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Abstract

In-context learning (ICL), a nonparametric learning method based on the knowledge
of demonstration sets, has become a de facto standard for large language models
(LLMs). The primary goal of ICL is to select valuable demonstration sets to
enhance the performance of LLMs. Traditional ICL methods choose demonstration
sets that share similar features with a given query. However, our experiments
reveal that these traditional ICL approaches perform poorly on out-of-distribution
(OOD) datasets, where the demonstration set and the query originate from different
distributions. To ensure robust performance in OOD datasets, it is essential to
learn causal representations that remain invariant between the source and target
datasets. Inspired by causal representation learning, we propose causal-aware
in-context learning (CCL). CCL captures the causal representations of a given
dataset and selects demonstration sets that share similar causal features with the
query. To achieve this, CCL employs a novel VAE-based causal representation
learning technique. We demonstrate that CCL improves the OOD generalization
performance of LLMs both theoretically and empirically. Code is available at:
https://github.com/MLAI-Yonsei/causal-context-learning

1 Introduction

While large language models (LLMs) excel as general-purpose pre-trained models, in-context learning
(ICL) has become a key approach for aligning them to target tasks. ICL [1] enables LLMs to adapt
to new tasks with a few demonstrations and without parameter updates, making it applicable in
various fields. While ICL has shown significant promise, it still faces difficulties in achieving robust
generalization [2]]. A primary challenge is that LLMs rely on superficial patterns in demonstration sets,
which restrict their capability in unseen environments [3]]. Recent studies indicate that distribution
shifts between demonstration sets and target queries in out-of-distribution (OOD) scenarios impede
the ability of LLMs to generalize effectively [4} 15, |6]. To fully unlock the potential of LLMs and
enable reliable deployment in real-world applications, ensuring robustness in OOD scenarios plays a
pivotal role.

The pursuit of ensuring generalization beyond observed data naturally leads to the question of how
the data was generated. Drawing on insights from causality [[7], the structural knowledge of data
is expressed using causal language. In causal representation learning (CRL) [8]], observed data
reflect underlying latent causal variables that drive the data-generating process (DGP). CRL aims to
model the causal mechanisms among these variables [9]]. For example, if two causal variables are
independent, one remains invariant even when the other, acting as an environmental factor, changes
[LO,[11]. The assumption about causal mechanisms suggests that learning invariant causal variables is
an effective approach for models robust to distribution shifts. Consequently, CRL lays the groundwork
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Figure 1: To enhance the OOD performance of LLM, a causally-related demonstration set is important.
Current ICL methods compare the non-causal representation x; and x*, and they might choose a
worthless demonstration set (Candidate 1). However, our method, CCL, compares the causal
representation ¢; and c* to construct a demonstration. Because CCL leverages the causal-related
demonstration (Candidate 2), CCL shows superior performance on the OOD dataset.

for research on OOD generalization by learning invariant representations from training sets collected
across multiple environments. [12} |13} [14].

Considering causal mechanisms allows for constructing a more suitable demonstration set from
demonstration candidates when their environments differ from that of the target query. In Figure|[T]
the target contextual problem =* is highly similar to x; (highlighted in green), making x; a strong
candidate in ICL [15}[16]]. But what exactly is the problem embedded in the target query? For LLMs
to successfully generalize to the target query, the demonstration set should be constructed to reflect
the fundamental context rather than relying on superficial patterns, such as frequently occurring
words or characteristics of the data collection environment [17].

Therefore, even if the superficial context differs, a candidate x5 that addresses the same problem (N-
M=K) should be included in the demonstration set (highlighted in red). It ensures the demonstration
set captures problem-level invariance even when generalizing to OOD targets from given candidates.
Since causal variables ¢, which generate the contextual problem, are not observable objects, it
is necessary to model ¢ under the assumption of causal mechanisms that remain invariant across
environments.

In this study, we focus on constructing a robust demonstration set to enhance the generalization of
LLMs in OOD scenarios. Inspired by CRL, we propose a novel demonstration selection method,
causal-aware in-context learning (CCL), which learns causal representations that remain invariant
across environments and prioritizes candidates by assigning higher ranks to those with causal
representations similar to the target query. Under the causal mechanism, we theoretically demonstrate
that the demonstration set selected by CCL comprises candidates that are more closely related to
the underlying problem addressed by the target query, rather than merely matching its context. The
problem-level invariance of CCL ensures generalization performance for the target query even in
unseen environments. We empirically validate that CCL operates robustly in OOD scenarios and
demonstrates superior generalization performance on both synthetic and real datasets.

