
KeyInst: Keyword Instruction for Improving SQL Formulation in
Text-to-SQL

Anonymous ACL submission

Abstract

Text-to-SQL parsing involves the translation001
of natural language queries (NLQs) into their002
corresponding SQL commands. A principal003
challenge within this domain is the formulation004
of SQL queries that are not only syntactically005
correct but also semantically aligned with the006
natural language input. However, the intrinsic007
disparity between the NLQ and the SQL poses008
a significant challenge. In this research, we in-009
troduce Keyword Instruction (KeyInst), a novel010
method designed to enhance SQL formulation011
by Large Language Models (LLMs). KeyInst012
essentially provides guidance on pivotal SQL013
keywords likely to be part of the final query,014
thus facilitates a smoother SQL query formu-015
lation process. We explore two strategies for016
integrating KeyInst into Text-to-SQL parsing:017
a pipeline strategy and a single-pass strategy.018
The former first generates KeyInst for question,019
which are then used to prompt LLMs. The lat-020
ter employs a fine-tuned model to concurrently021
generate KeyInst and SQL in one step. We022
developed StrucQL, a benchmark specifically023
designed for the evaluation of SQL formulation.024
Extensive experiments on StrucQL and other025
benchmarks demonstrate that KeyInst signifi-026
cantly improves upon the existing Text-to-SQL027
prompting techniques.028

1 Introduction029

The task of Text-to-SQL parsing, which aims at030

translating natural language questions into exe-031

cutable SQL queries, has gained increasing atten-032

tion in recent years, as it can help non-expert users033

quickly access information in the database with-034

out the need for technical background (Deng et al.,035

2021; Yu et al., 2020; Rajkumar et al., 2022; Ni036

et al., 2023). Text-to-SQL parsing faces two main037

challenges: schema linking and SQL formulation.038

Schema linking involves identifying the pertinent ta-039

bles and columns in a database schema in response040

to an NLQ. SQL formulation refers to generating041

SQL queries that are not only syntactically cor- 042

rect but also semantically aligned with the natural 043

language input. 044

This paper primarily focuses on the challenge 045

of SQL formulation. Currently, most Text-to-SQL 046

prompting methods induce Large Language Mod- 047

els (LLMs) to generate the target SQL directly us- 048

ing In-context Learning (ICL) (Nan et al., 2023; 049

Pourreza and Rafiei, 2024a; Tan et al., 2024). How- 050

ever, the vast difference between natural language 051

queries (NLQ) and SQL hinders precise query for- 052

mulation. In previous works, the skeleton-aware 053

decoder (Li et al., 2023) was proposed to alleviate 054

this challenge by initially generating an SQL skele- 055

ton followed by the full query. An SQL skeleton 056

is a basic framework of an SQL query consisting 057

of SQL operators, without specific details such as 058

column names, table names, or conditions. Incorpo- 059

rating SQL skeleton in prompting has also proven 060

to be effective (Gao et al., 2023; Guo et al., 2023). 061

In this work, we also use the SQL structure as a cen- 062

tral element in SQL formulation, with a particular 063

emphasis on identifying key SQL operators. For in- 064

stance, in translating the NLQ "List the customers’ 065

first and last names from the 10 least expensive 066

invoices", accurately identifying ORDER BY and 067

LIMIT is crucial for formulating the correct SQL 068

query. 069

We introduce Keyword Instruction (KeyInst), a 070

novel method designed to enhance SQL formula- 071

tion by LLMs. KeyInst essentially provides guid- 072

ance on pivotal SQL keywords likely to be part of 073

the final query. Recognizing that SQL queries cor- 074

responding to different NLQs require distinct key- 075

words, KeyInst adapts dynamically to each query. 076

An example of KeyInst in action is depicted in 077

Figure 1A, demonstrating how it analyzes a given 078

NLQ and deduces the critical SQL keywords. This 079

strategy effectively narrows the gap between NLQ 080

and SQL, facilitating a smoother SQL query for- 081

mulation process. 082

1

Figure 1: Graphical illustration of KeyInst and its applications: A. An example of schema, question, KeyInst, and
SQL, B. The pipeline approach of KeyInst application, C. The single-pass approach of KeyInst application.

