
Under review as submission to TMLR

Neural Logic Networks for Interpretable Classification

Anonymous authors
Paper under double-blind review

Abstract

Traditional neural networks have an impressive classification performance, but what they
learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand
have an interpretable structure that enables them to learn a logical mechanism relating the
inputs and outputs with AND and OR operations. We generalize these networks with NOT
operations and biases that take into account unobserved data and develop a rigorous logical
and probabilistic modeling in terms of concept combinations to motivate their use. We
also propose a novel factorized IF-THEN rule structure for the model as well as a modified
learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery
and is able to learn relevant, interpretable rules in tabular classification.

1 Introduction

Neural networks have revolutionized Machine Learning (ML) with unprecedented performance in perception
tasks, ranging from prediction of complex phenomena to recognition and generation of images, sound, speech
and text. However, this impressive performance is accompanied by a lack of explainability of how it is
achieved, with neural networks being treated as black-box models due to the opaque nature of their learned
parameters. As a result, it has often been claimed that the information that a neural network has learned
cannot be inspected, verified or extracted.

As these black box models are increasingly being used to support or automate decision making, transparency
has become a critical concern, giving rise to the field of eXplainable Artificial Intelligence (XAI) (Arrieta
et al., 2020; Calegari et al., 2020). This is especially important for domains where ethics plays a pivotal role
such as medecine, transportation, legal, finance, military (Adadi & Berrada, 2018) and scientific discovery. In
those contexts, a prediction or decision is only useful when it is accompanied by an explanation of how it
was obtained, as well as by an assurance that is is not the result of unacceptable biases, such as gender or
ethnicity for example.

In parallel with this increasing demand for transparency, research on neuro-symbolic methods has become
more popular. This family of methods aims to combine neural (also known as connectionist or sub-symbolic)
with symbolic (logical) techniques to obtain a best-of-both-world scenario, with the complementary strengths
of both paradigms. Neural methods are best at perception tasks and use continuous vector representations to
learn a distributed representation from raw data, making them fast, strong at handling unstructured data
and robust to noise and errors in the data (Yu et al., 2023). On the other hand, symbolic methods are best
at cognition tasks and use discrete logical representations to reason deductively about knowledge, making
them provably correct, human-intelligible, and with strong generalization ability. Neuro-symbolic methods
include many different approaches to unify these two paradigms: neural implementations of logic, logical
characterizations of neural systems, and hybrid systems that combine both in more or less equal measures
(Besold et al., 2021).

One branch of hybrid neuro-symbolic methods defines new types of neural networks where the neurons
represent logical AND and OR combinations, as opposed to the linear combination with non-linear activation
of the classical perceptron. Such neural AND/OR networks aim to learn a logical mechanism relating
the inputs and outputs that involve only AND, OR and NOT operations, resulting in a transparent and
interpretable model. Ironically, the very inception of classical neural networks was justified by their ability to
model such AND/OR networks (McCulloch & Pitts, 1943).

1

Under review as submission to TMLR

Related work Neural networks with neurons that explicitly represent AND/OR operations were first
defined by Pedrycz (1993); Hirota & Pedrycz (1994). Their learnable AND/OR nodes were defined in fuzzy
logic for general t-norms (fuzzy AND) and t-conorms (fuzzy OR), while we adopt the product t-norm and
t-conorm which admit a probabilistic interpretation. Moreover, their definition of the AND node used weights
in a counterintuitive manner, having the opposite behavior of what we now understand as weights, i.e.
whether an input is included in the AND operation. The OR node with general t-norms and t-conorms was
also independently defined by Gupta (1993); Gupta & Rao (1994), which included an additional activation
function. At the time, the idea of defining new neurons with fuzzy logic to be used in neural networks was an
active field, referred to as Hybrid Fuzzy Neural Networks by Buckley & Feuring (1998). With a pre-processing
layer to define fuzzy sets Ai,k for each input xi, followed by an AND layer and a final OR layer, a Neuro-Fuzzy
classifier (Fuller, 1995) could be developed that would learn IF-THEN rules for each class Yk like

IF x1 ∈ A1,k AND ... AND xd ∈ Ad,k, THEN x ∈ Yk.

Furthermore, by working with explicit AND/OR nodes instead of perceptrons, problem-specific expert
knowledge can be pre-encoded into the network before the learning to be refined and finally extracted from
the learned network. This idea was first tried with normal perceptrons in Knowledge-Based Artificial Neural
Networks (Towell & Shavlik, 1994). The initial knowledge was successfully encoded into the network, but it
could not be re-extracted from the network after learning, because of its distributed representation.

AND/OR neural networks with product fuzzy logic were rediscovered in Payani & Fekri (2019a; 2020) under
the name Neural Logic Networks (NLN), which we adopt as well. Their formulation was obtained from an
expected desiderata rather than a rigorous logical or probabilistic modeling. The same definitions were then
reused by Zhang et al. (2023) and developed further by Wang et al. (2020; 2021; 2024) into the Rule-based
Representation Learner (RRL). To combat their notorious vanishing gradient (van Krieken et al., 2022), the
RRL uses a new method called gradient grafting to learn the weights, along with approximated definitions of
the AND/OR nodes which introduced new hyper-parameters to further improve learning. The RRL also
introduced learnable upper and lower bounds to define the pre-processing sets Ai,k in the case of continuous
inputs xi. Compared to our approach, these AND/OR nodes are limited in two significant ways. Firstly, they
cannot consider negated inputs, i.e. using their contrary, without doubling the number of weights, whereas
we use a single weight to model both cases. Secondly, their modeling assumes that all the relevant data is
observed and given, while our formulation takes into account the impact of unobserved relevant data.

Other attempts at AND/OR neural networks were also created by others. Cingillioglu & Russo (2021)
constrained the bias of regular perceptrons to obtain either an AND node or an OR node, depending on
a hyper-parameter that is tuned during learning. Like us, their approach also considers both inputs and
their contrary with a single weight. However, the magnitude of their weights do not explicitly represent their
relative importance, unlike our weights which directly represent probabilities. Moreover, their formulation
also fails to take into account unobserved data. Sato & Inoue (2023) cleverly uses a ReLU network with
constrained biases to learn a 2-layer AND/OR network, but their approach only works for perfect binary data
with no noise or errors. Another type of model that produces similar IF-THEN rules is decision trees, and
their generalization decision diagrams (Florio et al., 2023). These models are represented by rooted directed
graphs in which every node splits the possible values of one or more input xi in two or more branches, thus
dividing up the input space into discrete bins that belong to the same class Yk.

Due to their probabilistic formalization, NLNs also serve as probabilistic models of the target classes/labels
when conditioning on the input features. In doing so, they implicitly learn Probabilistic Graphical Models
(PGM), which encode the conditional structure of random variables in graph form (see appendix B.1.1 for the
PGM behind NLN’s probabilistic modeling). However, NLNs require an additional approximation to ensure
tractability in practical settings. With additional assumptions regarding the direction of causality, NLNs
can also be viewed as a special form of structural causal model (Peters et al., 2017) in which the assignment
functions have a clear interpretation as AND/OR combinations of binary random variables, some of which
may be unobserved. However these stronger causality assumptions are not required to use NLNs, and are
only needed to produce interventional distributions or counterfactuals. NLNs are also related to probabilistic
circuits (Choi et al., 2021) which study the tractability of probabilistic queries in sum-product networks
via structural constraints. In particular, logistic circuits (Liang & Van den Broeck, 2019) are probabilistic

2

Under review as submission to TMLR

circuits with strong structural constraints that combine structure learning and logistic regression to learn
AND/OR networks for interpretable classification. However, unlike NLNs, their final learned AND/OR
networks contain non-quantized weights which are not as easily interpretable.

Finally, other approaches with similar names have also been proposed, in reasoning rather than learning tasks.
The first method to be named Neural Logic Network was proposed by Teh (1995) and reintroduced recently
by Ding (2018). It defines neural networks with values (t, f) ∈ [0, 1]2 representing three-valued truth-values
(true, false, unknown), with two sets of weights per neuron. Although some arrangements of weights give
rise to interpretable AND and OR combinations, a restricted form of learning is required to maintain this
interpretability, not making use of the current powerful gradient-based methods. Another approach, called
Logical Neural Networks (Riegel et al., 2020; Sen et al., 2022), encodes any first-order logic program template
in a neural network. By learning this neural network from a relational database, it aims to discover the
best first-order logic rule (on relations) of the form given by the template. In comparison, our approach, by
learning from a tabular dataset, aims to discover the best propositional logic rule (on features) of any form.

Structure and contributions To our knowledge, for the first time,

• we present a theoretical formalism for the logical and probabilistic modeling behind NLNs and their
AND/OR nodes (section 2);

• we introduce biases accounting for unobserved data as well as the possibility of using the contrary of
a concept in the weights (section 2);

• we develop an interpretable structure for NLNs with factorized IF-THEN rule modules and appropriate
input pre-processing for binary, categorical and continuous features (section 3.1);

• we propose a modified learning algorithm for NLNs with a rule reset scheme at every epoch and a
post-learning simplification of the model to increase its interpretability (sections 3.2 and 3.2.2); and

• we test our method on two classification tasks: Boolean network discovery and interpretable tabular
classification (section 4).

We will show that our NLN, with its factorized structure and extended modeling, is able to learn sparser and
more interpretable rules than its predecessor, the RRL, in tabular classification. For instance, as illustrated
in Figure 1, our NLN is able to discover the rules of tic-tac-toe, simply by predicting if × has won from the
end-game board configuration.

