic variation) of fi along the flow direction f . It measures the curvature
or second-order spatial variation of the i-th component of f in the direction f . In re-
gions where the Hessian ∇2f is large (as is for the case of a highly nonlinear drift
with curving or bending behaviour), this term becomes significant, and it vanishes for
linear or constant drift f . Neglecting this term corresponds to approximating the flow
by its linearisation.

– The second sub-term, J2
f f = Jf (Jf f), of Eq. 92 represents the action of the Ja-

cobian operator on the acceleration vector. Geometrically, it describes how the local
linearised field acts on the acceleration as we move an infinitesimal step along the flow
field, or in other words how the linear approximation changes when following the flow
direction f .

By temporal integration we have

R 1
1,a =

∫ t

t0

(t− u)
(
∇(Jf f) · f +∇

(
1
2 ∆Df

)
· f
)

du ∼ τ2

2

(
∇(Jf f) · f +∇

(
1
2 ∆Df

)
· f
)
,

(93)
indicating that the evolution of trajectory curvature introduces an O(τ2) correction to the
transition density.
Drift inference based on Euler–Maruyama–type discretisation ignores between others the
term R 1

1,a introducing thereby a mean bias at each point x in the state space,

β1
1,a(x) =

1

τ
R 1

1,a ≈
τ

2

[
∇(Jf f) · f +∇

(
1
2 ∆Df

)
· f
]
(x). (94)

3More precisely the directional derivative of the acceleration, Jf (x) · f along the flow direction, or the rate
at which the acceleration changes along the flow, or a measure of how the local curvature of f as a vector
field influences trajectory evolution.
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This bias induces a mean error in drift estimate, when using Euler–Maruyama-based in-
ference, leading to under- or over-estimation of the true drift at state x. This error scales
linearly with the interval τ .
Let us now consider the temporal rate of change experienced by a particle travelling along
the flow field. The instantaneous speed of the particle at location x is ∥f(x)∥. The quantity
in the brackets in Eq. 94,∇(Jf f) · f +∇

(
1
2∆Df

)
· f , is a spatial derivative measuring how

quickly the curvature and diffusion variation change as the particle moves in space. The
rate of change of this variation per unit of time is expressed as∥∥∇(Jf f) · f +∇

(
1
2∆Df

)
· f
∥∥ (x)

∥f(x)∥
=̇ τ−1

curv(x). (95)

In the last equation we have introduced the time scale of change τcurv as the inverse of the
rate of change, which captures the characteristic time it takes for the curvature/diffusion
variation to change significantly along the particles trajectory. Then the relative magnitude
error in the Euler-Maruyama-based drift estimate satisfies

∥β1
1,a(x)∥
∥f(x)∥

=
τ

2 τcurv(x)
, (96)

implying that the estimate is reliable only when the inter-observation interval τ ≪
2 τcurv(x).

• The second term in Eq.88, ∇( 12∆Df) · f , accounts for the diffusion part of the backward
generator acting on the vector field f . The anisotropic Laplacian ∆Df quantifies the diffu-
sion–weighted second-order spatial variation of the vector field

[∆Df ]i =
∑
j,k

Djk
∂2fi

∂X(j)∂X(k)
= ∇·

(
D∇fi

)
. (97)

The directional derivative quantifies how this term evolves along the flow field[
∇
(
1
2∆Df

)
· f
]
i
=

1

2

∑
j,k,ℓ

Dkℓ
∂3fi

∂X(j)∂X(k)∂X(ℓ)
fj . (98)

This term captures how the diffusion-weighted spatial variation of the flow field varies
across the state space. As trajectories traverse regions of varying drift curvature, the ef-
fective Itô correction itself changes, introducing systematic bias in inference methods that
assume that drift is piece-wise constant in-between observations.

Second component R 2
1,a of remainder term R1,a. The second component of the remainder term

R1,a reads

R 2
1,a =

∫ t

t0

(t− u)
1

2

∑
j,k

∂2
(
L†
uf
)

∂X(j)∂X(k)

[
σσ⊤]

jk
du. (99)

For the i-th dimensional component we have

∂2

∂X(h)∂X(j)

[
L†
uf
]
i
=
∑
k

∂3fi
∂X(h)∂X(j)∂X(k)

fk +
∑
k

∂2fi
∂X(j)∂X(k)

∂fk
∂X(h)

+
∑
k

∂2fi
∂X(h)∂X(k)

∂fk
∂X(j)

+
∑
k

∂fi
∂X(k)

∂2fk
∂X(h)∂X(j)

+
1

2

∑
k,ℓ

Dkℓ
∂4fi

∂X(h)∂X(j)∂X(k)∂X(ℓ)
.

(100)

For this remainder term, we have for each dimensional component i

[
R 2

1,a

]
i
=

∫ t

t0

(t− u)
1

2

∑
j,k

Djk

[
∂2

∂X(k)∂X(j)

[
L†
uf
]
i

]
du . (101)
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Geometrically, R2
1,a captures the diffusion-weighted second-order spatial variation of the gen-

erator L†
uf across the

√
τ -sized ellipsoid set by D, i.e. the anisotropic Laplacian ∆D(L†

uf),
the diffusion-weighted second spatial variation of the drift along the flow. Dropping this term
in inference amounts to assuming L†

uf is locally flat and results in an O(τ) drift bias of size
β2
1,a ≈ (τ/4)∆D(L†

uf), underestimating anisotropy and the evolution of curvature of the flow
field, so inferred flow-lines appear too straight.

Third component R 3
1,a of remainder term R1,a.

R 3
1,a =

∫ t

t0

(t− u)
∑
j

∂ L†
uf

∂X(j)
[σ dWu]j , (102)

[
R 3

1,a

]
i
=

∫ t

t0

(t− u)
∑
j,m

∂

∂X(j)

[
L†
uf
]
i
σjm dW(m)

u , (103)

This is a martingale term capturing the stochastic coupling between diffusion and the spatial inhomo-
geneity of the generator. In inference, this term doesn’t introduce bias, since ⟨R3

1,a⟩ = 0. However,
neglecting this term, ignores a second–order variance contribution with Var(R3

1,a/τ) = O(τ).

H.2.2 SECOND REMAINDER TERM R1,b

We denote the second term of the reminder by R1,b

R1,b =

n∑
ν=1

∫ t

t0

∫ s

t0

LW,ν f dW (ν)
u ds. (104)

Applying Fubini’s theorem again to change the order of integration, we re-write R1,b in the form of
a stochastic integral

R1,b =

n∑
ν=1

∫ t

t0

(t− u)LW,ν f dW (ν)
u . (105)

Substituting the operator results in an expression for each dimensional component i

[R1,b]i =

n∑
ν=1

∫ t

t0

(t− u)

 D∑
j=1

∂fi
∂X(j)

σjν

 dW (ν)
u , for i = 1, . . . , D. (106)

In matrix notation, this corresponds to

R1,b =

∫ t

t0

(t− u)Jf σ dWu. (107)

The remainder R1,b is a stochastic integral with zero mean, but non-zero covariance, given by

Cov(R1,b) = ⟨R1,b R
⊤
1,b⟩ =

∫ t

t0

(t− u)2 Jf σσ
⊤ J⊤

f du. (108)

For sufficiently smooth Jf and small time step τ = t− t0, this covariance scales on the order of τ3.

The term R1,b quantifies the contribution to the remainder arising from stochastic fluctuations of
the noise acting through the spatial derivatives of the drift f . It does not contribute to additional
systematic bias, but introduces variance in the drift estimator, especially when σ or Jf are large.
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H.2.3 THIRD REMAINDER TERM R1,c

We denote the third remainder term by R1,c and re-write here for convenience

R1,c =

∫ t

t0

∫ s

t0

L†
uσ(Xu, u) du dWs. (109)

In the general case of time- and state- dependent diffusion the integrand of this term would be
expressed for the i-th row and ℓ-th column component of σ as follows

[
L†
uσ(Xu, u)

]
iℓ
=

∂

∂u
σiℓ(Xu, u) +

D∑
j=1

∂σiℓ

∂X(j)
(Xu, u)fj(Xu, u) (110)

+
1

2

D∑
j,k=1

∂2σiℓ

∂X(j)∂X(k)
(Xu, u)[σσ

⊤]jk(Xu, u). (111)

However, in our setting we consider state- and time-independent diffusion matrix, and thus
L†
uσ(Xu, u) = 0, and by consequence R1,c = 0

H.2.4 FOURTH REMAINDER TERM R1,d

The fourth remainder term is

R1,d =

n∑
ν=1

∫ t

t0

∫ s

t0

LW,ν σ dW (ν)
u dWs. (112)

For each component (i, ℓ) of σ

[LW,νσ]iℓ =

D∑
j=1

∂σiℓ

∂X(j)
σjν = 0. (113)

Thus, the omission of this remainder term does contribute any bias or variance to the EuM-based
drift estimator.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

I ADDITIONAL NUMERICAL RESULTS

I.1 INFERENCE WITH NOISE MISS-ESTIMATION

Figure 6
Small noise misestimation has small impact on estimation accuracy. Weighted root mean
square error (wRMSE) vs. noise amplitude σ employed in the augmentation for different inter-
observation intervals with a.) τ = 160 dt b.) τ = 200 dt, c.) τ = 240 dt d.) τ = 280 dt.
Pink-purple lines correspond to estimation with total simulation length T = 500 time units,
and blue markers correspond to total simulation length of T = 1000 time units. Red dotted line
identifies the noise amplitude employed in the simulation of the observations.

I.2 ABLATIONS WITH RESPECT TO METRIC LEARNING ALGORITHM

To probe the robustness of our framework, when we employ a different approach to estimate the
metric, following (Kapusniak et al., 2024) we tested our method when we employ a radial based
function approximation to estimate the diagonal metric, similar to Arvanitidis et al. (2017). In the
table 1 we report the performance of our method when we employ the locally adaptive normal
distribution framework (Geometric (our)) for approximation the metric Arvanitidis et al. (2019)
and when we employ the radial basis function variant of the metric approximation (GeometricRBF
(our)) for the Van der Pol system for different inter-observation intervals and noise conditions. We
observe that the resulting drift is accurate also with the RBF method for estimating the metric, yet
the method proposed in the main text performs slight better across all inter-observation intervals and
noise conditions.

J DETAILS ON NUMERICAL EXPERIMENTS

We simulated a two dimensional Van der Pol oscillator with drift function

f1(x, y) = µ(x− 1

3
x3 − y) (114)

f2(x, y) =
1

µ
x, (115)

starting from initial condition x0 = [1.81,−1.41] and under noise amplitudes σ =
{0.25, 0.50, 0.75, 1.00} for total duration of T = {500, 1000} time units. The employed inter-
observation intervals τ = {80, 120, 160, 200, 240, 280, 320}×dt. The last inter-observation interval
exceeds the half period of the oscillator and thus samples only a single state per period. This resulted
in erroneous estimates. In this setting this indicates the upper limit of τ for which we can provide
estimates. However for any inference method, if the observation process samples only one observa-
tion per period, identifying the underlying force field without additional assumptions is not possible
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with temporal methods. The discretisation time-step used for simulation of the ground truth dynam-
ics, and path augmentation δt = 0.01. For sampling the controlled bridges we employed N = 100
particles evolving the associated ordinary differential equation as described in (Maoutsa and Opper,
2022). The logarithmic gradient estimator used M = 40 inducing points. The sparse Gaussian
process for estimating the drift was based on a sparse kernel approximation of S = 300 points. In
the presented simulation we have employed a weighting parameter β = 0.5 (Eq. 37). This provides
a moderate pull towards the invariant density. The example in Figure 2 was constructed with β = 1
and provides a better approximation of the transition density, than β = 0.5.

For the out-of-equilibrium process with harmonic trapping and circulation and a Gaussian repul-
sive obstacle in the centre we followed the description presented in Frishman and Ronceray (2020)
following the drift

fµ(x) = −Ωµνxν + αe−x2/2σ2

xµ with Ω =

(
2 2
−2 2

)
, (116)

for α = 10 and simulated the stochastic system with noise amplitude σ = 0.5 on a time grid of
dt = 0.01 steps, observed at inter-observation intervals τ = {150, 200, 250} × dt and for total
duration T = 1000 time units.

For the Hopf system we used the drift

f1(x1, x2) = z2, (117)

f2(x1, x2) = −z1 +
(
µ− z21

)
z2, (118)

with µ = 0.35 and integrated the system with noise amplitude σ = 0.15 on a timegrid with dt =
0.01 resolution, observed at τ = {200, 300, 400}× dt time intervals. This is the normal form of the
Hopf bifurcation.

For the Selkov glycolysis model (Selkov, 1968) we employed the drift

f1(x1, x2) = −x1 + αx2 + x2
1x2, (119)

f2(x1, x2) = 0.6− αx2 − x2
1x2, (120)

with a = 0.06 and noise amplitude σ = 0.05 for inter-observation intervals τ = {100, 200} × dt
and simulation time grid of dt = 0.01 spacing and for total duration T = 1000 time units.

This model is a minimal two-variable model of glycolytic oscillations, first introduced in (Selkov,
1968). It describes the autocatalytic feedback processes in the glycolysis pathway, focusing on how
simple nonlinear interactions can give rise to oscillatory dynamics in concentrations of intermedi-
ates. The first state variable x1 represents the concentration of adenosine diphosphate, while x2

represents the concentration of a glycolytic intermediate.

J.1 ON COMPUTATION OF GEODESIC CURVES

For the computation of geodesic curves we followed the framework introduced in (Arvanitidis et al.,
2019). The geodesic equation relies on a non-parametric estimation of the Riemannian metric, which
is constructed using kernel-weighted local diagonal covariances, and has computational complexity
O(ND), where D is the dimensionality of the problem and N denotes the number of samples. The
computational cost of solving the geodesic equation scales sublinearly with increasing dimension-
ality.

J.2 DETAILS ON BASELINE METHODS

We compared the performance of our method against a series of competing methods for inference of
stochastic dynamics. In particular, we compared our method against methods specifically designed
for inference of stochastic systems from single trajectories, and against systems that infer population
dynamics.

We employed the following methods that assume single trajectories for drift inference:

1. Gaussian process regression without state estimation (GP)
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2. path augmentation with Ornstein-Uhlenbeck dynamics with Gaussian process inference
(OU) (Batz et al., 2018)

3. sparse variational inference with state estimation (SVISE) (Course and Nair, 2023a)
4. basis function approximation of Kramers-Moyal coefficients, i.e. the drift function (KM-

basis) (Nabeel et al., 2025)
5. latent SDE inference with amortized reparameterization with (LatentSDE+GP-pre) and

without pre-training (LatentSDE) (Course and Nair, 2023b).

We further compared our method with recent Schroedinger bridge generating frameworks that pri-
mary aim to infer population dynamics from snapshot data. In particular we considered the following
frameworks:

I. Metric Flow Matching (MFM) (Kapusniak et al., 2024)
II. Generalized Schrödinger Bridge Matching (GSBM) (Liu et al., 2023)

III. Wasserstein Lagrangian Flows-Action Matching (WLF-AM) (Neklyudov et al., 2023b)
IV. Simulation-free Schrödinger bridges via score and flow matching ([SF]2 M) (Tong et al.,

2023a)

For these methods, we clustered the observations of each system into disjoint subsets of adjacent
points. We employed the k-Nearest neighbours algorithm (Fix, 1985; Cover and Hart, 1967) to
construct the clusters as local neighbourhoods on the state space, comprising each at most 64 and
minimum 20 observations. We paired each cluster Jb with the set J +

b =̇ {Ok+1 : Ok ∈ Jb } of
the next observation of each cluster member. We then considered each cluster pair (Jb,J +

b ) as the
initial and terminal condition for a Schrödinger bridge problem, i.e.

πb
0 =̇ {Ok : Ok ∈ Jb } (121)

πb
1 =̇ {Oℓ : Oℓ ∈ J +

b }. (122)

These serve as samples of the densities required as boundaries conditions for the Schrödinger
bridges.

For the multi-marginal setting, starting from the cluster that contained the observation O1 and sub-
sequently created a sequence of cluster following the time ordering of the observations, i.e.

π0
i = {Ok+i : k ∈ J0 }. (123)

We then employed a sequence of 50 marginal densities {π0
i } 49i=0 as snapshot observations required

by the framework.

Metric Flow Matching. For the Metric Flow Matching framework, we trained on observations
resulting from total simulation length TMFM = 3T = 1500 (time units) to ensure sufficient data
for each bridge. For each constructed bridge indexed by b, the flow network trained with the flow
matching objective represents the velocity of the samples ub(x, t) transferred within the normalised
time t ∈ [0, 1] from the initial boundary condition to the terminal one. We approximate a time-
independent local drift f̂b(x) by rescaling the velocity field ub(x, t) with the inter-observation inter-
val τ , i.e.,

f̂b(x) =
1

τ
ub(x, t). (124)

To obtain a global drift estimate from the individual local estimates, we compute ”responsibilities” or
weights of each individual drift for each point xm of a pre-defined two-dimensional evaluation grid
that covers the state space region occupied by the observations. These weights indicate how relevant
each bridge b was for estimating the drift at each grid point xm. For each bridge, we compute support
weights ωb(x) on the grid employing kernel density estimation (KDE) over the bridge boundary
condition samples. Then, for each grid point xm, we compute bridge responsibilities as

ρb(xm) =
ωb(xm)∑B
j=1 ωj(xm)

,

B∑
b=1

ρi(xm) = 1. (125)
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We estimate the global drift at each grid point by weighting the local estimated drifts with the
corresponding bridge responsibility, i.e.,

f̂(xm) =

B∑
b=1

ρb(xm) f̂b(xm). (126)

K ALGORITHMIC DETAILS

Here we provide the outline algorithm for each constituent component of our work. Algorithm A1
provides the main skeleton of the framework. For the geometric approximation and the construction
of the geodesics we defer the readers to Arvanitidis et al. (2019). Algorithm A2 outlines the solution
of the control problem that implements the path augmentation. This part is an adapted version of
the main algorithm proposed by Maoutsa and Opper (2021). Finally, Algorithm A3 describes the
solution of the Gaussian process inference given the path augmentations (bridges) created for each
augmentation pair. For the simulation of Fokker-Planck equation solutions we used the deterministic
particle framework of Maoutsa et al. (2020).

Algorithm A1: Skeleton of the proposed framework.

Input: O = {(xk, tk)}Kk=1: observed states at timepoint tk
Output: f̂ : posterior estimate of the drift function

B(j): augmented paths of latent states (optional)

// initialise f̂ with a coarse drift estimate

1 Initialise drift estimate f̂ (0) according to Eq. 20
// Approximate Riemannian metric from observations (Eq. 34)

2 Hdd = ApproximateMetric
(
{Ok}Kk=1

)
//

// Construct geodesics between Ok and Ok+1 under the estimated metric
as shortest paths

3 Γ(ℓ) = ConstructGeodesics(Ok,Ok+1, Hdd)
// Γk = {γk

t′}Kk=1 geodesic curves between selected observation pairs

4 for each iteration j do
// augment paths along geodesics using particle flow

5 B(j) = AugmentPaths({O}Kk=1,Γ
(j), f̂ (j−1))

// uses the deterministic particle flow / bridge construction

(Alg. A2) to sample augmented trajectories with f̂ (j−1)

// Gaussian process inference of the drift function

6 f̂ (ℓ) = GPDriftInference({O}Kk=1,B
(j))

// update GP posterior over f using original and augmented data
7 end
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Algorithm A2: Path augmentation algorithm employing Deterministic Particle Flow control
Input: N,M : scalars, number of particles and number of inducing points

tk, tk+1, dt: scalars, initial and final timepoints, and discretisation step
Ok,Ok+1: 1× d, 1× d initial and target state
f̂ : current drift estimate
σ: noise amplitude
γt: geodesic curve in functional representation

Output: F : d×N × (tk+1 − tk)/dt, sample representation of qt(x)

1 ℓ = (tk+1−tk)
dt // number of timesteps

// Forward filtering ρt(x) (Eq. 40)

2 ϵ = 10−3

3 Zti=0 = N (Ok, ϵ Id) // initialise particles’ positions

4 Zti=1 = Z0 + dt
(
f̂(Z0, t0)− 1

2σ
2 Z0−Ok

ϵ

)
// 1st step is with analytic score

5 For ti = 2 : ℓ // deterministic propagation

6 Zti+1 = Zti + dt
(
f̂(Zti, t)− 1

2σ
2∇ log ρ(Zti;Zti)

)
7 W = exp (−U(Zti+1, t) dt)
8 T ∗ = EnsembleTransformParticleFilter(Zti+1,W )
9 Zti+1 = Zti+1 · T ∗

// Time-reversed propagation of flow qt(x)

10 Bti=ℓ = N (Ok+1, ϵ Id) // initialise particles’ positions
// 1st step is stochastic

11 Bti=ℓ−1 = Bℓ − dt
(
f̂(Bℓ, t1) +

1
2σ

2∇ log ρ(Bℓ;Zℓ)− 1
2σ

2Bℓ−Ok+1

ϵ

)
12 For ti = ℓ− 2 : 0 // deterministic propagation

13 Bti−1 = Bti − dt
(
f̂(Bti, t)− 1

2σ
2∇ log ρ(Bti,Zti) +

1
2σ

2∇ log q(Bti,Bti)
)

// Compute control u(x t) and controlled paths F0:T

14 For ti = 1 : ℓ
15 u(x, ti) = σ2∇ log q(x;Bti)− σ2∇ log ρ(x;Zti)

16 Fti+1 = Fti + dt
(
f̂(Fti, t) + u(Fti, ti)− 1

2σ
2 F0−Ok

ϵ

)
With the notation∇ log q(x;Bti) we indicate the score function estimation in a functional form (x)
based on the density represented by the particles Bti, while ∇ log q(Fti;Bti) indicates the same
score function evaluated at locations Fti.
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Algorithm A3: Gaussian process drift inference from an augmented path measure (part I)

Input: Z = {zi}Si=1: inducing points for the sparse GP (Sp)
{Xj(tℓ)}ℓ=1,...,T ′

j=1,...,N : particle positions from the path measure Q (BALL2)
{g(Xj(tℓ), tℓ)}: effective drift evaluated along particles (gbALL2)
kf : kernel with lengthscales ℓ1, ℓ2, ℓ3 (shared across dimensions)
g: diffusion amplitude, σ2 = g2

∆t: time step of the particle simulation
d: state dimension, N : number of particles, T ′: number of time steps

Output: Approximations I(i)1 , I
(i)
2 of the integrals over A(x) and B(x)

// 0. shorthand and initialisation
1 Set S ← |Z| (number of inducing points)
2 Initialise I1 ∈ RS×S×d and I2 ∈ RS×d to zero
3 Initialise Λ ∈ RS×S×d and d ∈ RS×d to zero

// 1. compute kernel matrices on the inducing points
4 Construct the inducing–inducing kernel matrix

KS = kf (Z,Z) ∈ RS×S

and compute a regularised inverse

K−1
S =

(
KS + εI

)−1
, ε ≈ 10−3.

5 Define the kernel map to inducing points

kf (Z,x) =
(
kf (zi,x)

)S
i=1
∈ RS .

// 2. sample-based approximation of A(x) and B(x)
6 for i = 1, . . . , d do

// loop over state dimensions
7 for ℓ = 1, . . . , T ′ do

// loop over time

8 Let X(tℓ) ∈ Rd×N be the particle positions at time tℓ
9 For each particle position Xj(tℓ), compute

kj = kf (Z,Xj(tℓ)) ∈ RS .

Stack them column-wise to obtain

Kℓ =
[
k1, . . . ,kN

]
∈ RS×N .

10 Let gi(Xj(tℓ), tℓ) denote the i-th component of the effective drift at particle j and time
tℓ

// accumulate Monte Carlo estimates of the integrals
11 Update

I
(i)
1 ← I

(i)
1 +KℓK

⊤
ℓ , I

(i)
2 ← I

(i)
2 +Kℓgi(tℓ),

where gi(tℓ) =
(
gi(X1(tℓ), tℓ), . . . , gi(XN (tℓ), tℓ)

)⊤
.

12 end
// normalise by time and number of particles

13

I
(i)
1 ←

∆t

N
I
(i)
1 , I

(i)
2 ←

∆t

N
I
(i)
2 .

14 end

In this algorithm Here I
(i)
1 approximates

∫
kf (Z,x)A(x)kf (x,Z) dx, and I

(i)
2 approximates∫

kf (Z,x)Bi(x) dx.
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Algorithm A4: Gaussian process drift inference from an augmented path measure (part II)
Input: Same inputs as Alg. 3

I
(i)
1 , I

(i)
2 : Monte Carlo approximations from Alg. 3

KS ,K−1
S : inducing–inducing kernel matrix and its regularised inverse

Output: Component-wise drift estimators f̂i(x), i = 1, . . . , d
Expected negative log data likelihood Lpath under Qf

// 3. compute Λ and d for each component
1 for i = 1, . . . , d do

// match Eq. equation 42 with sparse GP parametrisation
2

Λ(i) ← 1

σ2
K−1

S I
(i)
1 K

−1
S , d(i) ← 1

σ2
K−1

S I
(i)
2 .

3 end
4 This matches the definitions

Λ =
1

σ2
K−1

S

(∫
kf (Z,x)A(x)kf (x,Z)dx

)
K−1

S , d =
1

σ2
K−1

S

(∫
kf (Z,x)B(x)dx

)
.

// 4. define the component-wise drift estimators
5 For each component i = 1, . . . , d, define

f̂i(x) = kf (x,Z)
(
I + Λ(i)KS

)−1

d(i),

so that the full drift estimate is

f̂S(x) =
(
f̂1(x), . . . , f̂d(x)

)⊤
.

// 5. compute expected negative log data likelihood under Qf

6 Initialise accumulators S∥f∥ ← 0, S∇·f ← 0, Sf ·g ← 0
7 for ℓ = 1, . . . , T ′ do
8 For all particle positions Xj(tℓ), evaluate f̂S(Xj(tℓ))
9 Accumulate

S∥f∥ ← S∥f∥ +

N∑
j=1

∥f̂S(Xj(tℓ))∥2,

Sf ·g ← Sf ·g +

N∑
j=1

f̂S(Xj(tℓ))
⊤g(Xj(tℓ), tℓ),

and compute the trace of the Jacobian ∇ · f̂S(Xj(tℓ)) via automatic differentiation,
accumulating it into S∇·f

10 end
11 Approximate the expected negative log data likelihood (up to constants) as

Lpath =
∆t

N

(
1
2S∥f∥ + S∇·f + Sf ·g

)
,

which corresponds to evaluating the quadratic form in Eq. equation 42 under the approximate
posterior Qf .
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L IMPACT STATEMENT

The aim of this work is to advance the field of dynamical inference for stochastic systems. While we
do not foresee any direct societal consequences directly impinging from our work, we recognize that
stochastic systems could be applied in military contexts, financial engineering, or more recently in
machine learning for data (such as image, audio, video) generation. Still, the proposed method does
not propose interventions that might lead to unfavourable societal outcomes. Overdamped Langevin
systems are widespread in areas such as physics, biology, neuroscience, and ecology. We anticipate
that our contributions will thus help these disciplines by offering a tool to identify and further study
relevant systems.

Our contribution emphasises the importance of incorporating concepts from the evolving field of ge-
ometric statistics into system identification methods for stochastic systems. Although geometric and
topological properties of invariant densities have been extensively studied in the context of deter-
ministic systems, comparable attention is lacking for their stochastic counterparts. Our work further
highlights that in settings where the amount of augmented data exceeds the number of observations,
data augmentation frameworks can enhance inference accuracy by incorporating domain knowledge
or other relevant information, such as the geometry of the system’s invariant density we consider
here. Many algorithms used for data augmentation, including the expectation maximisation algo-
rithm employed in our work (Romero et al., 2019), show only local convergence. As a result, when
the initial estimate deviates significantly from the true value, naive data augmentation methods may
converge to suboptimal solutions that fail to accurately identify the underlying system.

M LLMS USAGE STATEMENT

During the preparation of this manuscript, we used general-purpose large language models (e.g.,
the GPT family) for grammar and writing polishing, minor rephrasing and condensing parts of the
text, for limited code assistance (such as handling error messages and for parallelising and speeding
up parts of the code), and for getting feedback on the finished draft. We did not rely on LLMs
to generate research ideas, methods, experimental designs, analyses, or conclusions. All technical
content, experiments, and claims were designed, implemented, and verified by the authors, who take
full responsibility for the paper. Moreover, we did not embed any executable instructions, hidden
prompts, or other mechanisms intended to influence the peer-review process in the manuscript or its
supplementary materials.
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