While KeyInst significantly aids in SQL query083

formulation, further exploration is needed on its084

generation and integration into Text-to-SQL pars-085

ing. We present two approaches for KeyInst gen-086

eration: a model fine-tuning method and an ICL-087

based method. The former fine-tunes a model to088

produce KeyInsts for specific queries, while the089

latter prompts LLMs to generate KeyInsts through090

ICL (Brown et al., 2020). For the application of091

KeyInst in Text-to-SQL tasks, we also investigate092

two strategies. The first strategy prompts LLMs093

to produce SQL queries with KeyInst. The sec-094

ond strategy is a fine-tuning strategy that generates095

SQL queries directly following KeyInst generation,096

treating KeyInst creation as a preliminary reason-097

ing step.098

To amalgamate KeyInst generation and applica-099

tion within Text-to-SQL, we introduce a two-fold100

strategy. The pipeline approach initially generates101

KeyInst using either the fine-tuned or ICL-based102

method, followed by prompting LLMs with the103

generated KeyInst, as illustrated in Figure 1B. Con-104

versely, the single-pass approach employs a fine-105

tuned model to concurrently generate KeyInst and106

SQL in one step, as depicted in Figure 1C.107

Several benchmarks, such as Spider (Yu et al.,108

2018) and Bird (Li et al., 2024b), have been de-109

veloped to assess Text-to-SQL systems. However, 110

these benchmarks focus on overall parsing perfor- 111

mance and lack mechanisms for isolating evalua- 112

tions of semantic linking and SQL formulation. To 113

specifically assess SQL formulation capabilities, a 114

new benchmark called StrucQL (Structural Bench- 115

mark for Text-to-SQL) has been developed, derived 116

from Spider. In StrucQL, questions and schemas 117

are simplified: questions explicitly mention schema 118

items, and irrelevant tables and columns are omit- 119

ted from the schema. This simplification makes 120

schema linking straightforward, shifting the pri- 121

mary challenge to SQL formulation. Consequently, 122

StrucQL serves as an effective tool for evaluating 123

SQL formulation proficiency in Text-to-SQL sys- 124

tems. 125

KeyInst was assessed on StrucQL and other 126

benchmarks, with outcomes indicating that key- 127

word instructions are a valuable intermediary for 128

Text-to-SQL parsing, whether applied indepen- 129

dently or in conjunction with other techniques. 130

The main contributions of this work are summa- 131

rized as follows: 132

• We propose KeyInst, a keyword instruction 133

tailored for each Text-to-SQL task, to alle- 134

viate SQL formulation challenge. We offer 135

two approaches for integrating KeyInst into 136

2

Text-to-SQL parsing: a pipeline strategy and137

a single-pass strategy.138

• The StrucQL benchmark was developed to139

specifically assess the SQL formulation abili-140

ties of Text-to-SQL systems. By simplifying141

questions and schemas, StrucQL eliminates142

schema linking challenges, focusing evalua-143

tion on SQL formulation performance.144

• Comprehensive experiments across various145

benchmarks were conducted. The findings146

demonstrate that KeyInst significantly im-147

proves upon the existing state-of-the-art Text-148

to-SQL prompting techniques, showcasing its149

effectiveness and potential.150

2 Methods151

This paper introduces KeyInst to address the chal-152

lenge of SQL formulation in Text-to-SQL parsing.153

The main idea is to analyze the NLQ to understand154

its intent, providing explicit guidance for SQL for-155

mulation by identifying essential keywords cru-156

cial for translating the NLQ into the target SQL.157

KeyInst is generated in real-time for each Text-to-158

SQL task.159

We prepared over 6,200 KeyInst examples from160

the Spider training set, organized into a KeyInst set161

SKeyInst = {(Di, Qi,Ki, Si)}, where Di is the162

database schema, Qi is the question, Si is the SQL,163

and Ki is the KeyInst.164

Each KeyInst consists of two parts: question165

analysis and keyword suggestion, as shown in166

Figure 2. The question analysis is generated by167

prompting LLMs (see Appendix A). For keyword168

suggestions, we parse the SQL structure to iden-169

tify all the keywords it uses, then filter out non-170

essential ones. Keywords are prioritized as follows:171

highest priority (GROUP BY, HAVING, ORDER172

BY, LIMIT, EXCEPT, INTERSECT, UNION,173

WHERE), second priority (SELECT, FROM). Lower174

priority keywords are only added if an SQL lacks175

higher priority keywords. Other Keywords(JOIN,176

COUNT, IN, and others) are excluded from the177

keyword suggestions. Without keyword prioritiza-178

tion, KeyInst would degrade into an SQL skeleton,179

which includes all the keywords of an SQL state-180

ment. More details about the skeleton can be found181

in Appendix B.182

We implement the applications of KeyInst based183

on the KeyInst set SKeyInst, detailed in the follow-184

ing sections.185

Figure 2: An example of the KeyInst.