2 Theory

2.1 Probabilistic modeling

We introduce the modeling with a toy example. We are given an object x from which we can derive a
number of binary properties Ci about the object x, i.e. concepts Ci that are either present or absent in x.
For instance, we might know whether it is a ball x ∈ C1 where C1 is the set of balls, whether it is green
x ∈ C2 where C2 is the set of green objects, if it is heavy x ∈ C3 with C3 the set of heavy objects, and so
on. For instance a light green ball x would satisfy x ∈ C1, x ∈ C2, and x /∈ C3. From these properties, we
are interested in predicting whether the object x is a green_ball x ∈ Y where Y is the set of green balls.
Moreover, by learning to predict whether an object x is a green ball Y , we wish to discover the definition of a
green ball Y = C1 ∩ C2, i.e. that it is the set of objects that are both green and balls. More generally, we are
interested in learning an AND concept

Y =
⋂

i∈N
Ci,

where, in this case, its necessary concepts are indexed by N = {1, 2}. We learn to estimate which concepts
Ci are necessary to Y , written Y ⊆ Ci or equivalently Ci ⊇ Y , through the statistical learning process of

3

Under review as submission to TMLR

(a) NLN (b) RRL

Figure 1: Interpretability of the learned AND/OR networks on tic-tac-toe, when trying to predict if × wins
from the end board configuration

gradient descent. We do this by modeling the random event x ∈ Y with respect to its necessary concepts Ci.

x ∈ Y =
⋂

i∈N

(
x ∈ Ci

)
[definition of Y]

=
⋂

i

((
i /∈ N

)
∪
((

i ∈ N
)

∩
(
x ∈ Ci

)))
[equivalent rewriting]

=
⋂

i

((
i /∈ N

)
∪
(
x ∈ Ci

))
[distributivity of ∪ over ∩]

=
⋂

i

((
Ci ̸⊇ Y

)
∪
(
x ∈ Ci

))
[definition of N]

For instance, an object x is a green ball x ∈ Y if, for all its input concepts Ci, either they are not necessary
concepts like heavy C3 ̸⊇ Y , or they are present in x like green x ∈ C2 and ball x ∈ C1.

We could otherwise have been interested in a different kind of concept, an OR concept. For instance, in a
feedforward network where successive layers learn higher-level concepts from lower-level concepts, we could have
a first layer of AND concepts that defines concepts such as C ′

1: green_ball, C ′
2: yellow_cup, C ′

3: blue_stick,
and so on and we could be interested in learning in the second layer Y : green_ball_or_blue_stick, i.e.
Y = C ′

1 ∪ C ′
3. More generally, we would be learning an OR concept

Y =
⋃
i∈S

C ′
i,

4

Under review as submission to TMLR

where, in this case, its sufficient concepts are indexed by S = {1, 3}. We again use ML to estimate which
concepts C ′

i are sufficient to Y , written C ′
i ⊆ Y , by modeling x ∈ Y in function of the C ′

i.

x ∈ Y =
⋃
i∈S

(
x ∈ C ′

i

)
[definition of Y]

=
⋃

i

((
i ∈ S

)
∩
(
x ∈ C ′

i

))
[equivalent rewriting]

=
⋃

i

((
C ′

i ⊆ Y
)

∩
(
x ∈ C ′

i

))
[definition of S]

For instance, an object x is a green ball or a blue stick x ∈ Y if, for any concept in the previous layer C ′
i, it is

both a sufficient concept like green ball C ′
1 ⊆ Y or blue stick C ′

3 ⊆ Y and it is present in x like a green ball
x ∈ C ′

1 or a blue stick x ∈ C ′
3.

In general, we are given as input a random variable x = (x1, x2, ..., xm) that is defined by m measures, where
each input feature xi can be binary, categorical or continuous. We are interested in predicting whether certain
target concepts Yk are present in the input x, formalized as the random event x ∈ Yk. These targets can
be classes in binary or multi-class classification, or labels in multi-label classification. We use a network of
concepts Cl

i arranged in layers l ∈ {0, 1, ..., L} of size nl with i ∈ {1, ..., nl}, where the network’s output is
Yk = CL

k . The input layer l = 0 is made up of concepts C0
i that can be directly extracted from the input x.

In other words, given an input x, we know for each concept C0
i whether it is present x ∈ C0

i or not x /∈ C0
i

(see details in Section 3.1.2). The subsequent layers of AND and OR concepts Cl
i will try to learn relevant

representations that relate logically the input concepts C0
i to the target concepts Yk through combinations of

AND and OR operations.

In practice, we predict the labels by modeling their conditional probability P[x ∈ Yk | x] given the input x.
We do so by modeling for each concept Cl

i its conditional probability cl
i(x) = P

[
x ∈ Cl

i

∣∣x], starting from
the input concepts C0

i for which we already know their probabilities c0
i (x) = P

[
x ∈ C0

i

∣∣x]. These input
probabilities c0

i (x) can take any value in [0, 1], with binary values {0, 1} representing certain knowledge
about x. In a feedforward structure, an AND (resp. OR) concept Cl

i in layer l takes its necessary (resp.
sufficient) concepts from the previous layer l − 1. Unlike in the previous toy examples, we consider that
a concept Cl91

j or its contrary opposite (Cl91
j)c can be a necessary or sufficient concept. For instance, a

ball_that_is_not_green would have as necessary concepts ball and greenc, i.e. we would have

ball ⊇ ball_that_is_not_green, and greenc ⊇ ball_that_is_not_green.

We introduce a matrix of weights Al
i,j ∈ [−1, 1] for AND concepts and Ol

i,j ∈ [−1, 1] for OR concepts to learn
these necessary and sufficient relations, such that

Al
i,j = P

[
Cl91

j ⊇ Cl
i

]︸ ︷︷ ︸
[Al

i,j
]+

−P
[
(Cl91

j)c ⊇ Cl
i

]︸ ︷︷ ︸
[Al

i,j
]−

, and Ol
i,j = P

[
Cl91

j ⊆ Cl
i

]︸ ︷︷ ︸
[Ol

i,j
]+

−P
[
(Cl91

j)c ⊆ Cl
i

]︸ ︷︷ ︸
[Ol

i,j
]−

.

It is important to note that the set inclusion relations ⊆ are in opposite directions in necessary and sufficient
relations. If a concept Cl91

j is necessary to concept Cl
i , then whenever we have x ∈ Cl

i , we must also have
x ∈ Cl91

j since it is necessary, hence Cl91
j ⊇ Cl

i . On the other hand, if a concept Cl91
j is sufficient to concept

Cl
i , then whenever we have x ∈ Cl91

j , we must also have x ∈ Cl
i since Cl91

j is sufficient to Cl
i , hence Cl91

j ⊆ Cl
i .

When Al
i,j > 0 or Ol

i,j > 0, the concept Cl91
j is believed to be necessary or sufficient to Cl

i with probability
Al

i,j or Ol
i,j . When Al

i,j < 0 or Ol
i,j < 0, the absence of the concept (Cl91

j)c is believed to be necessary or
sufficient with probability |Al

i,j | or |Ol
i,j |. This modeling allows a single parameter to learn both possibilities

simultaneously, since they are contradictory. However, doing so also assumes that at all times at least
one of those probabilities e.g. P

[
Cl91

j ⊇ Cl
i

]
, P
[
(Cl91

j)c ⊇ Cl
i

]
is zero, with the rest of the probability mass

distributed between the other and P
[
Cl91

j ̸⊇ Cl
i , (Cl91

j)c ̸⊇ Cl
i

]
. In other words, this modeling introduces a

cognitive bias in the model that “jumps to conclusions” regarding the sign of a causal role in the sense that it
presumes only one sign is possible at once. It must consider one option fully, for instance Cl91

j ⊇ Cl
i with

Al
i,j > 0, before reaching Al

i,j = 0 and being able to consider the other option (Cl91
j)c ⊇ Cl

i with Al
i,j < 0.

5

Under review as submission to TMLR

Moreover, we consider the possibility of missing or unobserved data u being part of the full relevant data
ω = (x, u), where ω is the concatenation of the observed data x and unobserved data u. For instance, we
could be trying to predict whether an object ω = (x, u) is a green_ball without having any information in x
about the color of the object, only that it is a ball. In that case we would have to estimate statistically the
probability that a ball is green P[u ∈ green | x ∈ ball] given the distribution of objects ω that we have seen.
We now consider all the relevant data ω to model which concepts Cl

i are present and with what probability
cl

i(x) = P
[
ω ∈ Cl

i

∣∣x]. Only for l = 0, we have the input concepts C0
i which depend only on the input x, and

for which we are always given the probabilities c0
i (x) = P

[
x ∈ C0

i

∣∣x]. We use X and U to denote the space
of possible x and u values respectively, so that we have ω ∈ X × U and Cl

i ⊆ X × U . With this final extension,
an AND concept Cl

i would be defined as

Cl
i =

(⋂
j∈N+

Cl91
j

)
∩

(⋂
j∈N−

(Cl91
j)c

)
∩

(
X ×

⋂
z∈Ñ

C̃z︸ ︷︷ ︸
Ñ l

i

)
,

where N+ and N− are its observed necessary concepts in the previous layer, either using directly Cl91
j or using

its opposite (Cl91
j)c, and the C̃z represent unobserved concepts that depend only on the unobserved data u

and which are also necessary concepts of Cl
i . We define Ñ l

i as being the intersection of all these necessary but
unobserved concepts C̃z, ∀ z ∈ Ñ , i.e. we have u ∈ Ñ l

i iff we have u ∈ C̃z, ∀ z ∈ Ñ . The random event of
whether the AND concept is present ω ∈ Cl

i is then given by

ω ∈ Cl
i = (u ∈ Ñ l

i) ∩
⋂

C∈Cl91
±

((
C ̸⊇ Cl

i

)
∪
(
ω ∈ C

))
, (D-AND)

where we define the concepts of the previous layer and their opposites Cl91
± = {Cl91

1 , (Cl91
1)c, ..., Cl91

nl91 , (Cl91
nl91)c}.

