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ABSTRACT

How can we learn the laws underlying the dynamics of stochastic systems when
their trajectories are sampled sparsely in time? Existing methods either require
temporally resolved high-frequency observations, or rely on geometric arguments
that apply only to conservative systems, limiting the range of dynamics they can
recover. Here, we present a new framework that reconciles these two perspec-
tives by reformulating inference as a stochastic control problem. Our method
uses geometry-driven path augmentation, guided by the geometry in the system’s
invariant density to reconstruct likely trajectories and infer the underlying dy-
namics without assuming specific parametric models. Applied to overdamped
Langevin systems, our approach accurately recovers stochastic dynamics even
from extremely undersampled data, outperforming existing methods in synthetic
benchmarks. This work demonstrates the effectiveness of incorporating geometric
inductive biases into stochastic system identification methods.

1 INTRODUCTION

How can we discover the underlying driving forces that govern the behaviour of complex, stochastic
systems when we only measure their state at discrete time points? From pollen motion in a liquid
medium ( s ) and chemical reactions (I.1, ) to population dynamics (

R ) and cell growth ( R ), many
natural processes evolve followrng stochastic dynamics, best described by Langevin or stochastic
differential equations (SDEs) of the form

Under this formalism, the deterministic part of the equation f(-) : R% — R, the drift functlon
captures the long-term evolution of the state variables, while the stochastic part o : R x R, the
diffusion, accounts for the contribution of unresolved degrees of freedom. In practice, however, we
rarely observe these systems at the fine time scales required by existing inference methods.

Recent advances in dynamical system inference have delivered valuable tools for identifying

continuous-time deterministic systems from observations ( , ; ,

, ). Data-driven (or nonparametrlc, or equatlon-free) approaches seek to reconstruct

the governing equations of observed systems directly from state observations, without imposing ex-

plicit assumptions or inductive biases about the underlying dynamical models. They rely on function

approximation to infer the system’s structure from observations, such as basis functions ( ,

, ), symbolic regression ( ; s ;

s ; s ), spectral approxrmatrons( s

; s ), Gaussian processes ( s ; s

s ), or neural networks ( R ; ; ).

However extending these methods to stochastic systems remains drfﬁcult In this setting, 1nference

must disentangle the influence of underlying deterministic forces from random fluctuations, a task
that is particularly difficult when sampling rates are low.

Two dominant perspectives for stochastic inference. Data-driven system identification for
stochastic systems largely follows two tracks. Temporal methods (Fig. 1A.) rely on the tempo-
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Figure 1
Temporal and geometric perspectives for discovering stochastic dynamics and proposed infer-
ence with geometrically guided augmentation. (A.) Temporal methods consider the time-ordering
of observations {Ok }E_ (purple dots) to approximate the drift £(x) with conditional rescaled

bridges

state increments f(x) = (2Z4|X, = x). (B.) Geometric methods assume a conservative drift
f(x) = —VV(x) as the gradient of a potential. (C.) With increasing inter-observation interval 7
performance of temporal methods degrades because Euclidean distances ignore the curvature of the
latent continuous path between consecutive observations. (D.) Path augmentation alternates between
state estimation - by sampling diffusion bridges for each inter-observation interval - and drift infer-
ence. (E.) Commonly used path augmentation methods employ Brownian or Ornstein-Uhlenbeck
bridges that increasingly deviate from the unobserved path as 7 grows. (lower) Illustration of the
ground truth (neon green) and geodesic (magenta) continuous path between two observations and
of that assumed during inference with Gaussian likelihood (yellow line). (F.) Geometrically guided
augmentation approximates first the metric induced by the invariant density, constructs geodesics
connecting consecutive observations, and samples geometrically constrained diffusion bridges.

ral ordering of measurements, regressing state increments against states to estimate the drift, which
works when the inter-observation interval (7) is small ( ,

, ). Geometric methods on the other hand, approx1mate the lnvarlant
density ( , ; , ) or eigenstructure of the infinitesimal generator of the
diffusion process ( R : s

, ; s ; s ) (F1g 1B.), but are nevertheless lim-
ited to systems with conservative forces ( , ) or decoupled
state variables ( , ). Each perspectlve has l1m1tat10ns temporal approaches
deteriorate with increasing inter-observation intervals (Fig. 1C.), whereas geometric methods are
restricted to conservative flows.

A unifying perspective: reconcile temporal and geometric methods by constraining
with most probable paths extracted from the invariant density. Here, we recast in-
ference into a stochastic control problem and introduce geometry-aware path augmenta-
tion. Our method follows a simple premise that incorporates geometric inductive biases
informed by the system’s invariant density into dynamical inference: we postulate that the
augmented paths should lie in the vicinity of geodesic curves (Fig. 1F. middle, magenta
line) that connect consecutive measurements on the empirical manifold induced by the
observations. To achieve this, (i) we approximate the Riemannian metric induced by the
observations (Fig. 1F.) without the need to predefine the dimensionality of the empirical
manifold, (ii) compute geodesics between consecutive observations through nonparametric
approximation of shortest path distances between consecutive observations according to the
approximated metric, and (iii) estimate the unobserved path between consecutive observa-
tions by generating geometrically constrained diffusion bridges that both respect temporal
order and are guided toward identified geodesics (Fig. | F.). Nonparametric estimation of
the drift function based on the augmented paths within an Expectation Maximisation frame-
work (E.M.) ( , ) results in accurate approximations of the underlying




stochastic dynamics. Extensive numerical experiments demonstrate the effectiveness of our
proposed method in recovering the true stochastic dynamics, even in challenging scenarios
where existing approaches fail.

2 SETUP AND BACKGROUND

Setting. We consider a system whose state evolves according to Eq. 1. Here, X; € R? denotes
the state of the system, f(-) : R — R is the drift function, o stands for the diffusion constant
or matrix, and W; € R? is a d—dimensional Wiener process representing random noise input or
unresolved degrees of freedom.

Data. We observe the system state at discrete time points t;, = k7 at inter-observation intervals of
7 time units, obtaining a time-ordered set of observations { O}, = X, }X_,.

Goal. Our goal is to estimate the drift function f(-) representing the deterministic forces acting on
the system of interest from the discrete state observations { Oy } 5.

Background. Common inference methods for this settmg consider observations from the system
path X.7 in (nearly) continuous time ( , , ). Under such
conditions, the infinitesimal transition probability of the SDE between observations X; and X4 4
is Gaussian

1
P;(Xo.r | £) oc exp <_2dt DI Xepar — X — f(Xt)dtH%) , @)
t

where [lul|p=u’ - D~! . u, denotes the weighted norm with D= " indicating the noise covari-
ance. The likelihood for the drift f given the path Xg.7 observed during [0, T, results from the
Radon-Nykodym derivative (likelihood ratio) between P (Xo.7|f) and the transition probability of

a Wiener path Py (Xo.7) = exp (— 57 >, [ Xitar — Xel|%) as ( , )

L(Xo:r | £) = exp <—; D IEX)[Hdt + Z<f(Xt)a Xitat — Xt>D> : 3)

This likelihood has a quadratic form in terms of the drift function. This makes Gaussian process
priors a natural and widely employed approach for modelling f ( , ; ,

5 s

However, these approaches rely on small inter-observation intervals 7 ( , ). As T
increases, the EuM approximation becomes inaccurate: transition densities are not Gaussian, and
higher-order remainder terms related to the curvature of the flow field become important (see further
theoretical analysis in Sec. H.2 and c.f. Fig. 5). Attempts to mitigate this problem by 1ntroducmg
bridge sampling to infer the unobserved path between observations ( ,

, ) provide small improvements, because these methods rely on linearised or 0therw1se
simplified bridge dynamics that do not match the true transition densities (c.f. Sec. E).

Here, we target this large inter-observation interval setting by merging insights from both temporal
and geometric perspectives. Specifically, our approach combines nonlinear bridge sampling with a
geometric approximation of the system’s invariant density as detailed in the following.

3 METHODOLOGY

Core idea. The invariant density of the observed system imposes a low-dimensional structure on the
state space, within which the observations are confined. We propose that this low-dimensional struc-
ture is well approximated by a Riemannian manifold M., € R™<% in the ambient space (Sec. G),
and that the ensemble of observations {O},}5<_, offers a reliable discrete approximation to Mo
We term this observation-based approximation the empirical manifold M. The central premise of
our approach is that unobserved paths between successive observations will be lying either on
or in the vicinity of the empirical manifold M. In particular, we postulate that unobserved paths
should lie in the vicinity of geodesics that connect consecutive observations on M.

However, while this view of a lower dimensional manifold embedded in a higher dimensional am-
bient space helps to build intuition, for practical purposes we adopt a complementary view of the
low dimensional manifold inspired by ( , ). According to this view, we consider



the entire observation space R4 as a smooth Riemannian manifold, M=R?, characterised by a Rie-
mannian metric §. The effect of the nonlinear geometry of the observations is then captured by the
metric . Thus to approximate the geometric structure of the system’s invariant density, we learn
the Riemannian metric tensor H : R? — R¥*¢ and compute the geodesics between consecutive
observations according to the learned metric. Intuitively according to this view the observations
{O k}szl introduce distortions in the way we compute distances on the state space. The advantage
of this approach is that we do not have to estimate the dimensionality of the empirical manifold,
which would have been difficult due to the presence of fluctuations in the system’s dynamics. In-
stead, we still operate in the original space and the empirical manifold introduces distortions in the
estimated metric (see Fig. |F.i.).

Inference framework. Our approach comprises three steps: (c.) Approximation of the geometric
structure of the system’s invariant density with metric learning, (3.) estimation of the (latent) system
state between consecutive observations guided by the invariant density (path augmentation), and
(~y.) data-driven estimation of the drift function (Fig. 1). We perform the two final steps in an iterative
manner within an Expectation Maximisation (E.M.) framework ( s ).

(cv.) Approximating the Riemannian geometry induced by the observations. Although there
are many methods for approximating Riemannian manifolds ( ;

; s ), our objectlve is to obtain a
representation that acts as a local constramt for subsequent state estimation between consecutive
observations. We achieve this in two steps: (i.) We approximate in the ambient space R? the metric
h induced by the observations (see Fig. 1F.i.). This identifies regions of the state space with high
observation density (represented with small metric values). (ii.) We construct geodesics between
consecutive observations on the empirical manifold (M=R%, k) (see Fig. 1F.ii.). The geodesics
identify the most probable paths between consecutive observations, and each such path subsequently
functions as a constraint during latent state estimation.

(i.) Approximation of the invariant metric. To approximate the (local) metric § in a nonpara-
metric form at locations x of the state space, we follow ( ), and consider the
inverse of the weighted local diagonal covariance computed on the K observations as

-1

Haa(x Zwk ) (o - x(d))2+e : )

with weights wy(x) = exp (—”02%7;"”3), and A(® denoting the d-th dimensional component of
M

the vector A for A € {x, Oy}. The parameter ¢ > 0 is a small value ensuring non-zero diagonals
of the weighted covariance matrix, while oo is a hyper-parameter characterising the curvature of
the approximated manifold.

(ii.) Constructing geodesics between consecutive observations. To compute the geodesic curves
connecting consecutive observations on the empirical manifold, we employ the approximated metric
tensor H(x). We identify the geodesic curve % between Oy, and Oy 1 as the curve with mini-
mum energy that connects these two points, i.e., as the minimiser of the kinetic energy functional

5 ’yt’ fO LM t/,’yt/)dt/
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&)
where L a((vE,4E) is an appropriately constructed Lagrangian. The minimising curve of this func-
tional is the same as the minimiser of the curve length functional ¢(+;) (c.f. Eq. 33), i.e., the
geodesic ( , ) This results in a system of second order differen-
tial equations (Eq. 36) ( R ) (Sec. A.3.2)
with boundary conditions 4§ = Oy, and = O k-1 that we solve with a probabilistic differential
equation solver as in ( ,

(3.) Latent state estimation: Geometry-guided augmentation. To estimate the unobserved sys-
tem state between consecutive observations Oy and Oy 1, we perform variational inference ( s

)(see Sec. A.3). Given a prior diffusion process with drift f () : R? — R and diffusion o,
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Figure 2

Geometry-aware path augmentation improves drift inference after two iterations. Es-
timated (red) vs. true (grey) force field with a.) Gaussian likelihood, b.) after one, and c.)
after two augmentations. (Insets) True vs. estimated angles at grid points. d.) Weighted
(by observation density) root mean square error (WRMSE) vs. inter-observation interval 7
for different noise levels o = {0.25,0.5} for drift estimated with a Gaussian likelihood
(gaus-circles), after first augmentation (/sz-triangles), and after second augmentation (2nd-
squares) for 7' = 500 (time units). e.) wWRMSE across iterations for the presented example.
f.) wRMSE vs. noise amplitude o for different trajectory durations 7" = {500, 1000} (time
units) for inter-observation interval 7 = 240 (dt). Markers in d.) and f.) indicate augmenta-
tion steps. Error bars: one standard deviation over five independent runs.

we construct an approximating process conditioned i.) to pass through the observations, and ii.) to
respect the local geometry of the invariant density as it is represented by the geodesics. The con-
ditioned process is also a diffusion process w1th the same diffusion constant and an effective drift

function g(x,t) ( , ). The path probability
measure Q x (Xo.7) induced by the approx1mat1ng process

QX (XO:T) : dXt =8 (Xt, t) dt + UdV_Vt = (/f\(Xt) + U(Xt, t)) dt + UdV_Vt, (6)

provides an approximation to the unobserved continuous system  state. In Eq. 6
u(-,-) : R4 x RT — R%is a time-dependent control term that guides the approximating path dis-
tribution through the observations, while staying in the vicinity of the corresponding geodesics be-
tween them.

More precisely, we obtain the controlled drift g (X, ¢) from the solution of the variational problem
of minimising the functional (see Sec. A.3.1)

F0x] = KE(Qx(er) PO ) = 3 POk | X)), + (1T~ Ko
k=1
T
— % // [Ilg(x, t) —£(x)||% + Uo(x,t) + BUg(x, t)} @ (x) dx dt, %
0

where I'; denotes the sequence of K geodesics indexed by time ¢, I‘ti{'yt’?}t:(k,l)7+t,T, where

~E is the geodesic connecting Oy and Oy 1, and ' € [0, 1] denotes a rescaled time variable, and 3
is a weighting term. In Eq. 7, the term Up (x,t) = — Y InP(Oy, | x) 6(t — t.) forces the augmen-
ty

tation to pass through the observations at each bridge boundary, while Ug(x,t)=|T; — x||?
guides the latent path towards the identified geodesics.