2 Related Works

2.1 In-context learning

ICL is a method where LLMs perform tasks by leveraging examples from the input context without
updating model parameters [1]. This approach enhances computational efficiency and achieves
competitive performance in various natural language tasks without the need for model fine-tuning



[2, [18]. However, the performance of ICL is sensitive to demonstration organization, including
demonstration selection [[19}[20]. Various approaches aim to optimize demonstration selection in ICL,
including unsupervised methods that use similarity metrics like k-nearest neighbors [[15]], as well as
supervised techniques that leverage task-specific retrievers [21] and reinforcement learning [22].

Despite these advancements, LLMs depend on surface-level patterns in the demonstration set, leading
to a primary challenge with out-of-distribution (OOD) examples [3]]. While larger models tend to
reduce the performance gap between in-distribution (ID) and OOD scenarios, even transformers,
which handle minor distribution shifts, face significant challenges when encountering major shifts
[6, 14]. The BOSS benchmark evaluates OOD robustness in ICL, highlighting the importance of
addressing OOD generalization [S]]. An approach designed to improve OOD performance involves
inferring latent variables from the context using the transformer architecture. However, this method
struggles to apply those variables effectively in prediction, limiting OOD generalization [23]. We
propose CCL, drawing on causal representation learning, to improve OOD performance in ICL by
focusing on task-relevant causal features and enhancing robustness to distribution shifts.

2.2 Causal representation learning

Unlike statistical approaches, which describe the distributional characteristics of data, causality [[7]
focuses on the structural relationships between variables. The DGP is determined by the underlying
causal relationships among variables, and a structural causal model (SCM) is a generative model
that describes the DGP [10, 24]. The SCM expresses the uncertainty of exogenous factors in a
probabilistic manner and defines functional relationships for the variables of interest (endogenous
variables), thus structurally describing the causal mechanisms of the DGP. Observed data represent
one of the realizations of these causal mechanisms. A causal graph visually represents the structural
relationships between the variables, as induced by the SCM [7].

Recently, research in machine learning has increasingly focused on moving beyond models limited
to statistical associations [25], aiming to model the underlying structural properties of the data by
applying the causality framework to machine learning [26,27]. CRL aims to construct latent variables
that capture the underlying causal mechanisms, allowing for the discovery of causal representations
within observed data [8]]. It seeks to deploy robust models in OOD scenarios, ensuring reliable
performance even when the data distribution shifts. For example, leveraging the stability of causal
mechanisms across different environments, several studies have utilized the invariant properties of
causal representations under distribution shifts to enhance model performance in OOD scenarios
through invariant prediction [[12, 28]

Furthermore, there has been ongoing research into utilizing deep generative models to explicitly
represent causal variables. Notably, under the assumption of independent causal mechanisms [[L0],
several studies have modeled these mechanisms as separate, independent modules or have focused on
learning disentangled and interpretable representations [[11} 29, [30]. Research has evolved toward
learning causal representations that maintain stable mechanisms under distribution shifts, to improve
OOD generalization [13]. Inspired by CRL, we construct a novel ICL framework using causal
knowledge for OOD generalization. To build a robust demonstration set, we utilize the invariant
causal representation constructed by a Variational Autoencoder (VAE) [31]-based model [13| 32]].

3 Methodology

3.1 Generative model and inference model

In CCL, we consider several key variables: the task variable ¢ represents the specific task being
performed. The latent causal variable c represents the fundamental context of the query. It is generated
from the task variable ¢ and serves as a causal factor for both the input query x and the (ground truth)
answer y. Additionally, we introduce the latent source variable s, which influences components of x
that are unrelated to the task, such as the structure of the text. The environmental variable e acts as an
observable proxy for the latent source variable s. It represents contextual attributes of the data, such
as the dataset’s origin or the language used.

Note that both latent variables, c and s, generate x, where c represents task-specific information, and
s represents domain-specific information. That is, we assume that the domain shift in the observed
data is induced by changes in s, while ¢ remains invariant, as shown in Figure
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Figure 3: Our proposed method, Causal-aware In-Context Learning (CCL), utilizes causally related
demonstration sets to enhance performance on out-of-distribution (OOD) datasets. (Phase 1) First,
we optimize a novel VAE-based causal representation learning method to capture the causal represen-
tations of a given in-distribution dataset. After optimization, we store the causal representations, c,
produced by the optimized model for the in-distribution dataset. (Phase 2) Second, CCL captures
the causal representation, c*, of the target query and selects the appropriate demonstration sets by
comparing c and c*.

We aim to model the joint distribution of observed vari- e
ables {x,y,t, e} along with latent variables {c, s}. We
assume the generative model

po(@,y,t,e,c.s) = po(x,t,e,c.s) po(y | o), @ @ Q e
where pg(y | ¢) is an invariant causal mechanism. We @ @ @ Q e e
let 6 denote all parameters of the generative model. We

denote the unknown true source-domain distribution as
po+(x,y,t,€), and we approximate it with py(x, y,, €).

Figure [3 illustrates the overall workflow of CCL in two Figure 2: Graphical model of CCL. The
phases. In Phase 1, we learn causal representations from ~generative model shows that ¢ influences
an in-distribution (ID) dataset using our VAE-based model: the latent causal variable ¢, which in turn
the inference networks ¢, and ¢, infer the latent variables ~directly affects both 2 and y.

s (environment-related) and c (task-related), respectively, while the decoders ¢, 83, 6 reconstruct
the observed variables. This process yields the causal embeddings c for the ID data. In Phase 2, given
a target query (x*,t*), we apply ¢. to obtain its causal embedding c*. Comparing c* with the stored
causal embeddings ¢, CCL then selects the most relevant demonstration examples, those with similar
causal factors, to construct the prompt context. This causal representation approach ensures that our
examples align with the true causal structure of the query, thereby improving model performance
even under distribution shifts.

(a) Inference model (b) Generative model

3.2 Learning causal representations via variational inference

Since direct maximization of log py(x,y, t, e) is often intractable due to the latent variables, we
employ variational inference. We introduce a tractable inference model ¢4 (c, s | z, y, ¢, ¢), where ¢
are the variational parameters. The standard Evidence Lower BOund (ELBO) on log py(x, y, t, e) is:
log po (2.1, ¢) = 1 / (9.1 ) deds = log R {pe(x,y,t,ac,é’)}

o x,y,t,e) =lo z,Yy,t,e,c, s)dcds = lo —_—

2 Po Yy g Do Y g q4(c,s|z,y,t,e) q(ﬁ(q s | x,y,t, 6)
po(x,y,t,e,¢,5)
qd?(cv S | z,Y, tv 6)

2 Eqy(c,slay,tre) {IOg ] = Lgrpo

Maximizing this ELBO with respect to both 6 and ¢ yields a tight approximation when g4 (c, s |
z,y,t, 6) ~ pg(C, s | z,y,t, 6)'



Since 6* is unknown, we instead optimize the ELBO using the observed data distribution in the
source domain, pp(x,y,t,e):

I%%XE(ac,y,t,e)NpD(x,yyt»e) [LeLso] M

3.2.1 Reformulating variational inference for unobserved y

At test time, y is always unobserved, as it is the target variable we aim to infer. While one common
approach, such as in CEVAE [33]], is to introduce an auxiliary model to explicitly predict y, we instead
modify the objective function to enable variational inference without conditioning on y. Specifically,
we factorize the inference model:

q¢(c,s,y | .Z',t,@) = Q¢(Cvs | x,t,e)pg(y ‘ C)’

which reflects the conditional independence y L (x,t, e, s) | c. This design is key, as it directly injects
the generative model’s causal assumption (¢ — y) into the inference process. It serves to constrain
the inference model g4 to find a ¢ that is consistent with pg(y | ¢), the actual causal mechanism from
the generator. This formulation allows us to marginalize out y. By applying this factorization and
Bayes’ rule to the standard ELBO, we analytically marginalize out the unobserved y, reformulating
the objective to depend only on g4(c, s | z,t, e) (see Appendix A for the full derivation). We define
Dyate = Eq,(c,slz.t.e) [Po(ylc)] as the implicit predictive distribution of y. The final objective of
CCL is given by:

rg%x Epp (z,.t.e) [LELBO) = Epp (24,t,0) [log Pylate

2)
1 po(z,t, e c,s) (
—FE s x log ——2-2 2"~ ]

+ ¢y|x,t,e qe(c,s|z,t,e) [Pe(l/|0) 0g Q¢(C, 8‘1‘, t, 6)

We construct the reconstruction model py following the generative structure outlined in Figure
Implementing Equation [2| requires this model, which is composed of decoders (e.g., po(z | ¢, s),
po(y | ¢), pe(e | s)) that reconstruct the observed variables from the latent variables. This reconstruc-
tion process, particularly the py(y | ¢) mechanism, ensures that the learned causal representation ¢
effectively captures task-relevant information.

3.3 Regularization and conditional prior

In practice, to prevent unintended dependencies between c and s during training, we further employ
Maximum Mean Discrepancy (MMD) [34] loss as a regularization term [9]]. Additionally, the task
variable ¢ (the parent of c) is treated as an observed input, not a latent variable requiring posterior
inference. Instead, following the iVAE [33]] framework, we define a conditional prior py(c | t) for
the generative model based on this observed ¢. Our variational inference formulation follows the
approach proposed in [32].

3.4 Theoretical analysis

Prioritizing demonstrations that are causally similar to the query yields provably better in-context
learning (ICL) than prioritizing demonstrations that are merely input similar. We show that input
nearest selection can induce large label discrepancies even when inputs are arbitrarily close in
Theorem [3.3] Furthermore, Theorem [3.4] provides both a theoretical explanation and a practical
guideline: prioritizing causally similar examples is key to robust ICL.

Our analysis begins by assuming the data-generating process is modeled using an SCM M := (S, P.)
and a collection S of assignment equations as follows [10]:

ti=¢y, c:=folt,ee), s:=¢e5, e:=fe(s,e), x:=fulc,s,e0), y:= fyle,ey). (3)

Here, €4,ec,€5,€¢,64 € R¢ are random vectors with d > 2 and €y € Ris arandom variable. We
assume € = {&, €., €5, €, €4, €y } satisfies joint independence. The parents of x are ¢ and s, while
y has only c as its parent. The causal graph is achieved by drawing edges from RHS variables of
Equation (3) to LHS variables except the noise variables ¢.



We adopt a linear setting in line with [36], who demonstrate that attention-based updates in LLMs
can be approximated by steps of gradient descent with a convex loss on a linear parameter w with
respect to w | x. Although real-world LLMs are more complex, the linear approximation provides a
clear analytical framework.

Assumption 3.1 (Linear-causal assumption). We formalize a simplified data-generating process via
the following linear-causal assumption:

x; =B +Basi+egi, Yii= (U’*)Tci + €y

Each coordinate of £, ; is o2-sub-Gaussian, and ,, ; is o-sub-Gaussian. B; and By denote coefficient
matrices to ¢; and s;. x;, ¢;, and s; are d-dimensional vectors and y; is a scalar.

A prerequisite for ICL is to construct a demonstration set Dg = {(x;, y;) }ies from the training
dataset Dy = {(x;, y;) }iez, Where S C T is the selected index set. A common strategy, forming the
set D,, selects pairs (z;, y;) by assessing how similar x; is to the input query =*, with the expectation
that y* will be similar to y; [15]. Our method leverages latent causal variables: we associate the
query z* with a causal variable ¢*, and each training pair (z;,y;) with its own causal variable ¢;. We
then select pairs whose ¢; lie close to c*, forming a causally similar set D.. All our theorems are
based on Assumption[3.1]

Definition 3.2 (Demonstration sets by strategy). Let sim(-, -) be a similarity measure and NNV the size
of the demonstration set. We define:

D. = argmax E sim(ci, c*), D, = argmax E sim(x;, x*) )
SCT,|S|=Njcg SCZ,|S|=N jcg

Theorem 3.3 (Input proximity can lead to prediction discrepancy). Let (z*,y*) and (x,y) be two
samples potentially generated by different latent pairs (c*, s*) and (c, s). Under Assumption B.1, B.2
in Appendix B, for every € > 0, there exists a k > 0 such that

lc* —¢| > _t ly* =yl > KL where || - |lop is the operator norm
1B1lop 1B1lop
for some constant vy, if ||x* — z|| < e. In other words, one can make ||x* — x|| arbitrarily small while
allowing ||y* — y|| to remain arbitrarily large, due to the interplay between (c*, s*) and (c, s).

Theorem shows that even when the distance between x* and x is made arbitrarily small, the
distance between the corresponding y* and y can still be significant, as there is no upper bound on
this gap. Consequently, the predicted value based on z* may coincide with y, causing a discrepancy
with the true y*.

Picking demonstrations from D, yields better in-context learning than picking from D,.. The upper
bound of the estimation error of the learned parameter is smaller compared to that of input-based
selection. Furthermore, the upper bound on the test prediction error with CCL is also smaller. The
parameter update in ICL, under a transformer architecture, is approximated by gradient descent on

the demonstration set, following the formulation in [36]]. Let w((;M) be the weight updated via M
steps of gradient descent using the empirical risk on D,, and let wva) be the corresponding weight

updated from D,..

Theorem 3.4 (Performance of the c-similarity). For sufficiently large N, M, with probability at least
1 — 6:4ir, the following holds under Assumption C.1-C.4 in Appendix C:

1. Tighter upper bound on estimation error. The estimation errors admit upper bounds Uy,
and U, ... such that

param

”ng) - ’LU*” < Upcaramv ||w£CJW) - w*” < Upmaramv and (]pcaram < U[Zilram'
Usaram = (1/Amin(Le)) - CuSn and Uy = (1/ Aiin (L)) - CuSn. Cy is a some constant
and Sy = \/10g(1/8ait) /N. Anin(A) denotes the minimum eigenvalue of a matrix A. T.

and ', are the empirical second moment matrices of D. and D,,.

2. Tighter upper bound on test error. For the test query (x*,y*) with y* = (w*) T ¢* + &}, the
prediction errors admit upper bounds U, and U, such that

|(w£M))T$* _ y* < Ue
UC

test> and U,
test — ”z*HUpCaram +[R| and Ug,, = ||x*||prar(lm +[Rl. R = (W*)Tx* -y"

’(w(M))Tx* - y*| < Uzgeﬁxr’ rest < Utﬁsl'

T




Theorem [3.4| shows that, with high probability, the parameter error ||w£M) — w*|| and the test error
I (wéM))Tx* — y*|| admit upper bounds that are tighter than the corresponding bounds obtained
from D,. In essence, when D, is used for demonstrations, the underlying design matrix becomes
better conditioned with respect to ¢, mitigating the confounding effect of s and leading to tighter

error bounds.

4 Experiments

We validate the effectiveness and validity of CCL by addressing three main points. First, in Section
we verify that the latent variables ¢ and s inferred by CCL indeed capture domain-invariant
and domain-variant features, respectively, for modeling the causal factors of z. In Section[4.3] we
examine whether the samples characterized by c exhibit similarity to the test samples or convey the
same underlying intent. In Section[4.4] we evaluate how the demonstration sets constructed using
CCL enhance in-context learning performance under OOD scenarios. In Section[d.5] we qualitatively
analyze how the latent features ¢ and s capture distinct features. Lastly, in Section[4.6] we investigate
the capability of CCL on new or more intricate reasoning tasks and perform a sensitivity analysis.

4.1 Experimental setup

We adopt a query-dependent demonstration strategy that dynamically selects the suitable examples for
each test input. After embedding a test query, we compute its cosine distances to all candidates in the
in-distribution training pool. In the K-nearest-neighbor (KNN) variant, the K closest instances, where
K equals the predefined shot size (£2), are selected directly. We also investigate a K-means-based
selection method that is governed by two hyperparameters, R and P. A proportion R of the shot
budget is allocated to the most similar instances, obtained exactly as in the KNN procedure. The
remaining budget K = ) — R is filled by clustering: among the next P (with P € {50,100, 300})
most similar candidates, we run K-means clustering and, from each cluster, select the sample whose
embedding is closest to the centroid. This combined strategy yields prompts that simultaneously
maintain high relevance to the query while covering a broader range of semantic regions.

4.2 Synthetic data

Method | ID Task Comparison |  Env. Comparison | OOD Task Comparison
| Acc. NDCG F1 | Acc NDCG Fl | Acc NDCG FI
X 57.7 71.5 58.6 85.7 91.3 86.0 45.0 57.9 454

CVAE (z) | 333 60.2 325 | 331 43.2 322 | 324 53.6 339
Oracle (¢) | 100.0  100.0 100.0 | 33.5 48.7 33.7 | 100.0 1000 100.0
CCL (¢) | 100.0 100.0 100.0 | 40.8 55.0 399 | 1000 1000 100.0
Oracle (s) | 33.3 48.9 339 | 100.0 100.0 100.0 | 32.7 51.3 33.0
CCL (s) 36.2 514 36.2 | 100.0 100.0 100.0 | 33.2 48.3 31.9

Table 1: Retrieval experiments on synthetic data show that CCL consistently outperforms alternatives
on both in-distribution and out-of-distribution task queries, confirming that c captures the underlying
causal structure of the tasks. Conversely, when retrieval is conditioned on environment labels, s-based
retrieval excels, highlighting their sensitivity to domain-specific factors. CCL’s learned representation,
CCL (c), tracks the ground-truth causal feature particularly closely.

We construct synthetic data with three tasks and five environments. Following Figure [2b] we first
define the root nodes: the task variable ¢ and the s variable. We enforce independence among
task embeddings ¢ by randomly initializing them with orthogonality constraints, applying the same
approach to s. Then, we generate the ¢ embedding using a three-layer fully connected neural network
that takes ¢ as input and add random noise to its output. Other variables follow a similar process. We
train the neural networks, viewed as non-linear data-generating functions, using contrastive learning
to ensure that c is similar within the same task and e is similar within the same s, while enforcing
dissimilarity across different tasks or environments.

To better reflect realistic scenarios, we consider similar tasks or environments. Specifically, for the
root nodes ¢ and s, we set the cosine similarity between any two ¢ or s embeddings to a value between
0 and 1 (in our experiment, we use 0.7). During contrastive training of the generating functions,



we adjust the loss weights to reduce the penalty for similar tasks or environments, ensuring their
embeddings are not pushed too far apart.

Table [I] presents the proportion of retrieved samples whose task or environment (Env.) matches
that of the target input, across different embedding types, under both in-distribution (ID) and out-
of-distribution (OOD) settings. Additional experimental results and discussions on the synthetic
experiments are provided in Appendix D.

43 MGSM
Metric z embedding ¢ embedding

Total Accuracy 81.03 85.84 Method Total ID (010)))

ID Accuracy 97.05 99.74
ZS 87.71 89.43 84.70
OOD Accuracy  53.00 61.52 ICL (Fix) 9120 9126 91.10
Total NDCG 86.00 88.73 ICL (KNN) 9407 9583 91.00
ID NDCG 99.12 99.89 CCL 9455 96.11 91.80

00D NDCG 63.03 69.21

. . (b) Comparison of performance. ZS denotes the zero-
(a) Comparison of retrieval accuracy and NDCG for = ghot baseline, ICL (Fix.) uses a fixed demonstration

and c embeddings on MGSM in the 5-shot setting. set. ICL (KNN) and CCL utilize KNN retrieval

Table 2: (a) compares five-shot MGSM retrieval performance between embeddings derived from the
original inputs x and from the causal features, c. (b) reports overall, in-distribution (ID), and out-of-
distribution (OOD) accuracies for four prompting regimes—zero-shot (ZS), fixed demonstrations,
KNN-based retrieval, and CCL.

As another dataset to evaluate the performance of our methodology, we employ the MGSM (Multilin-
gual Grade School Math) dataset [37]]. The MGSM dataset is a human-annotated translation of 250
problems from the GSMS8K dataset [38]] into ten different languages.

Utilizing the MGSM dataset, our goal is to evaluate the precision with which CCL deduces latent
variables c, that represent the fundamental context of problems. For this purpose, we evaluate the
retrieval performance by examining how correctly the model retrieves the same problem given a
specific question.

First, we extract embeddings for each question using OpenAl’s text-embedding-3-small model. Based
on these embeddings, we split the data into an ID and an OOD dataset. We use Swabhili, Thai, Telugu,
and Bengali for the OOD dataset, while the remaining languages are designated as ID. We provide a
detailed explanation of the classification criteria in Appendix D.

In this experiment, we define the problem category as the task ¢. The categories include six classes,
such as "Arithmetic Operations" and "Geometry and Measurements". These categories are generated
by labeling each question using OpenAl’s ol, followed by human verification. During the labeling
process, only English questions are labeled, and the same labels are directly applied to corresponding
questions in other languages.

Table [2a] presents the retrieval performance of the  embeddings and the ¢ embeddings. We eval-
uate how accurately each method retrieves the same problem in a different language. The results
demonstrate a significant improvement in accuracy and NDCG for both ID and OOD when using our
approach instead of = embeddings.

Next, we perform ICL based on the retrieval results. In the MGSM dataset, we evaluate performance
by measuring the model’s prediction accuracy. Similarly to the retrieval process, we use a 5-shot
setting to assess performance and compare zero-shot (ZS), ICL (Fixed sample, KNN) and CCL.
Unlike ICL (KNN) and CCL, which can retrieve samples from different languages, ICL (Fix.) uses
predefined samples specific to each language. We use GPT-40-mini for in-context learning. We refer
to Appendix D for a detailed explanation of the MGSM experiment.

Table [2b|illustrates the experimental results. The results demonstrate that CCL-based retrieval for
in-context samples achieves higher accuracy in both ID and OOD settings than other approaches.
This aligns with the strong retrieval performance of ¢ embedding indicated in Table[2a] demonstrating
that selecting in-context samples based on the latent causal feature c is crucial for problem solving
and improves in-context learning accuracy.



4.4 Generalization across tasks and domains

Language model Retrieval method QNLI PIQA WSC273 YELP Avg.

zS 4336 71.33 55.31 88.98 64.75

LLM-R 2993 6991 61.17 79.48  60.12

Llama-3.2-3B-IT  ICL (K-means) 68.13 69.04 49.82 75.81  65.70
CCL 7518 70.46 61.91 95.44 175.74

ZS 86.34 76.01 64.10 95.76  80.55

LLM-R 85.21 74.10 65.93 96.37 80.40

Phi-4-mini-IT ICL (K-means)  83.18 74.81 71.06 96.25 81.33
CCL 8226 7573 71.43 96.33 81.44

A 91.30 94.07 90.84 97.47 93.42

LLM-R 90.32  94.23 92.67 98.27 93.87

GPT-40 ICL (K-means)  88.28 93.04 87.55 98.17 91.76
CCL 90.77  93.15 93.77 98.36 94.01

Table 3: Out-of-distribution accuracy on QNLI, PIQA, WSC273, and Yelp for three language
models—Llama-3.2-3B-IT, Phi-4-mini-IT, and GPT-40—under four prompting regimes: zero-shot
(ZS), the learned-retriever baseline (LLM-R), and two K-means-based retrieval approaches, vanilla
ICL and CCL. Bold numbers denote the highest score in each column, and italics denote the second
highest. CCL attains the best average accuracy for every model, with particularly pronounced
improvements for the smaller Llama-3.2-3B-IT.

We evaluate whether examples selected by CCL improve performance on OOD NLP tasks. Adopting
the experimental protocol of LLM-R [39], we compare against their retrieval method but instead
assess the generated outputs rather than relying on token probabilities. Our approach retrieves
examples with similar ¢ embeddings via KNN, clusters them using K-means, and selects the cluster
centers as final candidates. As shown in Table[3] CCL consistently yields strong performance across
diverse OOD tasks. We follow the same 8-shot setting used in LLM-R to ensure a fair comparison.

4.4.1 Sensitivity to the embedding models

Language model Embedding model QNLI PIQA WSC273 YELP Avg.

text-embedding-3-small 82.26 75.73 7143 96.33 81.44
multilingual-e5-large-instruct  82.26  75.25 73.99 95.72 8181

Phi-4-mini-IT

Table 4: CCL accuracy on four out-of-distribution benchmarks when the same language model
(Phi-4-mini-IT) is paired with two embedding models (OpenAl’s text-embedding-3-small and the
multilingual-e5-large-instruct). Scores are given for each task and averaged; bold indicates the highest
score per column, and italics the second-highest. The multilingual-e5 encoder attains the top overall
score, yet the gap is small, indicating that CCL remains robust to the choice of embedding model.

To evaluate CCL’s sensitivity to the encoder, we reran the entire pipeline across the NLP benchmarks
using multilingual-e5-large-instruct [40], an open-source embedding model that ranks among the top
performers on the MTEB text-embedding leaderboard [41]. Table ] experimentally demonstrates that
CCL maintains comparable performance despite changes in the embedding model, highlighting its
robustness in inferring causal features.

4.5 Qualitative analysis

We provide a qualitative analysis of the learned latent features to better understand how c and s are
interpreted in practice. To visualize the semantics encoded in these variables, we decode sentence
embeddings while zeroing out one latent dimension. Specifically, we first infer ¢ and s from an
input embedding x. We then set s = 0 to generate x,_, which highlights the domain-invariant
features represented by c. Similarly, we set ¢ = 0 to generate z,_,, which reveals the domain-variant
information captured by s. Table[3]lists the top-5 nearest words to each decoded embedding.



!/ / !/ !/
T Ts=0 Le=0 €T Ls=0 Le=0

horribleappetizers unappetizing review dvd unusable  reverb
pancakes flavorless reviewers eject expired throw
potatos horribleappetizers  critiques disks cancelled  film
hadhorrible inedible soggy unusable crappy  review
bad trashed reviews purchased  trashed trip
(a) Original negative sentence is “the red velvet pan- (b) Original negative sentence is “Worked for
cakes were horrible and brown, and potatos were over about 4 months. DVD player will not eject or
cooked and bland.. would not recommend” accept disks. Do not buy.”

Table 5: Top-5 nearest words on Yelp and Amazon. The sentence embedding z captures both semantic
and contextual tokens. In contrast, 2,_, clusters strongly around negative sentiment expressions,
while z/,_ clusters tokens associated with contextual metadata.

4.6 Generalization and sensitivity analysis

4.6.1 Advanced tasks

Table [6] presents the generalization capability of CCL Unseen & generation Reasoning Multi-hop QA
across advanced tasks. The unseen generation task Yelp  Amazon MMLU  HotpotQA
involves sentiment reversal paraphrasing: the model ~ ZS 8626  86.73 60.48 82.43
rewrites a negative sentence to express the opposite  ICL 87.68 8580 61.37 84.14

& P PP CCL 90.05 87.70 61.52 84.43

sentiment, and we automatically assess its sentiment
using GPT-40-mini. Although CCL trains only on
classification tasks, it generalizes well to this unseen
generation setting. For MMLU [42], we retrieve five examples for each query without distinguishing
among the 57 domains. For HotpotQA [43]], we provide each query with its corresponding document
and retrieve examples to form document-example pairs. This experiment provides evidence that CCL
may help with hierarchical and composite language-understanding problems.

Table 6: Performance comparison of ZS, ICL,
and CCL across tasks using Phi-4-mini-IT.

4.6.2 Sensitivity analysis

QNLI PIQA WSC273 YELP dim(¢) QNLI PIQA WSC273 YELP Avg.
7S 43.4(£0.00) 71.3 (£ 0.00) 55.3 (£0.00) 89.0 (0.00)
LLM_R 29.9 (+ 0.00) 69.9 (+ 0.00) 61.2 (+0.00) 79.5 ( 0.00) ;?2 gg'g Zf'g 2(6)’411 gi'g ;gg
ICL  68.1 (+0.00) 69.0 (+0.00) 49.8 (+0.00) 75.8 (0.00) . : : : :

CCL 752 (+ 0.45) 72.4 (+ 1.12) 58.98 (+ 2.78) 95.10 (+ 0.25) 1024 (ours) 752 705  61.9 954 75.7

(a) Mean accuracy and std over 5 random seeds. (b) Accuracy variation w.r.t. dim(c).
Table 7: Performance of CCL under different training conditions using Llama-3.2-3B-IT. (a) OOD
benchmark accuracy across five random seeds, showing stable results despite stochastic variation
in VAE training. (b) Performance changes with respect to latent dimensions, indicating that smaller
dimensions do not significantly degrade accuracy.

Table|/alshows the OOD benchmark results under different random seeds used for training the VAE
within CCL. Since response generation is deterministic (non-sampling), other baselines exhibit zero
variance. Table[7breports the effect of varying the latent dimensions of ¢ and s during VAE training.
The results suggest that model performance remains stable even with smaller latent dimensions.

5 Conclusion and discussion

We propose CCL, the first framework to integrate causal representation learning into ICL, addressing
a key limitation of conventional ICL in OOD settings. By selecting demonstrations based on
causal representation rather than surface-level similarity, CCL improves robustness, and parameter
estimation, with theoretical guarantees.

Limitation and Impact statement. Since CCL employs a VAE-based latent embedding, the
inherent structural limitations of VAE may hinder its ability to fully capture the rich and nuanced
representations of natural language. We leave the deeper integration of embedding-based retrieval
with causal inference as future work.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ''NeurIPS Paper Checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction of the paper, we compare and introduce
our core contribution, which is the first study to alleviate the difficulties of existing ICL
methods in OOD in-context learning from a causal representation perspective, and validate
the significance of our methodology through theoretical validation and experiments.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: We discuss our limitations in the conclusion section.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We proceed with the theoretical analysis of our methodology in Section 3. The
necessary assumptions and definitions for the theoretical analysis are mentioned in the main

text,

and the proofs are given in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We mention specific experimental setups in the text and appendix, and ensure
reproducibility by providing a code repository.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:[Yes]

Justification: We provide all the code and data we used in our experiments in a code
repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe in the text how we selected examples from ICL and which
linguistic models we experimented with. For the sake of brevity, the specific experimental
setup can be found in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We report the mean and standard deviation of performance metrics over five
random seeds to assess the consistency of our method. However, we did not perform formal
statistical significance tests or report confidence intervals.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

11.

Answer: [Yes]

Justification: We mention in the appendix the resources required for the experiments due to
the constraints of the paper length.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We followed the EthicsGuidelines for our review. Reviewed according to the
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We do not discuss this paper due to the lack of relevant experiments.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We didn’t do anything differently because we were already using a widely
used benchmark.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all code and data we reference.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not relevant.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: Not relevant.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Does not describe
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We got some help with simple grammar corrections and LaTeX syntax from
LLM.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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