Equivalently, for an OR concept Cl
i , we would have

Cl
i =

(⋃
j∈S+

Cl91
j

)
∪

(⋃
j∈S−

(Cl91
j)c

)
∪

(
X ×

⋃
z∈S̃

C̃z︸ ︷︷ ︸
S̃l

i

)
,

where S̃l
i is the union of all its sufficient but unobserved concepts C̃z, ∀ z ∈ S̃ and

ω ∈ Cl
i = (u ∈ S̃l

i) ∪
⋃

C∈Cl91
±

((
C ⊆ Cl

i

)
∩
(
ω ∈ C

))
. (D-OR)

Modeling these necessary/sufficient unobserved concepts introduces biases al
i ∈ [0, 1] for AND concepts and

ol
i ∈ [0, 1] for OR concepts, defined as the conditional probabilities

al
i = P

u ∈ Ñ l
i

∣∣∣∣∣∣∣
⋂

C∈Cl91
±

((
C ̸⊇ Cl

i

)
∪
(
ω ∈ C

)) , ol
i = P

u ∈ S̃l
i

∣∣∣∣∣∣∣
 ⋃

C∈Cl91
±

((
C ⊆ Cl

i

)
∩
(
ω ∈ C

))
c  .

For an AND concept, al
i is the probability that all the unobserved necessary concepts are present u ∈ Ñ l

i

when all the observed necessary concepts are present. This indicates how often this AND concept is indeed
activated when the input x suggests that it should. If al

i = 0, then this AND concept is never activated and
it becomes useless in the modeling. For an OR concept, ol

i is the probability that any unobserved sufficient
concept is present u ∈ S̃l

i when no observed sufficient concept is present. This indicates how often this OR
concept is activated purely by unobserved concepts. If ol

j = 1, then this OR concept is always trivially
activated and it is also useless in the modeling. For both types of concepts, these probabilities are measures
of how much relevant information we are missing in the input data x to fully model this concept. Although

6

Under review as submission to TMLR

these unobserved concepts depend only on the unobserved data u, they are modeled with respect to ω since
u and x are likely correlated in practice.

Our modeling contains two distinct types of probabilities, which represent different types of uncertainty. If we
knew exactly how the concepts in our network were related logically, i.e. if we knew the exact structure of the
ground-truth network with its exact weights Al

i,j and Ol
i,j , then the probabilities of presence of concepts cl

i(x),
al

i and ol
i would all be strictly aleatoric probabilities. They would only be statistical quantities that depend

on the distribution of specific realizations ω = (x, u) that the network has seen in training. In contrast,
the beliefs in the concepts’ roles as necessary or sufficient to other concepts Al

i,j and Ol
i,j are epistemic

probabilities. They represent a priori beliefs in the general causal mechanisms that underlie the random
phenomenon that generated ω, and are independent of any such particular realization ω. In practice, since
cl

i(x), al
i and ol

i are defined with respect to the believed roles, these probabilities model both aleatoric and
epistemic uncertainty.

We obtain a tractable probabilistic modeling of the NLNs by making three assumptions of independence,
to which we will return shortly. They allow the probabilities cl

i(x) to be easily computed in a parallelizable
fashion (the full derivation is given in appendix B.1.2).

cl
i(x) = al

i

nl91∏
j=1

(
1 − [Al

i,j]+
(

1 − cl91
j (x)

))(
1 − [Al

i,j]− cl91
j (x)

)
(P-AND)

cl
i(x) = 1 −

(
1 − ol

i

) nl91∏
j=1

(
1 − [Ol

i,j]+ cl91
j (x)

)(
1 − [Ol

i,j]−
(

1 − cl91
j (x)

))
(P-OR)

The first two assumptions of independence that are required to obtain (P-AND) and (P-OR) are modeling
choices, while the third one is an approximation. The first assumption is independence between the presence
of concepts in some ω and their general roles in the next layer as necessary or sufficient

ω ∈ C ⊥⊥ C ′ ⊇ Cl+1
i , for all input concepts C, C ′ ∈ Cl

± of AND concept Cl+1
i ,

ω ∈ C ⊥⊥ C ′ ⊆ Cl+1
i , for all input concepts C, C ′ ∈ Cl

± of OR concept Cl+1
i .

We compute the probabilities cl
i(x) = P

[
ω ∈ Cl

i

∣∣x] using epistemic beliefs Al′

i′,j′ , Ol′

i′,j′ of the previous layers
l′ ≤ l. The presence of a concept is thus certainly not independent of the roles that form its own definition
in the previous layers. However, this assumption of independence is between the presence of concepts in a
layer l and their roles in the next layer l + 1. In other words, we assume that the presence of concepts in a
particular realization ω does not give any information regarding their general roles in higher-level concepts,
and vice versa. This independence would not hold if we were conditioning on the presence of the concepts in
the next layer, e.g.

ω ∈ C ̸⊥⊥ C ⊇ Cl+1
i

∣∣ ω ∈ Cl+1
i .

If, for instance, we have for some ω that C is absent but Cl
i is present, then it is impossible that C could ever

be a necessary concept of Cl
i . Without conditioning however, it is conceivable that knowing whether we have

ω ∈ C for some ω gives by itself no information on its general roles in the next layer, or on the roles of other
concepts in the same layer.

The second assumption is independence between the necessary/sufficient concepts of a concept

C ⊇ Cl+1
i ⊥⊥ C ′ ⊇ Cl+1

i , for all input concepts C ∈ Cl
± and C ′ ∈ Cl

±\{C, ¬C} of AND concept Cl+1
i ,

C ⊆ Cl+1
i ⊥⊥ C ′ ⊆ Cl+1

i , for all input concepts C ∈ Cl
± and C ′ ∈ Cl

±\{C, ¬C} of OR concept Cl+1
i .

This assumption would be false for an observer who has previous knowledge and understanding about the
concepts he is manipulating. For instance, if an AND concept already has green as a necessary concept,
then it could not also have red or another incompatible color as necessary concepts. Moreover, an AND
concept that already has green and ball would also be more likely to have presence_of_a_tennis_racket.

7

Under review as submission to TMLR

Although this assumption does not hold for an observer with previous understanding, it would hold for an
observer who has absolutely no idea or previous understanding of what concepts he is manipulating, like
an agent in an alien environment or the operator in Searle’s “Chinese room” thought experiment (Searle,
1980). However, for an observer with previous knowledge, this assumption would amount to a cognitive bias
of “total open-mindedness” that considers every combination of concepts to be equiprobable, irrespective
of how related or incongruous they might be. We summarize the probabilistic modeling up to this point,
including the first two assumptions of independence, in a PGM presented in appendix B.1.1.

The third assumption which we use as an approximation is conditional independence between concepts in the
same layer, given the input

ω ∈ C ⊥⊥ ω ∈ C ′ ∣∣ x, for all concepts in the same layer C, C ′ ∈ Cl
+ such that C ̸= C ′,

where we defined the concepts of a layer Cl
+ = {Cl

1, ..., Cl
nl}. This assumption is the least realistic being false

in most cases. It is trivially satisfied by the input features x ∈ C0
i since they only depend on x. However, for

the other concepts defined in layers l ≥ 1, this assumption is only true if no two concepts share a common
necessary/sufficient concept in the previous layer, a property known as decomposability in the probabilistic
circuits literature (Choi et al., 2021). This is very unlikely for non trivial NLNs, and it becomes progressively
less likely as L increases. Although this assumption is incorrect in most practical cases, avoiding it results
in a combinatorial explosion of computations for the forward pass alone (see appendix B.1.3 for the full
derivation without it). As a result, the method would become intractable and unusable in practice without
this assumption. As a purely probabilistic model, this issue is catastrophic for NLNs. However, as a ML
method, this approximation can be justified. First of all, in the case where all inputs are binary (i.e. with
binary or categorical features), where all the weights are given from the set {−1, 0, 1} and where the biases are
full with al

· = 1, ol′

· = 0, then this assumption is not necessary. In fact, none of the assumptions are necessary
in that case because the probabilistic formulation (P-AND) and (P-OR) coincide exactly with the logical
definition of the AND and OR nodes (see section 2.2). In general, we always need the weights to be integers
for maximum interpretability and, as such, we quantize them during post-processing when learning a NLN
(see section 3.2.2). Moreover, for any network that contains continuous features, with enough pre-processing
nodes (see section 3.1.2), the signal can become arbitrarily close to binary thanks to appropriately scaled
sigmoid curves. In practice, we only relax this binary constraint through the possible non-binary biases, as
well as by limiting the number of pre-processing nodes for continuous features, so that values away from 0 and
1 can be obtained close to the learned boundaries (see section 3.1.2). Therefore, we keep this approximation
leading to (P-AND) and (P-OR) and, in practice, this modeling is still able to obtain promising predictive
performance and interpretable rule discovery, even in non-binary cases.

2.2 Fuzzy logic equivalency

A fuzzy logic is a real-valued generalization of classical logic, where instead of a statement like x ∈ Yk being
either true or false, it can have a degree of truth between 0 (false) and 1 (true). The different fuzzy logics
differ by their choices of how to generalize the classical logic operators

∧ : AND, ∨ : OR, ¬ : NOT,

etc. For instance, product fuzzy logic is the fuzzy logic that coincides with probability distributions in which
all random events are independent of each other. They thus define their fuzzy logic operators as

P∧
i

vi :=
∏

i

vi,

P∨
i

vi := 1 −
∏

i

(1 − vi),
P¬v := 1 − v,

by using the product t-norm (
P
∧), the probabilistic sum t-conorm (

P
∨), and the strong negation (P¬) (van

Krieken et al., 2022).

8

Under review as submission to TMLR

We can rewrite (P-AND) and (P-OR) with the product fuzzy logic operators

cl
i(x) = al

i

P
∧

P∧
j∈{1,...,nl91}

(
P¬ [Al

i,j]+
P
∨ cl91

j (x)
)

P
∧
(

P¬ [Al
i,j]−

P
∨ P¬ cl91

j (x)
)

, (F-AND)

cl
i(x) = ol

i

P
∨

P∨
j∈{1,...,nl91}

(
[Ol

i,j]+
P
∧ cl91

j (x)
)

P
∨
(

[Ol
i,j]−

P
∧ P¬ cl91

j (x)
)

, (F-OR)

By doing so, we obtain the product fuzzy logic generalization of the logical definition of our operators

ω ∈ Cl
i = (u ∈ Ñ l

i) ∧
∧

C∈Cl91
±

(
¬
(
C ⊇ Cl

i

)
∨
(
ω ∈ C

))
, (L-AND)

ω ∈ Cl
i = (u ∈ S̃l

i) ∨
∨

C∈Cl91
±

((
C ⊆ Cl

i

)
∧
(
ω ∈ C

))
. (L-OR)

This logical definition is equivalent to our previous probabilistic definition (D-AND) and (D-OR). Only the
symbols have changed from one formalism to another. The intersections ∩ of random events have become
conjunctions ∧ (AND) of truth values, the unions ∪ have become disjunctions ∨ (OR) and the complement
·c implied in

(
C ̸⊇ Cl

i

)
=
(
C ⊇ Cl

i

)c has become negation ¬ (NOT). It is interesting to note that we could
rewrite (F-AND) and (F-OR) with a different fuzzy logic with differentiable t-norm and t-conorm such as
Łukasiewicz logic and we would still obtain a learnable logic network. Doing so would keep the underlying
logical modeling of our method with (L-AND) and (L-OR), but we would lose its probabilistic interpretation.

Previous formalizations of NLNs omitted any probabilistic or logical modeling of the AND and OR concepts
and instead directly used fuzzy logic formulations like (F-AND) and (F-OR) (Payani & Fekri, 2019a; 2020;
Wang et al., 2020; 2021; 2024; Zhang et al., 2023). They obtained similar formulations to our own by designing
them according to a desiderata of the expected behavior of AND/OR nodes. However, their formulations were
more restricted, being special cases of our own. They did not consider negated concepts in their formalism,
i.e. they assumed Al

i,j , Ol
i,j ≥ 0. To consider negated concepts in practice, they would instead duplicate the

inputs as hardcoded negated versions of themselves, hence also doubling the number of weights. Moreover,
none of the previous formalizations considered the effect of unobserved concepts C̃z and data u. They assumed
no unobserved necessary or sufficient concepts with al

i = 1 and ol
j = 0. In addition to considering unobserved

concepts, our probabilistic modeling also avoids having to assume independence between these unobserved
concepts and the rest of the definitions. It also avoids assuming independence between a concept’s causal role
and its contrary’s causal role. These assumptions would have been implied by a strictly product fuzzy logic
modeling, such as in previous formalizations.

2.3 Logical perspective

AND, OR and NOT are fundamental operators in classical logic and some of their properties are relevant
to our approach. Firstly, just like intersection, union and complement, we have that conjunction (AND),
disjunction (OR) and negation (NOT) are related by De Morgan’s laws and distributivity. Our formalism is
compatible with De Morgan’s laws, as can be seen from (P-AND)-(P-OR), (F-AND)-(F-OR), (L-AND)-(L-OR)
and (D-AND)-(D-OR) (proofs in appendix B.2.1). As a consequence, any AND concept can be converted to
an OR concept, and vice versa, by flipping the signs of its incoming and outgoing weights and by taking the
complement of its bias. However, since product fuzzy logic operators are not idempotent (van Krieken et al.,
2022)

a
P
∧ a = a · a ̸= a, a

P
∨ a = 1 − (1 − a) · (1 − a) ̸= a,

distributivity can not be applied in our formalism, unless all probabilities cl
i(x), |Al

i,j |, |Ol
i,j |, al

i, ol
i are binary.

Classical logic also studies logical formulas, which combine AND, OR and NOT operations. Using De
Morgan’s laws and distributivity, complex logical formulas can be rewritten in many equivalent formulations.

9

Under review as submission to TMLR

Two notable forms are the Disjunctive Normal Form (DNF), a disjunction (OR) of conjunctions (AND) with
negation, e.g.

(A1 ∧ ¬A2 ∧ A7) ∨ (A3) ∨ (A2 ∧ A4 ∧ ¬A5), (DNF)

and the Conjunctive Normal Form (CNF), a conjunction (AND) of disjunctions (OR) with negation, e.g.

(A1 ∨ A2 ∨ A3) ∧ (¬A2 ∨ A3 ∨ A4) ∧ (¬A2 ∨ A3 ∨ ¬A5) ∧ (A2 ∨ A3 ∨ A7), (CNF)

equivalent to the (DNF) above. As this example shows, depending on the logical formula, one form might be
much simpler than the other. In our setting, we want to describe when a target concept is present ω ∈ Yk

with a logical formula that combines the input features x ∈ C0
i and unobserved concepts u ∈ Ñ l

i , u ∈ S̃l
i. In

this setting, the DNF has a special interpretation as a (normal) logic program, which is a finite set of rules of
the form

B1 ∧ ... ∧ Bm ∧ ¬Bm+1 ∧ ... ∧ ¬Bn → H

where H is called the head and the left-hand side is called the body. The usual notation is written from right
to left, but we adopt the opposite convention here to coincide with the graphical representation of neural
networks. Such a rule says that if the condition in the body is true, then the head H is true. For instance, if
we say that B is equal to (DNF), then it can be described by the following logic program

A1 ∧ ¬A2 ∧ A7 → B,

A3 → B,

A2 ∧ A4 ∧ ¬A5 → B.

If any of these 3 rules is activated by the left-hand side AND combination being true, then B is true, and
otherwise it is false. The OR is implied by the fact that any activated rule is sufficient for B to be true. In
Section 3.1, we will encode this logic program formulation into the structure of our NLNs in order to be able
to interpret what a NLN has learned as a set of rules.

2.4 Interpretation

Although a NLN attempts to learn the underlying causal mechanism relating the inputs to the outputs, it
cannot uniquely determine the causal structure or the direction of causality. An AND concept or an OR
concept can each represent many different cases. Some possible interpretations are given in Table 1 with toy
examples pictured in Figure 2.

Table 1: Some possible interpretations of the AND and OR concepts

AND OR
Necessary concepts of an AND concept Sufficient concepts of an OR concept

necessary components of a situation possible cases of an equivalency class
necessary causal ingredients producing a consequence possible causes of a consequence

necessary consequences of a cause possible consequences of a causal ingredient
necessary parent concepts of a sub-concept possible sub-concepts of a parent concept

Moreover, since a finite combination of AND (resp. OR) concepts can be represented by a single AND
(resp. OR) concept, each type can represent an infinite number of cases. We illustrate some intuitive and
counter-intuitive examples of such causal structures in appendix B.3.

3 Machine Learning pipeline

3.1 Interpretable structure

By interpretability, we mean the ability to provide its meaning in human-understandable terms (Arrieta et al.,
2020). In this sense, the AND and OR concepts that we have defined are interpretable so long as their inputs

10

Under review as submission to TMLR

is raining

is summer
∩∩

1

is raining in summer

(a) Necessary components of a situation, where 1
indicates that all necessary components are observed

0

2

4

6

8

∪∪
0

even digits

(b) Possible cases of an equivalency class, where 0
indicates that no other case is missing or unobserved

iron

oxygen
∩∩

al
i

rust

(c) Necessary causal ingredients producing a conse-
quence, where al

i represents the probability of other
missing ingredients, e.g. water or humidity

it rained

sprinkler was on
∪∪

oli
grass is wet

(d) Possible causes of a consequence, where ol
i repre-

sents the probability of other missing causes, e.g. a
bucket of water was dropped

grass is wet

street is wet

hair is wet

∩∩
al
i

it rained

(e) Necessary consequences of a cause, where al
i rep-

resents the probability that the cause is present when
all the consequences are present, i.e. that the conse-
quences are not explained by other causes

rust

fire

human

∪∪
oli

oxygen

(f) Possible consequences of a causal ingredient, where
ol

i represents the probability that the causal ingredient
is still present when none of these consequences are
observed

feline

domesticated
∩∩

al
i

cat

(g) Necessary parent concepts of a sub-concept, where
al

i represents the probability of the other missing par-
ent concepts of the sub-concept, e.g. having partially
webbed feet as opposed to the leopard cat, another
domesticated feline which has fully webbed feet

cat

lynx

leopard

tiger

lion

∪∪
oli

feline

(h) Possible sub-concepts of a parent concept, where
ol

i represents the probability of another missing
sub-concept, e.g. a cougar or a panther, etc.

Figure 2: Toy examples of interpretations for AND and OR concepts

are themselves interpretable. To ensure that the full NLN model is interpretable, we can impose inductive
biases in its structure to ensure that each AND/OR concept learns a meaningful concept. We propose the
structure pictured in Figure 3. It contains two fully-connected layers arranged in DNF, i.e. an AND layer
with negation followed by an OR layer without negation, in order to learn a logic program for each target
(section 3.1.1). The input features that are not binary are pre-processed with appropriate input modules, one
for categorical features, and another for continuous features (section 3.1.2).

3.1.1 Fully-connected DNF layers

NLNs, as we have defined them, could be constructed with arbitrary depth. However, deep NLNs pose
challenges regarding learning and intepretability. NLNs in general are difficult to learn because of vanishing
gradients (Payani & Fekri, 2019a; Wang et al., 2020; 2021; 2024; van Krieken et al., 2022) and depth
exacerbates this issue. Deeper networks are also harder to interpret. The first fully-connected layer of

11

Under review as submission to TMLR

x P
[
x ∈ C0

i |x
]

P
[
ω ∈ C2

k |x
]

Binary

Categorical

Value 1

Value 2

...

Value h

∪∪

∪∪
...

∪∪

Continuous ...

∩∩

∩∩
...

∩∩

∪∪

∪∪
...

∪∪

∩∩

∩∩

∩∩

...

∩∩

a1
1

a1
2

a1
3

a1
n1

∪∪

∪∪

...

∪∪

o21

o22

o2
n2

Target 1

Target 2

...