This minimisation can be construed as a stochastic control problem ( , ) with the objective
to identify a time-dependent drift adjustment u(x, t) := g(x, t) —f(x) for the system with drift f(x)
so that the controlled dynamics fulfil the path constraints Up (x,t) and Ug(x, t).
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Comparison of geometry-aware inference
against inference with Ornstein-Uhlenbeck
augmentation. Weighted root mean square error
(WRMSE) vs. different inter-observation intervals
7 for different noise amplitudes for moderate inter-

" B observation intervals with a.) o = 0.25 and b.)
u'(x,t) = D(V Ingr—¢(x)=VInpy (X)> o = 0.50, and for large inter-observation intervals
) with ¢.) o = 0.50 and d.) ¢ = 0.75, where only

where p; fulfils the forward (filtering) par- ¢ observation per oscillation period is available.
tial differential equation (PDE) Error bars indicate one standard deviation over five
dpt(x) independent runs.
ot = Ef‘pt(X) - Ug(X, t)pt(x)a
(10)
while ¢; is the solution of a time-reversed PDE with initial condition go(x) o< pr(x)x(x)
0qi(x . D

Thus, for each interval [O},, O1] we identify the posterior path measure (minimiser of Eq. 37) by
solving such a stochastic control problem for the time-varying control u(x,¢) of Eq. 9. This results
in a set of K — 1 independent optimal control problems, that are solved in parallel for efficiency.

(v.) Estimating the drift. We approximate the drift function in a model independent framework
by imposing a Gaussian process prior on the function values f ~ P,(f) = GP(m/, k'), where m/
and k/ denote the mean and covariance function of the Gaussian process. The optimal measure for

the drift () is a Gaussian process given by ( , )
1
Qf o< Pyexp (—2 / If(x) |5 A(x) — 2(f(x), B(x)>DdX) , (12)
T T
with A(x)= / g¢(x)dt and B(x)= / gt (x)g(x, t)dt, where g;(x) denotes the marginal density
0

0
of the constrained process’ state obtained by the state estimation. The function g(x, t) denotes the
effective (time-dependent) drift of the constrained process (Eq. 6), resulting from the solution of the
individual control problems accounting for the observations and the invariant geometry.

4 RESULTS
Revealing stochastic dynamics in model systems. To demonstrate the effectiveness of our ap-
proach, we inferred the stochastic dynamics of model systems, and compared the resulting estimates
to those obtained from: (i.) Gaussian process regression without state estimation (GP), (ii.) path
augmentation with Ornstein-Uhlenbeck dynamics (OU) ( R ), (iii.) sparse variational
inference with state estimation (SVISE) ( , ), (iv.) basis function approxima-
tion of Kramers-Moyal coefficients, i.e. the drift function (KM-basis) ( , ), and (V.)
latent SDE inference with amortized reparameterization with (LatentSDE+GP-pre) and without
pre-training (LatentSDE) ( , ), (vi.) metric flow matching (MFM) (

, )(with RBF ( s ) and LAND metric ( s )
metric approximations), (vii.) generalized Schrodinger bridge matching (GSBM) ( , ),



Van der Pol

total duration

wRMSE | T 7 =80 x dt 7 =120 x dt 7 =160 x dt 7 =200 x dt T =240 x dt T = 280 xdt
o=0.25

GP 500 0.642 + 0.006 0.879 + 0.005 1.083 £ 0.015 1.258 £ 0.011 1.399 + 0.003 1.528 +0.0153

SVISE 500 1.465 + 0.009 0.857 + 0.021 0.740 + 0.072 0.592 +£0.026 0.587 +0.112 0.824 +0.003

KM-basis 500 0.368 +0.054 0.452 +£0.011 0.671 £+ 0.023 1.588 + 0.021 1.751 £+ 0.008 1.735 £+ 0.020

LatentSDE 500 1.091 £0.316 1.091 £ 0.039 1.098 £ 0.023 1.089 + 0.036 1.088 £ 0.038 1.091 + 0.039

LatentSDE+GP-pre 500 1.095 £ 0.038 1.085 £ 0.039 1.101 £ 0.034 1.089 + 0.038 1.106 £ 0.045 1.102 £ 0.039

GSBM 500 1.518 £+ 0.033 1.435 + 0.055 - - - -

[SFI2M 1500 1.741 £+ 0.304 1.801 + 0.226 1.745 £ 0.322 1.583 £ 0.132 1.816 £+ 0.228 1.721 £+ 0.094

MFMggr 1500 1.462 + 0.007 1.469 + 0.005 1.470 £+ 0.012 1.469 + 0.008 1.469 + 0.006 1.466 + 0.008

MEM| anD 1500 1.463 £ 0.007 1.469 + 0.005 1.469 £ 0.012 1.469 + 0.008 1.469 + 0.006 1.467 = 0.008

Geometricgpr (our) 500 0.419 £ 0.052 0.458 £ 0.063  0.493 + 0.031 0.517 £ 0.022 0.657 £ 0.040 1.001 £ 0.077

Geometric (our) 500 0.474 +£0.034 0.413+0.016 0.514+0.068 0.578 +0.022 0.687 + 0.032 0.993 + 0.037
o= 0.50

GP 500 0.691 + 0.029 0.916 £ 0.014 1.114 £ 0.15 1.272 £ 0.030 1.409 £ 0.019 1.542 + 0.044

SVISE 500 1.235+0.083  0.9935+0.015 0.7505 + 0.052 0.736 £ 0.072  1.3565 + 0.278 1.425 + 0.086

KM-basis 500 0.495 + 0.010 0.727 £ 0.008  0.890 + 0.024 1.683 + 0.020 1.744 + 0.038 1.732 £ 0.065

LatentSDE 500 1.158 + 0.036 1.151 £ 0.045 1.160 + 0.032 1.1514+0.036 1.146 £+ 0.033 1.176 £ 0.046

LatentSDE+GP-pre 500 1.158 £ 0.045 1.159 £ 0.034 1.159 £ 0.027 1.151+£ 0.034 1.150 £ 0.028 1.191 +£ 0.052

GSBM 500 6.106 + 2.988 4.818 +3.060 4.738 £ 3.304 4.875 £ 3.222 9.076 £ 1.451 26.187 + 18.804

[SFI2M 1500 1.869 + 0.482 1.813 £+ 0.286 1.484 + 0.096 1.876 + 0.247 1.753 £ 0.158 1.707 £ 0.233

MFMggr 1500 1.516 £ 0.011 1.525 + 0.006 1.538 + 0.009 1.537 £ 0.017 1.528 + 0.015 1.544 + 0.019

MEM| anp 1500 1.517 £ 0.011 1.526 + 0.006 1.536 + 0.009 1.537 £ 0.017 1.528 + 0.015 1.545 +0.019

Geometricgpr (our) 500 0.653 £ 0.014 0.690 +£0.026  0.694 + 0.026 0.761 + 0.050 0.798 £ 0.047 0.933 £ 0.160

Geometric (our) 500 0.462+0.019 0.541 +£0.023 0.621 £0.012 0.675+0.030 0.750 £+ 0.038 0.865 £+ 0.057

Table 1

Performance comparison in terms of weighted root mean square error (WRMSE) of considered
frameworks for different noise conditions o and inter-observation intervals 7 for the Van der Pol

system.

(viii.) simulation-free Schrodinger bridges
via score and flow matching ([SF1°M) (

s ) (cf. Sec. J.2). We tested
our method on non-conservative systems in-
ducing diverse types of invariant geometries:
(a.) a Van der Pol system, (b.) an out-
of-equilibrium process with harmonic trap-
ping and circulation and a Gaussian re-
pulsive obstacle in the centre introduced
in ( ), (c.) a
Hopf system, and (d.) a Selkov glycolysis
model ( R ) (see Sec. J). For most
settings, the proposed framework outper-
formed existing methods, especially for large
inter-observation intervals (Table 2 and 1).

We quantified the quality of the inference
in terms of weighted root mean square er-
ror (WRMSE) between the estimated and
ground truth drift functions evaluated on a
d—dimensional grid spanning the state space
volume of the observations. The weights for
each grid point were obtained from a ker-
nel density estimation of the observations.
Thus misalignment of ground truth and esti-
mated dynamics were penalised stronger for
regions of the state space visited more fre-
quently by the observed process.

u=0.5 =2
a. 10 b
1
> 0 > 0
-1
-10
-2.5 0.0 -2 0 2
c M d. M
3
»
s 2 ®
E
1
0
120 200 280
T T
Figure 4

Geometry-aware inference provides accurate
drift estimation for different empirical mani-
fold geometries resulting from different param-
eter regimes of the Van der Pol system. (a.-
b.)Empirical manifold for the Van der Pol system
with different ;4 parameters. Notice the different
scales on the axes. (c.-d.) Inference performance
of the proposed framework against inter-observation
interval 7. Error bars indicate one standard devia-
tion over five independent runs.
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Out of equilibrium system Hopf Selkov

wRMSE | T =150 T=200 7 =250 xdt T =200 7 =300 7 =400 xdt 7=100 7 =200 xdt

GP 2.632 +0.007 3.387 +£0.012 3.733 +0.011 0.781 £ 0.006 0.969 £ 0.015 1.069 + 0.006 0.550 £ 0.021 0.682 £ 0.040

SVISE 35.204 + 39.888 3.462 £ 0.129 7.540 £ 7.602 2.113 +0.658 4.960 + 2.687 3.936 + 1.063 5.793 +0.028 2.028 4 0.045

LatentSDE 2.348 +0.032 2.340 + 0.047 2.356 + 0.042 1.168 +0.052 1.161 £ 0.053 1.173 + 0.046 0.742 £ 0.022 0.747 + 0.021

Geometric (ours) 2762 +0.132 3.034 +0.143 2.693 £ 0.992 0.210 £ 0.013 0.237 £ 0.010 0.255 + 0.028 0.414 £ 0.245 0.682 £ 0.071
Table 2

Performance comparison in terms of wRMSE for the considered frameworks for three different
nonlinear dynamical systems and for increasing inter-observation interval 7. Numbers indicate mean
wRMSE and standard deviation of five independent runs for each setting.

For a system with a drift function following Van der Pol dynamics, we found that only after two E.M.
iterations, the estimated force field (red arrows) is well aligned to the true force field that generated
the observations (grey arrows) (Fig. 2a.). For comparison we demonstrate also the result of the
estimation with Gaussian likelihood (GP), which results in a flow field orthogonal to the ground
truth one.

We performed systematic estimations for this system under different noise conditions o, observed
at different inter-observation intervals 7 for different lengths of trajectories 7' (see Sec. J). For the
examined noise amplitudes (Fig. 2 f.), the proposed path augmentation algorithm improves the naive
estimation with Gaussian assumptions within two iterations (Fig. 2). For increasing noise the im-
provement contributed by our approach decreases (Fig. 2f.), as the invariant geometry is less well
defined, but is still considerable.

Impact of the geometry of empirical manifold. We performed inference for different parame-
ter values of the Van der Pol system (u = 1 (as above) and © = 0.5 and p = 2), that result in
asymmetries of the invariant density (Fig. 4). We observed that the performance of all inference
frameworks deteriorates for increasing asymmetry (larger dynamic range along one dimension), yet
our method still delivered more accurate predictions compared to the other considered frameworks.
Approximating the invariant geometry with a different metric learning method does not confer any
considerable performance difference for our approach (c.f. Table | Geometrickgr Where we em-
ployed the metric introduced in ( ) and further developed in

( ), where a positive linear combination of Gaussian RBFs centred at selected cluster centres is
used to estimate a diagonal metric.)

Impact of noise amplitude. For systems with small dynamical noise (small o), geodesics approx-
imate the manifold structure better, however the path integral control is limited by the control costs
proportional to inverse noise covariance. Our framework had comparable accuracy for all inter-
observation lengths, but improvement was small for small lengths since in that setting the estimation
with Gaussian likelihood already provides a good approximation of the ground truth drift.

We compared our method to the approach proposed in ( ). In this work, the authors
perform augmentation with Ornstein-Uhlenbeck bridges, i.e. assuming linear underlying dynamics.
We found that our approach delivered more accurate estimates for larger inter-observation intervals.
For inter-observation intervals with only one observation per oscillation period (Fig. 3c.,d.), our ap-
proach delivered better results by considering additionally knowledge of the direction of movement
in the state space (c.f. Sec. J). The variance of estimates of the proposed method was smaller com-
pared to Batz et al. due to consistency imposed by conditioning on the invariant geometry of the
system. Predictions improve with longer observation intervals 7', and for decreasing noise amplitude
o. In both settings the invariant geometry is more well approximated by the empirical manifold.

State estimation with linear (Ornstein-Uhlenbeck) dynamics ( , ), is in general less
capable of correctly estimating the latent system state and subsequently correctly approximating the
unknown drift function especially as the length of the inter-observation interval 7 increases.

Effects of noise miss-estimation. We further investigated the impact of noise misestimation on
the accuracy of drift inference (S.I. Fig. 6). Our findings indicate that after two augmentations
conditioned on the invariant geometry, small inaccuracies in the employed dynamical noise during
the simulation of augmented paths have a negligible effect on the overall accuracy of the inferred
drift. In particular, for small inter-observation intervals, the inference procedure remains highly



robust to misestimated noise amplitudes. As the inter-observation intervals increase, the effect of
noise deviations on performance remains minimal, provided the noise used in the augmentation
deviates by at most +0.1 from the true noise amplitude. Thus, stochastic dynamics may still be
identified even with inaccurate or misestimated diffusion constants.

Additional results are provided in the Supplement (see Sec. I).

5 DISCUSSION

Discovering unknown driving forces governing stochastic systems poses still a significant challenge,
despite extensive existing research on that frontier. Our work demonstrates the benefits of integrating
information from both the temporal and geometric structure of the observed data. Our findings
showed a substantial improvement in estimating the underlying stochastic dynamics, especially in
sparsely sampled, nonlinear systems driven by non-conservative forces.

We introduced geometric inductive biases into inference of stochastic systems by treating the deter-
ministic flow field as a scaffold upon which system states fluctuate. We approximated this scaffold
in terms of distortions of a metric induced by the system’s measurements. This approach ef-
fectively approximates the low-dimensional invariant density (empirical manifold) without the need
to project to a lower dimensional space, whose dimensionality would be hard to estimate due to
the presence of fluctuations. The key insight is that geodesics computed on the empirical manifold
with respect to the approximated metric constitute the most probable path of the unknown system
between consecutive observations in the Onsager-Machlup sense. Using these geodesics as con-
trol constraints, we formulated a path-augmentation scheme that bridges sparse observations with
trajectories consistent with both the temporal order and the geometry of the data.

Widely used inference methods, predominantly developed within the statistics community, often
employ path (data) augmentation to approximate transition densities between successive observa-
tions. However, this approach suffers from several challenges: 1.) First, the unobserved information
between successive observations is an infinite-dimensional object, requiring the solution of a com-
plex and computationally intensive problem (bridge sampling) ( , ). We addressed
this challenging problem using the computationally efficient framework developed in

( ). 2.) Second, direct drift estimation from sparse observations results in estimated dy-
namics that significantly deviate from the ground truth. Thereby consecutive observations of the
system have small probability under the law of the estimated SDE. This discrepancy, in turn, leads
to several computational difficulties: i) Most bridge sampling schemes become too computationally
demanding, or even fail, when attempting to generate transition densities between atypical states for
the considered stochastic dynamics. For instance, the method of ( s ) suc-
cessfully generates transition densities between atypical states only for conservative systems through
a reweighting with Brownian bridge dynamics. Alternatively, an exceedingly large number of sam-
ples would be required for accurate numerical approximation. ii) Second, iterative algorithms, such
as Expectation Maximisation, which exhibit only /ocal convergence ( , ), may
converge to inaccurate solutions, when the initial estimation significantly deviates from the ground
truth.

To overcome these limitations, we proposed incorporating the information ingrained in the local
geometric structure of the observations into the state estimation (path augmentation). This approach
is motivated by the observation that commonly employed path augmentation methods often yield
transition densities that deviate substantially from the true underlying densities when observations
are sparse (Fig. 1E.). This discrepancy arises from the fact that these approaches rely on trivial
stochastic dynamics that fail to adequately capture the curvature of the ground truth transition densi-
ties when the observed system is nonlinear (see also theoretical analysis in Sec. H.2). Our numerical
experiments demonstrate that, indeed, the proposed approach effectively recovers the underlying
drift function for systems with steady-state probability currents ( , ).

Relation to Schrodinger bridge sampling. The framework we employed for the augmentation re-
lies on a deterministic particle formulation of the path integral control formalism ( , ).
This framework can be connected to the dynamic Schrodinger bridge problem, if we consider trans-
ferring probability mass between two Dirac measures or very narrow Gaussians that sit on each
observation, considering additionally a potential that constraints the intermittent dynamics similar



to the one considered in ( ). Thus, in principle, one can employ one of the
recently developed alternative frameworks that solve the dynamic Schrédinger bridge problem for
path augmentation The recent Bridge and Flow Matching frameworks (

; ; s ) correspond to the control problem we formulate
in the SI Eq. 32, without the control constraints. In contrast, the Generalised Schrodinger Bridge
Matching (GSBM) framework proposed by ( ) uses a cost functional that is equiva-
lent to the controlled cost we employ to construct our augmentations. In this setting, the penalty
term corresponds to the geodesic proximity constraint used in our framework. The GSBM could, in
principle, replace the particle-based framework we use. However, here, we employed a framework
that relies on particle representations of the involved densities, which can be later easily employed
to formulate the Monte Carlo approximations of the integrals involved in the Gaussian process in-
ference for the drift (Eq. 42). Yet, the Gaussian variant of the GSBM framework that incorporates
time-dependent penalty constraints (analogous to our geodesic constraints), might be an interesting
avenue to explore for potential incorporation in our framework ( , ).

Similarly, for approximating the metric induced by the observations, we employed the frame-
work of ( ), while we could have employed alternative metric learning ap-
proaches ( ; s ; , ; s

). However, the framework of ( ) perfectly fits the purposes of our work,
because it employs a non-parametric (kernel) estimation for approximating the metric and computes
the geodesics through GP regression. This allows to evaluate the geodesic equation at different in-
crements, that is necessary for imposing the time dependent geodesic constraint. A similar metric
approximation has been recently employed in ( ) for metric flow matching, i.e.,
for augmentation that respects the geometry of the dataset. While our approach has a similar flavour
to this work, our framework additionally requires the augmented data to be temporary ordered and
to respect the stochastic flow of the estimated system. This results in learning a global drift that
approximates the underlying stochastic dynamics, instead of learning a local drift that transports a
snapshot of states from some initial to a final configuration.

Limitations. The proposed approach relies on the geometric characterisation of the invariant den-
sity of the system’s dynamics. This requires sufficiently long observation windows to accurately
characterise said density and correctly approximate the unobserved paths with geodesic curves.
Thus, our approach is limited to systems where the invariant density can be approximated by a
manifold where we can identify geodesics. An alternative method worth exploring would consider
the learned invariant metric directly in the dynamics of the augmented process. Moreover, we have
considered here inference of stochastic differential equations with known state independent diffu-
sion. While this approach might seem limited, several processes with state dependent dlffusmn
functions can be transformed into processes with state independent diffusions ( ,

, ) through the Lamberti transform if they fulfil the appropriate condltlons
for the drift function.
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6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. A detailed description of
our methodology, including the inference framework and the geometry-aware path augmentation
procedure, is provided in Section 2 of the main text and further elaborated in Appendix A. All
theoretical aspects of our work, including the construction of the invariant metric, geodesics, and the
stochastic control formulation, are presented in full in the supplementary material (Appendix A.3,
A.3.2, and H). The implementation details of the Expectation—Maximisation scheme and Gaussian
process inference are also included in the appendix. Our numerical experiments, benchmarks, and
additional analyses (e.g., noise misestimation) are reported in the Supplement.
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A DRIFT INFERENCE FOR HIGH AND LOW FREQUENCY OBSERVATIONS

Effective dynamics of systems with many degrees of freedom or inherently stochastic are often
described in terms of a stochastic differential equation (SDE)

dX, = £(X,)dt + n(t)dt = £(X,)dt + cdW,, (13)

where the drift f(-) : R? — RY describes the deterministic forces acting on the system, while the
delta-correlated Gaussian white noise term n(t), (n(t)n(t')) = od(t — ') describes the effect of
stochastic forces as a product of a diffusion matrix (or constant) o : R%*? that accounts for the
magnitude of the stochastic forces acting on the system, and a d-dimensional Wiener process W
that contributes random influences.

Often the detailed equation that governs the evolution of the state of the system is unknown. There-
fore, understanding a system of interest often requires identification from time series observations
of its state. In more practical terms, given some prior probability for the drift function, we want
to compute the posterior probability P(f|{O}}_,) that identifies the unknown drift function of
Eq. 13 that most likely gave rise to the observations of the system state { O k}le. The exact relation-
ship between the observations and the system state will be defined more precisely in the following.

When a system is observed nearly continuously (inter-observation interval length 7 much smaller
than the characteristic time scale of the system 7 < 7T¢par), temporal methods regress the system state

X4 agalnst the state increments Y *M to identify the drift function ( ,

, ). In a Bayesian framework, this corresponds to Gaussian process
regress1on with a Gaussian likelihood (SI A.1). However, for large inter-observation intervals 7,
these methods fail ( , ), as the Gaussian likelihood assumption is invalid for general
nonlinear systems with sparse observations (Fig.1C.). In such cases, the likelihood is a path integral
over continuous trajectories of the unobserved process (SI A.2), making Gaussian-based estimates

inaccurate (Fig. 1C.).

This underwhelming performance has motivated the development of methods that combine state es-
timation (or path augmentation) and dynamical inference. These methods reconstruct continuous
paths to approximate transition densities between observations, enabling inference by estimating the
system’s state between observations. However, for large time intervals, transition densities are usu-
ally analytically intractable, except in a few trivial cases of scalar or linear processes. As a result,
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the prevailing strategy is to approximate transition densities by sampling marginal distributions of
diffusion bridges, which are diffusion processes constrained by their initial and terminal states (

; , ). Yet existing methods employ path augmentation wrth srmphﬁed brrdge
dynamrcs (e.g., Brownian ( ; , ) or Ornstein-Uhlenbeck
bridges ( , )) that do not accurately reflect the underlying transition densities for non-
linear systems (Fig. 1E.).

An alternative path augmentation strategy would obtain a coarse drift estimate, typically achieved
by assuming a Gaussian likelihood between observations (see SI Eq. 16), and would subsequently
employ a stochastic bridge sampler ( ; ) to
construct stochastic bridges using the coarsely estlmated nonhnear drift. However for large inter-
observation intervals, the coarsely estimated drift function often deviates significantly from the true
function that generated the observations. Consequently, the observations frequently fall into low-
probability regions of the estimated diffusion dynamics (Fig. | E.), rendering the construction of
diffusion bridges either too computationally demanding or impossible ( , ).

A.1 HIGH FREQUENCY OBSERVATIONS

In an optimal but rather practically unrealistic scenario, we would observe the system (path) X.7 in
(nearly) continuous time, and thus we would try to identify the drift from P(f| Xo.7). In such a case,
the infinitesimal transition probabilities of the diffusion process between consecutive time-points are
Gaussian, i.e.,

P;(Xoir | f) o< exp < 5dt Z [Xtrar — X — (Xt)dt”%)) : (14

Here we have introduced the weighted norm |[u||p=u’ -D~!.u, with D=c o " indicating the noise
covariance.

In turn, the transition probabilities of a discretised drift-less process (a Wiener path) Py (Xo.7) with
same diffusion o is

1
PW(XO:T) = exp < th Z HXt+dt Xt”%) . (15)

We can thus express the likelihood for the drift f as the likelihood ratio between the transition
probabilities of Eq. 14 and Eq. 15, which for diffusion processes is expressed by the Radon-
Nykodym derivative between P (Xo.r|f) and Py (Xq.7) for paths X¢.7 within the time interval
[0, 77 ( ,

1
L(Xo.r | ) = exp (‘2 D IEX) Bt + D (F(Xe) Xoar - Xt)D) ; (16)
t t

where for brevity we have introduced the notation (u,v)p=u' - D! . v for the weighted inner
product with respect to the inverse noise covariance D ~!. This expression results from applying the
Girsanov theorem on the path measures induced by a process with drift f and a Wiener process, with
same diffusion o, and employing an Euler-Maruyama discretisation on the continuous path Xg.7.

The likelihood of a continuously observed path of the SDE (Eq. 16) has a quadratic form in terms
of the drift function. Therefore a Gaussian measure over function values (Gaussian process) is a
natural conjugate prior for this likelihood. Thus, to identify the drift in a non-parametric form, we
assume a Gaussian process prior for the function values f ~ Py(f) = GP(m/, kf), where m/ and

kS denote the mean and covariance function of the Gaussian process ( , ). The prior
measure can be written as
Po(f) = exp (—// (' (X, X))~ 1f(X’)dXdX’), (17)

if we consider a zero mean Gaussian process m/ = 0.
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Bayesian inference for the drift function f requires the computation of a probability distribution in
the function space, the posterior probability distribution P, (f | X.7). From the Bayes’ rule the
posterior can be written as

Po(£)L(Xo.7 | £) ~

Py(f | Xor) = 7 Po(£)L(Xo:r | £), (18)
where Z denotes a normalising factor defined as
7= / Po(£)L(Xor | £)DF, (19)

where Df denotes integration over the Hilbert space f : Hy[f] < oo . Here we have expressed
the prior probability over functions as Py(f) = e~ (], In ( ) the authors show
that in this continuous-time setting, nonparametric estimation of the drift can be attained through
a Gaussian process regression ( , ) with the objective to identify the mapping from
the system state X; to state increments dX;. More precisely, we consider as the regressor the N
observations of the system state X; and as the associated response variables the state increments

Xt+dt - Xt
’

Y, —
¢ dt

(20)

and select the kernel function of the Gaussian process as k7 (X, X').

If we denote with X = {X;}/* and ) = {Y;}/_" the set of state observations and observation
increments, the mean of the posterior process over dnft functions f can be expressed as

-1
f(x) = k/ (x, X)7 <i€ + £IN> Y, @1

where we abused the notation and denoted with k¥ (x, X') the vector resulting from evaluating the
kernel &/ at points x and {Oy}+—'. Similarly K = &/ (X, X) stands for the (K — 1) x (K — 1)
matrix resulting from evaluation of the kernel on all observation pairs. In a similar vein, the posterior
variance can be written as

D\ !
Y2 (x) =kl (x,x) — K/ (x, 2)T </c + dt) E (x, &), (22)
where the term D /d¢ plays the role of observation noise.

A.2 LOW FREQUENCY OBSERVATIONS

As the inter-observation interval increases (low frequency observations), the validity of the Gaus-
sian likelihood used in drift estimation diminishes as the transition density is no longer Gauss1an
Consequently, methods for drift estimation with Gaussian assumptions ( ;

, ) become increasingly inaccurate. To discount the effects of low frequency sam-
pling, Lade ( , ) proposed a method to compute finite-time corrections for drift estimates,
which has been mainly applied to one-dimensional problems ( , ). In
parallel, the statistics community has proposed path augmentation techniques that involve sampling
with a simplified system’s dynamics between time-consecutive observations to augment the ob-
served trajectory to a nearly continuous-time path ( ,

; R ). However for large
1nter-observat10n intervals and nonhnear systems, the augmented trajectories match poorly the un-
derlying path statistics and these methods often exhibit poor convergence rates or fail to identify the
correct dynamics (Figure | c. and d.). We note that path augmentation using Ornstein-Uhlenbeck
bridges and local linearisation of the ground truth dynamics provides a reasonable approximation
of the underlying transition density up to a certain inter-observation interval. Nevertheless, during
inference, the ground truth dynamics is unknown, and the proposed local linearisations based on
inaccurate drift estimates ( , ) perform poorly in this sparsely sampled regime.
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As the inter-observation interval 7 increases, if the system is nonlinear, the likelihood assumed be-
tween two consecutive observations is no longer Gaussian, but is rather expressed as a path integral

P(O1.x | f) = /P(Ol:K | Xo.7)P(Xo.r | £)D(Xo.1), (23)

where O;. Ki{(’)k.},i{:1 identifies the set of K observations collected within the interval [0, T,
P(Xo.7 | f) the prior path probability resulting from a diffusion process with drift f(x), D(Xo.7)
identifies the formal volume element on the path space, and P(O1.x | Xo.r) stands for the likeli-
hood of observations given the latent path Xg.7.

However, the path integral of Eq. 23 1is in general intractable for nonlinear systems.
thus we need to simultaneously estimate the drift and latent state of the diffusion pro-
cess, i.e., to approximate the joint posterior measure of latent paths and drift functions
P(Xo.7,f | O1.x). Therefore we consider the unobserved continuous path Xo.r as la-
tent random variables and employ an Expectation Maximisation (EM) algorithm to identify
a maximum a posteriori estimate for the drift function. More precisely, we follow an it-
erative algorithm, where at each iteration n we alternate between the two following steps:
An Expectation step, where given a drift estimate fr (x) we construct an approximate posterior

over the latent variables Q(Xo.7) ~ P(Xo.r | O1.x, £"(x)), and compute the expected log-
likelihood of the augmented path

£(f"(x),Q) = Eq [mg(Xo;T, Ok | f"(x))] (24)

A Maximisation step, where we update the drift estimation by maximising the expected log likeli-
hood

1 (x) = arg m?x [S(f”(x), Q) — InPy (f”(x))] (25)

In Eq. 25, Py denotes the Gaussian process prior over function values.

A.3 APPROXIMATE POSTERIOR OVER PATHS.

To obtain an approximate posterior over the latent paths we perform variational inference ( ,

). In this section, we first formulate the approximate posterior over paths (conditional distribu-
tion for the path given the observations) by considering only individual observations as constraints
(Section A.3.1). However, this approach results computationally taxing calculations during path
augmentation, since the observations are atypical states of the initially estimated drift. To over-
come this issue, we subsequently extend the formalism (Section A.3.2) to incorporate constraints
that consider also the local geometry of the observations.

A.3.1 APPROXIMATE POSTERIOR OVER PATHS WITHOUT GEOMETRIC CONSTRAINTS

Given a drift function (or a drift estimate) f (x) we can apply variational techniques to approximate
the posterior measure over the latent path conditioned on the observations O1.x. We consider
that the prior process (the process without considering the observations Q1. ) is described by the
equation

P(XO:T | f) : dXt = f(Xt)dt + O'th. (26)

We will define an approximating (posterior) process that is conditioned on the observations. The
conditioned process is also a diffusion process with the same diffusion as Eq. 26 but with a modl—
fied, time-dependent drift g(x,t) that accounts for the observations (
, ). We identify the approximate posterior measure () with the posterlor
measure induced by an approximating process that is conditioned by the observations O1.x ( ,
), with governing equation

QOXor): X, = g(Xy, t)dt + o dW; = ( (X,) + u(X,, )) dt + 0dW,. (27
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The effective drift g(X¢,t) of Eq. 27 may be obtained from the solution of the variational problem
of minimising the free energy

FIQ) = K£(Q(Xor)IP(Xor | £)) - i (mP(Oy | th)>Q 28)

k=1

By applying the Cameron-Girsanov-Martin theorem we can express the Kullback-Leibler divergence
between the two path measures induced by the diffusions with drift f(x) and g(x, t) as

ICE(Q(XO:T)”P(XO:TH‘)) —<1ﬂ M > (29)
dP (Xorlf) ) /¢

S e - 2ary [ O —8(Xe.t)
—< 5 ) - exnipar+ [ HR de>Q

<< ;/OTlf(Xo &(X, )llDdt+VT> >Q (30)

1 .

0

where ¢;(x) stands for the marginal density for X, of the approximate process. In the third line

we have introduced the random variable V = fOT det

. Under the assumption that
the function £(X;) = f(X;) — g(X,t) is bounded, piece-wise continuous, and in L2[0, cc) , Vi
follows the distribution A/ (VT | 0, fOT EQ(S)ds), which for a given 7" will result into a constant €.
Thus the second term in Eq. 31 is not relevant for the minimisation of the free energy and will be
omitted.

We can thus express the free energy of Eq. 28 as ( , )

//ngxt GOl + Uk, 6)] ) axat, ()

where the term U (x, t) accounts for the observations U (x,t) = — Y InP(Oy, | x) §(t — tx).
ty

The minimisation of the functional of the free energy can be construed as a stochastic control
problem ( , ) with the objective to identify a time-dependent drift adjustment u(x, t) :=

g(x,t) — f(x) for the system with drift f(x) so that the controlled dynamics fulfil the constraints
imposed by the observations.

A.3.2 APPROXIMATE POSTERIOR OVER PATHS WITH GEOMETRIC CONSTRAINTS

The previously described construction of the approximate measure in terms of stochastic bridges is
relevant when the observations have non vanishing probability under the law of the prior diffusion
process of Eq. 26. However, when the prior process (with the estimated drift f) differs consider-
ably from the process that generated the observations, such a construction might either provide a
bad approximation of the underlying path measure, or show slow numerical convergence in the con-
struction of the diffusion bridges. To overcome this issue, we consider here additional constraints
for the posterior process that force the paths of the posterior measure to respect the local geometry
of the observations. In the following we provide a brief introduction on the basics of Riemannian
geometry and consequently continue with the geometric considerations of the proposed method.

Riemannian geometry. A d-dimensional Riemannian manifold (
, ; , ) (M, ) embedded in a d-dimensional ambient space X = R? is a smooth
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curved d-dimensional surface endowed with a smoothly varying inner product (Riemannian) metric
h:x — (:])x on TxM. A tangent space TxM is defined at each point x € M. The Rieman-
nian metric §j defines a canonical volume measure on the manifold M. Intuitively this characterises
how to compute inner products locally between points on the tangent space of the manifold M, and
therefore determines also how to compute norms and thus distances between points on M.

A coordinate chart (G, ¢) provides the mapping from an open set G on M to an open set V' in
the Euclidean space. The dimensionality of the manifold is d if for each point x € M there exists
a local neighborhood G' € RY. We can represent the metric h on the local chart (G, ¢) by the
0

o >x)osm',§d

at each

positive definite matrix (metric tensor) H(x) = (b; j)x,0<i j,<d = ((82

point x € G.

For v,w € Ty M and x € G, their inner product can be expressed in terms of the matrix represen-
tation of the metric b on the tangent space T, M as (v|w)x = v H(x)w, where H(x) € R4*4

The length of a curve v : [0, 1] — M on the manifold is defined as the integral of the norm of the

tangent vector
00 = [ oladt = [T ARt 63)

where the dotted letter indicates the velocity of the curve 4y = 0. A geodesic curve is a locally
length minimising smooth curve that connects two given points on the manifold.

Riemannian geometry of observations. For approximating the posterior over paths we take into
account the geometry of the invariant density as it is represented by the observations. To that end,
we consider systems whose dynamics induce invariant (inertial) manifolds that contain the global at-
tractor of the system and on which system trajectorles concentrate ( , ;

). We assume thus that the contlnuous time trajectories Xg.1 G Rd of the underlymg system
concentrates on an invariant manifold M € R™=9 of dimensionality m (possibly) smaller than d.
The discrete-time observations Oy, are thus samples of the manifold M. The central premise of our
approach is that unobserved paths between successive observations will be lying either on or
in the vicinity of the manifold M. In particular, we postulate that unobserved paths should lie in
the vicinity of geodesics that connect consecutive observations on M. To that end we propose a
path augmentation framework that constraints the augmented paths to lie in the vicinity of identified
geodesics between consecutive observations.

However, while this view of a lower dimensional manifold embedded in a higher dimensional am-
bient space helps to build our intuition for the proposed method, for computational purposes we
adopt a complementary view inspired by the discussion in ( , ). According to
this view, we consider the entire observation space R as a smooth Riemannian manifold, M=R¢,
characterised by a Riemannian metric . The effect of the nonlinear geometry of the observations is
then captured by the metric §. Thus to approximate the geometric structure of the system’s invari-
ant density, we learn the Riemannian metric tensor H : R% — R%*? and compute the geodesics
between consecutive observations according to the learned metric. Intuitively according to this view
the observations { O}, }X_, introduce distortions in the way we compute distances on the state space.

In effect this approach does not reduce the dimensionality of the space we operate, but changes
the way we compute inner products and thus distances, lengths, and geodesic curves on M. The
alternative perspective of working on a lower dimensional manifold would strongly depend on the
correct assessment of the dimensionality of said manifold. For example, one could use a Variational
Autoencoder to approximate the observation manifold and subsequently obtain the Riemannian met-
ric from the embedding of the manifold mediated by the decoder. However, our preliminary results
of such an approach revealed that such a method requires considerable fine tuning to adapt to the
characteristics of each dynamical system and is sensitive to the estimation of the dimensionality of
the approximated manifold.

To learn the Riemannian metric and compute the geodesics we follow the framework proposed by
Arvanitidis et al. in ( , ). In particular, we approximate the local metric induced
by the observations at location x of the state space, in a non-parametric form by the inverse of the
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weighted local diagonal covariance computed on the observations as ( , )

-1
Hya(x <Z w; <x§d> - x(d))2 + e> , (34)

with weights w;(x) = exp (—“"5%‘”2), and (9 denoting the d-th dimensional component of the
M

vector x. The parameter € > 0 ensures non-zero diagonals of the weighted covariance matrix, while
o am characterises the curvature of the manifold.

Between consecutive observations for each interval [O, Op41], we identify the geodesic
~E as the energy minimising curve, i.e., as the minimiser of the kinetic energy functional

E(vh) fo Lp(vg, ) dt!

1

¥ . k 2ky g4

v = arg min / L(ve,Ap) dt’,
‘Yf/»"/(])c:ok,"/f:ok-i-i

with /LMW it = / 15512, (35)

0

where L (vE,4F) denotes the Lagrangian. The minimising curve of this functional is the same
as the minimiser of the curve length functional £(vy ) (Eq. 33), i.e., the geodesic (

) )

By applying calculus of variations, the minimising curve of the functional £(+%) can be obtained
from the Euler-Lagrange equations, resulting in the following system of second order differential
equations ( , ; R )

ok 1 k1 S kNT 8VGCiH(’Yf)i -k 6veCiH(’7tk)iT -k -k
i __QH(%) (2 (I@(’yt ) ) oo Vi — : (% ® e ) , (36)

with boundary conditions 7% = O}, and vf = O}, 1, where ® stands for the Kroenecker product,
and vec[A] denotes the vectorisation operation of matrix A through stacking the columns of A into
a vector. We follow ( ) and obtain the geodesics by approximating the solution
of the boundary value problem of Eq. 36 with a probabilistic differential equation solver.

Extended free energy functional. We denote the collection of individual geodesics by
I‘ti{'yt’?}t:(k_l)TH/T, where ~% is the geodesic connecting Oy, and Oy 1, and t' € [0, 1] de-
notes a rescaled time variable. Additional to the constraints imposed in the previously explained
setting (Sec A.3.1), here we add an extra term in the free energy Ug(x, t)=|T'; — x||? that accounts
for the local geometry of the invariant density, and guides the latent path towards the geodesic curves
vk that connect consecutive observations

Q)= // lgGx,8) ~ F9llo + Vo (x,£) + BUs (3, 1)] au(x) et a7)

Here we denote the observation term by Uo (x,)=— >, InP(O[x)d(t —tx), while 3 stands for a
weighting constant that determines the relative weight of the geometric term in the control objective.

Following ( s ), for each inter-observation interval [Of, O] we identify the poste-
rior path measure (minimiser of Eq. 37) by the solution of a stochastic optimal control prob-
lem ( , ) with the objective to obtain a time-dependent drift adjustment

u(x,t) := g(x,t) — f(x) for the system with drift f(x) with initial and terminal constraints defined
by Uo(x,1), and additional path constraints Ug (x, t).

For the case of exact observations, i.e., for an observation process 1(x) = x, we can compute the
drift adjustment for each of the K — 1 inter-observation intervals independently. Thus for each inter-
val between consecutive observations, we identify the optimal control u(x, ¢) required to construct
a stochastic bridge following the dynamics of Eq. 26 with initial and terminal states the respective
observations Oy and O 1.
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The optimal drift adjustment for such a stochastic control problem for the inter-observation interval
between Q) and Oy can be obtained from the solution of the backward equation (see (

, )
091 (x)
ot

with terminal condition ¢r(x) = x(x) = §(x — O41) and with E} denoting the adjoint Fokker-

= —Lhou(x) + U (x, ) (), (38)

Planck operator for the process of Eq. 26. As shown in ( , ) the optimal drift
adjustment u(x, t) can be expressed in terms of the difference of the logarithmic gradients of two
probability flows

w(x,t) = D(Vingro(x) - Vinp(x)), (39)
where p; fulfils the forward (filtering) partial differential equation (PDE)
Opt(x
02 £ () — Ualoe 1)), @0)
while ¢ is the solution of a time-reversed PDE that depends on the logarithmic gradient of p;(x)
) 2
q(;ij) =-V- (02V1n pr—t(x) — f(x,T — t))qt(x) + J?Vth(x), (41)

with initial condition go(x) o pr(x)x(X) .

For the numerical solution of the control problem we use the numerical framework accompany-
ing ( ), where the path constraints associated with the geodesic curves are
imposed through the two staged process for particle propagation described in the paper for path
constraints, with the particle reweighting being performed through optimal transport implemented
using the PyEMD python toolbox ( ,

More precisely, according to this framework we propagate a particle representation of the proba-
bility density p;(x) according to the filtering equation of Eq. 40. This follows the dynamics of

the uncontrolled process with drift f and particle reweighting at each time step as determined by
the path constrained (potential) Ug (x, t), that quantifies the proximity to the geodesic at each time
point. In the particle representation we apply this reweighting in the form of a deterministic optimal
transportation of the particles ( , ).

A.4 APPROXIMATE POSTERIOR OVER DRIFT FUNCTIONS.

For a fixed path measure (), the optimal measure for the drift () ; is a Gaussian process given by

@y xPyexp (~ [ IRGOIBAG) ~ 2860, BGpx ) @)

with

and .
B(x)= / 4 (x)g(x, H)dt,

where ¢;(x) denotes the marginal constrained density of the state X;. The function g(x, ¢) denotes
the effective drift.

We assume a Gaussian process prior for the unknown function f, i.e., f ~ Po(f) = GP(m7, k7)
where m/ and k/ denote the mean and covariance function of the Gaussian process. Following Rut-
tor et al. ( , ), we employ a sparse kernel approximation for the drift f by optimising
the function values over a sparse set of S inducing points {Z;}5_,. We obtain the resulting drift
from

fo(x) = kf(x,Z2) I+ AKs) " d, (43)
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where we have defined introduced the notation Ks=k7(Z, Z)

f/c (/ k(2,%)Ax)KE (x, Z)dx) Kg'. (44)

(/ k' (2,x)B dx) K3t (45)

The associated variance results similarly from the equation

Yi(x) = kM (x,x) — kI (x, Z2) I + AKs) " A/ (2,%). (46)

We employ a sample based approximation of the densities in Eq. 42 resulting from the particle
sampling of the path measure @ resulting from the geometric augmentation, i.e. the integrals over
| q:(x) are over the samples of the augmented paths. Thus by representing the densities by samples,
we can rewrite the density p;(z) in terms of a sum of Dirac delta functions centered around the

particles positions
1
pe(x) = N gé(x -X

and replace the Riemannian integrals with summation over particles, i.e. perform a Monte Carlo
integration. Here X (¢) represents the position of the j-th particle at time point ¢.

B SPARSE GAUSSIAN PROCESS ESTIMATION

Since the amount of required observations for accurate drift estimation is generally large for systems
with nonlinear dynamics, regular Gaussian process regression becomes computationally intensive.
Its computational complexity scales as O(N*) with the number of observations N due to the N x N
kernel matrix inversions required for inference (c.f. Eq.22 and ( )). Therefore,

( ) employ the sparse (low dimensional approximation) counterpart of Gaussian
process regression ( , , ) that reduces significantly the computation
time by reducing the computatlonal complexity to O(NM?), where M < N denotes the number
of selected sparse (inducing) points. Here we present briefly the derivation.

For sparse Gaussian process drift inference, we augment the distributions with M inducing points
z = [21,...,zp] with inducing values u = [f (zm)}ﬁle that are jointly Gaussian distributed with
the latent function values {f(X;)}Z_,.

As demonstrated previously the true posterior for function values f is expressed as a product
1
Py(f) = — Po(f)e™ 4, (47)
where Z a normalisation constant, A(f) = Zf7Af — a’'f a quadratic form of f (see Eq. 16), while
P,(f) denotes a prior Gaussian measure. Thus the posterior Py (f) is also Gaussian.
To employ sparse Gaussian process inference, we approximate Py with Qy = GP (m?(-),k9(-,-)),
with mean and variance functions to be calculated, depending only on the smaller subset (M < N)

of inducing function values u,
Q(f) o< R(u)P,(f). (48)

The effective likelihood R(u) is chosen as the minimiser of the Kullback-Leibler divergence
KL(Qf|IPy)-

We may now express the prior P,(f) and the approximate marginal Q ¢(f) in terms of the inducing
points

Po(f) = Po(f|u)Po(u)7 49)
and

Qs(f) = Qs (flu)Qy(u) = Py(flu)Qy(u), (50)

under the assumption that the posterior conditional @) ;(f|u) matches the prior conditional P, (f|u).
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We select the effective likelihood R(u) as the minimiser of the relative entropy between )y and P

Kﬂ@ﬂm/@mnggﬁ

_ / P, ([0 Q; (w) In oOFMW ¢4

Py (f)R(u)
2 Po(f|u)e=AE P, (u)
T AT B, (u)

R
Z

elnR(Ll)
—InZ + /Qf(u-) In <6E[A<f|un> du

In Eq. 51 in the second line, we have introduced Eq. 47-Eq. 50. In the third line we have introduced

Pf‘gﬁ‘f&) = Py(u) from Eq. 49. In the final line we rearranged the terms that do not depend on

f outside of the integral over f, moved the In Z term out of the integration over u, and denoted

(o = | Po(flu) df.

To minimise the relative entropy CL [Q f|| Pf] we conclude that the optimal choice for the effective
likelihood R(u) is

dfdu

:/Po(f|u)Qf(u) In
(51)

= /Po(f|u)Qf(u) In dfdu

R(u) o e (AEW)o, (52)

Given the quadratic form of A(f) we may write the conditional expectation in Eq. 52 as a quadratic
form too

(A(fu))o = 2 (Flu)g A (flu)o + %Tr (Cov,[f[u]A) —a' (flu),

1
2

P T (53)
= §<f|u>O A {flu), —a ' (f|u), + const.,

where in the last line we take into account that the term Tr (Cov, [f|u]A) is independent of the sparse
function values u (c.f. (2013)). InEq. 53 A = diag[At D~*, ..., At D],

In particular, the conditional expectation of function values f conditioned on the inducing point
function values u = U/ at inducing point locations z = Z equals

Fr(x) = {flu)o = k(x, 2)k(Z, 2)7 U, (54)
while the covariance equals
(29)%(x) = k(x,x) — k(x, 2)k(Z, 2) " 'k(Z,%), (55)

where we have employed similar notation for the kernel functions as in Egs. 21-22.

C THEORETICAL EVIDENCE THAT MAY SUPPORT THE USE OF GEODESICS AS
GEOMETRIC CONSTRAINTS

The Onsager-Machlup functional for diffusion processes has been known in theoretical physics as
a characteriser of the most probable path (MPP) between two pre-defined states of the process.
In ( R ), Onsager and Machlup used the thermal fluctuations of a diffusion
process to show that the probability density of a path v € C* ([0, 7], R?) in R? over finite interval
can be expressed as a Boltzmann factor

T
P(v) ~ exp [ /0 Ly (t),5(2))dt |, (56)
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where

. 1
L(v(®).7®) = 5l
The function L(~(t),~(t)) is known as the Onsager-Machlup function (action), while its integral
over time is known as Onsager-Machlup action functional. It has been used as Lagrangian in Euler-
Lagrange minimisation schemes to identify the most probable path (MPP) of a diffusion process
between two given points in the state space ( s ; , ).

Stratonovich ( , ) considered the probability that a sample of a multidimensional
diffusion process will lie in the vicinity of (within a tube of infinitesimal thickness around) an ide-
alised smooth path in the state space. To compute this probability he constructed a probability
functional which is identical to the Onsager-Machlup functional considered as Lagrangian for the
diffusion process. Duerr et al. ( s ) considered scalar diffusion processes and
constructed the Onsager-Machlup function from the asymptotic limit of the transition probability
between the starting and end state of the path using a Girsanov transformation.

Considering Brownian motions defined on a Riemannian manifold (M, g) with associated Rie-
mannian metric g, the Onsager-Machlup functional can be expressed as the integral over the La-
grangian ( s ; s ; . )

LewA) = 33013 - 55(10), (58)

where || - || denotes the Riemannian norm on the tangent space 7x M of the manifold with respect
to the metric g, and S(+) stands for the scalar curvature of the manifold at each point. The first term
is the Lagrangian used to identify geodesic curves on manifolds (c.f. A.3.2)

In our proposed formalism, for computational purposes we have assumed the entire R¢ as smooth
manifold. We can identify the first term of Eq. 58 with the Lagrangian we optimised for computing
the geodesics on the manifold (R%, g), where g is the metric learned from the observations.

However the system we observed was a diffusion process defined in R? with an Euclidean metric.
Constructing a path augmentation scheme that guides the augmented paths towards the geodesics
of a diffusion defined with respect to a different metric raises questions about the validity of our
approach. Here we should note that diffusions with a general state dependent diffusion coefficient
o € R¥>*™ and m-dimensional Brownian motion, can be considered as evolving on the manifold
(Rd, g), with the associated metric g = (O'O'T) ! ( , ). Thus it may be possible to
associate the metric learned from the data with the metric arising from a state dependent diffusion by
applying a transformation akin to an inverse Lamperti transform ( , ) to transform our
learned SDE to one that would have induced the learned metric due to the state dependent diffusion.
The existence of such a transformation would justify the proposed method. Our empirical results
demonstrate that such a transformation may be possible.

D DOES THE PROPOSED APPROACH INVALIDATE THE MARKOVIAN
PROPERTY OF THE DIFFUSION PROCESS?

The proposed path augmentation seemingly invalidates the Markovian property of the diffusion
process. According to the Markov property of the diffusion of Eq. |, the system state X 45t
should depend only the state Xy, i.e., the observation Q. The proposed augmentation makes the
state X4+ depending not only on the next observation O.1 = X(441)-, but also on past and
future states that lie in the vicinity of these observations.

We effectively construct the augmented paths to compute the likelihood of a drift estimate. To
compute this likelihood we require to evaluate the transition probabilities between consecutive ob-
servations. Since for general nonlinear systems the transition probabilities are in general intractable,
we have to resort to numerical approximations. Ideally we would approximate the transition density

'Onsager and Machlup’s initial work concentrated around linear processes and therefore the functional
initially introduced by the did not include the second term with the divergence of f as this is a constant for
linear f. It was later added to the OM function to account for trajectory entropy corrections (

, ; Adib, 2008)
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with a bridge sampler that would consider the nonlinear estimated SDE conditioned to pass though
consecutive observations. However for coarse drift estimates, the observations have zero probability
under the law of the estimated SDE, and construction of those bridges would result either in very
taxing computations or would fail altogether. Instead, here, we compute the likelihood of a “cor-
rected” estimate (the correction resulting from the invariant density) under which the observations
have non-zero probability, and subsequently re-estimate the drift on the augmented path with this
“corrected” estimate. By taking into account the local geometry of the observations, we provide
systematic corrections for the misestimated drift function to generate the augmented paths. This ef-
fectively nudges the augmentation process towards the second observation of each inter-observation
interval through the path constraint that forces the augmented paths towards the geodesics.

E RELATED WORK AND POSITIONING OF THE PRESENT WORK

Here, we briefly review further related work on inference or modelling of SDEs and position our
work further with respect to the existing literature.

> Modelling general SDEs from state observations. As already mentioned in the Introduction
and in Sec. A existing inference methods for SDEs can be broadly clustered in temporal and ge-
ometric methods, where the former accounts for the temporal order of the observations, while the
latter approximate the invariant system density and discard any time information.

Temporal methods rely on the Euler-Maruyama discretisation of the SDE paths approximating
conditional expectations of state increments (i.e. the Krammers Moyal coefficients). They model
the drlft either in terms of Gaussian processes ( s ; s ; s

; , ; s ), basis functions ( , ; s

; , ; , ; , ; , ) or
libraries of functions ( , ; s ), kernel regression (

, ; , ), dynamic mode decomposition to learn the eigenfunc-
tions of the Koopman operator ( , ), by approximating the central moments of the
transition densities ( , ), or by applying generalised methods of moments (

, )-

As explicitly detailed in Sec. A, most temporal methods do not provide accurate drift estimates when
the interval between observations is large. The two prevailing approaches to mitigate this finite-
sampling rate effects is to either account for the systematic bias introduced by the finite samphng
rate by estimating an exp11c1t correction term for the inferred drift ( ;

, ), or by performing state estlmatlon for the
unobserved paths (also known as path or data augmentation) and then estimating the drift from the
continuous paths.

The former approach works only for scalar systems, Wh11e the latter employs simplified bridge dy-
namics (e.g., Browman ( , , ) or Ornstein Uhlen-
beck ( , , ) brldges) that are analytically tractable or computationally
non-demanding. However for large T and for nonlinear systems, these simplified bridge dynamics
match poorly the underlying path statistics. (Fig. | D.). It is important to mention here, that path
augmentation with Ornstein Uhlenbeck bridges similar to ( ) provides a good ap-
proximation of the underlying transition density, when the underlying linear process employed for
each bridge has a drift that comes from the local linearisation of the ground truth drift function.
However, during inference the true dynamics are unknown and the local linearisations on inaccurate
drift estimates employed in ( ) provide imprecise approximations for large 7.

Alternatlve methods, employ variational inference ( ,

, ) and approximate the posterior path measure w1th a tractable Gaus51an
process induced by a time—varying linear SDE. This results in ODEs for the posterior mean and
covariance matrix and an ELBO that is optimized directly ( , ; s

).

Building on the building on a prolific line of work on neural ODEs, neural SDEs ( , )
employ gradient-based stochastic variational inference and the stochastic adjoint sensitivity method
to compute gradients of solutions of stochastic equations with respect to their parameters. Building
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on these methods, ( ) remove the need for adjoint-based gradient computa-
tions by combining amortized inference with a reparametrization of the ELBO by assuming a latent
linear process that generates the latent path.

Geometric approaches on the other hand, discard the temporal structure of the observations, and
treat them as samples of the invariant density. Thereby these methods either employ density estima-
tion to identify the drift as the gradient of a potential ( ), or resort to
spectral approximations of the generator of the diffusion process through manifold learning.

Manifold learning methods employ often the diffusion maps algorithm, introduced by Coiffman and

colleagues ( ), to learn the dominant part of the spectrum of the transfer
operator of the observed diffusion process ( ); ( );
( ); ( ); ( ). In essence, these methods, learn

from the data the few leading eigenfunctions of the Laplace-Beltrami operator that captures the
Riemannian geometry of the observations, and consider them as a parametrisation of the manifold
representing the invariant density.

> Modelling SDEs from population level snapshots/boundary conditions. With recent com-
putational advances in optimal transport, a growing body of work focuses on the implementation
of Schrodinger bridge sampling methods, including formulations with additional path constraints.
These mostly generative methods aim to transport the data distribution from some initial boundary
condition to a terminal one, typically by learning the underlying stochastrc equation to perform this
transport through Schrodinger bridge sampling ( ,

, ). Flow matchrng ( , ) 1dent1ﬁes
the probablhty flow ODE that pushes forward an initial Gaussian density to a target one by solv-
ing a regression problem. The method relies on analytically tractable probability paths that provide
closed-form regression targets for learning the velocity field, resulting in simulation-free training of
deterministic flows. However, the framework is restricted to Gaussian distributions since the em-
ployed objective becomes intractable for general source distributions. Conditional flow matching
(CFM) ( , ) generalizes flow matching by introducing conditional probability paths
between paired samples, allowing the marginal velocity field to be learned with regression without
requiring explicit evaluation of the marginal densities or restrictive assumptions on the source distri-
bution. Generalized Schrodinger Bridge Matching (GSBM) ( , ) follows an alternating
optimisation scheme that learns both drift and marginals. Given prescribed boundary conditions
for initial and terminal densities, the framework minimises a kinetic energy term, and formulates the
resulting problem in terms of a stochastic optimal control problem conditioned on the boundary con-
ditions and a path cost that accounts for additional constraints. Action matching (

) introduces a simulation-free variational objective that identifies a time-dependent scalar po-
tential (entropic action) s;, whose gradient Vs, transports the densities from the initial to the bound-
ary condition through the continuity equation. In its entropic formulation the Vs; can be considered
as the drift of the underlying SDE, whose marginals match the boundary conditions. However, by
construction, the framework can recover only gradient drifts and is therefore not suitable for iden-
tifying general stochastic systems with stationary probability currents. In contrast, simulation-free
score and flow matching ([SF]? M) ( , ) jointly learns the probability-flow ODE and
the score function by regressing against closed-form quantities derived from conditional Brownian
bridge paths, facilitating simulation-free identification of general Schrodinger bridge dynamics with
non-gradient drifts.

Geometry aware generative methods. Metric flow matching (MFM) generalizes CFM by learn-
ing interpolants that account for the geometry of the data. However, MFM does not assume a
stochastic underlying process, as our framework does, only a deterministic interpolation (transport)
that respects the data manifold. However, by assuming a specific noise amplitude for the underlying
SDE, one can consider the flow field as generated by the effective drift of a probability flow ODE
associated with the considered SDE and make inferences about the underlying drift function. This is
the approach we followed when comparing the performance of MFM to our framework in Table 1.

Approximating observation geometry in the ambient space. In our work, we approximate the
geometry induced by the observations by endowing the ambient space R? with an observation-
dependent Riemannian metric H (x) (Eq. 4) that encodes the local anisotropy of the data distribution.
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In our framework this metric acts as a constraint for data-augmentation and as a geometric inductive
bias for drift function inference: augmented paths are encouraged to remain in regions where the
metric H (x) induces smaller distances, i.e. in the vicinity of geodesics computed with respect to
this metric, thereby aligning the augmented paths with the empirical observation geometry.

This perspective connects to a growing body of work that approximates Riemannian metrics di-
rectly in the ambient space as a proxy for the unknown curved low-dimensional data manifold,
instead of first estimating its intrinsic dimensionality and then constructing explicit low-dimensional
embeddings.

In parallel, an increasing body of literature focuses on endowing generative models with geometric
constraints or inductive biases. While most methods function in an autoencoder-like setting, by
learning an embedding function for prOJectmg toa lower dimensional space that respects prescribed
or learned geometric constraints ( )
geometry, "Riemannian” methods, similar to our proposed method, operate in the ambient space by
directly a Riemannian geometry embedded there and define normalizing flows or other generative
processes directly on the manifold of interest. ( ) introduce a framework
for continuous normalizing flows defined in the ambient space, respecting a prescribed Riemannian
geometry. Similarly, ( ) proposed a score-based generative model that models
target densities with support on prescribed Riemannian manifolds in terms of a time-reversal of
Langevin dynamics.

Metric flow matching ( , ) interpolates data distributions that respect the
geodesic interpolants computed according to the metric induced by the observations. The method
employs a data-adapted metric in the ambient space to design interpolants (geodesic curves) with low
kinetic energy under the approximated geometry, and constrains the generative paths to respect man-
ifold induced by the data samples. Our construction is conceptually similar with these approaches,
in that we also avoid explicit low-dimensional embeddings and instead approximate the observa-
tion manifold through a Riemannian metric living in the ambient space. However, in contrast to
methods focused on deterministic transport or simulation-free matching, we use the learned metric
to regularise continuous-time diffusion bridges and drift inference, through the stochastic controlled
geometric augmentation, so that the recovered stochastic dynamics are geometrically consistent with
the geometry of the observation-induced invariant measure.

Positioning of the present work. Our approach combines the nonparametric flexibility of
Gaussian-process—based drift inference from time-series data with recent geometric ideas for
population-level SDE modelling. Similar to Metric Flow Matching ( , ), we
posit that augmented trajectories should remain on the manifold induced by the observations: both
frameworks estimate a data-adapted Riemannian metric and construct interpolants (geodesics and
bridges) that respect this geometry. MFM learns the underlying ODE necessary to transport an
initial distribution to a target one under the data-adapted metric, while our framework assumes un-
derlying stochastic dynamics. Nevertheless, once the diffusion is known or coarsely estimated, one
can interpret the inferred ODE as a probability flow ODE and make inferences about the underlying
drift function of a stochastic system. The GSBM framework ( , ) employs a stochastic
control objective that is similar to the objective we consider for constructing the augmented paths.
However, unlike our framework, GSBM does not introduce geometric constraints for the augmented
paths. However, the path constraint they consider can be formulated with geometric considera-
tions as we did in our comparisons here. Finally, whereas these methods typically learn a drift that
transports a single source distribution to a single terminal snapshot, yielding thus a locally valid
dynamics, our method, akin to multi-marginal bridge sampling ( , ), fits a sequence
of bridges across multiple time points to recover a single global drift consistent with the underlying
drift dynamics.

F GEOMETRIC CONSTRAINTS ON INFERENCE

Our method bridges the gap between approaches that rely only on the temporal structure of observa-
tions and those that approximate the invariant density, while ignoring temporal order. Motivated by
advances in geometric statistics ( s ; s ), and the growing interest on
the concept of manifold hypothesis ( s ; s ), i.e., the considera-
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tion that the state of multi-dimensional dynamical systems often resides in low-dimensional regions
of the state space, several recent methods integrate geometric and temporal constraints in stochastic
system identification. In Langevin regression framework ( , ), the Kramers-
Moyal (KM) coefficients are estimated and low sampling effects are accounted for by solving an
adjoint Fokker-Planck equation, with regularisation via moment matching ( , ).

( ) consider the manifold of the observations for inference of cellular dynamics. Their method
employs dynamic optimal transport to interpolate between measured distributions constrained to lie
in the vicinity of the observations. While sharing similar intuitions with our method, Tong et al.
do not employ SDE modelling for inherently stochastic cellular dynamics and do not consider the
underlying geometry of the observations, relying solely on constraints penalizing pairwise distances

between them. Shnitzer et al. ( ; ) employ diffusion maps to approximate
the eigenfunctions of the backward Kolmogorov operator (the generator of the stochastic Koopman
operator ( ; , )). By evolving the dominant operator eigen-

spectrum with a Kalman ﬁlter they account for the temporal order of observations. However, their
approach is limited to conservative systems and requires the presence of a spectral gap in the ap-
proximated operator’s spectrum.

G THEORETICAL JUSTIFICATION FOR RIEMANNIAN MANIFOLD
APPROXIMATION OF THE INVARIANT DENSITY

Our method is based on the argument that the invariant density’ of the observed system im-
poses a low-dimensional structure on the state space, within which the observations are confined.
We propose that this low-dimensional structure is well approximated by a Riemannian manifold
Mo € R™=% and that the observations { O} }< | offer a reliable discrete approximation to M,

We employ the notion of a “low-dimensional structure” as a concise way to refer to the fact that
for many dissipative dynamical systems, the invariant measure has support on a subset of the state
space with dimension smaller than the ambient space dimension. This phenomenon arises due to
the dissipative nature of these systems, which causes volume contraction in the state space, resulting
in trajectories concentrating asymptotically on attractors of lower dimension than the state space
dimension. To provide further justification on this, in the following section, we start by building
intuition from deterministic dynamical systems and then generalise to stochastic dynamics.

G.1 DIMENSIONALITY OF INVARIANT MEASURES INDUCED BY DETERMINISTIC DYNAMICS

We consider a dissipative deterministic dynamical system of the form
X =f(x¢),  x €RY (59)

generating a semiflow (®*);>0. Under standard assumptions, the dynamics admit an invariant prob-
ability measure p describing the distribution of states along long-term typical trajectories. From an
ergodic perspective, y is the natural object characterising the asymptotic behaviour of the system.
For almost every initial condition in y, the empirical measure

1 T
= / O, dt (60)
0

converges (in the weak sense) to (.

For dissipative systems, phase—space volumes contract along typical trajectories, so the Lebesgue
measure is not invariant under the dynamics, i.e. state space volume is not preserved when pushed
forward through the flow ( , ). This implies that the system state does not explore the
ambient space uniformly. Instead, trajectories concentrate asymptotically on subsets of state space
of vanishing Lebesgue measure. In fact, this concentration phenomenon persists even in chaotic
systems, where, although trajectories separate exponentially along unstable directions, contraction
along stable directions dominates the evolution of infinitesimal volumes in the state space.

*In the following the discussion concentrates around invariant measures. We point out here that the invariant
density is the Radon-Nikodym derivative of the invariant measure with respect to some reference measure, often
the Lebesgue measure if it exists ( s ).
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The resulting invariant measure p typically has an effective dimension smaller than the ambient
space dimension. To quantify this, we require a notion of dimensionality that remains meamng—
ful when the Lebesgue measure vanishes. The Hausdorff dimension (

, ) lends itself for such a purpose since it naturally extends from sets to probablhty mea-

sures ( , ). More precisely, the Hausdorff dimension of an invariant measure p is defined
as the smallest Hausdorff dimension among all measurable sets containing u
dimpy (p) = inf{dimg(A4) : p(A) =1}. 61)

A useful aspect of this formulation is its local interpretation. Under mild regularity assumptions,
dimg (@) can be characterised by the scaling of probability mass around typical points under . If,
for almost every x,

W(Be(x)) ~ed  ase — 0, (62)

then d,, = dimg (p). Thus, this dimension reflects how probability mass concentrates across scales.

In (smooth) deterministic dynamical systems, the interplay between expansion and contraction along
different directions governs this local scaling behaviour. This is well characterised by Lyapunov ex-
ponents that quantify the exponential deformation of infinitesimal neighbourhoods, while the metric
(Kolmogorov-Sinai) entropy h,, quantifies the rate at which trajectories generate information. Well
known results in ergodic theory ( , ) show that the Hausdorff dimension
of an invariant measure can be expressed directly in terms of these quantities, and is strictly smaller
than the ambient space dimension d in dissipative systems with non-trivial Lyapunov exponents,
i.e. both positive and negative exponents.

More precisely, according to the Oseledets’ theorem ( , ), the system has a Lyapunov
spectrum A\; > --- > Ay, and dissipativity implies on average volume contraction, i.e.
d
S <0, (63)
i=1
( ) formulate an expression for the Hausdorff dimension of the invari-

ant measure 4 in terms of the Lyapunov exponents {);}¢_, and the Kolmogorov-Sinai entropy
h’/l, ( ]

k
hﬂ ZiZI Al , (64)

dimpy (pn) =k +
Akt

where k is the largest integer for which Zle Ai > hy,. This relation holds under standard smooth-
ness and hyperbolicity assumptions (for instance for C1* systems with non-zero Lyapunov expo-
nents almost everywhere). Intuitively, k£ here quantifies the number of expanding dimensions needed
to characterise the system’s entropy.

Since the sum of all Lyapunov exponents is negative (Eq. 63), and the metric entropy is bounded by

the sum of positive Lyapunov exponents ( , )
0<h, <> N (65)
Ai >0

the equality of Eq. 64 implies
dimp (p) < d, (66)

indicating that the invariant measure concentrates on a subset of the state space, whose Hausdorff
dimension is strictly smaller than the ambient space dimension d.

G.2 DIMENSIONALITY OF INVARIANT MEASURES INDUCED BY STOCHASTIC DYNAMICS

We now consider stochastic dynamical systems of the form
dX; = f(X;)dt + o dW,, (67)

similar to the systems we discuss in the main text. Under mild conditions on f and o, the correspond-
ing Markov semigroup admits a unique invariant probability measure (i, which coincides with the
stationary solution of the associated Fokker—Planck equation ( , ).
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The additive noise regularises the deterministic invariant measure, yet its density concentrates ex-
ponentially around A as ¢ — 0. For non-degenerate noise o, the Hérmander condition ensures
that p,, is absolutely continuous with respect to the Lebesgue measure, and thus possesses a smooth
invariant density ( , ). However, the invariant measure p, of the stochastic system of
Eq. 67 satisfies the following exponential concentration inequality around the deterministic attractor
A for sufficiently small noise amplitude o

fio ({x € R% : dist(x, A) > 0}) < C(5) exp <—CS)) , (68)
forall 6 > 0, where C'(¢), ¢(d) > 0 denote §-dependent constants, that are nevertheless independent
of noise amplitude o (see Theorem 4.2.1 ( , )). This exponential concentration indicates
that, although y, is absolutely continuous with respect to the Lebesgue measure for o > 0, it
becomes increasingly confined near A4 as ¢ — 0. The effective dimension of y, approaches that
of the invariant measure of the deterministic system o, while remaining bounded above by the
ambient dimension d. ( , ; s ).

In this sense, stochasticity does not destroy the low-dimensional structure induced by the deter-
ministic dynamics, but thickens the invariant measure around the deterministic attractor geometry.
Thus even though i, is smooth, its effective dimension can still be low-dimensional in the sense
of mass being tightly concentrated near a lower-dimensional skeleton determined by the underlying
stochastic dynamics.
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H THEORETICAL JUSTIFICATION OF GEOMETRIC AUGMENTATION FOR
LARGE INTER-OBSERVATION INTERVALS

In the following sections we provide a theoretical analysis justifying our choice to employ geometric
path augmentation to improve inference in the large inter-observation limit. In particular, in Sec H.1,
we revisit the fact that inference starting from the Euler-Maruyama discretisation deteriorates for
increasing inter-observation interval. Then we study the terms in the remainder of the discretisation
that become important when the time step (or inter-observation interval) is large, and connect these
terms with the geometry of the unknown vector field. We show that for non-linear systems the
remainder contains terms related to the curvature of the flow, and that neglecting these terms amounts
to assuming a vector field with straight flow-lines in-between observations. This introduces a bias
in inference that is linear in the step size. By approximating the curvature by means of controlled
path augmentation with reference the geodesic curves of the invariant manifold, our method partially
accounts for these remainder terms.

H.1 INFERENCE PERFORMANCE DETERIORATES WITH INCREASING INTER-OBSERVATION
INTERVAL FOR EXISTING FRAMEWORKS

2.0 Figure 5
Increasing observation interval be-
tween successive observations T
deteriorates performance quanti-
1.6 fied by increasing weighted root
mean squared error (WRMSE) for
Gaussian process-based inference.
Weighted root mean square error be-
1.2 o tween estimated and ground truth
0.25 drift vector fields for increasing ob-
0.50 servation interval 7 between sub-
¥ 075 sequent observations for different
0.8 % 1.00 noise conditions (indicated by differ-
xdt  ent hues). Observations were col-
lected from a Van der Pol oecillalor
system simulated with dt = 0.01 for
T = 500 time units. Error bars indi-
cate one standard deviation over ten
independent realizations.

wRMSE

150 250 350
inter-observation interval 7

We computed the weighted root mean square error (WRMSE) between ground truth flow fields
and estimated ones for several commonly applied inference frameworks. We observed that the
performance of all of them deteriorates once the inter-observation interval becomes large.

We started with the method that motivated our research, approximating drift functions through Gaus-
sian processes, the method outlined in ( ). The method approximates the drift
functions with Gaussian process regression, using the system state X, as the regressor and state in-
crements as the response variable Y;= X”Ti . This is the Bayes1an counterpart of earlier methods
encountered in physics literature ( , ), providing
additionally uncertainty estimation through the Gausman process approximation.

As is evident from Figure 5 the discrepancy between ground truth and estimated vector fields in-
creases for increasing temporal distance between successive observations. This should be under-
stood, under the consideration that inference of the drift based on regression on state increments
results from an approximation relying on a truncated Ito-Taylor expansion. This is also the starting
point of the Euler Maruyama discretisation. As the time interval between successive steps of this
approximation increases, the truncated approximation does not longer hold, and higher order terms
should be considered.
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H.2 INFERENCE BASED ON EULER-MARUYAMA DISCRETISATION DOES NOT ACCOUNT FOR
THE CURVATURE OF THE TRAJECTORIES IN THE STATE SPACE

To be more precise, a general SDE of the form
is a shorthand for the integral equation

t t

X =Xy, +/ f(Xs,s)ds+/ o(Xs,s)dWy, (70)
to to

where as previously in this manuscript, we consider the stochastic integrals in the Ito sense. (Here

we start from a more general formulation of the stochastic equation with both diffusion and drift

terms being state- and time-dependent to highlight that also for more general SDEs our geometric

argument is valid.)

Applying the It6 formula on each integrand, and integrating from ¢q to ¢, we obtain the It6-Taylor
expansion of Eq. 69

£(X,, 1) f(Xto,t0)+/ onx /tzu: axw fu(Xs,5)ds
/Z aX(“) S,s)dWS]uﬁ-/tjézm[G(XS,S)GT(XS,S)]Mds
=£(X4,, t0) + U X, s ds+z £WV X, s) dW"), 1)
and ’
o(Xt,t)=a<xtmto>+/to 0o Xs.2) d+/z 7000 fu(Kars) ds

to

Do (X, s
/t S (sts)dWS]”/ L e [o(Xes9) o (Xous)], ds

t
_a(xto,t0)+/ £La(Xs,s)ds+2/ Lyw.,o(X,,s)dWH), (72)
to v to

where we have used the fact that the product of stochastic differentials due to the Ito isometry and
multiplication rules equals the noise covariance times the time step

dxax\" = [ooT] dt

uv ’

where
m

dX( = fuds+ Y o WD),
j=1
while the superscripts/subscripts u, v indicate dimensional components.

In the above equations we have introduced the operators acting on test-functions h : R? — RP

0%h
Th — T
Lih="=2" +Z 8X(“) fut Z Txwaxm X 8o (X 9], (73)
and
Lw.,h= Z 8X u) Ouv, forv=1,...,n. (74)

With these expressions, the original integral equation for X; can be written as
Xt = Xto + f(XtO,to)(t — to) —+ O'(Xto, to) (Wt — Wto) =+ (75)

t s t s
—l—/ / LIF(Xy,u) duds—i—Z/ / L £(Xy,u) dW ) ds
to Jto v to Jto
t s t s
+/ / LLa(Xu,u)dudWs+Z/ / Ly, o (X, u) dW) dW,.
to Jto v to Jito
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In the last equation, dropping the terms in the remainder R; results in the Euler—Maruyama integra-
tion scheme ( s ). Introducing the discrete time and noise increments

tnt1 tnt1
Aty =tpi1 —tn = / ds, AW,=W,; _  —W; = / dWg, (76)
t t

n n

we result in the discrete time equation commonly used for numerical integration of SDEs
X1 = X, + (X, tn) Aty + 0 AW, (77)

This is also the starting point of most inference methods that employ the regression scheme men-
tioned above by approximating the drift as

r Xn - Xn T
F(Xp ) m == N (0, "A"t) : (78)

This discretisation is a zero-order approximation of the true dynamics, and assumes that f(-) remains
constant throughout the interval At, i.e. throughout the inter-observation interval 7 in the inference
setting. However as 7 increases, higher-order terms in the remainder R; of the [t6-Taylor expansion
become significant, since the assumption that the drift is approximately constant over 7 does not
hold.

We can glean onto the terms that become important once the inter-observation interval becomes
large, by applying the It6 formula onto each one of the integrands in R; separately for the spe-
cific setting we consider in this manuscript, i.e. that of time-independent drift function f(x) and
constant diffusion matrix o. In the following, we demonstrate that the leading-order error of this
approximation is governed by the intrinsic geometry of the drift vector field. This provides fur-
ther insight and a geometric explanation for the deterioration of inference methods for increasing
inter-observation interval 7.

In short we show that, inference methods based on the Euler-Maruyama discretisation-based in-
ference effectively assume that the vector field between consecutive observations X,, and X, ;1
does not change. Our analysis shows this is equivalent to assuming trajectories are straight lines
(J¢f || £) and the Itd correction is constant. In reality, trajectories curve (J;f has also a perpen-
dicular component), and this curvature itself changes along the vector field. The Euler-Maruyama
discretisation-based inference scheme systematically misses these higher-order geometric features,
leading to biased drift estimates.

H.2.1 FIRST REMAINDER TERM R ,

We denote the first term of the reminder by R, ,

Ria = / / LI£(X,)duds. (79)
to Jto

Applying It6’s formula to the integrand Eif (X, u), we get

d

X(J) 82£T X T d
Z aX(J)aX(k)( W) loo ], du.

dcif(X,) = gﬂ f(X

8£f

(80)

Plugging in the original equation d X&; @ = =fidu+Y " o dW , and integrating over the time
from ¢o to u

“ 9
LX) = L] £(Xy,) +/ o )+ Z aX j) Z 8X(J)8X oo

to

/ Z a){E}) odW,); dw. (81)
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Applying Fubini’s theorem in the original double integral, we change the order of integration

/t t : ¢(u) duds = /t t(t—u) (u) du, 82)
and we obtain o ’
Ri.= /t: t: LI£(X,)duds = /t:(t — ) XJ: gf(:(]f; Z aXa(ng(k (oo | du
e ES
/ Z g)ﬁ(in Wal; +%2ﬁ1f(Xto). (83)
R,

In the prev10us equation we have dropped the term 5~ (ET f(X )) that is equal to zero and that
would require the drift f to be time-dependent to be non-negligible.

First component R/, of remainder term R, ,: Flow curvature term. The Backward Kol-
mogorov generator applied to a vector field f can be written as

1
Lf =T f + 5 Apf. (84)

In Eq. 84, Jy=Vf denotes the Jacobian of f, D= oo ! the noise covariance, and
Ap= >, ok Dk 8§<m () 18 the noise-covariance weighted Laplacian operator. Thus each compo-

nent of £ comprises the directional derivative of the drift J +f plus an anisotropic/noise-covariance
weighted Laplacian of f, which in component-wise form is expressed as

a/; 0 f;
‘i’ K3 2
€8], Z axm ZD“ aXMax® (8

Differentiating wrt to X ) yields

> fi Ofi  Ofk 1 9 fi
7% =2 pxomoxm t * 2 gxwm axw + 3 2P gxmaxwaxer
7 (86)
and thus we rewrite the 7-th component of the term Rf’a as
0% fi 8fz 8fk 0 fi
[Rial; / (=) Z OX@D X *) Tufit Z 0X axm Z De IXDoX®HX©® fi
]7 £ .
87)

The third-order state-derivative in the last summand of Eq. 87, indicates that this last term is inactive
for linear or quadratic drift functions f.

We re-write again this part of the remainder in a more compact vector notation in terms of the
directional derivative of (J ¢f) and % Apf along the vector field as

ot
R}, = / (t—u) [VIsf)-f +  V($Apf)-f ]du (88)
Jto S— ——
flow curvature diffusive term along the flow

This part of the remainder captures two geometric effects that standard inference methods neglect:
the intrinsic curvature of deterministic flow trajectories in state space, and the systematic bias
introduced by the spatial variation of both drift and diffusion along these trajectories, when both
drift and diffusion are assumed as constant between inter-observation intervals.
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* To understand the first term, V(J +f ) - f, from a geometric perspective, let us consider a
deterministic dynamical system with dynamics %x; = f(x;). A trajectory initiated from an
initial condition x traces a streamline in the state space R%. We express the acceleration
of this trajectory in terms of the directional derivative

d
&f(xt) =Jyp(xe)  f(x¢) =Jy - £ (89)

The acceleration vector admits a natural orthogonal decomposition comprising a compo-
nent parallel to the vector field f and an orthogonal component to f

Jf-fZP”(f)Jf~f+PJ_(f)Jf~f. (90)

j.(t:

Here P (f(x)) = %;”(;‘) and P, (f(x)) = I—- P (f(x)) stand for the parallel and orthog-
onal projectors. The parallel component quantifies the rate of change of speed along the
trajectory (tangential acceleration), whilst the perpendicular component defines the curva-

ture vector Kqow () ( , ), which quantifies the bending of the trajectories
P (E(x)Jr ()f(x)
Kflow(X) = . 91)
° I£G0)]12
When kgow = 0, the trajectories are straight lines in the state space, while when

|<fow|| > O they are curved.

The term V(J +f) - f quantifies the evolution of the trajectory curvature % as the system
moves along the flow field. From Eq. 87 we have for each dimensional component  of this
term

02, of, of
[V(Isf)- ZaXU TOX >f’“fJ+ZaX<k ax

= [fT(Vin) |+ [I5EL:
We observe that this term captures the effects of how both second-order spatial variation of

the flow field (the Hessian V2 f;) and the Jacobian of the acceleration (J ?f ) influence the
evolution of trajectories.

92)

- In Eq. 92, the first sub-term, f (V2 f)f, represents the second directional deriva-
tive (or quadratic variation) of f; along the flow direction f. It measures the curvature
or second-order spatial variation of the ¢-th component of f in the direction f. In re-
gions where the Hessian V2f is large (as is for the case of a highly nonlinear drift
with curving or bending behaviour), this term becomes significant, and it vanishes for
linear or constant drift f. Neglecting this term corresponds to approximating the flow
by its linearisation.

— The second sub-term, J ?pf = J¢(Jsf), of Eq. 92 represents the action of the Ja-
cobian operator on the acceleration vector. Geometrically, it describes how the local
linearised field acts on the acceleration as we move an infinitesimal step along the flow
field, or in other words how the linear approximation changes when following the flow
direction f.

By temporal integration we have
t 72
R}, = / (t— u)(V(Jff) £+ V(L Apf) ~f) du ~ ?(V(Jff) £+ V(L Apf) -f),
to
93)

indicating that the evolution of trajectory curvature introduces an O(7%) correction to the
transition density.

Drift inference based on Euler—Maruyama—type discretisation ignores between others the
term Ri ., introducing thereby a mean bias at each point x in the state space,

1
Bla) =R, ~ 2 [VAI£) £+ V(5 Apf) -] (). (94)

3More precisely the directional derivative of the acceleration, J 7(x) - f along the flow direction, or the rate
at which the acceleration changes along the flow, or a measure of how the local curvature of f as a vector
field influences trajectory evolution.
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This bias induces a mean error in drift estimate, when using Euler—-Maruyama-based in-
ference, leading to under- or over-estimation of the true drift at state x. This error scales
linearly with the interval 7.

Let us now consider the temporal rate of change experienced by a particle travelling along
the flow field. The instantaneous speed of the particle at location x is ||f(x)]|. The quantity
in the brackets in Eq. 94, V(J 4f) - £ + V (3 Apf) - £, is a spatial derivative measuring how
quickly the curvature and diffusion variation change as the particle moves in space. The
rate of change of this variation per unit of time is expressed as

[VIf) - £+ V (3ApF) - f]| (x) . _,
= 7-CllI'V (X) *
£
In the last equation we have introduced the time scale of change 7. as the inverse of the
rate of change, which captures the characteristic time it takes for the curvature/diffusion

variation to change significantly along the particles trajectory. Then the relative magnitude
error in the Euler-Maruyama-based drift estimate satisfies

95)

1
x
8Ll 6)
[£()] 2 Tewry (%)
implying that the estimate is reliable only when the inter-observation interval 7 <

2 Teury (X).

* The second term in Eq.88, V(%A pf) - £, accounts for the diffusion part of the backward
generator acting on the vector field f. The anisotropic Laplacian A pf quantifies the diffu-
sion-weighted second-order spatial variation of the vector field

0°fi
[Apf]; ZD]’“@X gx(k) V- (DVf). (97)

The directional derivative quantifies how this term evolves along the flow field
1

0,

1 — ¢ .

[VGALE) -f]; =35 Z”D“aXU)BX(k)aX(@ Ty ©8)
MELZAS

This term captures how the diffusion-weighted spatial variation of the flow field varies
across the state space. As trajectories traverse regions of varying drift curvature, the ef-
fective Itd correction itself changes, introducing systematic bias in inference methods that
assume that drift is piece-wise constant in-between observations.

Second component Rﬁa of remainder term R; ,. The second component of the remainder term
Ry , reads

C 1 (Ll
Rﬁa:/t (tfu)izkm[ﬂﬂ—r]]kdu (99)
0 Js

For the i-th dimensional component we have

0? o? fz D% fi O fr
axmaxm £ Z IXTHX Dax® 1k T Z IXDIXE HX P
% fi Of dfi 9 fi
* zk: IXPIXH® ox @ Z XM GXMHXT) (100)
1 o' f;
3 ; D X maxaxmax®-
For this remainder term, we have for each dimensional component ¢
) t 1 82
I:Rlva]i = Zg(t—u)22;DJk [&X(HM(J) I:E f} du . (101)
s
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Geometrically, Ria captures the diffusion-weighted second-order spatial variation of the gen-

erator L] f across the \/7-sized ellipsoid set by D, i.e. the anisotropic Laplacian Ap(L]f),
the diffusion-weighted second spat1al variation of the drift along the flow. Dropping this term
in inference amounts to assuming L!f is locally flat and results in an O(7) drift bias of size
Bi. = (1/4)Ap (LIf), underest1mat1ng anisotropy and the evolution of curvature of the flow
field, so inferred flow-lines appear too straight.

Third component R, of remainder term R, .

R{{a:/ t—u) Zaxm W.lj, (102)

[ngxllL :/ Z (9X ‘C f U7m dW(m) (103)

j,m
This is a martingale term capturing the stochastic coupling between diffusion and the spatial inhomo-

geneity of the generator. In inference, this term doesn’t introduce bias, since (Ria> = (. However,
neglecting this term, ignores a second—order variance contribution with Var(R? ,/7) = O(7).

H.2.2 SECOND REMAINDER TERM 2y

We denote the second term of the reminder by R
Rip = Z/ / ﬁwyde(") ds. (104)
to

Applying Fubini’s theorem again to change the order of integration, we re-write 121 ; in the form of
a stochastic integral

n t
Ry = Z / (t —u) Loy, £AW ). (105)

Substituting the operator results in an expression for each dimensional component ¢

n t D af
1.b]s = t— ju s or?=1,...,0.
Ry, aXZJ dw), fori=1,...,D (106)
In matrix notation, this corresponds to
¢
Rl,b:/ (t—u)chrqu. (107)
to

The remainder R, 3 is a stochastic integral with zero mean, but non-zero covariance, given by
t
Cov(R14) = (Ruy RY,) = /t (t—u)?J; o0 3] du, (108)
0

For sufficiently smooth J ; and small time step 7 = ¢ — ¢, this covariance scales on the order of 73,

The term R, ; quantifies the contribution to the remainder arising from stochastic fluctuations of
the noise acting through the spatial derivatives of the drift £. It does not contribute to additional
systematic bias, but introduces variance in the drift estimator, especially when o or J ¢ are large.
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H.2.3 THIRD REMAINDER TERM R?; .

We denote the third remainder term by R; . and re-write here for convenience

t s
Ri.= / Lo (X, u)dudW,. (109)
to tg

In the general case of time- and state- dependent diffusion the integrand of this term would be
expressed for the i-th row and ¢-th column component of o as follows

0 90,
= 0?0
Z J)azj((k) (X, u)|oro "] 5 (X, w). (111)

However, in our setting we consider state- and time-independent diffusion matrix, and thus
Ll o(X,,u) = 0, and by consequence R; . = 0

H.2.4 FOURTH REMAINDER TERM R; 4

The fourth remainder term is

n t s
Rig= Z/ Ly, odW) dW,. (112)
t

v=171to0 Jto

For each component (i, £) of o

60'1/
[Lw.ol, Z oy O =0 (113)

Thus, the omission of this remainder term does contribute any bias or variance to the EuM-based
drift estimator.
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I ADDITIONAL NUMERICAL RESULTS

I.1 INFERENCE WITH NOISE MISS-ESTIMATION

2.0 2.0
w .
0 1.5 1.5 T: 500
= gaus
'§ 1.0 1.0 v 1st
= 2nd
0.5
T: 1000
w
%) 1.5 1.5 gaus
5
T=240 dt T=280 dt

02 04 06 08 1.0 0.2 04 06 08 1.0
noise amplitude o noise amplitude o

Figure 6
Small noise misestimation has small impact on estimation accuracy. Weighted root mean
square error (WRMSE) vs. noise amplitude o employed in the augmentation for different inter-
observation intervals with a.) 7 = 160dt b.) 7 = 200dt, ¢.) 7 = 240dt d.) 7 = 280dt.
Pink-purple lines correspond to estimation with total simulation length 7" = 500 time units,
and blue markers correspond to total simulation length of 7" = 1000 time units. Red dotted line
identifies the noise amplitude employed in the simulation of the observations.

1.2  ABLATIONS WITH RESPECT TO METRIC LEARNING ALGORITHM

To probe the robustness of our framework, when we employ a different approach to estimate the
metric, following ( s ) we tested our method when we employ a radial based
function approximation to estimate the diagonal metric, similar to ( ). In the
table | we report the performance of our method when we employ the locally adaptive normal
distribution framework (Geometric (our)) for approximation the metric ( )
and when we employ the radial basis function variant of the metric approximation (Geometricrgrg
(our)) for the Van der Pol system for different inter-observation intervals and noise conditions. We
observe that the resulting drift is accurate also with the RBF method for estimating the metric, yet
the method proposed in the main text performs slight better across all inter-observation intervals and
noise conditions.

J  DETAILS ON NUMERICAL EXPERIMENTS

We simulated a two dimensional Van der Pol oscillator with drift function

1
filw,y) = ple = 5a° —y) (114)
1
fQ(xay) = -7, (115)
o
starting from initial condition z0 = [1.81,—1.41] and under noise amplitudes o =

{0.25,0.50,0.75,1.00} for total duration of ' = {500, 1000} time units. The employed inter-
observation intervals 7 = {80, 120, 160, 200, 240, 280, 320} x dt. The last inter-observation interval
exceeds the half period of the oscillator and thus samples only a single state per period. This resulted
in erroneous estimates. In this setting this indicates the upper limit of 7 for which we can provide
estimates. However for any inference method, if the observation process samples only one observa-
tion per period, identifying the underlying force field without additional assumptions is not possible
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with temporal methods. The discretisation time-step used for simulation of the ground truth dynam-
ics, and path augmentation ¢ = 0.01. For sampling the controlled bridges we employed N = 100
particles evolving the associated ordinary differential equation as described in (

). The logarithmic gradient estimator used M = 40 inducing points. The sparse Gau551an
process for estimating the drift was based on a sparse kernel approximation of S = 300 points. In
the presented simulation we have employed a weighting parameter 8 = 0.5 (Eq. 37). This provides
a moderate pull towards the invariant density. The example in Figure 2 was constructed with § = 1
and provides a better approximation of the transition density, than 5 = 0.5.

For the out-of-equilibrium process with harmonic trapping and circulation and a Gaussian repul-
sive obstacle in the centre we followed the description presented in ( )
following the drift

fu(x) = —Qux, + ae_mz/%?x” with Q= <22 g) , (116)

for a = 10 and simulated the stochastic system with noise amplitude ¢ = 0.5 on a time grid of
dt = 0.01 steps, observed at inter-observation intervals 7 = {150, 200,250} x d¢ and for total
duration 7" = 1000 time units.

For the Hopf system we used the drift
fi(z1,m2) = 22, (117)
fa(zr,22) = —21 + (n — 27) 22, (118)

with © = 0.35 and integrated the system with noise amplitude o = 0.15 on a timegrid with dt =
0.01 resolution, observed at 7 = {200, 300,400} x dt time intervals. This is the normal form of the
Hopf bifurcation.

For the Selkov glycolysis model ( , ) we employed the drift
fi(wy, w2) = =21 + oy + afws, (119)
fo(zy,2) = 0.6 — axg — 232y, (120)

with ¢ = 0.06 and noise amplitude o = 0.05 for inter-observation intervals 7 = {100,200} x d¢
and simulation time grid of dt = 0.01 spacing and for total duration 7" = 1000 time units.

This model is a minimal two-variable model of glycolytic oscillations, first introduced in ( ,

). It describes the autocatalytic feedback processes in the glycolysls pathway, focusing on how
simple nonlinear interactions can give rise to oscillatory dynamics in concentrations of intermedi-
ates. The first state variable x; represents the concentration of adenosine diphosphate, while zo
represents the concentration of a glycolytic intermediate.

J.1 ON COMPUTATION OF GEODESIC CURVES

For the computation of geodesic curves we followed the framework introduced in (

). The geodesic equation relies on a non-parametric estimation of the Riemannian metric, Wthh
is constructed using kernel-weighted local diagonal covariances, and has computational complexity
O(N D), where D is the dimensionality of the problem and N denotes the number of samples. The
computational cost of solving the geodesic equation scales sublinearly with increasing dimension-
ality.

J.2 DETAILS ON BASELINE METHODS

We compared the performance of our method against a series of competing methods for inference of
stochastic dynamics. In particular, we compared our method against methods specifically designed
for inference of stochastic systems from single trajectories, and against systems that infer population
dynamics.

We employed the following methods that assume single trajectories for drift inference:

1. Gaussian process regression without state estimation (GP)
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2. path augmentation with Ornstein-Uhlenbeck dynamics with Gaussian process inference

(0OU) ( , )

3. sparse variational inference with state estimation (SVISE) ( , )

4. basis function approximation of Kramers-Moyal coefficients, i.e. the drift function (KM-
basis) ( , )

5. latent SDE inference with amortized reparameterization with (LatentSDE+GP-pre) and
without pre-training (LatentSDE) ( , ).

We further compared our method with recent Schroedinger bridge generating frameworks that pri-
mary aim to infer population dynamics from snapshot data. In particular we considered the following
frameworks:

I. Metric Flow Matching (MFM) ( , )
II. Generalized Schrédinger Bridge Matching (GSBM) ( R )
III. Wasserstein Lagrangian Flows-Action Matching (WLF-AM) ( , )

IV. Simulation-free Schrédinger bridges via score and flow matching ([SF]? M) ( ,
)

For these methods, we clustered the observations of each system into dlS]Olnt subsets of adjacent
points. We employed the k-Nearest neighbours algorithm (Iix, ; , ) to
construct the clusters as local neighbourhoods on the state space, comprising each at most 64 and
minimum 20 observations. We paired each cluster 7, with the set j,fi {Ok41: O € Jp} of
the next observation of each cluster member. We then considered each cluster pair (7, JJ) as the
initial and terminal condition for a Schrédinger bridge problem, i.e.

T ={0): O €T} (121)

={0,: 0, F'}. (122)
These serve as samples of the densities required as boundaries conditions for the Schrédinger
bridges.

For the multi-marginal setting, starting from the cluster that contained the observation ©; and sub-
sequently created a sequence of cluster following the time ordering of the observations, i.e.

1 ={Opi:k€T} (123)

We then employed a sequence of 50 marginal densities {7 } 9

by the framework.

~ o as snapshot observations required

Metric Flow Matching. For the Metric Flow Matching framework, we trained on observations
resulting from total simulation length Typy = 37 = 1500 (time units) to ensure sufficient data
for each bridge. For each constructed bridge indexed by b, the flow network trained with the flow
matching objective represents the velocity of the samples u,(x, t) transferred within the normalised
time ¢ € [0, 1] from the initial boundary condition to the terminal one. We approximate a time-
independent local drift f,(x) by rescaling the velocity field u,(x, t) with the inter-observation inter-
val 7, i.e.,

1
f(x) = ;ub(x,t). (124)

To obtain a global drift estimate from the individual local estimates, we compute responsibilities” or
weights of each individual drift for each point x,,, of a pre-defined two-dimensional evaluation grid
that covers the state space region occupied by the observations. These weights indicate how relevant
each bridge b was for estimating the drift at each grid point x,,,. For each bridge, we compute support
weights wy,(x) on the grid employing kernel density estimation (KDE) over the bridge boundary
condition samples. Then, for each grid point x,,,, we compute bridge responsibilities as

(X)) = % 3 pilxm) = L. (125)
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We estimate the global drift at each grid point by weighting the local estimated drifts with the
corresponding bridge responsibility, i.e.,

B
f'(xm) = Zpb(xm) fb(xm). (126)
b=1

K ALGORITHMIC DETAILS

Here we provide the outline algorithm for each constituent component of our work. Algorithm A
provides the main skeleton of the framework. For the geometric approximation and the construction

of the geodesics we defer the readers to ( ). Algorithm A2 outlines the solution
of the control problem that implements the path augmentation. This part is an adapted version of
the main algorithm proposed by ( ). Finally, Algorithm A3 describes the

solution of the Gaussian process inference given the path augmentations (bridges) created for each
augmentation pair. For the simulation of Fokker-Planck equation solutions we used the deterministic
particle framework of ( ).

Algorithm A1: Skeleton of the proposed framework.

Input: O = {(x, 1)} : observed states at timepoint
Output: f: posterior estimate of the drift function
BU): augmented paths of latent states (optional)

// initialise f with a coarse drift estimate

~

Initialise drift estimate £(°) according to Eq. 20
// Approximate Riemannian metric from observations (Eq. 34)

Haq = ApproximateMetric ({Og} £, )

/ /

//
// Construct geodesics between Op and Og4i under the estimated metric
as shortest paths

') = ConstructGeodesics(Oy,, O 1, Haq)

// Fh::lvﬁ}ﬁﬂ geodesic curves between selected observation pairs

for each iteration j do
// augment paths along geodesics using particle flow
BU) = AugmentPaths({O}£_,, T0) fU-1)
// uses the deterministic particle flow / bridge construction
(Alg. A2) to sample augmented trajectories with FO-1
// Gaussian process inference of the drift function
a0 . K .
() = GPDriftInference({O}X_|, BY))

// update GP posterior over f using original and augmented data

end
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Algorithm A2: Path augmentation algorithm employing Deterministic Particle Flow control

Input: N, M: scalars, number of particles and number of inducing points
ti, tk+1, dt: scalars, initial and final timepoints, and discretisation step
O, Oky1: 1 x d, 1 x dinitial and target state
f: current drift estimate
o noise amplitude
~:: geodesic curve in functional representation
Output: F: d X N x (tr4+1 — tx)/dt, sample representation of g;(x)

0 — (trt1—tr)

& // number of timesteps

// Forward filtering p:(z) (Eg. 40)

e=10"3
th‘:o :N(Ok,EId) // initialise particles’ positions
Ziyi—1 = 2o+ dt (f(ZO,to) - %0’2 ZO_EO"') // 1lst step is with analytic score
Forti =2:/ // deterministic propagation
£ 1

Ziit1 =2y +dt (f(ztiat) — 50°Vlog p(Zyi; Zm‘))

W = exp (=U(Zyi+1,t) dt)

T* = EnsembleTransformParticleFilter(Z; 1, W)

Zyiy1 = ZLyiyr - T

// Time-reversed propagation of flow ¢ (x)

Bii—r = N(Ok+1, GId) // initialise particles’ positions

// lst step is stochastic
£ 1 1 _29B—0Oy
Bii—¢—1 =B, —dt (f(Bz,h) + 202V log p(By; Zy¢) — 502%>
Forti=¢—2:0 // deterministic propagation

By-1 =By —dt (E'(Bti»t) — 20°Vlog p(Byi, Zy;) + 302V log Q(Bthi))
// Compute control u(zt) and controlled paths Fo.r
Forti=1:¢
u(x, ti) = 02V log q(x; By;) — 02V log p(x; Zy;)
Fyri=Fu+dt (f(tht) +u(Fy;, ti) — %UQM)

€

With the notation V log ¢(x; B;;) we indicate the score function estimation in a functional form (x)
based on the density represented by the particles By;, while V log ¢(Fy;; By;) indicates the same

score function evaluated at locations F;.
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Algorithm A3: Gaussian process drift inference from an augmented path measure (part I)

Input: Z = {z,;}:_,: inducing points for the sparse GP (Sp)

{X; (tg)}fjjT\,/ particle positions from the path measure () (BALL2)
{8(X;(te),te)}: effective drift evaluated along particles (gbALL2)

kf: kernel with lengthscales /;, {5, /5 (shared across dimensions)

g: diffusion amplitude, 02 = ¢

At: time step of the particle simulation

d: state dimension, N: number of particles, 7”: number of time steps

Output: Approximations I fi), 2(i) of the integrals over A(x) and B(x)

// 0. shorthand and initialisation

1 Set S < | Z| (number of inducing points)
2 Initialise I; € RS*5%d and I, € R5*4 to zero
3 Initialise A € R*%*4 and d € R**< to zero
// 1. compute kernel matrices on
4 Construct the inducing—inducing kernel matrix

the inducing points

Ks=k(2,2) e RS

and compute a regularised inverse

Kg' = (Ks +5[)71, e~ 1073
s Define the kernel map to inducing points
E(Z,x) = (k:f(zi,x))le e RS

// 2. sample-based approximation of A(x) and B(x)
¢ fori=1,...,ddo
// loop over state dimensions
7 for/=1,...,7" do
// loop over time
8 Let X(t;) € R¥ be the particle positions at time #;
9 For each particle position X (t;), compute

k; = kf(Z2,X;(t)) € R®.
Stack them column-wise to obtain

Ko = [ki,...,kn]| € RSV,

10 Let g;(X(t¢),t¢) denote the i-th component of the effective drift at particle j and time
le
// accumulate Monte Carlo estimates of the integrals
1 Update
I 1) + KK I I + Kgi(t),
T
where g;(t¢) = (:(X1(te), te), -, 9:(Xn(te), te))
12 end
// normalise by time and number of particles
13
y A y AL
1 Wlf”, )« WIS).
14 end

In this algorithm Here Il(i
[ KE(Z,x)B;(x) dx.

)

approximates [ kf(Z,x)A(x)kf(x, Z) dx, and Iz(i) approximates
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Algorithm A4: Gaussian process drift inference from an augmented path measure (part II)

Input: Same inputs as Alg. 3

1 1(1')’ 2(i): Monte Carlo approximations from Alg. 3

Ks, IC§1: inducing—inducing kernel matrix and its regularised inverse
Output: Component-wise drift estimators fi(x), 1=1,....d

Expected negative log data likelihood L, under Q¢

// 3. compute A and d for each component
1fori=1,...,ddo
// match Eqg. equation 42 with sparse GP parametrisation
2
: L1 7() o1 ; [ ?)
AD — — kYK dV « S Kg'I
2 VS 1 S > 9 'VS 2
g o
3 end

4 This matches the definitions

A= %Kgl (/ kf(z,x)A(x)kf(x,Z)dx> Kgt, d= %Icgl (/ kf(z,x)B(x)dx> )

// 4. define the component-wise drift estimators

s For each component i = 1,...,d, define
o . -1 .
filx) = K (x, 2) (T + AOKs) a,

so that the full drift estimate is

s T
fs(x) = (fi(x),..., fa(x)) .
// 5. compute expected negative log data likelihood under @y
¢ Initialise accumulators Sl\f\l —0,8v.5 0,540
7for/=1,...,7" do
8 For all particle positions X (¢,), evaluate (X, (t/))

9 Accumulate
N ~
Sisi < Sier+ Y s (X ()17,
=
N A
Sp.g Spg+ ZfS(Xj(tz))Tg(Xj(te),te),
j=1

and compute the trace of the Jacobian V - f5(X;(t)) via automatic differentiation,
accumulating it into Sy. 5

10 end
11 Approximate the expected negative log data likelihood (up to constants) as
At
N

which corresponds to evaluating the quadratic form in Eq. equation 42 under the approximate
posterior Q) .

Loan = = (357 +Sv.5 + Spg) s
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L IMPACT STATEMENT

The aim of this work is to advance the field of dynamical inference for stochastic systems. While we
do not foresee any direct societal consequences directly impinging from our work, we recognize that
stochastic systems could be applied in military contexts, financial engineering, or more recently in
machine learning for data (such as image, audio, video) generation. Still, the proposed method does
not propose interventions that might lead to unfavourable societal outcomes. Overdamped Langevin
systems are widespread in areas such as physics, biology, neuroscience, and ecology. We anticipate
that our contributions will thus help these disciplines by offering a tool to identify and further study
relevant systems.

Our contribution emphasises the importance of incorporating concepts from the evolving field of ge-
ometric statistics into system identification methods for stochastic systems. Although geometric and
topological properties of invariant densities have been extensively studied in the context of deter-
ministic systems, comparable attention is lacking for their stochastic counterparts. Our work further
highlights that in settings where the amount of augmented data exceeds the number of observations,
data augmentation frameworks can enhance inference accuracy by incorporating domain knowledge
or other relevant information, such as the geometry of the system’s invariant density we consider
here. Many algorithms used for data augmentation, including the expectation maximisation algo-
rithm employed in our work ( s ), show only local convergence. As a result, when
the initial estimate deviates significantly from the true value, naive data augmentation methods may
converge to suboptimal solutions that fail to accurately identify the underlying system.

M LLMS USAGE STATEMENT

During the preparation of this manuscript, we used general-purpose large language models (e.g.,
the GPT family) for grammar and writing polishing, minor rephrasing and condensing parts of the
text, for limited code assistance (such as handling error messages and for parallelising and speeding
up parts of the code), and for getting feedback on the finished draft. We did not rely on LLMs
to generate research ideas, methods, experimental designs, analyses, or conclusions. All technical
content, experiments, and claims were designed, implemented, and verified by the authors, who take
full responsibility for the paper. Moreover, we did not embed any executable instructions, hidden
prompts, or other mechanisms intended to influence the peer-review process in the manuscript or its
supplementary materials.
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