2.1 Pipeline Approach of KeyInst 186

We propose the pipeline approach as one applica- 187

tion of KeyInst, generating SQL in two steps. First, 188

generating the tailored KeyInst for the each Text- 189

to-SQL task, then prompt LLMs with the generated 190

KeyInst to generate SQL query. This section details 191

this application. 192

2.1.1 Fine-tuned KeyInst Generator 193

One approach for KeyInst generation is to fine-tune 194

a model to become a KeyInst generator. Using su- 195

pervised fine-tuning, the input is a database shcema 196

Di a question Qi, and the target output is the corre- 197

sponding KeyInst Ki. The primary objective is to 198

minimize the following loss function: 199

min
θ

1

N

N∑
i=1

L (Mθ (Di, Qi) ,Ki) , (1) 200

where L represents the loss related to the model’s 201

next token prediction, comparing the predicted 202

KeyInst with the actual ground truth. This fine- 203

tuned model, referred to as the fine-tuned KeyInst 204

generator, analyzes the question and generates 205

a tailored KeyInst, called KeyInst-FT, to prompt 206

LLMs in SQL formulation. 207

2.1.2 In-context Learning KeyInst Generator 208

Another apporach for KeyInst generation is to 209

prompt LLMs with ICL to generate KeyInst. We 210

select a few examples (i.e., demonstrations) from 211

the KeyInst set SKeyInst to form a few-shot prompt 212

for generating a tailored KeyInst for a Text-to-SQL 213

task. Each example contains a database schema Di, 214

a question Qi and its corresponding KeyInst Ki. 215

For each Text-to-SQL task, we select the top-m 216

most similar examples based on masked question 217

similarity (Gao et al., 2023) and combine them with 218

the current database schema D and question Q to 219

create a few-shot prompt. This few-shot prompt 220

guides the LLMs to generate the tailored KeyInst, 221

3

named KeyInst-ICL, for the current question. The222

process can be formulated as:223

PLLMs(y | x) = P
(
y | prompt

(
(D,Q) , {(Di, Qi,Ki)}i<=m

))
,

(2)224

where x is the LLMs’ input, including the current225

schema and question and the m examples. The226

output y is the expected KeyInst-ICL for the cur-227

rent question. This system is referred to as the228

in-context learning KeyInst generator.229

2.1.3 SQL formulation with KeyInst230

SQL formulation follows KeyInst generation. A ba-231

sic usage is to combine it with the database schema232

D, question Q, and KeyInst K to construct a zero-233

shot prompt that guides LLMs to generate SQL.234

This can be formulated as:235

PLLMs(y | x) = P (y | prompt (D,Q,K)) , (3)236

where x is the LLMs’ input (i.e., the zero-shot237

prompt), and y is the expected SQL output.238

Notably, KeyInst functions as an instruction to239

enhance the SQL formulation capabilities of LLMs.240

It is highly extensible and can be effortlessly inte-241

grated with existing Text-to-SQL prompting meth-242

ods. By appending KeyInst to these methods’243

prompts, their performance can be significantly244

improved. This will be analyzed in detail in §4.3.245

2.2 Single-Pass Approach of KeyInst246

We propose a single-pass approach for KeyInst as247

an alternative application method of KeyInst. In248

this approach, a fine-tuned model simultaneously249

generates both KeyInst and SQL in a single pass.250

The generation of KeyInst serves as an initial rea-251

soning step, and the fine-tuning process helps the252

model internalize this reasoning, thereby improv-253

ing its ability to formulate SQL queries.254

This involves supervised fine-tuning, where in-255

puts are the database schema Di and the question256

Qi, and targets are the KeyInst Ki and the SQL257

statement Si. The objective is to minimize the em-258

pirical loss:259

min
θ

1

N

N∑
i=1

L (Mθ (Di, Qi) , (Ki, Si)) , (4)260

where L represents the loss related to the model’s261

next token prediction, comparing the predicted262

KeyInst and SQL with the actual ground truth.263

The key difference between our fine-tuned model264

and a common Text-to-SQL fine-tuning model lies265

in the output. Our model first generates a KeyInst 266

before generating the SQL, effectively reasoning 267

about SQL formulation. Fine-tuning enables the 268

model to remember this reasoning pattern, so it can 269

spontaneously perform the reasoning when encoun- 270

tering a Text-to-SQL task. 271

3 StrucQL: A Structural Benchmark for 272

Text-to-SQL 273

StrucQL is developed to allow researchers to 274

swiftly and independently assess the SQL formu- 275

lation capabilities of Text-to-SQL systems. Text- 276

to-SQL errors can be categorized into semantic er- 277

rors, which reflect schema linking capabilities, and 278

structural errors, which pertain to SQL formulation 279

skills. 280

However, widely-used Text-to-SQL benchmarks 281

such as Spider (Yu et al., 2018) and Bird (Li et al., 282

2024b) focus on overall parsing performance and 283

lack mechanisms for isolating evaluations of SQL 284

formulation. Previous studies have relied on ex- 285

pensive manual evaluations to gauge structural per- 286

formance (Ning et al., 2024), underscoring the ne- 287

cessity for a specialized structural benchmark for 288

Text-to-SQL systems. 289

SQL structural errors fall into two categories: 290

(1) syntax errors, such as mismatched parentheses, 291

which make SQL unexecutable, and (2) structural 292

misalignments with the NLQ, such as inappropri- 293

ate keyword usage. While LLMs can easily gen- 294

erate syntactically correct SQL due to extensive 295

pre-training, the real challenge is ensuring struc- 296

tural alignment with the NLQ. StrucQL, therefore, 297

focuses on evaluating this alignment. 298

We developed StrucQL by modifying the Spi- 299

der dataset and utilizing GPT41 for assistance. 300

StrucQL comprises 1050 examples and covers 7 301

types of SQL operation. Each example is dedicated 302

to a single operation type. To mitigate schema 303

linking difficulties in the Text-to-SQL task, we im- 304

plemented schema simplification. This process re- 305

duces schema linking errors, thereby providing a 306

clearer assessment of SQL formulation. Specif- 307

ically, we replaced schema-related terms in the 308

original NLQs with the corresponding table and 309

column names, and filtered out tables and columns 310

from the database schema that were irrelevant to 311

the questions (see Appendix C for an example). 312

Table 1 presents the performance of various 313

LLMs on StrucQL in a zero-shot scenario. To as- 314

1https://openai.com

4

Type Gemma-7B Llama3-8B Llama3-70B Claude3 GPT4

Original question and schema (Input)

GROUP BY 47.3 63.3 75.3 72.0 75.3
HAVING 50.0 68.0 80.0 83.3 86.0
ORDER BY 52.7 76.0 82.0 90.7 92.7
LIMIT 44.0 54.0 66.0 74.7 80.0
EXCEPT 36.7 59.3 63.3 68.7 71.3
INTERSECT 30.0 48.7 59.3 69.3 70.7
UNION 17.3 37.3 46.7 53.3 56.7

Overall 39.7 58.1 67.5 73.1 76.1

Schema-simplified question and schema (Input)

GROUP BY 58.7 69.3 78. 0 73.3 76.7
HAVING 52.7 74.0 82.0 85.3 86.0
ORDER BY 66.7 74.7 90.7 92.7 94.0
LIMIT 51.3 76.0 80.7 77.3 88.7
EXCEPT 41.3 63.3 64.7 70.7 72.7
INTERSECT 42.7 57.3 61.3 73.3 72.7
UNION 30.7 38.7 47.3 55.3 57.3

Overall 49.1 63.9 72.0 75.4 78.3

Table 1: The results of execution accuracy for all com-
pared models on StrucQL.

sess the impact of schema simplification on the315

Text-to-SQL task, we compared the results of mod-316

els using original inputs with those using schema-317

simplified inputs. Overall, schema simplification318

improved execution accuracy. Larger models ex-319

hibited smaller improvements: GPT-4’s accuracy320

increased by 2.2%, whereas Gemma-7B’s accu-321

racy rose by 9.4%. Additionally, we observed322

a significant performance gap for set operation323

types (EXCEPT, INTERSECT, UNION) compared324

to other types. This disparity may be due to the325

relative infrequency of set operations, leading to326

less representation in the models’ training datasets.327

Moreover, schema simplification did not signifi-328

cantly enhance execution accuracy for these types,329

suggesting that their primary challenges are not330

related to schema linking issues.331

To the best of our knowledge, StrucQL is the332

first effective tool designed to evaluate SQL formu-333

lation proficiency in Text-to-SQL systems. It offers334

deeper insights into the methodologies of these335

systems. By focusing on various types of SQL op-336

erations, StrucQL allows for a targeted evaluation337

of specific operations, helping to identify particu-338

lar strengths and weaknesses in SQL formulation.339

Ultimately, this leads to more robust and accurate340

Text-to-SQL systems, enhancing database interac-341

tions.342

4 Experiments343

In this section, we systematically assess the effec-344

tiveness of KeyInst. Our evaluation centers on two345

primary aspects: (1) comparing the performance of346

different applications of KeyInst, and (2) examin-347

ing the performance improvements when KeyInst 348

is integrated with current state-of-the-art (SOTA) 349

Text-to-SQL prompting methods. 350

4.1 Setup 351

Models We selected five LLMs for our experi- 352

ments: Gemma-7B-It (Team et al., 2024) (Gemma- 353

7B) , Llama-3-8B-Instruct2 (Llama3-8B) , Llama- 354

3-70B-Instruct2 (Llama3-70B), Claude-3-Opus- 355

202402293 (Claude3), and GPT-4-Turbo-2024-04- 356

09 1 (GPT4). 357

358

Hyperparameters For fine-tuning method, the 359

Llama3-8B model is trained on Nvidia Tesla A100 360

GPUs, employing a batch size of 32 with a learn- 361

ing rate of 1*e-5. For the prompting method, we 362

perform greedy decoding at a temperature of τ = 0 363

to ensure reproducible results. 364

365

Benchmarks We used the following benchmarks: 366

StrucQL, Spider (Yu et al., 2018), and Bird (Li 367

et al., 2024b). StrucQL, introduced in this paper, 368

evaluates the SQL formulation of Text-to-SQL sys- 369

tems. Spider is a large-scale benchmark with 8,000 370

training samples and 1,034 development samples 371

across multiple databases. The BIRD dataset fea- 372

tures 12,751 question-SQL pairs, covering 95 large 373

databases across 37 professional fields. 374

375

Metrics We use execution accuracy (EX) to evalu- 376

ate different methods. This metric compares the ex- 377

ecution output of the predicted SQL query with that 378

of the ground truth SQL query on same database 379

instances. 380

381

Baselines We selected three SOTA Text-to-SQL 382

prompting methods as the baselines. 383

(1) DIN-SQL (Pourreza and Rafiei, 2024a): This 384

pipeline prompting method that involves schema 385

linking, difficulty classification, SQL generation, 386

and SQL self-correction. 387

(2) DAIL-SQL (Gao et al., 2023): An efficient few- 388

shot prompting method that selects demonstrations 389

based on similarity of masked question and SQL 390

skeleton. We use DAIL-SQL with 8 shots. 391

(3) SC-SQL (Tan et al., 2024): This method inte- 392

grates multiple Text-to-SQL reasoning paths and 393

selects the best candidate result from these paths. 394

395

Our methods We introduce KeyInst and apply it 396

2https://github.com/meta-llama/llama3
3https://claude.ai

5

using two approaches: the pipeline approach and397

the single-pass approach. The specific implementa-398

tions are:399

(1) KeyInst-FT: A variant of KeyInst generated by400

the fine-tuned KeyInst generator (§2.1.1), used to401

prompt LLMs to generate SQL. Specifically, we402

fine-tuned a Llama3-8B model as the fine-tuned403

KeyInst generator.404

(2) KeyInst-ICL: Another variant of KeyInst gener-405

ated by the in-context learning KeyInst generator406

(§2.1.2). For each Text-to-SQL task, 6 examples407

are retrieved based on masked question similar-408

ity (Gao et al., 2023) to create a few-shot prompt,409

which is then used to guide GPT4 in generating410

KeyInst-ICL.411

(3) KeyLla: As described in §2.2, we fine-tuned a412

Llama3-8B model with the KeyInst set, resulting413

in the KeyLla model. This model can perform414

KeyInst reasoning first and then generate SQL.415

4.2 Results on StrucQL416

We introduce StrucQL as a benchmark designed to417

evaluate the performance of Text-to-SQL systems418

in the challenge of SQL formulation. In this section,419

we analyze the performance of various applications420

of KeyInst on the StrucQL benchmark.421

4.2.1 Comparison of KeyInst Applications422

we compared two applications of KeyInst: the423

pipeline approach and the single-pass approach.424

The KeyLla, a Llama3-8B model fine-tuned with425

KeyInst, represents the single-pass approach. To426

ensure a fair comparison, we also used the Llama3-427

8B model within the pipeline to generate SQL.428

We utilized two variants of KeyInst: KeyInst-FT429

and KeyInst-ICL. Despite their different generation430

methods, both variants serve as part of the prompt431

to guide the Llama3-8B in SQL formulation. The432

results are detailed in Table 2.433

Table 2 demonstrates that the single-pass ap-434

proach (i.e., KeyLla) outperforms the pipeline ap-435

proach (i.e., KeyInst-FT and KeyInst-ICL) in terms436

of performance. KeyLla effectively internalizes437

KeyInst’s reasoning for SQL formulation, leading438

to superior results. While the single-pass approach439

achieved the best performance, the pipeline ap-440

proach can also achieve comparable results. Addi-441

tionally, the pipeline approach have the advantage442

of being able to leverage more powerful LLMs,443

such as GPT4. Achieving similar performance444

through single-pass approach would be signifi-445

cantly more costly.446

Type Single-Pass Pipeline

KeyLla KeyInst-FT KeyInst-ICL

GROUP BY 80.7 74.5 79.3
HAVING 85.3 80.0 82.0
ORDER BY 90.7 88.0 87.3
LIMIT 83.3 82.7 86.7
EXCEPT 78.0 69.3 73.3
INTERSECT 82.0 81.3 80.7
UNION 53.3 62.0 54.0

Overall 79.1 76.9 76.8

Table 2: Execution accuracy (EX) of KeyInst applica-
tions on StrucQL. KeyLla is a fine-tuned Llama3-8B
model. KeyInst-FT and KeyInst-ICL are variants of
KeyInst, used to prompt LLMs (here, the Llama3-8B)
for SQL formulation.

Models Prompting EX

Llama3-8B
KeyInst-ICL 76.8
KeyInst-FT 76.9

Llama3-70B
KeyInst-ICL 80.5
KeyInst-FT 83.2

GPT4
KeyInst-ICL 82.3
KeyInst-FT 84.3

Table 3: Execution accuracy (EX) of various LLMs
using KeyInst-FT and KeyInst-ICL on StrucQL.

In conclusion, both single-pass and pipeline 447

are effective for addressing the SQL formulation 448

challenge in Text-to-SQL tasks. If budget allows, 449

single-pass approach of KeyInst can achieve better 450

performance compared to pipeline. However, the 451

advantage of pipeline lies in their cost-effectiveness 452

and flexibility. Pipeline can be combined with more 453

powerful LLMs without requiring extensive com- 454

putational resources and time-consuming training 455

processes. 456

4.2.2 Comparison of KeyInst-FT and 457

KeyInst-ICL 458

Table 3 presents the performance of KeyInst-FT 459

and KeyInst-ICL on more powerful LLMs. Using 460

KeyInst-FT to prompt GPT4 achieves the highest 461

EX result at 84.3%. This outcome demonstrates 462

the advantage of the pipeline approach, which can 463

achieve excellent performance with low computa- 464

tional resources by leveraging the powerful natural 465

language processing capabilities of LLMs. 466

Table 3 also highlights the superior performance 467

of KeyInst-FT over KeyInst-ICL. KeyInst-ICL pro- 468

vides overly detailed keyword suggestions, such 469

as AVG, COUNT, JOIN, and IN (see Appendix D 470

for examples). These keywords, defined as the 471

lowest priority in §2, are not expected to appear 472

in KeyInst. Excessive detail can hinder LLMs’ 473

6

Methods EX

The single-pass approach

KeyLla 79.1

w/o question analysis 72.9
w/o keyword suggestion 68.4

The pipeline approach

KeyInst-FT + GPT4 84.3

w/o question analysis 83.4
w/o keyword suggestion 81.5

Table 4: Ablation study.

Text-to-SQL performance (Tai et al., 2023; Tan474

et al., 2024), which may explain KeyInst-ICL’s475

slightly poorer results. Additionally, KeyInst-FT476

is generated by a Llama3-8B model fine-tuned on477

over 6200 KeyInst data points, while KeyInst-ICL478

is generated by prompting GPT-4 with a 6-shot479

prompt. Although GPT4 is more powerful, fine-480

tuning enables the fine-tuned KeyInst generator to481

better capture the relationship between NLQ and482

KeyInst, thereby generating KeyInsts more suitable483

for the Text-to-SQL task.484

4.2.3 Ablation Study485

Table 4 presents the results of the ablation study.486

Each KeyInst consists of two parts: question analy-487

sis and keyword suggestion (see Figure 2). The488

question analysis explains the NLQ of the cur-489

rent Text-to-SQL task, while the keyword sug-490

gestion provides potential SQL keywords for the491

current Text-to-SQL task. To assess the contri-492

bution of each component, we compared single-493

pass and pipeline approaches both with and without494

these parts. For the single-pass approach, we split495

the training data accordingly, and for the pipeline496

approach, we separated the KeyInst components497

when prompting the LLMs. The results in Table 4498

indicate that the keyword suggestion plays a more499

significant role in the effectiveness of KeyInst.500

4.2.4 Results of Baselines501

Table 5 presents the performance of baseline meth-502

ods (DIN-SQL (Pourreza and Rafiei, 2024a), DAIL-503

SQL (Gao et al., 2023), SC-SQL (Tan et al., 2024))504

and our KeyInst-FT method on StrucQL. The re-505

sults indicate that while these baseline methods, as506

SOTA Text-to-SQL prompting approaches, achieve507

commendable results on well-known benchmarks508

(e.g., Spider and Bird), there is still room for im-509

provement in SQL formulation capabilities, par-510

Type DIN-SQL DAIL-SQL SC-SQL KeyInst-FT

GROUP BY 75.3 77.3 76.7 78.7
HAVING 85.3 85.3 84.0 86.0
ORDER BY 94.7 94.0 93.3 94.0
LIMIT 88.7 89.3 88.0 89.3
EXCEPT 75.3 82.0 78.7 83.3
INTERSECT 75.3 84.0 79.7 85.3
UNION 62.0 62.7 65.3 73.3

Overall 79.5 82.1 81.0 84.3

Table 5: Execution accuracy (EX) of GPT4 using base-
lines and KeyInst-FT on StrucQL.

Methods Spider Bird

Zero-shot 77.9 43.6
DIN-SQL 85.1 50.7
DAIL-SQL 83.1 54.8
SC-SQL 86.2 53.3

KeyInst-FT 82.8 50.1
+ DIN-SQL 86.8 54.5
+ DAIL-SQL 85.2 58.0
+ SC-SQL 87.6 56.6

Table 6: Execution accuracy (EX) of GPT4 on the Spi-
der dev and Bird dev.

ticularly in set operations (EXCEPT, INTERSECT, 511

UNION), where our method excels. We believe that 512

explicitly mentioning SQL keywords relevant to the 513

current Text-to-SQL task in the prompt is crucial 514

for enhancing the LLMs’ SQL formulation perfor- 515

mance. This is supported by DAIL-SQL’s strong 516

performance, which is attributed to its considera- 517

tion of SQL skeleton similarity when constructing 518

few-shot prompts, thus the prompt may contain 519

important SQL keywords that are relevant to the 520

current task. 521

4.3 Results on General Benchmark 522

We also evaluated KeyInst on well-known bench- 523

marks, such as Spider and Bird. KeyInst is in- 524

struction and can be easily integrated with exist- 525

ing Text-to-SQL prompting methods by appending 526

KeyInst to their prompts (see Appendix E for exam- 527

ples). We used the GPT4 model to assess the per- 528

formance of baseline methods with KeyInst, with 529

results shown in Table 6. 530

We conducted experiments using KeyInst-FT (a 531

variant of KeyInst). When used alone, KeyInst 532

serves as a zero-shot prompting method. While 533

it performs well compared to standard zero-shot 534

methods, it does not match the current these SOTA 535

Text-to-SQL prompting methods because it specifi- 536

cally addresses the SQL formulation challenge and 537

7

does not focus on the schema linking challenge.538

However, this issue is easily resolved when com-539

bined with SOTA methods, which handle schema540

linking while KeyInst focuses on SQL formulation.541

Table 6 demonstrates significant performance542

improvements in baseline methods after incorporat-543

ing KeyInst, highlighting KeyInst’s effectiveness544

in SQL formulation. Additionally, KeyInst’s ease545

of integration with prompting methods makes it a546

valuable tool for advancing prompt-based Text-to-547

SQL research.548

4.4 Discussion549

How to choose the application method for550

KeyInst? We propose two applications for551

KeyInst: single-pass and pipeline. When computa-552

tional resources are abundant, the single-pass ap-553

proach, which involves fine-tuning a model with554

KeyInst can maximize its SQL formulation capa-555

bilities. However, since computational resources556

are often limited, the pipeline approach becomes557

more advantageous as it can leverage more power-558

ful models without extensive training. Therefore,559

we believe that the pipeline approach for KeyInst560

deserves more attention. Within this approach, fine-561

tuning a KeyInst generator (if resources allow) can562

produce more effective KeyInsts than using the563

in-context learning KeyInst generator.564

565

How to use KeyInst? Due to KeyInst’s566

lightweight design, KeyInst offers strong compati-567

bility, especially evident in the prompting method.568

We do not recommend relying solely on KeyInst to569

solve Text-to-SQL tasks, as these tasks often also570

encounter the challenge of schema linking. We571

advocate for the integration of KeyInst with other572

Text-to-SQL prompting methods. This integration573

is straightforward because KeyInst is presented as574

an instruction within a prompt. The excellent com-575

patibility of KeyInst holds significant potential for576

future research.577

5 Relate Work578

579

SQL formulation Previous works typically pro-580

pose well-designed decoders to address SQL for-581

mulation challenge. (Wang et al., 2020; Cai et al.,582

2021; Qi et al., 2022). RESDSQL (Li et al., 2023)583

introduces a skeleton-aware decoder that first gener-584

ates an SQL skeleton and then fills the slots, prov-585

ing to be very effective. A new trend involves586

prompting LLMs (Chen et al., 2023; Liu et al., 587

2023), focusing on task decomposition, or selecting 588

demonstrations for few-shot prompts. DIN-SQL 589

(Pourreza and Rafiei, 2024a) uses a pipeline to se- 590

quentially address schema linking and SQL formu- 591

lation, while SC-SQL (Tan et al., 2024) emphasizes 592

result consistency (Wang et al., 2022). DAIL-SQL 593

(Gao et al., 2023) selects demonstrations based on 594

masked question and SQL skeleton similarity. Nan 595

(Nan et al., 2023) and Guo (Guo et al., 2023) pro- 596

pose similar methods. These approaches rely on 597

implicit information in demonstrations, leading to 598

suboptimal SQL formulation. In contrast, KeyInst 599

explicitly guides LLMs to use specific SQL key- 600

words through tailored instructions. 601

602

Benchmarks Popular benchmarks like Spider (Yu 603

et al., 2018), and Bird (Li et al., 2024b) evaluate 604

comprehensive Text-to-SQL capabilities. More 605

challenging datasets like Spider-Syn (Gan et al., 606

2021a), Spider-DK (Gan et al., 2021b), and Am- 607

biguity (Bhaskar et al., 2023) focus on schema 608

linking. However, the field lacks a benchmark for 609

SQL formulation performance. Therefore, we pro- 610

pose StrucQL to help researchers assess the SQL 611

formulation capabilities of Text-to-SQL systems. 612

6 Conclusion 613

This paper introduces KeyInst, a dynamic instruc- 614

tion method explicitly highlighting essential SQL 615

keywords likely to be included in the target SQL 616

query. We explore two approaches for integrat- 617

ing KeyInst into Text-to-SQL parsing: the pipeline 618

approach and the single-pass approach. In the 619

pipeline approach, KeyInst is used to prompt LLMs. 620

In contrast, the single-pass approach involves fine- 621

tuning a model with KeyInst. Our results indicate 622

that, for models of the same size, the single-pass 623

approach outperforms the pipeline approach. How- 624

ever, the pipeline approach excels in flexibility, 625

easily integrating with more powerful LLMs to 626

achieve superior performance. Due to KeyInst’s 627

lightweight design, KeyInst integrates seamlessly 628

with existing Text-to-SQL prompting methods, en- 629

hancing their performance. This compatibility sug- 630

gests promising potential for future research in 631

Text-to-SQL prompting. 632

Limitations 633

In this paper, we made an effort to demonstrate the 634

effectiveness of KeyInst, but there are still some 635

8

limitations that need to be noted: First and fore-636

most, we acknowledge that KeyInst, designed for637

the SQL formulation challenge, offers limited as-638

sistance for the schema linking challenge. Whether639

this instruction-based method can be effectively640

used to address the schema linking challenge re-641

quires further exploration in the future. Second,642

when discussing applications for KeyInst (§4.2.1),643

due to budget constraints, we conducted experi-644

ments only on Llama3-8B. We are uncertain about645

the performance of the single-pass approach on646

larger models. Third, prompting with KeyInst has647

shown excellent compatibility, as it can be com-648

bined with other prompting methods and enhance649

their performance. However, for fine-tuning with650

KeyInst, it remains unclear whether using KeyInst651

for fine-tuning existing Text-to-SQL models (Pour-652

reza and Rafiei, 2024b; Li et al., 2024a) will im-653

prove their performance. This requires further in-654

vestigation in future research.655

References656

Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and657
Sunita Sarawagi. 2023. Benchmarking and improv-658
ing text-to-sql generation under ambiguity. In Pro-659
ceedings of the 2023 Conference on Empirical Meth-660
ods in Natural Language Processing, pages 7053–661
7074.662

Tom Brown, Benjamin Mann, Nick Ryder, Melanie663
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind664
Neelakantan, Pranav Shyam, Girish Sastry, Amanda665
Askell, et al. 2020. Language models are few-shot666
learners. Advances in neural information processing667
systems, 33:1877–1901.668

Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng Hao.669
2021. Sadga: Structure-aware dual graph aggrega-670
tion network for text-to-sql. Advances in Neural671
Information Processing Systems, 34:7664–7676.672

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and673
Denny Zhou. 2023. Teaching large language models674
to self-debug. arXiv preprint arXiv:2304.05128.675

Xiang Deng, Ahmed Hassan Awadallah, Christopher676
Meek, Oleksandr Polozov, Huan Sun, and Matthew677
Richardson. 2021. Structure-grounded pretraining678
for text-to-sql. In The 2021 Annual Conference of679
the North American Chapter of the Association for680
Computational Linguistics.681

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew682
Purver, John R Woodward, Jinxia Xie, and Peng-683
sheng Huang. 2021a. Towards robustness of text-to-684
sql models against synonym substitution. In Proceed-685
ings of the 59th Annual Meeting of the Association for686
Computational Linguistics and the 11th International687

Joint Conference on Natural Language Processing 688
(Volume 1: Long Papers), pages 2505–2515. 689

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b. 690
Exploring underexplored limitations of cross-domain 691
text-to-sql generalization. In Proceedings of the 2021 692
Conference on Empirical Methods in Natural Lan- 693
guage Processing, pages 8926–8931. 694

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 695
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023. 696
Text-to-sql empowered by large language mod- 697
els: A benchmark evaluation. arXiv preprint 698
arXiv:2308.15363. 699

Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng 700
Wang, Zhihua Wen, Kang Yang, and Ting Wang. 701
2023. Prompting gpt-3.5 for text-to-sql with de- 702
semanticization and skeleton retrieval. In Pacific Rim 703
International Conference on Artificial Intelligence, 704
pages 262–274. Springer. 705

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 706
2023. Resdsql: Decoupling schema linking and 707
skeleton parsing for text-to-sql. In Proceedings of 708
the AAAI Conference on Artificial Intelligence, pages 709
13067–13075. 710

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi- 711
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, 712
Cuiping Li, and Hong Chen. 2024a. Codes: Towards 713
building open-source language models for text-to-sql. 714
Proc. ACM Manag. Data. 715

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua 716
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 717
Geng, Nan Huo, et al. 2024b. Can llm already serve 718
as a database interface? a big bench for large-scale 719
database grounded text-to-sqls. Advances in Neural 720
Information Processing Systems, 36. 721

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S 722
Yu. 2023. A comprehensive evaluation of chat- 723
gpt’s zero-shot text-to-sql capability. arXiv preprint 724
arXiv:2303.13547. 725

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu 726
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and 727
Dragomir Radev. 2023. Enhancing text-to-sql capa- 728
bilities of large language models: A study on prompt 729
design strategies. In Findings of the Association 730
for Computational Linguistics: EMNLP 2023, pages 731
14935–14956. 732

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoy- 733
anov, Wen-tau Yih, Sida I Wang, and Xi Victoria 734
Lin. 2023. Lever: Learning to verify language- 735
to-code generation with execution. arXiv preprint 736
arXiv:2302.08468. 737

Zheng Ning, Yuan Tian, Zheng Zhang, Tianyi Zhang, 738
and Toby Jia-Jun Li. 2024. Insights into natural lan- 739
guage database query errors: From attention mis- 740
alignment to user handling strategies. ACM Transac- 741
tions on Interactive Intelligent Systems. 742

9

Mohammadreza Pourreza and Davood Rafiei. 2024a.743
Din-sql: Decomposed in-context learning of text-to-744
sql with self-correction. Advances in Neural Infor-745
mation Processing Systems, 36.746

Mohammadreza Pourreza and Davood Rafiei. 2024b.747
Dts-sql: Decomposed text-to-sql with small large748
language models. Preprint, arXiv:2402.01117.749

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,750
Chenghu Zhou, Xinbing Wang, Quanshi Zhang, and751
Zhouhan Lin. 2022. Rasat: Integrating relational752
structures into pretrained seq2seq model for text-to-753
sql. arXiv preprint arXiv:2205.06983.754

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-755
danau. 2022. Evaluating the text-to-sql capabil-756
ities of large language models. arXiv preprint757
arXiv:2204.00498.758

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,759
and Huan Sun. 2023. Exploring chain-of-thought760
style prompting for text-to-sql. arXiv preprint761
arXiv:2305.14215.762

Zhao Tan, Xiping Liu, Qing Shu, Xi Li, Changxuan763
Wan, Dexi Liu, Qizhi Wan, and Guoqiong Liao. 2024.764
Enhancing text-to-sql capabilities of large language765
models through tailored promptings. In Proceedings766
of the 2024 Joint International Conference on Compu-767
tational Linguistics, Language Resources and Evalu-768
ation (LREC-COLING 2024), pages 6091–6109.769

Gemma Team, Thomas Mesnard, Cassidy Hardin,770
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,771
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,772
Juliette Love, et al. 2024. Gemma: Open models773
based on gemini research and technology. arXiv774
preprint arXiv:2403.08295.775

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr776
Polozov, and Matthew Richardson. 2020. Rat-sql:777
Relation-aware schema encoding and linking for text-778
to-sql parsers. In Proceedings of the 58th Annual779
Meeting of the Association for Computational Lin-780
guistics, pages 7567–7578.781

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,782
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,783
and Denny Zhou. 2022. Self-consistency improves784
chain of thought reasoning in language models. In785
The Eleventh International Conference on Learning786
Representations.787

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Yi Chern Tan,788
Xinyi Yang, Dragomir Radev, Caiming Xiong, et al.789
2020. Grappa: Grammar-augmented pre-training for790
table semantic parsing. In International Conference791
on Learning Representations.792

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,793
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-794
ing Yao, Shanelle Roman, et al. 2018. Spider: A795
large-scale human-labeled dataset for complex and796
cross-domain semantic parsing and text-to-sql task.797

In 2018 Conference on Empirical Methods in Natu- 798
ral Language Processing, EMNLP 2018, pages 3911– 799
3921. Association for Computational Linguistics. 800

10

https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117

A Prompt of Question Analysis 801

In §2, we constructed a KeyInst set, where the KeyInsts were pre-prepared. For the question analysis 802

part of the KeyInsts, we used the following prompt to guide the GPT4 model. It is a few-shot prompt 803

containing 7 demonstrations. The prompt is: 804

805

Please analyse the following natural language query. 806

Natural language query: Please show the different statuses of cities and the average population of cities 807

with each status. 808

Analysis: The question is asking for a list of different statuses of cities and the average population for 809

cities within each status. This requires grouping the cities by their status and calculating the average 810

population for each group. 811

812

Please analyse the following natural language query. 813

Natural language query: What is the average longitude of stations that never had bike availability more 814

than 10? 815

Analysis: The question is looking to calculate the average longitude of bike stations where the number of 816

available bikes never exceeded 10. This requires filtering out stations based on a condition applied to their 817

bike availability data. 818

819

Please analyse the following natural language query. 820

Natural language query: List the writers of the books in ascending alphabetical order. 821

Analysis: The question is asking to retrieve a list of writers from the book table and sort them in ascending 822

alphabetical order. This requires selecting the Writer column and ordering the results. 823

824

Please analyse the following natural language query. 825

Natural language query: List the publisher of the publication with the highest price. 826

Analysis: The question is asking to identify the publisher of the publication that has the highest price. 827

This requires sorting the publications by price in descending order and selecting the top result. 828

829

Please analyse the following natural language query. 830

Natural language query: Show ids for all employees who don’t have a certificate. 831

Analysis: The question is asking for the IDs of employees who do not possess any certificates. This 832

requires comparing two sets of data: one from the Employee table and one from the Certificate table, and 833

then finding the difference between these two sets. 834

835

Please analyse the following natural language query. 836

Natural language query: Show names for all employees who have certificates on both Boeing 737-800 837

and Airbus A340-300. 838

Analysis: The question is looking for the names of employees who hold certificates for both the Boeing 839

737-800 and the Airbus A340-300 aircraft. This requires identifying employees who have certificates for 840

both aircraft types and then retrieving their names. 841

842

Please analyse the following natural language query. 843

Natural language query: Find courses that ran in Fall 2009 or in Spring 2010. 844

Analysis: The question is looking for courses that were offered either in the Fall semester of 2009 or in 845

the Spring semester of 2010. This requires filtering records based on specific conditions for both the 846

semester and the year. 847

848

11

B Comparsion of KeyInst and SQL skeleton.849

In §2, we assigned different priorities to SQL keywords and considered which keywords should be850

included in KeyInst’s keyword suggestions based on these priorities. This approach was taken because851

general keywords (e.g., JOIN, IN, COUNT) do not directly reflect the query intent corresponding to NLQs.852

Instead, overly detailed information can increase the burden on the KeyInst generator and potentially853

affect the output of LLMs.854

We conducted a comparative experiment where we did not set keyword priorities. In this scenario,855

KeyInst degraded into an SQL skeleton, as illustrated in Figure 3. The details of the comparative856

experiment are as follows: we replaced the KeyInst in the KeyInst set with SQL skeletons and fine-tuned857

the Llama3-8B model to become an SQL skeleton generator. This generator produces an SQL skeleton858

for each Text-to-SQL task, and this generated SQL skeleton is then used as part of the prompt to guide the859

LLMs in generating SQL.860

The results in Table 7 show that using the skeleton is significantly less effective than using KeyInst-FT(a861

version of KeyInst). Although the skeleton (Figure 3) appears more specific on the surface compared862

to KeyInst, directly deriving an SQL skeleton from an NLQ is not easy. This often leads to unexpected863

errors, which can mislead the LLMs when generating SQL.864

Figure 3: Examples of KeyInst-FT and SQL skeleton.

Type Skeleton KeyInst-FT

GROUP BY 77.3 78.7
HAVING 85.3 86.0
ORDER BY 92.7 94.0
LIMIT 87.3 89.3
EXCEPT 76.0 83.3
INTERSECT 78.7 85.3
UNION 60.0 73.3

Overall 79.6 84.3

Table 7: Execution accuracy (EX) of GPT4 using SQL skeleton and KeyInst-FT on StrucQL.

C An Example of Schema Simplification.865

We constructed the StrucQL benchmark to intuitively evaluate a Text-to-SQL system’s SQL formulation866

performance by minimizing schema linking’s impact. This is achieved through schema simplification,867

which aims to reduce the complexity of schema linking in Text-to-SQL tasks, thereby decreasing the868

errors caused by incorrect schema links. Figure 4 provides an example of the schema-simplified question869

and schema. Specifically, we marked and modified schema-related words in the question. For instance,870

in Figure 4, ’name of the shop’ was changed to ’shop.name’. Additionally, we filtered out tables and871

columns from the database schema that are irrelevant to the current question.872

12

Figure 4: An example of Schema-Simplifed question and schema.

D Examples of KeyInst-FT and KeyInst-ICL 873

We propose two variants of KeyInst: KeyInst-FT and KeyInst-ICL KeyInst-FT is generated by a fine-tuned 874

Llama3-8B model, while KeyInst-ICL is generated by guiding LLMs using In-Context learning. Our 875

experiments demonstrate that KeyInst-FT performs better. Examples of KeyInst-FT and KeyInst-ICL are 876

provided in Figure 5. These examples show that KeyInst-FT aligns more closely with the requirements of 877

gold SQL. Specifically, KeyInst-FT consistently produces more accurate and contextually appropriate 878

keyword suggestions. This comparison highlights the advantage of fine-tuning models for specific tasks. 879

Figure 5: Examples of KeyInst-FT and KeyInst-ICL.

E The usage of KeyInst 880

KeyInst is represented as a single instruction, which gives it excellent compatibility and allows it to 881

integrate with existing Text-to-SQL prompting methods seamlessly. Specifically, each KeyInst is tailored 882

to the current Text-to-SQL task. To use it, we place it with the current Text-to-SQL task, typically at the 883

13

end of the prompt. Figure 6 shows examples of using KeyInst. Note that in the few-shot prompt, we did884

not add KeyInst to each demonstrations, it is solely intended for the current Text-to-SQL task.885

Figure 6: Examples of using KeyInst in zero-shot prompt and few-shot prompt.

F Performance of LLMs with KeyInst on StrucQL.886

We evaluated the performance of various LLMs on StrucQL after using KeyInst (KeyInst-FT). The887

results in Table 8 show that KeyInst is a simple and effective method that significantly enhances the SQL888

formulation performance of LLMs. Notably, Llama3-70B with KeyInst is only 1.1% behind GPT-4 with889

KeyInst.

Type Gemma-7B Llama3-8B Llama3-70B Claude3 GPT4

Zero-shot

GROUP BY 58.7 69.3 78. 0 73.3 76.7
HAVING 52.7 74.0 82.0 85.3 86.0
ORDER BY 66.7 74.7 90.7 92.7 94.0
LIMIT 51.3 76.0 80.7 77.3 88.7
EXCEPT 41.3 63.3 64.7 70.7 72.7
INTERSECT 42.7 57.3 61.3 73.3 72.7
UNION 30.7 38.7 47.3 55.3 57.3

Overall 49.1 63.9 72.0 75.4 78.3

Zero-shot with KeyInst-FT

GROUP BY 61.3 74.5 82.0 78.0 78.7
HAVING 58.0 80.0 82.0 88.0 86.0
ORDER BY 71.3 88.0 92.7 93.3 94.0
LIMIT 60.7 82.7 86.0 80.7 89.3
EXCEPT 45.3 69.3 86.7 86.7 83.3
INTERSECT 56.7 81.3 84.7 85.3 85.3
UNION 44.7 62.0 68.7 76.7 73.3

Overall 56.9 76.9 83.2 84.1 84.3

Table 8: Execution accuracy results for all compared LLMs on StrucQL after using KeyInst-FT.

890

14

	Introduction
	Methods
	Pipeline Approach of KeyInst
	Fine-tuned KeyInst Generator
	In-context Learning KeyInst Generator
	SQL formulation with KeyInst

	Single-Pass Approach of KeyInst

	StrucQL: A Structural Benchmark for Text-to-SQL
	Experiments
	Setup
	Results on StrucQL
	Comparison of KeyInst Applications
	Comparison of KeyInst-FT and KeyInst-ICL
	Ablation Study
	Results of Baselines

	Results on General Benchmark
	Discussion

	Relate Work
	Conclusion
	Prompt of Question Analysis
	Comparsion of KeyInst and SQL skeleton.
	An Example of Schema Simplification.
	Examples of KeyInst-FT and KeyInst-ICL
	The usage of KeyInst
	Performance of LLMs with KeyInst on StrucQL.