Target n2

︸ ︷︷ ︸
Pre-processing modules

︸ ︷︷ ︸
DNF

Figure 3: Structure of an interpretable NLN

concepts can be easily interpreted because it is directly defined in terms of the input features, which are
usually interpretable. However, the next layers are defined by combining these higher-level concepts and
their resulting definitions become increasingly harder to interpret. Their definitions in terms of the input
features are not only more indirect, their activation patterns with respect to those features are also much
more complex.

To avoid these issues, we restrict ourselves to two fully connected layers arranged in DNF. The hidden layer
is made up of AND concepts that allow negation and the output layer is made up of OR concepts that do
not allow negation. As mentioned previously, this DNF can learn any logical formula and can be interpreted
as a logic program. Each target output concept (OR) is implied by any one of multiple rules (AND), which
are each activated by a specific combination of values from the input features.

3.1.2 Input pre-processing modules

Our previous modeling assumed that the input concepts x ∈ C0
i are binary or represent probabilities of

random events c0
i (x) = P

[
x ∈ C0

i

∣∣x]. Hence, binary input features can directly be used as input concepts,
but categorical (one value out of a finite set of possible values) or continuous (in a subset of R) features
must be pre-processed. We use a different pre-processing module for each to convert them into interpretable
probabilities.

Categorical features Categorical features can be directly converted to binary variables with a one-hot
encoding. However, feeding these one-hot encodings to the fully-connected DNF layers would needlessly
multiply the number of rules in a model whenever multiple values of a category behave the same way in some
circumstance. We instead introduce their own layer of OR concepts without negation and without unobserved
sufficient conditions (since we can observe every possible value). These OR concepts learn equivalency classes
of categorical values that have the same effect. In addition to reducing the number of duplicate rules for each
related value, this encoding is also interpretable and results in a limited form of predicate invention.

Continuous features Features that are continuous need to be discretized in order to be manipulated
by AND and OR concepts. Wang et al. (2021) introduced the idea of learning upper and lower bounds for
each continuous feature, noting that in the following layers these bounds could be combined into intervals
(AND) and then arbitrary collections of such intervals (OR). Since our framework can take advantage of
negation, only upper bounds Bi,k ∈ R are needed, and we additionally learn a sharpness parameter αi,k that

12

Under review as submission to TMLR

controls how sharp or fuzzy is the transition at the boundary, resulting in a fuzzy discretization. We call
these concepts fuzzy dichotomies, defined for a continuous feature xk by

σ
(

αi,k(xk − Bi,k)
)

,

where σ(·) is the sigmoid function. For each continuous feature, we use a number of these fuzzy dichotomies
which are fed to their own DNF (without unobserved concepts), in order to learn arbitrary collections of
fuzzy intervals. For instance, in a task that uses a continuous feature xk representing weight, one rule might
hold only for very light objects or somewhat heavy objects such as xk ∈ [0, 0.1] ∪ [10, 15] which would be
learned as (xk < 0.1) ∪

(
(xk > 10) ∩ (xk < 15)

)
. The resulting collections of fuzzy intervals are then used

as input to the fully-connected DNF (with unobserved concepts) that can learn the final rules with all the
features. The fuzzy dichotomies are learned conjointly with all the AND/OR concepts in the NLN.

3.1.3 Input encodings and rule modules

Input
encodings

Rule module

Rule module

Rule module

...

Rule module

∪∪

∪∪

...

∪∪

o21

o22

o2
n2

Output
targets

(a) NLN with rule modules and input encoding

Bin.

Cat.

Value 1

Value 2

...

Value h

∪∪

Con. ...

∩∩

∩∩
...

∩∩

∪∪

∩∩
a1
i

One-hot encoding

Fuzzy interval encoding Rule module

(b) Rule module and input encodings

Figure 4: NLN structure used for learning

To help the learning process, we do not learn the NLN directly with the structure in Figure 3. We instead
disentangle the learning of each AND rule by introducing separate rule modules and shared input encodings
that are used by all rule modules, pictured in Figures 4(a) and 4(b). Each rule module contains a single
AND rule that takes its inputs from (1) the binary features, (2) its own OR equivalency classes, one for each
categorical feature, and (3) its own OR collections of fuzzy intervals, one for each continuous feature. In turn,
binary features are used directly, but categorical features have a shared one-hot encoding, and continuous
features are encoded with shared fuzzy dichotomies and AND fuzzy intervals. This factorization of the
structure allows each rule to learn more independently of the others and reduces the number of parameters in
the model. However, the fuzzy interval encodings of the continuous features are still learned conjointly for
the whole NLN. For categorical features, this factorization is equivalent in terms of representability. Since
the one-hot encoding is binary, an AND rule that combines multiple OR equivalency classes for the same
categorical feature can always be rewritten with a single OR equivalency class when the weights are integers.
The same is not true for the fuzzy interval encoding of continuous features since they are never binary.
However, in terms of interpretability, a single OR collection of fuzzy intervals is much simpler to interpret in
an AND rule, which may already involve many other features.

3.2 Learning

Learning a NLN is done in two stages: (1) training, and (2) post-processing, which includes weight quantizing,
continuous parameter retraining, and pruning.

13

Under review as submission to TMLR

3.2.1 Training

Objective and regularization We use the ADAM optimizer (Kingma & Ba, 2015) to minimize the L2
loss. Its minimizer is P[ω ∈ Yk | x] which is precisely what we want our NLN’s outputs c2

k(x) = P
[
ω ∈ C2

k

∣∣x]
to model. To help the learning process we regularize NLNs in two different ways. First, to combat the
tendency of unadapted concepts to become trivial, we regularize the AND and OR concepts to have non-empty
definitions. For instance, we consider the definition of an AND concept Cl

i to be non-empty if∑
j

∣∣Al
i,j

∣∣ ≥ 1,

in other words, we consider a concept Cl
i to be non-empty if it attributes a probability mass of at least 1

across all of its possible input concepts Cl91
j . We force non-empty definitions in all AND and OR concepts by

penalizing

Lnon-empty =
∑

AND weights Al
i,·

∥∥∥∥∥∥
1 −

∑
j

∣∣Al
i,j

∣∣
+

∥∥∥∥∥∥
2

2

+
∑

OR weights Ol
i,·

∥∥∥∥∥∥
1 −

∑
j

∣∣Ol
i,j

∣∣
+

∥∥∥∥∥∥
2

2

,

which is only active when a concept Cl
i ’s definition attributes a probability mass less than 1. In that case,

the penalty will increase the weights of all of its input concepts Cl91
j uniformly until a probability mass of at

least 1 is attributed. Moreover, in order to encourage sparser, more interpretable solutions, we also penalize
the L1 norm of all weights in the network. The full loss function is then given by

L(y, cL(x)) =
∥∥y − cL(x)

∥∥2
2 + λnon-empty · Lnon-empty + λsparsity

 ∑
AND weights Al

i,·

∥∥Al
i,·
∥∥

1 +
∑

OR weights Ol
i,·

∥∥Ol
i,·
∥∥

1

 ,

where λnon-empty, λsparsity > 0 are the regularization coefficients of the non-empty penalty and the sparsity
penalty respectively. We minimize the expectation of this loss

E(X,Y)∼D
[
L(Y, cL(X))

]
over the training dataset D, subject to the domain constraints of the weights Al

i,j ∈ [−1, 1], Ol′

i′,j′ ∈ [0, 1], the
biases al

i, ol′

i′ ∈ [0, 1], and the parameters of the fuzzy dichotomies Bi′′,k ∈ R, αi′′,k > 0 for appropriate indices
(i, j, l), (i′, j′, l′) and (i′′, k) according to the NLN’s structure.

Initialization In our experimentations, the initialization of the NLN was a very important factor in its
ability to learn. We have found the best combination to have (1) uniformly random weights, (2) fully observed
concepts, and (3) regularly distributed fuzzy interval encodings for continuous features, pictured in Figure 5.
The random weights increase our chances to find potential rules that can be further massaged towards relevant
rules, with respect to the target concepts. We begin with full binary biases a1

i = 1 and o2
j = 0, i.e. without

unobserved effects. These ensure that the initial gradients are as strong as possible since, in general, their
magnitudes are proportional to al

i for AND nodes and to (1 − ol
i) for OR nodes. This is especially important

to combat the effect of the vanishing gradients. For binary features and categorical features with one-hot
encoding, the random weights can be learned because they receive clean 0-1 signal that is also interpretable.
In order to obtain a similarly clean and interpretable signal from continuous features, we initialize the fuzzy
interval encoding to regularly distributed intervals with appropriately scaled sharpness. This way, an input x
will initially only activate a single fuzzy interval per continuous feature, hence producing a clean, interpretable
signal.

Rule reset In practice, we have observed that rules that are not helpful in the model quickly become “dead”
concepts. For such an AND rule C1

i , either its bias a1
i goes to 0 or their weights O2

·,i in the next layer all go
to 0. In both cases, they stop receiving signal in the back-propagation and stop learning. We solve this issue
by re-initializing dead rule modules. To do so, we randomly re-initialize their weights A1

i,· ∼ U(−1, 1) and

14

Under review as submission to TMLR

Bin.
A1

i,j∼U(−1,1)

Cat.

Value 1

Value 2

...

Value h

∪∪

O0
j′,d∼U(0,1)

Con. ...

∩∩

∩∩

∩∩
...

∩∩

∩∩

∪∪

O0
j′′,d′∼U(0,1)

∩∩
1

O2
k,i∼U(0,1)

∪∪

∪∪

...

∪∪

0

0

0

Tar. 1

Tar. 2

...

Tar. n2

1
−1

Rule module

...

...

(a) Rule module and input encoding initialization (b) Fuzzy interval encoding initialization

Figure 5: NLN initialization

their bias to a1
i = 1. To ensure that the resets do not affect the loss, we also set their outgoing weights in

the output layer to O2
·,i = 0. We do this at the end of every epoch by checking for dead rule modules and

re-initializing them. By having a big number of rule modules in the network, we can try many random rules
at each epoch and keep only those that have potential to be learned further.

3.2.2 Post-processing

Weight quantizing At this point, the NLN has been learned but its weights are still probabilities which
are hard to interpret, especially in conjunction with one another. For instance, a simple AND rule that
would have weights of (0.80, −0.65, 0.15) for respectively ball, green and heavy is difficult to interpret.
It represents a concept that is likely a type of ball, but not necessarily; a concept that is probably not a
green object; and a concept that might be a heavy object although it is unlikely; all simultaneously. This
is not easily interpretable, unlike the same weights after quantizing which might be (1, −1, 0) that would
represent the concept of a ball_that_is_not_green. By quantizing the weights to values of either 0, 1 or
−1, we obtain instantly understandable concepts that still retain a probabilistic bias in [0, 1], indicating if we
are missing other unobserved concepts in its definition and how often they appear. To quantize, previous
methods would either threshold the weights at above or below 0.5 (Wang et al., 2020; Zhang et al., 2023)
or use a modified learning algorithm to learn the quantized weights directly (Wang et al., 2021; 2024). We
have instead developed 4 simple greedy algorithms to quantize the weights one at a time. The weights are
quantized according to their effect on the loss of the full training set (including the validation set). Our
experimentations suggest that our most effective and reliable approach is Algorithm 1. Our other quantizing
algorithms are presented in appendix C.1.1.

Continuous parameter retraining Once the weights are quantized, we retrain briefly the continuous
parameters of the model with respect to the new weights. These continuous parameters are the model’s
parameters which are interpretable for continuous values, i.e. the biases al

i,j , ol
i,j ∈ [0, 1] as well as the

boundaries in Bi,k ∈ R and sharpnesses in αi,k ∈ R∗
+ of the fuzzy dichotomies used to pre-process the

continuous features xk.

Pruning Finally, inspired by Payani & Fekri (2019b), we prune unnecessary weights and simplify the NLN
accordingly. To do a pruning pass, starting from the output layer, we consider pruning each weight one at a
time and, if it improves or does not affect the loss on the full training set (including the validation set), we

15

Under review as submission to TMLR

For each layer l ∈ {1, .., L}, starting from the last layer L ,
For each weight Al

i,j (resp. Ol
i,j), in decreasing likeliness

∣∣Al
i,j

∣∣ (resp.
∣∣Ol

i,j

∣∣) ,
If it is non-zero ,

Compare the loss when we fix Al
i,j ∈

{
0, sign

(
Al

i,j

)}
(resp. Ol

i,j ∈
{

0, sign
(
Ol

i,j

)}
).

Commit to the best quantized value.

Do the same for the category and continuous input modules, one at a time.

Algorithm 1: Descending selection quantizing algorithm

permanently prune the weight and, otherwise, we restore its previous value. We keep doing pruning passes
until the NLN stops changing.

4 Experiments

We evaluate our approach on two different tasks: discovery of boolean networks, and tabular classification, i.e.
classification from structured data. In both cases we use a NLN with 128 rule modules with regularization
coefficients of λnon-empty = 10−1 for the non-empty definitions regularization and of λsparsity = 10−3 for the
sparsity regularization on the L1 norm of the weights. In cases of multi-class classification, the target class
with the highest probability is outputted. In binary classification, the threshold with the highest score is
used for the binary output (grid search with 0.01 step). We implement our method in Pytorch (Paszke et al.,
2019) using the ADAM optimizer.

4.1 Boolean networks discovery

Boolean networks were introduced in Kauffman (1969) to model gene regulatory networks in biology. A
boolean network models gene interactions where n genes at a time step t are either activated At

i = 1 or
not At

i = 0. Given the activations At
i at step t, their activations At+1

i at the next time step t + 1 are
deterministically given by a logic program where each gene is activated if one of its rules are satisfied in the
previous time step. For instance, we might have for gene 3 a simple logic program with only two rules

¬At
4 → At+1

3 ,

At
1 ∧ ¬At

2 → At+1
3 ,

i.e. gene 3 is activated at time step t + 1 if at time step t, either gene 4 was not activated or gene 1 was
activated and gene 2 was not, or both. For this task, we are provided a dataset with all possible gene state
transitions (At

1, ..., At
n, At+1

1 , ..., At+1
n) and we want to discover the ground-truth logic program by learning

to predict the end state (At+1
i)i from the start state (At

i)i. Since we almost never have access to this full
distribution, we study the performance of our algorithm for partial datasets with ratios of the full dataset
ranging from 10% to 100%. We consider four datasets with known ground-truth logic programs: mammalian
cell cycle regulation (Fauré et al., 2006), fission yeast cell cycle regulation (Davidich & Bornholdt, 2008),
budding yeast cell cycle regulation (Li et al., 2004) and arabidopsis thaliana flower morphogenesis (Chaos
et al., 2006). We evaluate the performance of our algorithm according to its accuracy in two repeats of
Five-Fold Cross-Validation (5F-CV).

For this task, we do not split the training set into training and validation sets. Since there is a ground-truth
logic program in this task, we have observed in our experiments that NLNs do not tend to overfit and every
additional data point is relevant to find all the correct rules. We compare our approach with four other
methods that were used for this task. Two of them are neuro-symbolic in nature while the other two are
purely symbolic. The first neuro-symbolic method is NN-LFIT (Tourret et al., 2017) which learns a neural
network that is then approximated by a logic program. The second neuro-symbolic method is D-LFIT (Gao
et al., 2022) which learns a logic program that is embedded in a set of matrices in a novel neural network
structure. The purely symbolic methods are the Inductive Logic Programming method LF1T (Inoue et al.,

16

Under review as submission to TMLR

2014) and the symbolic rule learner JRip (Witten et al., 2017). The results are presented in Table 2, which is
partially reproduced from Gao et al. (2022).

Table 2: Comparison of five-fold cross-validation accuracy (%) on partial datasets with different split rates

Datasets (variables, rules) Model Ratio of the full distribution
8% 16% 40% 80%

Mammalian (10, 23) NLN 94.41 98.90 100 100
NN-LFIT 96.60 94.35 99.89 99.91
D-LFIT 71.67 75.9 80.09 82.84
LF1T 76.01 76.48 76.73 91.56
JRip 77.84 75.44 76.41 74.66

Fission (10, 24) NLN 94.60 98.51 100 100
NN-LFIT 98.80 99.80 99.92 99.87
D-LFIT 80.45 85.33 93.13 92.89
LF1T 76.85 77.03 77.15 100
JRip 79.14 78.05 80.04 78.47

Budding (12, 54) NLN 97.42 99.65 100 100
NN-LFIT ROT ROT ROT ROT
D-LFIT 71.96 71.39 70.50 76.52
LF1T ROT ROT ROT ROT
JRip 67.97 68.55 67.91 68.35

Arabidopsis (15, 28) NLN 100 100 100 100
NN-LFIT ROT ROT ROT ROT
D-LFIT 84.35 86.83 88.56 89.70
LF1T ROT ROT ROT ROT
JRip 68.84 69.00 68.79 68.67

In all four datasets, our method achieves more than 98 % accuracy with as little as 16 % of the data.
Moreover, it achieves perfect accuracy with only 40 % of the data. In doing so, our method also discovers the
ground-truth boolean networks by correctly identifying all of their necessary rules. In some cases, some of
the ground-truth rules are subsumed by the disjunction of other ground-truth rules, making them redundant.
In appendix D.1.1, we present examples of correctly discovered rules as well as incorrectly discovered rules
when there is insufficient data. In contrast, the other methods never achieve perfect accuracy even with
80% of the data. The biggest difficulty for these other methods seem to be the number of rules with the
poorest performance being on the budding dataset, which has the most rules. This is not an issue for
our approach which, being a learning approach, is instead mostly concerned with the amount of data. It
performs most poorly on datasets with lower dimensionality for which the same fraction of the full distribution
represents a much smaller amount of data. For the arabidopsis dataset, which has the largest solution space
with 15 variables, our model is able to discover the ground-truth logic program with as little as 8 % of the
full distribution. This ground-truth rule discovery from small amounts of data is one of the strengths of
neuro-symbolic methods as opposed to purely neural methods. On the other hand, the purely symbolic
extraction step of NN-LFIT and the ILP LF1T method both Run Out of Time (ROT) (5 hours for this task)
on the larger solution spaces of the budding and arabidopsis datasets.

4.2 Tabular data classification

We test the more general case of classification from tabular data on 6 classical UCI datasets, often used to
test model interpretability. We add a seventh dataset by converting the continuous features of the balance
dataset to categorical features, since they only take 5 possible values. These represent two distinct types of
datasets: those that can be represented by a ground-truth logic program (chess KRKPA7 (Shapiro, 1983),
monk2 (Wnek, 1993) and tic-tac-toe (Aha, 1991)), and those that cannot (adult (Becker & Kohavi, 1996),
balance (Siegler, 1976), DARWIN (Cilia et al., 2018), and wine (Aeberhard & Forina, 1992)). However,
balance does have an easily interpretable representation since it describes a balance scale which leans to one
side or is in balance depending on which side has the highest product weight · distance, but this cannot
be encoded as a logic program without trivally encoding all 625 possible cases. The characteristics of these

17

Under review as submission to TMLR

datasets are presented in Table 3. Since these datasets are mostly unbalanced, we use the F1 score to evaluate
the prediction performance of the models with five-fold cross-validation.

Table 3: Dataset characteristics and logic network model capacities (number of Pre-Processing nodes (PP),
of Fully-Connected nodes (FC) and Total number of Parameters (TP))

Datasets Inputs Outputs Samples NLN RRL
Bin. Cat. Con. Classes PP FC TP PP FC TP

adult 1 7 6 2 32 561 2 054 128, 1 46 913 120 4096, 4096, 2 17 686 648
balance 0 0 4 3 625 772 128, 3 22 403 80 1024, 3 83 536
balance (cat.) 0 4 0 3 625 512 128, 3 3 587 0 1024, 3 22 016
chess 35 1 0 2 3 196 128 128, 1 5 249 0 1024, 2 39 936
DARWIN 0 0 450 2 174 86 850 128, 1 2 462 657 9 000 1024, 2 9 226 024
monk2 0 6 0 2 432 768 128, 1 3 201 0 1024, 2 18 432
tic-tac-toe 0 9 0 2 958 1 152 128, 1 4 865 0 1024, 2 28 672
wine 0 0 13 3 178 2 509 128, 3 71 651 260 1024, 3 268 036

For this task, we do not expect in general that there are actual logic programs that can predict perfectly
these datasets. As such, we opt to split the training set into training (80 %) and validation (20 %) sets to
select the best model in early stopping, in order to avoid overfitting. In the post-processing phase, we use
the full training set including the validation set, which is especially important for these datasets because
of their limited size. We compare our approach with three similar models. The first is RRL (Wang et al.,
2024) which uses the same modeling for the AND/OR nodes, with the exception of the missing bias and the
need to double the weights to consider negated concepts (see section 2.2 for their special case). It uses an
approximated version of this modeling however by introducing three hyper-parameters (α, β, γ) to reduce
the vanishing gradients problem inherent to this approach. Its structure is also different with (1) no input
pre-processing except for learnable upper and lower bounds for the continuous features, (2) between 1 and 4
logical layers which are each made up of half AND nodes and half OR nodes, and (3) its output layer is linear.
It thus introduces many more hyper-parameters to tune than our approach which has none in practice, since
it uses by default 32 fuzzy dichotomies with 33 fuzzy interval encodings per continuous feature. We follow
their instructions to learn the models and tune their hyper-parameters with the final selected structures
presented side-by-side with our own in Table 3. The final two models are the Optimal Decision Tree (ODT)
and its generalization, the Optimal Decision Diagram (ODD) (Florio et al., 2023). These approaches use a
Mixed Integer Programming formulation to find the optimal decision tree (resp. diagram) given a dataset
and a graph topology. For both models, we follow their instructions for which topologies to test, and select
the best performing one. We also add a final model that is not interpretable to show the level of prediction
performance that is attainable for each dataset, XGBoost (XGB) (Chen & Guestrin, 2016; Grinsztajn et al.,
2024). The results are presented in Table 4.

Table 4: Comparison of five-fold cross-validation f1-score (%)

Datasets NLN RRL ODD ODT XGB
adult 66.03 80.20 63.65 63.52 71.62
balance 58.78 77.72 73.31 73.63 69.11
balance (cat.) 59.69 82.20 94.70 82.37 66.33
chess 99.58 99.43 96.78 95.31 99.55
DARWIN 77.22 86.01 70.87 78.95 88.84
monk2 86.81 98.30 73.02 75.95 88.92
tic-tac-toe 100 100 96.69 97.07 100
wine 94.44 98.23 74.48 78.97 98.88

In the datasets with underlying ground-truth logic programs (chess, monk2 and tic-tac-toe), our NLN performs
very well as expected. It achieves perfect prediction on tic-tac-toe, is nearly as good as the uninterpretable
XGBoost on monk2, and it even narrowly beats the much larger RRL network on chess with almost 8 times
fewer parameters. On the other datasets however (adult, balance, DARWIN, wine), with the exception of

18

Under review as submission to TMLR

wine on which we obtained a good performance, our method was not able to find enough relevant rules to
predict the datasets accurately. On the other hand, the similar RRL with more nodes and better learning
properties was able to achieve similar performance to XGBoost in all datasets, even improving upon its
performance in 4 out of the 7 datasets. This suggests that our initialization and rule reset scheme for learning
NLNs is not as optimal for finding relevant rules as the RRL’s additional rule nodes and improved learning
properties through additional hyper-parameters and linear output layer.

However, the main advantage of these methods is their interpretability and, by using much more nodes,
the RRL runs the risk of losing this capacity. Figure 1 presents networks with perfect predictive accuracy
on tic-tac-toe found by NLN and RRL (for the RRL, the smallest one in the five-fold cross-validation was
selected). The network found by NLN is minimal and describes in a straight-forward manner the 8 possible
rules that would make × win, i.e. when the ×s form any of the 3 rows, 3 columns and 2 diagonals. In
contrast, the smallest network found by RRL requires 318 rule nodes, half of which are AND nodes and
the other half are OR nodes. In fact, for the two datasets where the NLN performed as well or better than
RRL, it did so with 10 rules or less while the RRL needed over 300 rules to achieve comparable results (see
appendix D.2.1 for the full comparison of average number of rules and rule size on all datasets). This could
be a consequence of the RRL’s linear output layer. By imposing a rigid interpretable structure in NLNs,
the learning is more difficult, but the final learned model is directly interpretable. In contrast, the RRL’s
output linear layer makes the interpretation of its learned rules much less straightforward. Since it produces
hundreds of very small rules, many of them involving a single feature value, it seems that the actual decision
rules learned by the RRL are contained in the distributed representation of its output linear layer that is
much harder to interpret. Hence, even in cases where the NLN fails to learn a model with sufficient predictive
performance, the relevant rules that it does find are at least interpretable (see appendix D.2.2 and D.2.3
for examples on the adult and DARWIN datasets). However, since our search algorithm is stochastic, many
different models with equivalent predictive performance can be obtained during learning with differing sets
of rules. For instance, in preliminary tests, a model with perfect accuracy on tic-tac-toe was found that
discovered the 3 rows and 3 columns of ×, but instead of the 2 diagonals of ×, it discovered 2 equivalent
rules that each say that, if a diagonal has no ◦ anywhere on it, then × wins. Such equivalent sets of rules
can provide additional insight as in this case, although this variability can also be detrimental in other cases
where different users may obtain different insights from the same data.

5 Conclusion

NLNs are a powerful learning and modeling tool for situations that can be described by logic programs, i.e.
when the output classes/labels Yk can be described by a set of IF-THEN rules on the input x of the form

IF x1 ∈ A1,k AND ... AND xd ∈ Ad,k, THEN x ∈ Yk.

By learning to predict the output classes/labels from the input, a NLN can discover this underlying causal
structure. Such problems can arise often in practical settings. For instance, a NLN could easily be implemented
in a Logical Analysis of Data (Lejeune et al., 2019) framework for industrial operations and maintenance.

The probabilistic modeling behind NLN’s derivation of (P-AND) and (P-OR) supposes three independence
assumptions. The first one is between aleatoric and epistemic quantities, i.e. specific realizations versus
general roles as being necessary or sufficient to other concepts. The second assumption is equivalent to a
cognitive bias of “total open-mindedness” that considers every combination of concepts to be equiprobable,
irrespective of how related or incongruous they might be. The third assumption is an approximation that
considers every concept in the same layer to be conditionally independent given the input.

We proposed a factorized rule module structure with pre-processing modules that ensure that the learned
rules are easily interpretable to a domain expert. We also proposed a modified learning algorithm with a rule
reset scheme to tackle the NLN’s notorious vanishing gradient problem. However, in practice, this strategy
does not seem to be sufficient to learn good predictive NLNs in general, especially in cases where there is
no underlying ground-truth logic program. More work needs to be done on this issue to unlock the full
modeling capabilities of NLNs. One possible direction is the RRL’s modified gradient descent algorithm and
approximated AND/OR nodes that introduce hyper-parameters to improve their learning properties.

19

Under review as submission to TMLR

Interpretable tabular classification is a starting point for NLNs. In future research, we will explore how
they can be adapted to more complex tasks by using different neural network structures. For instance,
convolutional NLNs could leverage the AND/OR nodes to tackle interpretable image classification. With
convolutional AND kernels and pooling OR layers, these networks could produce interpretable representations
of higher-level concepts from 2D arrangements of lower-level concepts. Another example is recurrent NLNs for
multi-step reasoning. The tabular NLN presented here can only do single-step reasoning, but by chaining this
reasoning through multiple steps, a recurrent NLN could produce multi-step reasoning and solve problems like
Sudoku. Again, like in tabular NLN, by learning to predict the finished Sudoku puzzle, the NLN could also
discover the rules of Sudoku. Finally, graph NLNs, by working on input graphs with entities and relations,
would introduce features of first-order logic by generalizing AND/OR nodes to define universal quantification
∀ and existential quantification ∃. Moreover, in doing so, graph NLNs could learn to not only predict missing
edges or attributes, but also discover underlying relational rules, also known as rule mining in knowledge
graphs.

References
Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable artificial

intelligence (XAI). IEEE Access, 6:52138–52160, 2018.

Stefan Aeberhard and M. Forina. Wine. UCI Machine Learning Repository, 1992. DOI:
https://doi.org/10.24432/C5PC7J.

David Aha. Tic-Tac-Toe Endgame. UCI Machine Learning Repository, 1991. DOI:
https://doi.org/10.24432/C5688J.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto
Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco
Herrera. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward
responsible ai. Information Fusion, 58:82–115, 2020.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Tarek Besold, Artur Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe
Kühnberger, Luís Lamb, Priscila Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, and Gerson Zaverucha.
Chapter 1. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation1. 12 2021.

James J. Buckley and Thomas Feuring. Hybrid Fuzzy Neural Nets, pp. 111–117. Physica-Verlag HD,
Heidelberg, 1998.

Roberta Calegari, Giovanni Ciatto, and Andrea Omicini. On the integration of symbolic and sub-symbolic
techniques for xai: A survey. Intelligenza Artificiale, 14(1):7–32, 2020.

Álvaro Chaos, Max Aldana, Carlos Espinosa-Soto, Berenice García Ponce de León, Adriana Garay Arroyo,
and Elena R. Alvarez-Buylla. From genes to flower patterns and evolution: Dynamic models of gene
regulatory networks. Journal of Plant Growth Regulation, 25(4):278–289, 2006.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794,
New York, NY, USA, 2016. Association for Computing Machinery.

YooJung Choi, Atonio Vergari, and Guy Can den Broeck. Probabilistic circuits: A unifying framework for
tractable probabilistic models. Technical report, UCLA StarAI Lab, 2021.

Nicole Dalia Cilia, Claudio De Stefano, Francesco Fontanella, and Alessandra Scotto Di Freca. An experimental
protocol to support cognitive impairment diagnosis by using handwriting analysis. Procedia Computer
Science, 141:466–471, 2018. The 9th International Conference on Emerging Ubiquitous Systems and
Pervasive Networks (EUSPN-2018) / The 8th International Conference on Current and Future Trends of
Information and Communication Technologies in Healthcare (ICTH-2018) / Affiliated Workshops.

20

Under review as submission to TMLR

Nuri Cingillioglu and Alessandra Russo. pix2rule: End-to-end neuro-symbolic rule learning. In 15th
International Workshop on Neural-Symbolic Learning and Reasoning as part of the 1st International Joint
Conference on Learning Reasoning (IJCLR 2021), October 25-27 2021.

Maria I. Davidich and Stefan Bornholdt. Boolean network model predicts cell cycle sequence of fission yeast.
PLOS ONE, 3(2):1–8, 02 2008.

Liya Ding. Human knowledge in constructing ai systems — neural logic networks approach towards an
explainable ai. Procedia Computer Science, 126:1561–1570, 2018.

Adrien Fauré, Aurélien Naldi, Claudine Chaouiya, and Denis Thieffry. Dynamical analysis of a generic
boolean model for the control of the mammalian cell cycle. Bioinformatics, 22(14), 2006.

Alexandre M. Florio, Pedro Martins, Maximilian Schiffer, Thiago Serra, and Thibaut Vidal. Optimal decision
diagrams for classification. Proceedings of the AAAI Conference on Artificial Intelligence, 37(6):7577–7585,
Jun. 2023.

Robert Fuller. Neural Fuzzy Systems. Abo Akademi University, Turku, 1995.

Kun Gao, Hanpin Wang, Yongzhi Cao, and Katsumi Inoue. Learning from interpretation transition using
differentiable logic programming semantics. Mach. Learn., 111(1):123–145, 2022.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? In Proceedings of the 36th International Conference on Neural Information
Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc.

M.M. Gupta. Fuzzy logic, neural networks and virtual cognitive systems. In 1993 (2nd) International
Symposium on Uncertainty Modeling and Analysis, pp. 90–97, 1993.

M.M. Gupta and D.H. Rao. On the principles of fuzzy neural networks. Fuzzy Sets and Systems, 61(1):1–18,
1994.

K. Hirota and W. Pedrycz. Or/and neuron in modeling fuzzy set connectives. IEEE Transactions on Fuzzy
Systems, 2(2):151–161, 1994.

Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama. Learning from interpretation transition. Machine Learning,
94(1):51–79, 2014.

Stuart Kauffman. Homeostasis and differentiation in random genetic control networks. Nature, 224(5215):
177–178, 1969.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Miguel Lejeune, Vadim Lozin, Irina Lozina, Ahmed Ragab, and Soumaya Yacout. Recent advances in the
theory and practice of logical analysis of data. European Journal of Operational Research, 275(1):1–15,
2019.

Fangting Li, Tao Long, Ying Lu, Qi Ouyang, and Chao Tang. The yeast cell-cycle network is robustly
designed. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 2004.

Yitao Liang and Guy Van den Broeck. Learning logistic circuits. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):4277–4286, Jul. 2019.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133, 1943.

21

Under review as submission to TMLR

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

Ali Payani and Faramarz Fekri. Learning algorithms via neural logic networks. CoRR, abs/1904.01554, 2019a.
URL http://arxiv.org/abs/1904.01554.

Ali Payani and Faramarz Fekri. Inductive logic programming via differentiable deep neural logic networks.
CoRR, abs/1906.03523, 2019b. URL http://arxiv.org/abs/1906.03523.

Ali Payani and Faramarz Fekri. Incorporating relational background knowledge into reinforcement learning
via differentiable inductive logic programming. CoRR, abs/2003.10386, 2020. URL https://arxiv.org/
abs/2003.10386.

Witold Pedrycz. Fuzzy neural networks and neurocomputations. Fuzzy Sets and Systems, 56(1):1–28, 1993.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal Inference - Foundations and
Learning Algorithms. The MIT Press, 2017.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus Akhalwaya,
Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, Shajith Ikbal, Hima Karanam, Sumit
Neelam, Ankita Likhyani, and Santosh Srivastava. Logical neural networks, 2020. URL https://arxiv.
org/abs/2006.13155.

Taisuke Sato and Katsumi Inoue. Differentiable learning of matricized dnfs and its application to boolean
networks. Machine Learning, 112(8):2821–2843, 2023.

John R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3(3):417–424, 1980. doi:
10.1017/S0140525X00005756.

Prithviraj Sen, Breno W. S. R. de Carvalho, Ryan Riegel, and Alexander Gray. Neuro-symbolic inductive logic
programming with logical neural networks. Proceedings of the AAAI Conference on Artificial Intelligence,
36(8):8212–8219, Jun. 2022.

Alen Shapiro. Chess (King-Rook vs. King-Pawn on a7). UCI Machine Learning Repository, 1983. DOI:
https://doi.org/10.24432/C5DK5C.

R. Siegler. Balance Scale. UCI Machine Learning Repository, 1976. DOI: https://doi.org/10.24432/C5488X.

Hoon-Heng Teh. Neural Logic Networks. World Scientific, 1995.

Sophie Tourret, Enguerrand Gentet, and Katsumi Inoue. Learning human-understandable description of
dynamical systems from feed-forward neural networks. In IJCNN 2017, LNCS, volume 10261, pp. 483–492,
05 2017.

Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural networks. Artificial Intelligence,
70(1):119–165, 1994.

Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy logic operators.
Artificial Intelligence, 302(C):103602, 2022.

Zhuo Wang, Wei Zhang, Ning LIU, and Jianyong Wang. Transparent classification with multilayer logical
perceptrons and random binarization. Proceedings of the AAAI Conference on Artificial Intelligence, 34
(04):6331–6339, Apr. 2020.

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Scalable rule-based representation learning for
interpretable classification. In Advances in Neural Information Processing Systems, volume 34, 2021.

22

http://arxiv.org/abs/1904.01554
http://arxiv.org/abs/1906.03523
https://arxiv.org/abs/2003.10386
https://arxiv.org/abs/2003.10386
https://arxiv.org/abs/2006.13155
https://arxiv.org/abs/2006.13155

Under review as submission to TMLR

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Learning interpretable rules for scalable data
representation and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(2):
1121–1133, 2024.

Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, fourth edition, 2017.

J. Wnek. MONK’s Problems. UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C5R30R.

Dongran Yu, Bo Yang, Dayou Liu, Hui Wang, and Shirui Pan. A survey on neural-symbolic learning systems.
Neural Networks, 166:105–126, 2023.

Ke Zhang, Wen-Ning Hao, Xiao-Han Yu, Da-Wei Jin, and Kun Yu. A fuzzy neural network classifier and its
dual network for adaptive learning of structure and parameters. International Journal of Fuzzy Systems,
25(3):1034–1054, 2023.

23

Under review as submission to TMLR

A Symbols and notation

input data x an input to the network x = (x1, ..., xm)
unobserved data u the values of relevant but unobserved variables

relevant data ω = (x, u) a complete realization of the modeled random phenomenon

concept Cl
i concept i of layer l

input concept C0
i concept i of input layer 0, known for input x

output concept CL
k concept k of last layer L, models target concept Yk

layer l + Cl
+ the set of all the concepts Cl

i of layer l

layer l ± Cl
± the set of all the concepts Cl

i of layer l and their opposites (Cl
i)c

presence (rand. event) ω ∈ Cl
i random event that the concept Cl

i is present in the realization ω

presence (cond. prob.) cl
i(x) probability in [0, 1] that the concept Cl

i is present in ω given x,
i.e. cl

i(x) = P
[
ω ∈ Cl

i | x
]

necessary concept C ⊇ Cl
i a necessary concept C of AND concept Cl

i

weights AND Al
i,j if > 0, probability that Cl91

j ⊇ Cl
i ;

if < 0, −probability that (Cl91
j)c ⊇ Cl

i

unobserved necessary concepts u ∈ Ñ l
i random event that the unobserved necessary concepts of AND

concept Cl
i are present in ω

bias AND al
i probability that the unobserved necessary concepts Ñ l

i are present
when the observed necessary concepts are present

sufficient concept C ⊆ Cl
i a sufficient concept C of OR concept Cl

i

weights OR Ol
i,j if > 0, probability that Cl91

j ⊆ Cl
i ;

if < 0, −probability that (Cl91
j)c ⊆ Cl

i

unobserved sufficient concepts u ∈ S̃l
i random event that the unobserved sufficient concepts of OR concept

Cl
i are present in ω

bias OR ol
i probability that the unobserved sufficient concepts S̃l

i are present
when the observed sufficient concepts are not

independence A ⊥⊥ B random events A and B are independent
set difference A \ B set of elements in A that are not in B,

i.e. A \ B = {a | ∀a ∈ A s.t. a /∈ B}
indicator function 1(Φ) equals 1 if its argument Φ is true and 0 otherwise

positive part [λ]+ the positive part of λ ∈ R, i.e. [λ]+ = max{0, λ}
negative part [λ]− the negative part of λ ∈ R, i.e. [λ]− = max{0, −λ}

24

Under review as submission to TMLR

B Theory

B.1 Probabilistic modeling

B.1.1 Graphical summary of the first two assumptions of independence

The first two assumptions of independence that we make in our probabilistic modeling of NLNs are summarized
in the PGM below, where we only specify the structure for an AND concept Cl

i since an OR concept would
have the same structure.

u

. . .
. . .

x

x ∈ C0
1

...

x ∈ C0
n0

. . .

. . .

. . .

ω ∈ Cl91
1

...

ω ∈ Cl91
nl91

Cl91
1 ⊇ Cl

i

(Cl91
1)c ⊇ Cl

i

Cl91
nl91 ⊇ Cl

i

(Cl91
nl91)

c ