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Abstract

Recent advances in neural image compression (NIC) have produced models that
are starting to outperform classic codecs. While this has led to growing excitement
about using NIC in real-world applications, the successful adoption of any machine
learning system in the wild requires it to generalize (and be robust) to unseen distri-
bution shifts at deployment. Unfortunately, current research lacks comprehensive
datasets and informative tools to evaluate and understand NIC performance in
real-world settings. To bridge this crucial gap, first, this paper presents a compre-
hensive benchmark suite to evaluate the out-of-distribution (OOD) performance
of image compression methods. Specifically, we provide CLIC-C and Kodak-C
by introducing 15 corruptions to the popular CLIC and Kodak benchmarks. Next,
we propose spectrally-inspired inspection tools to gain deeper insight into errors
introduced by image compression methods as well as their OOD performance. We
then carry out a detailed performance comparison of several classic codecs and NIC
variants, revealing intriguing findings that challenge our current understanding of
the strengths and limitations of NIC. Finally, we corroborate our empirical findings
with theoretical analysis, providing an in-depth view of the OOD performance of
NIC and its dependence on the spectral properties of the data. Our benchmarks,
spectral inspection tools, and findings provide a crucial bridge to the real-world
adoption of NIC. We hope that our work will propel future efforts in designing
robust and generalizable NIC methods. Code and data will be made available at
https://github.com/klieberman/ood_nic.

1 Introduction

Consider the Mars Exploration Rover, whose scientific objective is to search for clues to past activity
of water (and perhaps life) on Mars. To achieve this, the rover collects images of interesting rocks
and soils to be analyzed by the scientists on Earth. Sending these images down the Earth-bound data
stream in their original form is too slow and expensive due to limited bandwidth. Thus, it is well
accepted that image compression could play a key role in producing scientific breakthroughs [44].

†Work done at Pacific Northwest National Laboratory.
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Employing image compression in such a setting is challenging for three main reasons: 1) a high
compression ratio is desired due to low communication bandwidth, 2) given the battery-operated
nature of these devices, the compression module has to be lightweight so it consumes less memory and
power, and 3) robustness and generalization to environmental noises and domain shifts, respectively,
are desired due to limited Mars-specific training data. These requirements are not specific to the
planetary exploration use case but also arise in a wide range of scientific applications which use
image compression in the wild [33].

Recently, neural image compression (NIC) has demonstrated remarkable performance in terms of
rate-distortion and runtime overhead on in-distribution (IND) data [9, 46]—satisfying requirements
1) and 2). However, there is limited work on understanding the out-of-distribution (OOD) robustness
and generalization performance of image compression methods (requirement 3) [42]. Our work is
driven by several open fundamental empirical and theoretical questions around this crucial issue.

How can the expected OOD performance of image compression models be reliably assessed? Can
we gain a deeper understanding of the modus operandi of different image compression methods?
How do training data properties and biases impact data-driven compression methods?

Main Contributions: This paper takes a critical view of the state of image compression and makes
several contributions toward answering the aforementioned questions. ❶ First, we design compre-
hensive benchmark datasets for evaluating the OOD performance of image compression methods.
Inspired by existing OOD benchmarks for classification and detection [26, 28, 57, 56], we design
CLIC-C and Kodak-C by introducing 15 common shifts emulating train-deployment distribution
mismatch to the popular CLIC and Kodak datasets. ❷ Next, we focus on understanding the image
compression performance. The de-facto approach is to use rate-distortion (RD) curves measured with
perceptual quality metrics, such as PSNR. Such scalar metrics, although easy to compute, are known
to be extremely limited in what they can capture and sometimes can even be misleading [63, 61]. To
complement RD curves, we propose spectrally-inspired inspection tools that provide a more nuanced
picture of (a) compression error, and (b) OOD performance of a given method. Specifically, we
introduce a power spectral density (PSD) based approach to understand the reconstruction error. Our
approach not only quantifies how much error was made but also highlights precisely where it was
made (in the frequency domain). Similarly, to understand the OOD performance of a compression
method in unseen deployment scenarios, we propose Fourier error heatmaps—a visualization tool for
highlighting the sensitivity of the reconstruction performance of a compression method to different
perturbations in the frequency domain. ❸ Using our benchmark datasets and inspection tools, we
carry out a systematic empirical comparison of classic codecs (i.e., JPEG2000, JPEG, and VTM)
with various NIC models (fixed rate, variable rate, and pruned versions of the scale hyperprior model
[9], as well as efficient learned image compression (ELIC) [24]). ❹ Finally, we develop theoretical
tools to connect NIC OOD performance with its training data properties.

Main Findings: Our analysis resulted in some invaluable insights about the state of image com-
pression. We summarize some of our findings below.

• Compression methods yielding the same PSNR (or bpp) can produce very different spectral arti-
facts. Our tools help uncover hidden spectral biases and highlight the limitations of de-facto RD
curve-based performance comparison.

• As the compression rate increases, different codecs prioritize different parts of the frequency
spectrum. By precisely characterizing this behavior, our tools help in advancing the current
understanding of the modus operandi of image compression methods.

• Image compression models generalize to low- and mid-frequency shifts better than high-frequency
shifts. This finding calibrates our expectations for image compression performance on OOD data.

• NIC models are better at denoising high-frequency corruptions than classic codecs. This finding
reveals that unlike classic codecs, NIC models have an inherent spectral bias due to the image
frequencies present in their training data.

• Identifying the most suitable compression method becomes exceptionally challenging without the
knowledge of spectral characteristics of OOD shifts. Our systematic evaluation identifies this open
issue with current compression methods and suggests the design of next-generation NIC models
that can adapt themselves at runtime based on the spectral nature of the data to be a potentially
worthwhile direction to pursue in the future.
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Figure 1: (a) Top row: An original CLIC image and the same image with 3 different corruptions in
CLIC-C (severity 5). Bottom left: Average PSD of CLIC dataset, 1

N

∑N
k=1 PSD(Xk). Bottom row,

other figures: Average PSD of the difference between the corrupted images and the clean images for
each given CLIC-C corruption c, 1

N

∑N
k=1 PSD(c(Xk)−Xk). (b) CLIC-C corruptions categorized

as low, medium, or high based on corruption average PSD.

We corroborate our findings with a detailed theoretical analysis, showing that multiple overarching
trends in our experimental results can be attributed to neural compression models’ spectral bias.

Appendix A has a detailed related work discussion, while all references are listed in the main paper.

2 Out-of-distribution image compression datasets

To evaluate NIC in the presence of environmental or digital distribution shifts, we generated variants
of the CLIC and Kodak datasets, which we refer to as CLIC-C and Kodak-C. Following the techniques
presented in [26] for studying the performance of DNN classifiers encountering distributional shifts
“in the wild", our -C datasets consist of images augmented by 15 common corruptions. For each
image in the original dataset, the -C dataset contains a corrupted version of the image for each of
the 15 common corruptions2, and for each of five corruption severity levels, with 1 being the lowest
severity and 5 being the highest. A sample of some corruptions on CLIC-C is provided in Figure 1a.

While each -C dataset offers a broad sampling of environmental or digital image corruptions, it
also provides a spectrally diverse collection of corruptions, in the sense that each corruption can be
categorized as low, medium, or high frequency based on the frequency content used for perturbations.
We will write PSD(·) to denote the function that converts the input image from the spatial to the
frequency domain by computing the power spectral density of the input. Practically, computing
PSD(·) is done by applying the fast Fourier transform (FFT) [11], followed by a shift operation
to center the zero-frequency component, then taking the absolute value. Now suppose we have a
set X = {Xk}Nk=1 of uncorrupted images and some corruption function c(·) (e.g., frost, gaussian
noise, etc.). We analyze the spectrum each corruption c(·) by computing 1

N

∑N
i=1 PSD(Xi− c(Xi))

(see Figure 1a). We classify the corruptions into types of frequencies: low, medium, and high
using the characterization from [39], which has been adopted by the neural network robustness
community. Note that categorizing a corruption as high is more akin to saying it “contains substantial
high-frequency content” rather than saying it “exclusively consists of high-frequency content.”

3 Spectral inspection tools

While existing scalar metrics, such as PSNR, are able to summarize the visual similarity of recon-
structed images to the original, we will demonstrate that such metrics can provide an incomplete
(and sometimes misleading) picture when measuring the impact of compression in OOD settings.
Notably, existing tools do not consider the impact of compression on different frequency ranges of
images within a dataset. To more thoroughly analyze the effects of image compression, we propose
to measure and visualize the effect of image compression in the spectral domain. Given an image
compression model C that returns reconstructed images, we introduce tools for analyzing compression

2We used github.com/bethgelab/imagecorruptions to apply corruptions to Kodak and CLIC images
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error in the Fourier domain to better understand (i) which spectral frequencies are distorted by C, (ii)
the OOD generalization error, and (iii) the robustness error in the presence of distributional shifts.

Definition 3.1 (Spectral Measure of Distortion Error). To analyze (i), we evaluate the image com-
pression model C’s ability to reconstruct components of an image across a range of frequencies. To
quantify this, we compute the average PSD of the difference between each image Xk in a dataset X
and the reconstructed version C(Xk) of Xk: D(C,X ) := 1

N

∑N
k=1 PSD(Xk − C(Xk)).

Definition 3.2 (Spectral Measure of OOD Generalization Error). For (ii), we evaluate C’s ability to
faithfully reconstruct OOD images. To quantify this, we extend the metric D(C,X ) to account for a
corrupted version c(X ) of X as follows: G(C,X , c) := 1

N

∑N
k=1 PSD(c(Xk)− C(c(Xk))).

Definition 3.3 (Spectral Measure of OOD Robustness Error). For (iii), we evaluate C’s denoising
ability. To quantify this, we compute the average PSD of the difference between each uncorrupted
image Xk and the reconstructed version C(c(Xk)) of the corresponding corrupted image c(Xk):
R(C,X , c) := 1

N

∑N
k=1 PSD(Xk − C(c(Xk))).

The PSD function used in the above formulas converts the input image from the spatial to frequency
domain by applying the Fast Fourier Transform (FFT) followed by a shift operation to center the
zero-frequency component. The proposed tools are computed for a set of images by averaging the
power spectral density (PSD) of the difference between the compressed image and the original for
each image in the set of images. For simplicity, when (C,X , c) is clear from the context, we will just
write D, G, or R. Note that G provides insight into the compression model C’s ability to generalize to
a distribution shift c while R visualizes the denoising effect (or lack thereof) of C across the frequency
domain.

In Appendix B, we present results using an additional tool, the Fourier heatmap, that utilizes Fourier
basis perturbations as corruptions and is used to corroborate our findings for the specific -C datasets
and corruptions we consider. This tool can be leveraged when specific OOD data is unavailable.

4 Experiments and findings

Using our spectral inspection tools and OOD datasets, we analyze the performance of several image
compression methods and identify several inter- and intra-class differences between classic codecs
and NIC methods. We show results for two classic codecs, JPEG and JPEG2000, and two NIC
models, SH NIC and ELIC, in the main body and report the remaining results in Appendices C and D.

Classic codecs. We apply each of the following algorithms over several compression rates q.

• JPEG [60]
• JPEG2000 [53]
• Versatile Video Coding (VVC) (equivalently h.266) using the VVC Test Model (VTM)

software [30, 3]

Neural Image Compressors (NIC) Models. NIC optimization uses a hyperparameter λ to control
the relative weight of distortion (quality of reconstruction) and rate (level of compression) terms in
the objective function. We train each NIC model over several values of λ. All models were optimized
on the train split of the 2020 CLIC dataset [59]. Further details on their model architectures and
training can be found in Appendix I.

• SH NIC: Scale-hyperprior model from Ballé et al. optimized for PSNR (i.e., distortion
objective is mean squared error) [9].

• ELIC: Efficient Learned Image Compression optimized for PSNR [24].
• Variant of SH NIC optimized for MS-SSIM [9].
• Variable-rate version of SH NIC optimized using Loss Conditional Training [17].
• Variable-rate model above with 80-95% of weights pruned using gradual magnitude pruning

[70].

Evaluation setup. We compare distortion, robustness, and generalization error of different image
compression methods under three constraints: (a) no constraint, (b) fixed-bpp, and (c) fixed-PSNR.
In (a), we compare methods over their full range of rate-distortion tradeoffs by generating rate-
distortion curves. In (b), we compare models with hyper-parameters which give a very similar bits per
pixel (bpp) result on a particular dataset. For example, we find that on the CLIC dataset, SH NIC with
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Figure 2: Visualizing distortion via CLIC test set evaluation. Left: spectral measure of in-
distribution reconstruction error D under the fixed-bpp constraint at three rates. Center: Rate-
distortion curves with vertical lines indicating fixed-bpp values and horizontal lines indicating
fixed-PSNR values. Right: D under fixed-PSNR constraint. Each D plot is labeled with a tuple of
that model’s (bpp, PSNR) on CLIC. Hotter colors (red) indicate more error in that frequency range.

λ = 0.15, ELIC with λ = 0.15, JPEG2000 with q = 10, and JPEG with q = 75 all give a bpp close
to 1.21. Thus, comparing these three models with those hyper-parameters on CLIC under a fixed-bpp
constraint, emulates a setting in which a fixed budget is available to store images. Analogously, in (c)
we compare models with hyper-parameters yielding a fixed PSNR. This allows the comparison of
spectral properties of data distributions that achieve the same quality according to the scalar PSNR
metric. Scenarios (b) and (c) are used when evaluating D,G,R, Fourier heatmaps, and accuracy on a
downstream task.

Test data. All models are tested on (a) in-distribution (IND) and (b) corrupted (or OOD) datasets.
For (a), we use the 2020 CLIC test split, the full Kodak dataset, and the ImageNet validation split.
For (b), we use the corresponding -C datasets for each of the datasets in (a). The main body contains
results for the CLIC/CLIC-C dataset. Analogous results for Kodak are in Appendix G.

4.1 Evaluating spectral distortion on IND data

On in-distribution (IND) data, the existing RD curve metrics in the center of Figure 2 highlight the
established trend that these NIC models outperform the JPEG2000 and JPEG across the compression
rates that the NIC model is trained on (bpp ∈ [0.1, 1.5]), with ELIC outperforming SH NIC and
JPEG2000 outperforming JPEG.

Next, we use our spectral inspection tool D to better understand the effects of different image
compression methods. Specifically, Figure 2 shows plots of D under three fixed-bpp and three
fixed-PSNR scenarios on the clean CLIC dataset. We highlight some surprising insights below.

Two methods yielding the same PSNR can produce very different spectral artifacts. Under
the fixed-PSNR constraint (right side of Figure 2), each column consists of methods with hyper-
parameters selected to give very similar PSNRs on the CLIC test set (e.g., models on the “high
psnr” column all have PSNR ≈ 36.8). Despite having comparable PSNRs, the plots of D vary
greatly between the four models. In particular, the SH NIC models distort high frequencies more
than medium frequencies (notice the warmer-colored rings around the edges of the D plots with
cooler-colored centers). JPEG2000, on the other hand, distorts low and medium frequencies more
than high frequencies (notice the large rectangles of warmer colors). ELIC distorts all frequencies
relatively evenly (the color gradients in the plots are very narrow).3 JPEG severely distorts one
ring, but this ring includes lower frequencies (has a smaller radius) than the rings left by SH NIC.
This same pattern holds under the fixed-bpp constraint (left side of Figure 2). These observations
demonstrate that PSNR is not a comprehensive metric.

3We provide a more detailed view of the ELIC plots with smaller color bars in Figure 14 of the Appendix.
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Figure 3: Rate-distortion curves for a representative low, medium, and high-frequency shift.
Each shift and model has three curves for severity=1 (least transparent), severity=3, and severity=5
(most transparent). Top row: generalization of C(c(X )) w.r.t. c(X ) (i.e., PSNR of the reconstructed
shifted images w.r.t. the original shifted images). Bottom row: denoising of C(c(X )) w.r.t. X (i.e.,
PSNR of the reconstructed shifted images w.r.t. the original clean images).

As the compression rate increases, different codecs prioritize different parts of the spectrum.
On the left side of Figure 2, each column represents a different “budget” scenario where the three
methods have hyper-parameters which result in the models giving very similar bpps on the CLIC test
set. Although it was previously known that the quality of the reconstructed images decreases as the
bpp decreases, it was not previously known which frequencies NIC models distort to achieve a given
bpp. The D plots show that JPEG2000 models corrupt low- and mid-frequency regions starting at low
compression rates and these regions become more severe as the budget decreases. SH NIC models do
almost the opposite—they sacrifice the highest frequencies first and expand this region into lower
frequencies at more severe compression rates (i.e., as bpp decreases). JPEG has a mechanism more
similar to JPEG2000 in that it corrupts one ring and increases the severity of this ring, while ELIC
models corrupt all frequencies evenly and then corrupt low frequencies more as bpp decreases. This
suggests that as the compression rate increases, classic codecs corrupt the same frequencies more
severely while NIC models change their corruption patterns.

4.2 Evaluating the generalization and the robustness on OOD data

We use the CLIC-C dataset and our spectral tools to study the OOD performance of different image
compression methods. We show results for example shifts (one low, medium, and high-frequency
representative) and three severities (1, 3, and 5 where 5 is most severe) in Figures 3 and 4 and discuss
several interesting findings below.

4.2.1 Rate-distortion curves on OOD data

Image compression models generalize to low- and mid-frequency shifts better than high-
frequency shifts. The top row of Figure 3 shows how well different compression models generalize
to shifted images in terms of RD curves. In other words, these plots show how well a compressor C can
reconstruct a given shifted image c(X ) in terms of PSNR of C(c(X )) with respect to c(X ). The three
examples of corruption in this figure show vastly different trends. On the low-frequency corruption
(snow), all four models can reconstruct c(X ) almost as well as these models can reconstruct clean
images: note the PSNR range in the top left plot of Figure 3 is about 22-40 while the PSNR range for
the clean data in Figure 2 is about 28-42 over the same bpp range. Interestingly, the three models
can reconstruct the images with the glass blur (a medium-frequency shift) better than they can
reconstruct clean images (the PSNR of the data shifted with glass blur ranges from about 25-48 with
bpp < 1). These results suggest that image compression models are fairly effective at generalizing
to low-frequency shifts and very effective at generalizing to medium-frequency shifts. However, the
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Figure 4: Generalization error G (top) and denoising error R (bottom). We plot both spectral
metrics for one low, medium, and high-frequency corruption at severities 1 and 5. Each plot is labeled
with a tuple of that model’s (bpp, PSNR) on the CLIC-C dataset with that corruption.

high-frequency shift (shot noise), gives a starkly different result. All four models give very low
PSNRs with respect to c(X ). Even at the lowest severity (severity=1), this PSNR is only in the low
20s. As the severity increases (i.e., as the lines become more transparent), the PSNR decreases even
more to the point that, at the highest severity, none of the models can achieve a PSNR higher than
14. Notably, the main factor determining the PSNR is the severity of the corruption and not the
compression model or bpp. This suggests that it is significantly harder to generalize to high-frequency
data than to low- or mid-frequency data.

NIC models are better at denoising high-frequency corruptions than classic codecs. The second
row of Figure 3 shows how well different compressors C denoise corrupted images in terms of the
PSNR of C(c(X )) with respect to X . These results show that all the models fail at denoising snow
(low-frequency) and glass blur (medium-frequency) corruptions (PSNR does not change much with
an increase in bpp, except at low bpps on glass blur). However, on shot noise (a high-frequency
corruption) both NIC models achieve better PSNRs with respect to X than both classic codecs. This
trend is consistent for all three severity levels and suggests that NICs may be a more effective method
for denoising high-frequency corruptions than the previously-used JPEG and JPEG2000 methods.
The implication of this finding extends to the research area of adversarial example denoising [6].

4.2.2 Spectral analysis on OOD data

We now take a deeper look at the Section 4.2.1 findings using our spectral inspection tools.

Spectral artifacts are similar for low-frequency shifts and clean images. The patterns of G in
Figure 4 measure how well each model generalizes to (or reconstructs) the shifted images. For the
low-frequency shift (top row of Figure 4), the plots look strikingly similar to the patterns exhibited
by the same models on clean data (Figure 2 top and bottom row): SH NIC models distort high
frequencies more than low frequencies while JPEG2000 distorts low and medium frequencies more
than high frequencies. Similarly, ELIC distorts all frequencies relatively evenly and JPEG severly
distorts one ring of frequencies. This suggests that the methods’ modus operandi for generalization to
data with low-frequency shifts is similar to their modus operandi on clean data, which makes sense
as clean data is dominated by low/mid frequencies. Interestingly, these generalization differences
between compressors are not accompanied by differences in robustness metric R. All methods show
similar patterns in their plots of R patterns and these in turn look similar to the snow corruption plot
in Figure 1a. This is consistent with our finding from Figure 3 which showed that both NIC and
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Figure 5: Effect of compressing corrupt images on classification accuracy. Each bar shows the
average difference in accuracy after compressing with different methods C for a group of corruptions
as classified in Table 1b. Specifically, let A(X) be the top-1 accuracy of the model on dataset X ,
measured in percentage points. Then we report A(C(c(X)))−A(c(X)) over all -C corruptions in the
corruption category with severity 3 (or on clean ImageNet in the case of “clean”). Each subplot shows
results under a different fixed-PSNR constraint based on the PSNRs achieved by the compressors on
the clean ImageNet dataset. Results for individual corruptions are in Figure 15.

JPEG200 fail to denoise low-frequency corruptions. In other words, Figure 4 shows that NIC and
classic codecs fail in a very similar manner on low-frequency signal denoising tasks.

Both NIC and classic codecs make almost no generalization error on medium-frequency shifts.
The second row of Figure 4 shows that all four methods have very small generalization errors
(magnitudes < 0.2), and this low error is relatively uniform across all frequencies. This shows that
all the models models are very effective at reconstructing all the frequencies in images with glass
blur—in fact, they can reconstruct these images better than they can reconstruct clean images—
corroborating our first finding in Section 4.2.1. Again the R plots for glass blur for both of these
models look very similar to Figure 1a; this similarity has a simple explanation due to a fundamental
tradeoff between generalization and robustness. This relationship between R,G and average PSD of
corruptions is described more precisely in Appendix L.4.

High-frequency corruptions uncover the spectral bias of NIC models. Section 4.2.1 highlighted
that high-frequency signals severely degrade the generalization performance of all image compression
methods. From the RD curves with respect to the corrupt images (top right plot in Figure 3), we
observe that at each severity the three models have almost identical performance in the usual 0-2
bpp range. These results might lead us to expect that these models make similar reconstruction
mistakes, but our spectral inspection tools indicate that this is not the case at all. Our plots of G on
shot noise at severity=5 (bottom row, columns 2, 4, 6, and 8 of Figure 4) indicate that NIC models
distort the highest frequencies significantly more than the low and medium frequencies (notice the
orange borders of the plots) while JPEG and JPEG2000 exhibit different patterns. This nuance, which
is equivalent to one we previously observed with clean data in Figure 2, becomes more apparent
from the plots of G on a high-frequency corruption because high-frequency signals are much more
prevalent on this data than on the clean data. Additionally, the bottom right plot of Figure 3 shows
that for shot noise, NIC models achieve higher PSNR of the reconstructed corrupt images with respect
to the clean images than the classic codecs, i.e., they have a stronger denoising effect. In the bottom
right of Figure 4 we see a more detailed picture: for high severity shot noise, NIC models achieve
lower R in high frequencies. Also, note that the NIC models have the smallest errors in G whereas
they have the largest errors in R and vice versa. Thus, these findings suggest that NIC models behave
similarly to a low-pass filter.

4.3 Impact of spectral artifacts on downstream applications

In practice, image compression algorithms may be used as a pre-processing step before images are
used for another downstream task. For this reason, practitioners should also consider the performance
on downstream tasks when comparing compression methods. We analyze the effectiveness of
the compression methods on the downstream task of ImageNet classification using a pre-trained
ResNet-50 model and report the difference in top-1 accuracy after compression (Figure 5) [25].
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NIC can improve the robustness of downstream classification to high-frequency corruptions.
While in general, compression degrades classification performance on clean images (all compressors
show negative differences for the “clean” category in Figure 5), in some cases NIC and JPEG
can actually improve the robustness of the classification model against high-frequency corruptions.
Specifically, at PSNR=36.93, the difference in accuracy is positive for high-frequency corruptions
with both SH NIC and ELIC, meaning that the classification model gave a higher accuracy on the set
of corrupted images after compression than it did on the original corrupted images. Compressing
with JPEG or JPEG2000 at the same rate caused a degradation in accuracy on these corruptions.
However, at higher compression rates (PSNR=32.97 and PSNR=31.17), JPEG improves classification
performance for high-frequency corruptions, while SH NIC and ELIC do not. On low- and mid-
frequency corruptions, JPEG and JPEG2000 have a smaller degradations in accuracy compared to
NIC the NIC models and no model gives an improvement in classification accuracy. Thus, the ideal
compressor for downstream tasks is dependent on the type of corruption and level of compression.

Pruning NIC models amplifies the robustness gains of NIC for downstream classification tasks.
Additional experimental results in Appendix C (Figure 9), show that pruned NIC and NIC optimized
for MS-SSIM act as even better high-frequency signal denoisers for this application.

5 Theoretical analysis of the OOD performance of NIC

We corroborate our empirical findings with theoretical results. Here we summarize theoretical results
on linear autoencoder-based NIC methods. For complete definitions, additional references, and proofs
of the following statements, please refer to Appendix L. In Appendix L.3, we provide a more general
result applicable to nonlinear models.

Recall a classical observation: in the setting of linearly auto-encoding a mean-centered distribution,
the reconstruction function (i.e., encoder-decoder composition) is a projection onto the high-variance
principal components of the input data [18] (see also [7]). Combining this with well-known facts
about statistics of natural images, we show that a linear autoencoder applied to a natural image
dataset retains only low-to-mid (spatial) frequency components, which account for the majority of the
variance. Using this result, we state theoretical explanations for multiple trends in our experiments4.

Lemma 5.1. Let X be a dataset of natural images and let X̂ denote its (spatial) discrete Fourier
transform. Assume the following (for supporting evidence see Appendix L):

(I) The principal components of X̂ are roughly aligned with the spatial Fourier frequency basis.
(II) The associated variances are monotonically decreasing with frequency magnitude (more

specifically according to the power law 1
|i|α+|j|β ).

If C is a linear autoencoder trained by minimizing MSE on X , with latent space of dimension r, and
if “̂ ” denotes the spatial discrete Fourier transform, for any data point X with Fourier transform X̂

Ĉ(X) ≈
{
X̂:,ij : i2 + j2 ≤ r

πK

0 : otherwise.

where K is the number of channels in the images in X and where X̂:,ij denotes the components of X̂
corresponding to spatial frequency (i, j).

Corollary 5.2. Under the hypotheses of Lemma 5.1, the robustness error of C to a corruption c (as
defined in Definition 3.3), measured in spatial frequency (i, j), is

R(C,X , c)ij ≈

{
1
N

∑
k|(ĉ(Xk)− X̂k):,ij | : i2 + j2 ≤ r

πK
1
N

∑
k|X̂k:,ij | : otherwise.

Corollary 5.3. Under the hypotheses of Lemma 5.1, the generalization error of C to a corruption c
(as defined in Definition 3.2), measured in spatial frequency (i, j), is

G(C,X , c)ij ≈

{
0 : i2 + j2 ≤ r

πK

1
N

∑
k

√
|X̂:,ij |2 + 2X̂:,ij(ĉ(X)− X̂):,ij + |(ĉ(X)− X̂):,ij |2 : otherwise.

4Since this simplified model has no compression rate objective, one should only expect the above theoretical
results to be predictive (or explanatory) of the high bpp/PSNR cases of our experiments.
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Lemma 5.1 suggests that autoencoder compressors trained on natural images behave like low-pass
filters, corroborating our claim in Section 4.2.2 (see also remark L.1).

Corollary 5.2 suggests that autoencoder compressors trained on natural images are less robust to
corruptions with large amplitude in low frequencies (in the sense that |(c(X)−X):,ij |2 is large for
small values of ij). This is indeed what we see in Figure 3 (bottom left), where snow corruptions
are detrimental to PSNR of C(c(X )) w.r.t. X , and Figure 4, where the R(C,X , c) error for the NIC
is concentrated in low frequencies. We also observe in Figure 5 that NIC is more beneficial for
downstream classification accuracy in the case of high-frequency corruptions (e.g. shot noise) and
less beneficial in the case of low-frequency corruptions (e.g. snow).

On the other hand, the conclusion of Corollary 5.3 is more involved than that of Corollary 5.2–
the “cross term” 2X̂:,ij(ĉ(X) − X̂):,ij is in general non-zero. However, there are cases where in
expectation over the data set X this cross term vanishes (e.g., when c is additive noise). In such
cases, Corollary 5.3 suggests that compressors trained on natural images generalize less successfully
to shifts with large amplitude in high frequencies. In Figure 3 (top right) we see that shot noise
corruptions are detrimental to PSNR of C(c(X )) w.r.t. c(X ), and in Figure 4 we see that for the snow
and shot noise corruptions, G(C,X , c) are concentrated in high frequencies.5 In summary, with both
theoretical analysis of a simple mathematical model and empirical results, we find that NICs have a
spectral bias that causes them to overfit to discard high frequency components of natural images..

6 Limitations

Due to the number of axes of variation present in our experiments (e.g., model type, compression
rate, evaluation dataset, corruption type, corruption severity, evaluation metric), we were forced to
constrain many variables. We present results for a limited number of NIC models all trained on one
dataset, CLIC. Due to limitations on the number of models we could train and discrete choices for
classic codec hyper-parameters, there is some variation within our fixed- {bpp,PSNR} bins.

Evaluating the robustness of any machine learning system is inherently a multi-faceted problem
riddled with unknown-unknowns. While we focus on robustness to naturalistic input-data corruptions,
there are other important distribution shifts for researchers and practitioners to consider, such as
subtle changes in data collection methodology [51]. We omit a study of NIC model adversarial
robustness to worst-case input data perturbations. Nevertheless, we hope that the our evaluation
methods (including our metrics {D,G,R} and Fourier heatmap spectral inspection tools) will be
useful in future work on NIC model robustness.

7 Conclusion and future directions

We proposed benchmark datasets and inspection tools to gain a deeper understanding of the robustness
and generalization behavior of image compression models. Using our spectral inspection tools, we
uncovered the modus operandi of different compression methods. We also highlighted similarities
and differences among them via a systematic OOD evaluation. Exploring the use of our tools in
other image compression methods, including transformer-based architectures and implicit neural
representations methods is expected to provide interesting insights [41, 72, 73, 45, 54]. Our OOD
evaluations identify NIC model brittleness issues: designing practical robust training approaches
and/or methods to efficiently adapt to distribution shifts at runtime is a worthwhile research direction.
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A Background and Related Work

A.1 Neural Image Compression (NIC)

In lossy image compression, an input image is compressed into a small file or bitstream for trans-
mission or storage. This file is then used to reconstruct the original image. Several models have
been proposed for neural (or learned) image compression such as convolutional neural networks
(CNNs), autoencoders, and generative adversarial networks [22, 8, 9, 46, 58, 13, 65, 71, 47]. In the
most basic version of these models, an image vector x is mapped to a latent representation y using
a convolutional autoencoder. y is then quantized into ŷ, so it can be compressed to a bitstream via
an entropy coding method, such as arithmetic coding [52]. During reconstruction, the received bits
go through the reverse entropy coding process and the revealed ŷ is fed into a CNN decoder which
outputs the reconstructed image x̂. These models can be trained end-to-end by using differentiable
proxies of entropy coding [8].

Normally entropy coding relies on one prior probability model of ŷ, which is learned from the entire
set of images. Ballé et al. [9], however, recognized that the prior of this model can be optimized for
each image separately. By adding an additional hyperprior autoencoder to their model, they learn
the latent representation for the entropy model of each image. The information transmitted from this
autoencoder can be seen as equivalent to “side information” used by other codecs. Minnen et al. [46]
further improved this model by adding an autoregressive prior to the hierarchicial prior used by Ballé.
The Efficient Learned Image Compression (ELIC) model builds on these models by adding uneven
channel-conditional adaptive coding and a spatial context model [24].

A.2 Generalization and robustness in DNNs for classification

It is well known that deep neural networks (DNNs) are prone to overfitting to the specific data
distribution they are trained on. Much recent work has focused on improving the robustness of
DNNs to other distributions of data, including common image corruptions [27, 66]. CIFAR-10-C
and ImageNet-C were proposed as a benchmark datasets to test the robustness of models to common
image corruptions such as corruptions from weather, blur, and digital noise [26]. Methods for
improving robustness include data-level techniques such as adding augmentations and algorithm-level
techniques like using larger models or adversarial training. [27, 32, 28, 14].

Yin et al. study the effects of data augmentation and adversarial training on different corruptions
using a Fourier analysis [66]. They analyze the CIFAR-10-C dataset and find that most augmentation
methods help in the high-frequency domain, but hurt in the low-frequency domain. However, it is
unknown how image compression affects corrupted images. We analyze how different types of image
compression affect the Power Spectral Density (PSDs) of both clean and corrupted data.

A.3 Generalization and robustness with NIC models

There is a limited amount of work studying the generalization and robustness of NIC models. [37]
formulates a problem for designing robust NIC models and train DNNs to be robust to two particular
types of distributional shifts. They find a tradeoff between OOD robustness and IND performance.
Our work is complementary to this work in that we provide additional metrics and OOD benchmarks
to analyze the robustness of various models in more detail. [42] studies NIC models’ robustness to
white-box and black-box adversarial attacks and proposes new models which improve the robustness
of NIC to such attacks. Our work instead looks at naturalistic distribution shifts, which is another
important aspect of robustness [26].

[2] designed a NIC module which works on a specific set of OOD images. In particular, their module
works on high dynamic range (HDR) images, despite being trained on mostly standard dynamic range
(SDR) images. Although this is a specific example of testing NICs on OOD data, our work differs
from theirs in that we analyze how NICs would perform on a wide variety of image corruptions
without seeing any examples of these corruptions during training.

Additionally, [38] addresses the issue of “multi-generational loss”, or the problem of a rapid degrada-
tion of quality as images are repeatedly encoded and decoded, with NIC models. Our work differs
because we propose spectral tools to analyze the effects of one cycle of encoding and decoding and
we study how this affects the performance of different downstream tasks. While multi-generation
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loss is an important area of study for tasks like image editing, we focus on analyzing the spectral
distortions caused by one cycle of image compression and how these affect a model’s generalization
and robustness to OOD data. Furthermore, [38] proposes using JPEG2000 as a method to improve
the robustness of classification tasks by compressing adversarial noise. We explore how NIC models
compare to JPEG2000 in terms of their robustness to several common types of image corruptions.

A.4 Lightweight NIC via model pruning

In an effort to reduce the energy and compute cost required by deep neural networks (DNNs), much
work has been devoted towards finding methods to approximate DNNs. Common approaches include
pruning network weights or quantizing network weights and activations [19, 20, 48, 69, 40, 15].
Remarkably, large sparse models have been shown to outperform small dense models with the same
number of weights [70]. Additionally, approximating DNNs can have benefits in terms of robustness
on OOD data [16].

Nonetheless, limited efforts to prune or quantize NIC models have been explored. Recently, Gille
et al. [21] successfully introduced structured sparsity into NIC models to simultaneously reduce
storage and power costs while maintaining a similar rate-distortion curve when compared to a dense
version of the same NIC architecture. Their findings produced ∼80% reduction in the number of
parameters and ∼30% reduction in MAC operations required by the NIC encoder. Yin et al. [68] also
explored the use of structured sparsity in NIC and their proposed ABCM method was demonstrated to
provide up to 7× and 3× reduction in DNN parameters and inference time, respectively, with only a
mild reduction to reconstruction quality. Luo et al. [43] proposed a technique for pruning NIC models
that was demonstrated to maintain the same bpp as dense models but provided a parameter reduction
of at most ∼34%. Sun et al. [55] demonstrated a technique for quantizing both NIC weights and
activations to an 8-bit fixed point representation while yielding a rate-distortion curve comparable to
the original 32-bit float NIC model. Outside of DNN pruning or quantization, alternative techniques
have been explored for more efficient NIC [31, 67, 23].

A.5 Metrics for quantifying image compression quality

The objective of lossy image compression is to achieve a balance between minimizing 1) the size
of the compressed file and 2) the distortion of the reconstructed image compared to the original
image. As these objectives are inherently at odds, the performance of lossy image compression is
typically measured using a rate-distortion curve, which measures the size of the compressed image
(rate) versus the quality of the reconstructed image (distortion). The rate is usually measured in bits
per pixel (bpp), which is the average number of bits required to store each pixel in the compressed
representation. The distortion is usually measured by scalar metrics such as peak signal-to-noise ratio
(PSNR) or a visual similarity metric such as MS-SSIM [62].

A.6 Benchmark datasets

We utilize two benchmark datasets for evaluating performance of our NIC models. For training and
testing, we make use of CLIC (Challenge on Learned Image Compression) 2020 [59]. This collection
is comprised of 1633 training, 102 validation, and 428 test images. The images are of varying
resolution and are further categorized as either professional or mobile. To evaluate generalization,
we make use of the Kodak [34] dataset which consists of 24 images of resolution 768 × 512 (or
512× 768).

B Additional results: Fourier heatmaps

While our spectral tools allow us to measure different capabilities of compression models, they
require the availability of OOD, or corrupted, data. To support a setting in which such OOD data is
unavailable, we propose adopting another tool: the Fourier sensitivity heatmap. This tool evaluates
the PSNR of a compression model on data perturbed with Fourier basis elements [66]. The resulting
visualization is a heatmap where the value at coordinate (i, j) is the PSNR of the compression
method on perturbed data {Xk + rkεUi,j}Nk=1, where each rk is selected uniformly at random from
{−1, 1}, ε is the norm of the perturbation, and Ui,j is the (i, j)th Fourier basis matrix. From [66],
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Figure 6: Fourier heatmaps of methods under the fixed-bpp setting (top) and fixed-PSNR setting
(bottom). Left: PSNRs of C(c(X )) with respect to c(X ). Right: PSNR of C(c(X )) with respect to
X . Warmer colors (red) indicate higher PSNR.

Ui,j ∈ Rn1×n2 and satisfies (i) ∥Ui,j∥ = 1 and (ii) F(Ui,j) has at most two non-zero coordinates
specifically at (i, j) and the coordinate symmetric to (i, j) about the matrix center.

We consider two versions of Fourier heatmaps: (a) with respect to perturbed data and (b) with respect
to original data. To analyze (a) and (b), the PSNR at each coordinate (i, j) is computed with respect
to the perturbed dataset, {Xk + rkεUi,j}Nk=1, and the unperturbed dataset, {Xk}Nk=1, respectively.
(a) and (b) can be seen as measures of generalization and robustness respectively.

We computed Fourier heatmaps over the CLIC dataset in Figure 6. We use models from Appendix C,
where FR NIC is equivalent to SH NIC in the main body and selected hyper-parameters for these
models using a fixed-bpp/PSNR constraint on the clean data. Note: in these Fourier heatmap plots,
warmer colors represent higher PSNR, which is in contradiction to the plots of D, G, and R where
warmer colors represented more error.

On the left side of Figure 6, we analyze the generalization of the image compression models to
various frequency shifts. We find that all image compression models generalize to low and medium-
frequency signals better than high-frequency signals. Specifically, observe how the centers of the
plots–corresponding to low-frequency signals–have hotter colors than the edges of the plots. This
corroborates our findings from both the RD curves and G metrics on the CLIC-C dataset in Section 4.2
and Appendix H. For FR NIC opt. MS-SSIM, this difference is only noticeable at the lowest bpp;
however for the other models, there is a clear difference in performance for low and high-frequency
shifts at all bpps. Additionally, the effect of pruning is a degradation in PSNR at all frequencies.

On the right side of Figure 6, we analyze the robustness, or denoising, capabilities of the models.
These plots show that NIC models are better at denoising high-frequency corruptions than low-
frequency corruptions (notice the cooler-colored diamonds in the center of the NIC plots). Meanwhile
JPEG2000 has very consistent and poor denoising properties across the entire range of corruption
frequencies (the plots are blue with a narrow gradient of color compared to the NIC plots). According
to this metric, NIC opt. MS-SSSIM also has poor denoising capabilities (the plots are all dark blue
compared to the NIC plots) and pruning NICs also results in a degradation of denoising performance.
At first, this may seem like a contradiction to our downstream classification results from Appendix C,
which showed that NIC opt. MS-SSIM and VR NIC pr=0.8/0.95 were more effective at denoising
high-frequency corruptions than FR NIC and VR NIC. However, recall that each pixel in these plots
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only shows the average PSNR of the entire perturbed dataset as opposed to the spectral error by
frequency, like our D, G, and R plots show. Then from the main body and Figure 6, it is clear that
this PSNR metric is not detailed enough highlight the nuances between the spectral distortion patterns
of different methods.

C Additional results: NIC variants

In this section, we analyze several additional variants of NIC models. Many of these variants were
chosen because they have potential to reduce the amount of memory required to store or run these
models, making them more amenable to “in-the-wild” use cases (e.g., the Mars Exploration Rover
discussed in the introduction). We also consider models optimized for MS-SSIM because we are
interested in how the distortion objective affects the spectral distortion artifacts of the model.

Because all of these models are based on the scale-hyperprior architecture from [9], we use a different
naming scheme here than in the main body. Below are descriptions of the NIC models compared in
this section:

• FR NIC: Equivalent to SH NIC in the main body. Eight fixed-rate models each trained on a
unique λ. Distortion is MSE (i.e., model is optimized for PSNR).

• VR NIC: One variable-rate model trained over a continuous range of λ values using loss
conditional training. Distortion is MSE. More details about this model are provided in
Appendix J.

• VR NIC pr=0.8/0.95: One variable-rate model trained over a continuous range of λ values.
Distortion is MSE. Here, gradual magnitude pruning (GMP) is applied during training
to prune 80% or 95% of the convolutional and FiLM weights. More details of the GMP
algorithm are provided in Appendix K.

• FR NIC opt. MS-SSIM: Eight fixed-rate models, each trained on a unique λ value.
Distortion is (1 - MS-SSIM) (i.e., model is optimized for MS-SSIM).

Figures 7, 9, and 8 show results for these models. We discuss our findings below.

C.1 Evaluating spectral distortion on IND data

Effect of approximating FR NIC with VR NIC. According to the RD curves in Figure 7, VR NIC
obtains the same performance as FR NIC for low and moderate bpps; however, the SH NIC model
outperforms the VR NIC model at higher bpps despite being trained on the same range of λ. This
result follows [17] and suggests that the VR NIC may not be expressive enough to learn the high
PSNR regime. In terms of the spectral error D, VR NIC and FR NIC have the same error patterns,
but VR NIC does leave a slightly higher magnitude of error in some settings (e.g., med. bpp, high
bpp, and high psnr).

Effect of pruning. VR NIC, VR NIC pr=0.8, and VR NIC=0.95 all have the same VR NIC model
architecture, but have 0%, 80%, and 95% sparsity respectively. The RD curves show that pruning
causes a degradation in performance, especially for high bpp (see blue lines in Figure 7). However, the
PSDs reveal that, even if we make up for the PSNR performance gap by increasing the bpp (right side
of Figure 7), the pruned models left a different spectral artifacts from the dense ones. In particular,
as the prune rate increases, the ring in the high-frequency region of the PSDs becomes thicker.
Presumably reconstructing signals at high-frequencies requires more parameters than reconstructing
low frequency signals and so the more sparse models focus on optimizing the “easier” frequencies on
the spectrum. These results show that pruning NICs exacerbates the spectral differences between
NIC and JPEG2000 that we observed in Figure 2.

Effect of optimization variable in NIC. The FR NIC and FR NIC opt. MS-SSIM have the same
FR NIC model architecture, but optimize for different “distortion” metrics (i.e., FR NIC optimizes
for PSNR while FR NIC opt. MS-SSIM optimizes for MS-SSIM). Unsurprisingly, Figure 7 shows
that the FR NIC opt. MS-SSIM model has the worst performance of all the models in terms of RD
curves where the distortion metric is PSNR. However, the plots of the distortion error D give us
more insights into the spectral errors that this model is making. Surprisingly, FR NIC opt. MS-SSIM
produces spectral artifacts which differ greatly from both the PSNR optimized NIC models and the
classic JPEG2000 codec. In particular, like JPEG2000, this model distorts the medium and low
frequencies more than high-frequencies (notice the cooler-colored ring around the hot-colored center).
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Figure 7: Visualizing distortion via CLIC test set evaluation with NIC variants. Left: spectral
measure of in-distribution reconstruction error D under the fixed-bpp constraint at three rates. Center:
Rate-distortion curves with vertical lines indicating fixed-bpp values and horizontal lines indicating
fixed-PSNR values. Right: D under fixed-PSNR constraint. Each D plot is labeled with a tuple of
that model’s (bpp, PSNR) on CLIC. Hotter colors (red) indicate more error in that frequency range.

Figure 8: Spectral measures G and R for all NIC variants on two example corruptions of
ImageNet-C. Model hyper-parameters were chosen such that they give bpp≈1.23 on ImageNet. Each
plot is labeled with the model’s bpp and PSNR with respect to c(X ) (top row) or X (bottom row).

However, it differs from JPEG2000 in that it leaves a less rectangular artifact. Thus, the optimization
objective of NIC can influence the spectral artifacts and should be thoroughly examined before being
used in practice.

C.2 Robustness and generalization

We analyze the findings further using our robustness spectral inspection tools on ImageNet-C in
Figure 8. The plots of G on the snow corruption show that although the models have different
magnitudes of errors, all models leave similar magnitudes of errors across the frequency spectrum
(i.e., the gradient of each plot is narrow). Furthermore, all models have similar plots of R. This
follows the result of the next section (accuracy on the downstream task), which shows that all six
models have comparable accuracies at this compression rate (see snow column of bpp≈1.23 plot in
Figure 9).

On the shot noise corruption, however, we see some notable differences between models on both
G and R. On G, we see that as the prune rate increases, the ring of high-frequency spectral error
becomes significantly more bold. This reiterates our finding from Figure 7 that pruning results in a
degradation of high-frequency signal reconstruction. Similarly, FR NIC opt. MS-SSIM has a thicker
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Figure 9: Effect of compressing corrupt images on classification accuracy. Each subfigure shows
results under a different fixed-bpp or fixed-PSNR constraint based on the bpp/PSNRs achieved by
the compressors on the clean ImageNet dataset. Specifically, let A(X) be the top-1 accuracy of the
model on dataset X , measured in percentage points. We report A(C(c(X)))−A(c(X)) over all -C
corruptions (or on clean ImageNet in the case of “clean”).

ring than FR NIC in the high-frequency domain. Interestingly, this model also has a smaller error
in the low frequency domain compared to the NIC models optimized for PSNR. Finally, JPEG2000
distorts low- and medium-frequencies relatively evenly and distorts high-frequency signals less
than NIC which follows from Section 4.1. We can see the effect of these differences in G in the
high-frequency domain of of the plots R. Specifically, the VR NIC leaves a slightly smaller artifact
than FR NIC (i.e., the circle of warm colors is larger with VR NIC). This differences is exacerbated as
the prune rate increases (i.e., NIC pr=0.95 has the smallest artifact of the four first four models), which
suggests that the pruned NIC models are most effective for denoising high-frequency corruptions. FR
NIC opt. MS-SSIM also leaves a smaller artifact than FR NIC; however, this has a different shape
than the NIC models optimized for PSNR (specifically, there are jagged edges on the edges of this
artifact). This suggests that FR NIC opt. MS-SSIM denoises high-frequency data better than FR NIC,
but in a different way from VR NIC pr=0.8/0.95. Finally, JPEG2000 has diamond-shaped artifact
which suggests it denoises some high-frequency signals, but not all.

C.3 Downstream task

We also consider how these NIC variants perform on the same downstream classification task outlined
in Section 4.3. Figure 9 shows the difference in accuracy before and after corruption for each model
on each corruption (or clean data) and Appendix M has tables with these accuracies. We find that the
pruned models are better at denoising high-frequency corruptions than the FR NIC. In particular, we
find that on the high-frequency corruptions at bpp = 1.23 and 0.77, the pruned VR NICs show a larger
improvement in accuracy than the dense VR and FR NICs. This finding matches our observation
in Figure 7 that the pruned NICs denoise high-frequency signals even more than dense NICs, who
in turn denoise these signals more than JPEG2000. The pruned models perform comparably to the
dense models on low- and medium-frequency corruptions. Similarly, we also find that NIC opt.
MS-SSIM also improves performance on the downstream task on high-frequency corruptions over (a)
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Figure 10: Visualizing distortion of VTM via Kodak test set evaluation. Left: spectral measure
of in-distribution reconstruction error D under the fixed-bpp constraint at three rates. Center:
Rate-distortion curves with vertical lines indicating fixed-bpp values and horizontal lines indicating
fixed-PSNR values. Right: D under fixed-PSNR constraint. Each D plot is labeled with a tuple of
that model’s (bpp, PSNR) on Kodak. Hotter colors (red) indicate more error in that frequency range.

no compression and (b) compression with dense NIC models. This model also has better performance
than the other NIC variants and low- and medium-frequency corruptions.

D Additional results: comparing JPEG2000 and VTM

In this section, we compare two classic codecs: JPEG2000 and Versatile Video Coding (VVC) (also
known as h.266) codec [30]. We refer to the latter codec as VTM because we used VVC Test Model
(VTM) software from [64] to test it. Although VTM has state-of-the-art performance for classic
codecs, we chose to use JPEG2000 as the representative classic codec in the main body for three
reasons.

1. JPEG2000 has more consistent bpp usage. As shown later in this section (Figure 12), VTM
varies its bpp usage drastically depending on the corruption type and severity. Specifically, a
hyper-parameter which gives a bpp of x on clean data may give a bpp of over 7x on certain OOD
shifts and severities.6 Thus, it was unclear how to fairly compare VTM and NIC in a fixed-bpp
setting on OOD data.

2. JPEG2000 implementation has faster inference time. The current open-source implementation
for VTM is significantly slower than those available for JPEG2000 (10s to 100s of seconds for
VTM vs. < 1 second for JPEG2000). Thus, JPEG2000 was a more feasible codec for our extensive
experimentation.

3. After adjusting for PSNR, VTM shows similar spectral results as JPEG2000. Finally, although
there are differences in magnitudes of the spectral distortion plots, JPEG2000 and VTM exhibit
similar patterns, so we found it sufficient to use only one classical codec representative.

We include results comparing JPEG2000 and VTM on the Kodak and Kodak-C datasets in Figures 10-
13 and explain our findings below.

D.1 Evaluating VTM on IND data

Figure 10 is analogous to Figure 2 in the main body. From the RD curves, we see that VTM
outperforms FR NIC and JPEG2000 across all tested bpps. VTM’s plots of D are most similar to
JPEG2000’s. Specifically, at low compression rates (high bpp/PSNR), both methods leave similar
errors across all frequencies (notice the small gradient of colors in both JPEG2000 and VTM’s plots
of D at med/high bpp and med/high PSNR). Similarly, at high compression rates (low bpp/PSNR)
both models leave more spectral errors at the low and medium frequencies. Despite having similar
patterns to JPEG2000, most of the VTM plots have a smaller magnitude than JPEG2000, even at
fixed-PSNRs. This suggests that the metric D metric is more closely aligned with VTM’s modus
operandi than JPEG2000’s.

6For example, when q=17, VTM uses 2.32 bpp on Kodak and 16.49 bpp on Kodak-C shot noise with
severity=5.
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Figure 11: Unscaled plots of G and R with VTM from Figure 10.

Figure 12: Rate-distortion curves for a representative low, medium, and high-frequency shift.
Each shift and model has three curves for severity=1 (least transparent), severity=3, and severity=5
(most transparent). Top row: generalization of C(c(X )) w.r.t. c(X ) (i.e., PSNR of the reconstructed
shifted images w.r.t. the original shifted images). Bottom row: denoising of C(c(X )) w.r.t. X (i.e.,
PSNR of the reconstructed shifted images w.r.t. the original clean images).

Figure 11 shows the six VTM plots from Figure 10 without constrained color map scales. These
results confirm that VTM leaves only a small magnitude of error, which is even across frequencies.

D.2 Evaluating VTM on OOD data

Figure 12 shows the RD curves of VTM on a low, medium, and high-frequency shift. On the
low-frequency shift (snow), VTM has comparable performance to FR NIC and JPEG2000 at low
bpp; however, VTM can achieve higher PSNRs by increasing its bpp usage. This finding suggests
that VTM, like the other codecs in Section 4.2.1, generalizes well to low-frequency shifts. However,
this highlights the fact that VTM may drastically increase its bpp usage on OOD data. Interestingly,
all three models are comparably robust to the snow corruption (bottom row of Figure 12) and the
severity of the corruption is the largest determinant of the PSNR with respect to X .

On the medium-frequency shift (glass blur), VTM, like the other codecs in Section 4.2.1, achieves
PSNRs which are higher than the PSNRs on clean data. However, VTM is not as effective as FR NIC
in terms of PSNR with respect to c(X ) on this shift (the VTM curves start to flatten around 40-42
PSNR, while the NIC curves flatten around 42-47 PSNR). Like the snow corruption, all three models
are comparably robust to the glass blur corruption (bottom row of Figure 12) and the severity of the
corruption is the largest determinant of the PSNR with respect to X .

On the high-frequency shift (shot noise), VTM displays a drastically different pattern from both NIC
and JPEG2000. Specifically, VTM is able to achieve significantly higher PSNRs with respect to c(X )
(i.e., generalize better) than FR NIC and JPEG2000. However, this comes at a very serious cost in
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Figure 13: Generalization error G and denoising error R for JPEG2000 and VTM. We plot both
spectral metrics for one low, medium, and high-frequency corruption at severities 1 and 5. Each plot
is labeled with a tuple of that model’s (bpp, PSNR) on the Kodak-C dataset with that corruption.

terms of bpp (notice the bpp range for shot noise in Figure 12 is 0-17 versus a typical range of 0-2).
Recall that in Section 4.2.1 we observed that NIC models adjusted their bpp usage depending on
the type of corruption– in particular, NIC models used more bpps than JPEG2000 on the shot noise
corruption, even though it did not improve the PSNR. Figure 12 shows that VTM adjusts its bpp
usage in a more extreme way than NIC models, but, unlike NIC models, this increase in bpp does
result in an increase in PSNR with respect to c(X ). As expected from our results in Section 4.2.1,
this increase in PSNR with respect to c(X ) results in a decrease of PSNR with respect X . Overall,
VTM’s highly variable bpp usage could be a real disadvantage to using VTM in the wild: in particular,
if a practitioner selects a hyper-parameter from clean data and expects the model will use a certain
amount of bpps, VTM might use a much larger bpp than expected on OOD data. Thus, our OOD
benchmark dataset is a vital aspect to comprehensive image compression testing.

Figure 13 shows the G and R metrics on the three representative shifts.7 On the snow corruption,
VTM has a smaller magnitude of errors than JPEG2000 across all frequencies; however, both models
leave relatively even errors across all frequencies and both models distort low frequencies more than
high frequencies (which is the opposite as FR NIC on the snow corruption in Figure 4). At both
severities, the two models have similar plots of G. VTM is highly effective at reconstructing the glass
blur– the magnitude of G is <0.0001 across all frequencies– which matches our findings on the other
codecs in Section 4.2.2. Additionally, JPEG2000 and VTM have nearly identical plots of R at both
severities. Finally, on the shot noise corruption, both JPEG2000 and VTM display similar magnitudes
and patterns of errors. Both models leave significantly more error on G at severity=5 than severity=1;
however, JPEG2000 maintains a bpp=0.8 at both severities while VTM increases its bpp from 0.05 to
1.02. Additionally, unlike NIC, both of these models leave their highest errors in the low-frequency
domain of G. Lastly, both models are not as effective at denoising high-frequency signals as NIC
proved to be.

E Additional results: ELIC

7Note that we select one hyper-parameter for JPEG2000 (q=15); however, we vary the hyper-parameter
choice for VTM across corruptions (q=32, 17, 47 for snow, glass blur, and shot noise respectively) so that VTM
gives bpps in the ballpark of 0.8 for each corruption.

Figure 14: More detailed plots of D for ELIC. Equivalent to the ELIC row on the right side of
Figure 2 with smaller colorbar ranges.
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F Additional results: accuracies by individual corruptions

Figure 15: Effect of compressing corrupt images on classification accuracy. Specifically, let A(X)
be the top-1 accuracy of the model on dataset X , measured in percentage points. We report
A(C(c(X)))−A(c(X)) over all -C corruptions with severity 3 (or on clean ImageNet in the case of
“clean”). Each subfigure shows results under a different fixed-PSNR constraint based on the PSNRs
achieved by the compressors on the clean ImageNet dataset. Appendix M has tables with these
accuracies.
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G Additional results: Kodak and Kodak-C

This section contains Figures equivalent to those in the main body for the Kodak and Kodak-C dataset.

Figure 16: Figure equivalent to Figure 1a for Kodak-C dataset.
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Figure 17: Figure equivalent to Figure 2 for Kodak dataset

Figure 18: Figure equivalent to Figure 3 for Kodak-C dataset

Figure 19: Figure equivalent to Figure 4 for Kodak-C dataset
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H Additional results: other CLIC-C corruptions

Figures 20, 21, and 22 show the results of the other 12 corruptions from CLIC-C which were not
included in the main body. Overall, we see that our three representative corruptions (snow, glass blur,
and shot noise) represent the trends of the low, medium and high frequency corruptions well.

Figure 20: Average PSD of the difference between the corrupted images and the clean images for
each given CLIC-C corruption c, 1

N

∑N
k=1 PSD(c(Xk)−Xk). Severity=5.
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Figure 21: RD Curves for corruptions not seen in the main body. Rows 1, 3, and 5 show PSNR w.r.t.
c(X ). Rows 2, 4, and 6 show PSNR w.r.t. X .
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Figure 22: Generalization error G on the other corruptions of CLIC-C. We plot G for each
corruption c at severities 1 and 5. The plots of G are labeled with tuples of the model’s (bpp, PSNR
w.r.t. c(X )).
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Figure 23: Robustness error R on the other corruptions of CLIC-C. We plot R for each corruption
c at severities 1 and 5. The plots of G are labeled with tuples of the model’s (bpp, PSNR w.r.t. X ).
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I Training setup and hyperparameters

We train NIC models using the train split of the CLIC 2020 dataset with batches of size 8 and
random crops of size 256 × 256. For SH NIC, we set N = M = 192 and train for 5,000 epochs
(about 1M iterations). We trained 8 models with λs 0.0012, 0.005, 0.01, 0.03, 0.05, 0.1, 0.15, and
0.26. We used the pytorch model architecture in the compressai repository [10]. For ELIC, we
use N = 192,M = 320 and train for 3,900 epochs. We trained 11 models with unique λs (0.001,
0.0025, 0.003, 0.004, 0.006, 0.008, 0.016, 0.025, 0.032, 0.05, 0.15). We utilized this repository for
the model architecture, but trained our own models on CLIC rather than experimenting with the
publicly available checkpoints trained on ImageNet. Note that we trained more models for ELIC than
FR NIC in order to obtain bpps and PSNRs which fit our fixed-bpp/PSNR constraint.

For the variable-rate models, we augment each convolutional layer with a FiLM layer which consists
of two fully-connected layers and 128 hidden features. We train VR models for 10,000 epochs
(about 2M iterations) and sample λ from a log-uniform distribution over [0.0012, 0.26]. For pruned
models, we use global gradual magnitude pruning (GMP) between epochs 675 and 2400 and tune the
remaining weights from epochs 2401-10,000. Fixed-rate MS-SSIM models are trained over several
values of λ ∈ [1, 1000].

J Variable-rate model details

For our variable-rate NIC we implemented a model proposed by Dosovitskiy and Djolonga [17]
which uses Loss Conditional Training (LCT) to train a variable-rate version of the scale-hyperprior
NIC model from [9]. The model is trained over a continuous range of compression rates, optimizing
the rate-distortion tradeoff at each. This reduces the computational redundancy involved in training
separate models for the same task at different points along the rate-distortion curve. Additionally,
once trained, this model can be adaptively used at any compression rate in the range, which makes it
even more flexible than a discrete set of fixed-rate models.

In order to condition the compression rate via LCT, all convolutional layers in the model are
augmented with Feature-wise Linear Modulation (FiLM) layers [49]. In this case, these are small
neural networks that take a conditioning parameter λ as input and output a µ and σ used to modulate
the activations channel-wise based on the value of λ. More specifically, suppose a layer in the CNN
has activations f of size W ×H × C. In Loss Conditional Training (LCT), these activations are
augmented by µ and σ as follows,

f̃ = σf + µ (1)

where both µ and σ are vectors of size C.

Figure 24 shows a diagram of FiLM layers being applied to a small example network. Normally,
without FiLM layers, the equation to calculate the features maps is

x(1) = ρ(W (1)x(0) + b(1)), (2)

where ρ is the activation function (e.g., ReLU), W are the weights and b are the biases in the layer.
However, with FiLM layers, the weighted sum is first subject to augmentation with µ and σ. Thus,
the new calculation is

x(1) = ρ(σ(1)(W (1)x(0) + b(1))) + µ(1)). (3)

During training, a random λ is drawn with each mini-batch and used in two ways: 1) as input to the
FiLM layers to modulate the feature maps and 2) in the mini-batch’s loss function. During inference,
the model takes as input a desired compression rate λ along with the input image. Notably, LCT and
FiLM layers only affect the values of the activations (i.e., feature maps), but not the weights on the
convolutional layers or activation functions. This is an essential observation for applying pruning to a
network with LCT.

K Pruned model details

One limitation of using NIC in the wild is the size of the NIC models. These models require several
million learned weights and efficient inference requires specialized GPUs. This limits the possibility
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Figure 24: Cartoon of FiLM applied to a multi-layer perceptron. We consider pruning both the base
layer weights (blue) and the film layer weights (red).

of using NIC on an edge device, like a drone or a cell phone. In this section, we demonstrate that
NIC models themselves can be approximated (i.e., we can compress the compressor) and we propose
a sparse versions of both fixed-rate and variable-rate NIC models.

To prune our NIC models, we propose gradual magnitude pruning (GMP) [70] based approach which
has been demonstrated to effectively sparsify DNNs. At a high level, GMP gradually prunes DNN
weights based on their magnitude over a fixed number of epochs then continues to train, or fine-tune,
the remaining sparse network after the target sparsity is reached. The pruning can be done layer-wise
(i.e., the mask must be updated such that each layer has the target sparsity) or globally (i.e., the overall
network must have the target sparsity, but the sparsities can differ between layers). We utilized global
pruning, which has been demonstrated to produce more performant sparse models.

To implement GMP, each layer is given binary mask of the same size as the original layer, which
specifies which weights have been pruned (i.e., set to 0). Every ∆t iterations, the mask is updated
based on the magnitudes of the weights, such that the network has a desired sparsity. Suppose si is
the initial sparsity (usually 0) at time t0 and st is the target sparsity (0.8 or 0.95 in our case) which
we want to reach after n steps, then the target sparsity at time step t is

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

(4)

for t ∈ {t0, t0 +∆t, . . . , t0 + n∆t}. (5)

The target sparsity equation is found to be especially effective because it causes weights to be pruned
more quickly while the learning rate is still high and the weight-training on non-pruned weights can
recover. After the desired sparsity is reached, the sparse network is trained for several more iterations.
The pruning can be done layer-wise (i.e., the mask must be updated such that each layer has the
target sparsity) or globally (i.e., the overall network must have the target sparsity, but the sparsities
can differ between layers). Note that the network still performs weight training on the non-pruned
weights, as usual, using an optimizer like stochastic gradient descent.

L Mathematical details

L.1 Derivation of lemma 5.1

Let X ∈ RN×p be a dataset (whose datapoints are the rows) with mean 0 and covariance Σ = 1
NX TX .

Consider the problem of linearly auto-encoding X with latent space Rr, where r ≤ p:

min
W1∈M(r,p),W2∈M(p,r)

1

2
|XWT

1 WT
2 −X|2. (6)
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It is a theorem of Eckart and Young [18] that for any solution W1,W2 of eq. (6) the product
C = W2W1 is an orthogonal projection onto the subspace spanned by the top r principal components
of X (see also [7] and for more recent developments and additional references, [50, 35]). Informally,
this theorem says “linear autoencoders perform PCA.” Formally, if X = USV T is an SVD and V [: r]
is the first r rows of V , then W2W1 = V [: r]TV [: r]. 8 It follows that the reconstruction error L(X)
on a new input X ∈ Rp admits a simple closed form: let V1, . . . , Vp be the principal components of
X (rows of V above), and write

X =
∑
i

ciVi; then L(X) =
∑
i>r

c2i . (7)

Suppose now that X is a dataset of natural images. We will replace the single index i for X =
(X1, . . . , Xp) ∈ Rp with 3 indices h, i, j for an image tensor X = (Xh,i,j) ∈ RKHW (here h is
viewed as the channel index and i, j as the spatial indices); we will also commit mild abuse of
notation by letting the matrices Wi act on flattened (vectorized) tensors. Let F : RKHW → RKHW

denote the spatial discrete Fourier transform. We introduce the notation

X̂ = XFT and Ĉ = FCFT , (8)
and we will frequently use the shorthand “hat” decoration “−̂” to denote F as well, for ease of
notation. Just as C projects onto the subspace spanned by the top r principal components of X , Ĉ
projects onto the subspace spanned by the top r principal components of X̂ .

It has long been known that when transformed to (spatial) Fourier frequency space, there are
reasonable (coarse) descriptions of the statistical distribution of natural images. Its variances in
spatial frequencies (i, j) can be modelled as 1

|i|α+|j|β where α, β ≈ 2 and its covariances drop off
rapidly away from the diagonal [12, 1, 36].9 These two facts motivate the following assumptions:

(I) The principal components of X̂ are roughly aligned with the spatial Fourier frequency basis.
(II) The associated variances are monotonically decreasing with frequency magnitude (more

specifically according to the power law 1
|i|α+|j|β ).

Assuming α = β = 2, the above would suggest that Ĉ projects a Fourier transformed image X̂ = FX
onto Fourier basis vectors corresponding to spatial frequencies (i, j) with i2 + j2 ≤ r

πK . That is,

(ĈX̂):,ij ≈
{
X̂:,ij if i2 + j2 ≤ r

πK

0 otherwise.
(9)

where X̂:,ij denotes the components of X̂ corresponding to spatial frequency (i, j) (this is a vector of
dimension K, the number of channels in the image dataset). Together with the identity FCX = ĈX̂ ,
eq. (9) yields lemma 5.1.
Remark L.1. Note that lemma 5.1 also suggests that such autoencoder compressors behave qualita-
tively similarly to classical codecs such as JPEG, which involves a discrete cosine transform (DCT)
followed by removal of high-frequency components [53]. While design of hand-crafted codecs like
JPEG was no doubt driven by empirical observations of the statistics of natural images, the NIC
models in our experiments (and at least in a theoretical sense the autoencoder model appearing in
lemma 5.1) are machine learned from natural image datasets.

Below, we use the above analysis to get some qualitative insights into the robustness and generalization
metrics R and G introduced in section 3. In what follows let c : RKHW → RKHW be a corruption
transformation.

L.2 Derivations of corollaries 5.2 and 5.3

Robustness: here we are interested in PSD(X − C(c(X))), which is simply the coordinatewise
absolute value of X̂ − ̂C(c(X)). Using the fact that in our simple model C is linear, we can expand
like

X̂ − ̂C(c(X)) = X̂ − Ĉ(ĉ(X)) = X̂ − Ĉ(X̂) + Ĉ(ĉ(X)− X̂) (10)
8although it is in general not the case that W1 = V [: r],W2 = V [: r]T , see [50, §G] for discussion.
9Here we assume that our Fourier transform F has the property that frequency (0, 0) corresponds to constant

images.
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so that for any frequency (i, j)

|(X̂ − ̂C(c(X))):,ij |2 = |(X̂ − Ĉ(X̂)):,ij |2 + 2(X̂ − Ĉ(X̂)):,ij Ĉ(ĉ(X)− X̂):,ij

+ |Ĉ(ĉ(X)− X̂):,ij |2

≈

{
|(ĉ(X)− X̂):,ij |2 when i2 + j2 ≤ r

πC

|X̂:,ij |2. otherwise.

(11)

Taking square roots, we see that

PSD(X − C(c(X))):,ij ≈

{
|(ĉ(X)− X̂):,ij | when i2 + j2 ≤ r

πC

|X̂:,ij | otherwise;
(12)

averaging over the dataset X gives corollary 5.2. In particular, the cross term
2(X̂ − Ĉ(X̂)):,ij Ĉ(ĉ(X) − X̂):,ij is identically 0. This suggests that autoencoder compressors
trained on natural images are less robust to corruptions with large amplitude in low frequencies (in
the sense that |(ĉ(X)− X̂):,ij |2 is large for small values of ij).

Generalization: here we are interested in PSD(c(X)−C(c(X))), which is simply the coordinatewise
absolute value of ĉ(X)− ̂C(c(X)). Again using the fact that in our simple model C is linear, we can
expand like

ĉ(X)− ̂C(c(X)) = X̂ + (ĉ(X)− X̂)− Ĉ(X̂ + (ĉ(X)− X̂))

=
(
X̂ − Ĉ(X̂)

)
+
(
(ĉ(X)− X̂)− Ĉ(ĉ(X)− X̂)

)
.

(13)

From this we obtain

|(ĉ(X)− ̂C(c(X))):,ij |2

= |
(
X̂ − Ĉ(X̂)

)
:,ij

|2 + 2
(
X̂ − Ĉ(X̂)

)
:,ij

(
(ĉ(X)− X̂)− Ĉ(ĉ(X)− X̂)

)
:,ij

+ |
(
(ĉ(X)− X̂)− Ĉ(ĉ(X)− X̂)

)
:,ij

|2

≈

{
0 when i2 + j2 ≤ r

πC

|X̂:,ij |2 + 2X̂:,ij(ĉ(X)− X̂):,ij + |(ĉ(X)− X̂):,ij |2 otherwise.

(14)

Taking square roots and relating back to power spectral density, this says

PSD(c(X)− C(c(X))):,ij

≈

{
0 when i2 + j2 ≤ r

πC√
|X̂:,ij |2 + 2X̂:,ij(ĉ(X)− X̂):,ij + |(ĉ(X)− X̂):,ij |2 otherwise

(15)

and averaging over the dataset X gives corollary 5.3. Equation (14) is more involved than eq. (11) –
in particular, the “cross term” 2X̂:,ij(ĉ(X)− X̂):,ij is in general non-zero. However, there are many

cases where at least an expectation over the data set X̂ the term 2X̂:,ij(ĉ(X)− X̂):,ij vanishes (for
example, when c is additive noise, or more generally when ĉ(X)− X̂ is statistically independent of
X̂ .). In such cases, we can see that autoencoder compressors trained on natural images generalize
less successfully to corruptions with large amplitude in high frequencies.

L.3 Autoencoder reconstruction error and data density more generally

Our findings on generalization (both the experimental results and analysis with linear autoencoders)
is closely related to the widely observed inverse correlation between autoencoder reconstruction error
and probability density. We will take the recent [29] as a jumping-off point. However, it is worth
noting that this observation (or at least something similar to it) has been around for some time, at
least since [5], and forms the basis for widespread use of autoencoders in anomaly detection.

Formally, [29, Observation 2] states that:
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(∗) For an autoencoder C the reconstruction error |C(X) −X|2 is positively
correlated with 1

p(X) , the probability density of the input data at X .

If we assume this observation holds, then some of our experimental findings regarding generalization
to corrupted data admit a simple explanation: as discussed above, the probability density of natural
images is heavily concentrated along low (spatial) Fourier frequencies. Hence for a corruption c such
that c(X)−X is concentrated in high frequencies, it is reasonable to suspect that p(c(X)) < p(X),
and given the assumed positive correlation of 1

p(X) with |C(X)−X|2, that

|C(c(X))− c(X)|2 > |C(X)−X|2, (16)

i.e. the reconstruction error of the corrupted datapoint, related to our generalization metric, is higher
than that of the clean datapoint X .
Remark L.2. In some sense, (∗) is a simple consequence of learning via risk minimization. Let
C : M → M be an autoencoder on a manifold M with finite volume (for example, the image
hypercube [0, 1]CHW ). Let ℓ(C(X), X) be a reconstruction loss on a point X ∈ M and let p(X) be
the probability density of input data on M , assumed to be positive everywhere (otherwise, discussing
correlation with 1

p(X) is troublesome). The risk in this situation is

L(C) :=
∫
M

ℓ(C(X), X)p(X)dx (17)

Note that ℓ(C(X), X) and 1
p(X) will be positively correlated provided that their covariance is positive.

By definition this covariance is∫
M

ℓ(C(X), X)
1

p(X)
p(X)dx−

∫
M

ℓ(C(X), X)p(X)dx ·
∫
M

1

p(X)
p(X)dx

=

∫
M

ℓ(C(X), X)dx− L(C) · volM.

(18)

Since at present we only care about the sign of the covariance, we can divide by volM to obtain∫
M

ℓ(C(X), X)
dx

volM
− L(C); (19)

the first term is the risk of C with respect to the uniform distribution on M . In words, eq. (19) is
positive whenever C performs better on the distribution p(X) than the uniform distribution, and
this outcome is to be expected for an autoencoder with sufficient capacity trained on a non-uniform
distribution p(X).
Remark L.3. With notation as in the previous example, the result [4, Thm. 2] shows that the solution
obtained with calculus of variations applied to an objective of the form

min
C

∫
M

(
|C(X)−X|22 + σ2|∇XC(X)|22

)
p(X)dx (20)

(i.e. mean squared error loss and an ℓ2 penalty on gradient norms) satisfies

C(X)−X = σ2∇X log p(X) + o(σ2) and (21)

∇XC(X) = I + σ2 HessX log p(X) + o(σ2) as σ → 0. (22)

In particular, the reconstruction error |C(X) − X|2 is proportional to the gradient norm
|∇X log p(X)|2 (up to higher order terms in σ2 as σ → 0). Since

|∇X log p(X)|2 =
1

p(X)
|∇Xp(X)|2,

this result sheds a more precise and quantitative light on (∗).
Equation (22) may also shed some light on robustness of C as measured by R: indeed, if we assume
c(X)−X is small,

C(c(X))−X = C(X + c(X)−X)−X ≈ C(X) +∇XCT (c(X)−X)−X. (23)
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Applying eqs. (21) and (22) gives the approximation

C(X) +∇XCT (c(X)−X)−X ≈ σ2∇X log p(X)

+ (I + σ2 HessX log p(X))(c(X)−X) + o(σ2)
(24)

as σ → 0. Taking norms squared we get

|C(c(X))−X|2 ≈ σ2|∇X log p(X)|2

+ 2σ2∇X log p(X)T (I + σ2 HessX log p(X))(c(X)−X)

+ |(I + σ2 HessX log p(X))(c(X)−X)|2 + o(σ2)

(25)

as σ → 0. If we again make the simplifying assumption that c(X)−X is random and independent
of X , then after taking the expectation over c (here denoted by Ec) we obtain

Ec[|C(c(X))−X|2] ≈ σ2|∇X log p(X)|2

+ Ec[|(I + σ2 HessX log p(X))(c(X)−X)|2] + o(σ2)
(26)

as σ → 0. If we let α1 ≥ α2 ≥ · · · ≥ αp be the eigenvalues of HessX log p(X) and choose σ small
enough that 1 + σ2

α i
> 0 for all i, we see that the norm

|(I + σ2 HessX log p(X))(c(X)−X)|2 (27)

surpresses (resp. magnifies) contributions from components of c(X) −X along the eigenvectors
associated with αi for large (resp. small) i. Note that it is reasonable as a first approximation to expect
HessX log p(X) to be negative definite (this is precisely the case when p is a Gaussian distribution,
and more generally the requirements p(X) ≥ 0 and

∫
p(X)dX = 1 put restrictions on the extent

to which HessX log p(X) can exhibit non-negative eigenvalues). In this case the large (resp. small)
values of i correspond to the eigenvectors in directions of “sharpest” (resp. “shallowest”) curvature
of the graph of p(X). Explicitly, if X is Gaussian with covariance Σ, then HessX log p(X) = Σ−1,
and if λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of Σ then αi = − 1

λi
for all i. In this case we see that

the norm in eq. (27) surpresses (resp. magnifies) contributions from components of c(X)−X along
principal components with low (resp. high) variance. Note that this provides a takeaway qualitatively
similar to that of corollary 5.2.

L.4 A fundamental robustness-generalization inequality

The similarity between the R heatmaps for glass blur in fig. 4 and the PSDs of the corruptions
themselves appearing in fig. 1a has a simple explanation in terms of a fundamental relationship
between D,G and R. One can show (via two applications of the triangle inequality) that

1

N

N∑
k=1

PSD(Xk − c(Xk))− G(C,X , c) ≤ R(C,X , c) ≤ 1

N

N∑
k=1

PSD(Xk − c(Xk)) + G(C,X , c). (28)

In the case of glass blur, generalization error is very low, so eq. (28) reduces to R ≈
1
N

∑N
k=1 PSD(Xk − c(Xk)), where the right-hand side is the average PSD of the corruption

itself.

M Tables of classification accuracies
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No Compression

clean 0.76
snow 0.34
frost 0.31
fog 0.46
brightness 0.69
contrast 0.44
motion blur 0.37
zoom blur 0.35
defocus blur 0.36
glass blur 0.16
elastic transform 0.53
jpeg compression 0.59
pixelate 0.50
gaussian noise 0.32
shot noise 0.29
impulse noise 0.32

Table 1: Classification accuracies without compression on the validation split of ImageNet-C.
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SH NIC ELIC JPEG2000 JPEG

PSNR=36.93
clean 0.72 0.72 0.72 0.74
snow 0.33 0.31 0.30 0.33
frost 0.29 0.29 0.30 0.30
fog 0.28 0.28 0.45 0.44
brightness 0.65 0.65 0.65 0.68
contrast 0.26 0.26 0.44 0.42
motion blur 0.35 0.34 0.36 0.36
zoom blur 0.33 0.32 0.34 0.34
defocus blur 0.30 0.30 0.36 0.36
glass blur 0.19 0.19 0.17 0.16
elastic transform 0.48 0.49 0.52 0.53
jpeg compression 0.60 0.60 0.59 0.60
pixelate 0.55 0.53 0.51 0.50
gaussian noise 0.33 0.36 0.28 0.30
shot noise 0.29 0.32 0.25 0.28
impulse noise 0.31 0.34 0.23 0.30

PSNR=32.97
clean 0.64 0.64 0.67 0.70
snow 0.27 0.26 0.25 0.28
frost 0.25 0.25 0.28 0.28
fog 0.13 0.11 0.38 0.28
brightness 0.57 0.55 0.59 0.63
contrast 0.11 0.09 0.38 0.27
motion blur 0.30 0.29 0.34 0.32
zoom blur 0.29 0.28 0.32 0.30
defocus blur 0.26 0.24 0.34 0.30
glass blur 0.22 0.24 0.19 0.18
elastic transform 0.42 0.45 0.50 0.51
jpeg compression 0.57 0.57 0.57 0.59
pixelate 0.53 0.51 0.53 0.51
gaussian noise 0.28 0.30 0.25 0.37
shot noise 0.26 0.27 0.23 0.35
impulse noise 0.29 0.32 0.17 0.37

PSNR=31.17
clean 0.58 0.57 0.62 0.66
snow 0.22 0.21 0.21 0.26
frost 0.20 0.20 0.25 0.25
fog 0.08 0.07 0.32 0.17
brightness 0.51 0.48 0.54 0.60
contrast 0.07 0.05 0.34 0.16
motion blur 0.27 0.26 0.33 0.28
zoom blur 0.26 0.25 0.31 0.27
defocus blur 0.24 0.22 0.32 0.24
glass blur 0.23 0.24 0.21 0.19
elastic transform 0.39 0.40 0.48 0.50
jpeg compression 0.52 0.53 0.55 0.58
pixelate 0.49 0.47 0.53 0.48
gaussian noise 0.28 0.30 0.21 0.33
shot noise 0.28 0.31 0.21 0.32
impulse noise 0.29 0.31 0.16 0.33

Table 2: Classification accuracies from Figures 5 and 15
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FR NIC VR NIC VR NIC VR NIC FR NIC opt. JPEG2000
pr=0.8 pr=0.95 MS-SSIM

bpp = 1.23
clean 0.74 0.73 0.73 0.73 0.74 0.72
snow 0.33 0.33 0.33 0.32 0.32 0.30
frost 0.30 0.30 0.29 0.28 0.30 0.30
fog 0.36 0.36 0.36 0.36 0.41 0.45
brightness 0.67 0.67 0.66 0.66 0.67 0.65
contrast 0.36 0.35 0.34 0.36 0.40 0.44
motion blur 0.36 0.36 0.35 0.36 0.37 0.36
zoom blur 0.34 0.34 0.33 0.34 0.35 0.34
defocus blur 0.32 0.32 0.32 0.33 0.34 0.36
glass blur 0.17 0.17 0.16 0.16 0.16 0.17
elastic transform 0.50 0.50 0.49 0.49 0.50 0.52
jpeg compression 0.60 0.60 0.61 0.61 0.60 0.59
pixelate 0.53 0.53 0.54 0.54 0.58 0.51
gaussian noise 0.34 0.33 0.33 0.35 0.36 0.28
shot noise 0.31 0.30 0.31 0.33 0.32 0.25
impulse noise 0.32 0.31 0.32 0.34 0.35 0.23

bpp = 0.77
clean 0.72 0.71 0.71 0.71 0.71 0.69
snow 0.33 0.32 0.32 0.32 0.29 0.27
frost 0.29 0.29 0.28 0.28 0.27 0.29
fog 0.28 0.27 0.27 0.25 0.36 0.41
brightness 0.65 0.65 0.65 0.64 0.65 0.62
contrast 0.26 0.25 0.26 0.24 0.37 0.41
motion blur 0.35 0.35 0.34 0.34 0.36 0.35
zoom blur 0.33 0.33 0.32 0.32 0.35 0.33
defocus blur 0.30 0.29 0.29 0.29 0.33 0.35
glass blur 0.19 0.19 0.17 0.17 0.17 0.18
elastic transform 0.48 0.48 0.48 0.47 0.48 0.51
jpeg compression 0.60 0.60 0.60 0.60 0.59 0.58
pixelate 0.55 0.55 0.54 0.54 0.60 0.52
gaussian noise 0.33 0.32 0.32 0.34 0.34 0.31
shot noise 0.29 0.29 0.29 0.32 0.31 0.28
impulse noise 0.31 0.30 0.31 0.33 0.33 0.26

bpp = 0.24
clean 0.58 0.56 0.58 0.56 0.60 0.52
snow 0.22 0.22 0.22 0.21 0.18 0.14
frost 0.20 0.20 0.20 0.20 0.20 0.19
fog 0.08 0.06 0.06 0.05 0.18 0.21
brightness 0.51 0.49 0.50 0.49 0.53 0.43
contrast 0.07 0.05 0.05 0.05 0.20 0.25
motion blur 0.27 0.25 0.26 0.25 0.30 0.29
zoom blur 0.26 0.25 0.26 0.25 0.29 0.27
defocus blur 0.24 0.22 0.22 0.21 0.27 0.28
glass blur 0.23 0.21 0.19 0.19 0.24 0.24
elastic transform 0.39 0.37 0.37 0.36 0.42 0.42
jpeg compression 0.52 0.51 0.52 0.51 0.53 0.47
pixelate 0.49 0.47 0.48 0.47 0.54 0.47
gaussian noise 0.28 0.28 0.25 0.25 0.27 0.27
shot noise 0.28 0.27 0.25 0.25 0.28 0.26
impulse noise 0.29 0.28 0.25 0.25 0.26 0.26

Table 3: Classification accuracies from Figure 9
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FR NIC VR NIC VR NIC VR NIC FR NIC opt. JPEG2000
pr=0.8 pr=0.95 MS-SSIM

PSNR=36.93
clean 0.72 0.71 0.73 0.73 0.74 0.72
snow 0.33 0.32 0.33 0.32 0.33 0.30
frost 0.29 0.29 0.29 0.28 0.30 0.30
fog 0.28 0.27 0.33 0.35 0.42 0.45
brightness 0.65 0.65 0.66 0.66 0.67 0.65
contrast 0.26 0.25 0.31 0.34 0.41 0.44
motion blur 0.35 0.35 0.35 0.36 0.37 0.36
zoom blur 0.33 0.33 0.33 0.34 0.35 0.34
defocus blur 0.30 0.29 0.30 0.32 0.35 0.36
glass blur 0.19 0.19 0.16 0.16 0.16 0.17
elastic transform 0.48 0.48 0.49 0.49 0.50 0.52
jpeg compression 0.60 0.60 0.61 0.61 0.60 0.59
pixelate 0.55 0.55 0.54 0.54 0.56 0.51
gaussian noise 0.33 0.32 0.33 0.35 0.34 0.28
shot noise 0.29 0.29 0.30 0.33 0.31 0.25
impulse noise 0.31 0.30 0.31 0.34 0.33 0.23

PSNR=32.97
clean 0.64 0.64 0.66 0.66 0.71 0.67
snow 0.27 0.27 0.28 0.29 0.28 0.25
frost 0.25 0.25 0.26 0.26 0.27 0.28
fog 0.13 0.12 0.13 0.14 0.35 0.38
brightness 0.57 0.57 0.59 0.60 0.64 0.59
contrast 0.11 0.10 0.12 0.13 0.36 0.38
motion blur 0.30 0.30 0.30 0.31 0.36 0.34
zoom blur 0.29 0.29 0.29 0.29 0.35 0.32
defocus blur 0.26 0.25 0.24 0.25 0.32 0.34
glass blur 0.22 0.21 0.18 0.19 0.18 0.19
elastic transform 0.42 0.43 0.43 0.43 0.48 0.50
jpeg compression 0.57 0.57 0.58 0.58 0.59 0.57
pixelate 0.53 0.52 0.53 0.53 0.60 0.53
gaussian noise 0.28 0.29 0.28 0.31 0.33 0.25
shot noise 0.26 0.26 0.26 0.28 0.31 0.23
impulse noise 0.29 0.29 0.28 0.30 0.33 0.17

PSNR=31.17
clean 0.58 0.58 0.61 0.62 0.67 0.62
snow 0.22 0.23 0.24 0.25 0.25 0.21
frost 0.20 0.22 0.22 0.23 0.25 0.25
fog 0.08 0.07 0.08 0.08 0.29 0.32
brightness 0.51 0.51 0.54 0.55 0.60 0.54
contrast 0.07 0.06 0.07 0.08 0.30 0.34
motion blur 0.27 0.26 0.28 0.28 0.34 0.33
zoom blur 0.26 0.26 0.27 0.27 0.33 0.31
defocus blur 0.24 0.23 0.23 0.23 0.30 0.32
glass blur 0.23 0.21 0.19 0.19 0.20 0.21
elastic transform 0.39 0.39 0.39 0.40 0.46 0.48
jpeg compression 0.52 0.53 0.55 0.55 0.57 0.55
pixelate 0.49 0.48 0.50 0.50 0.59 0.53
gaussian noise 0.28 0.28 0.25 0.26 0.30 0.21
shot noise 0.28 0.26 0.25 0.25 0.30 0.21
impulse noise 0.29 0.28 0.26 0.27 0.30 0.16

Table 4: Classification accuracies from Figure 9
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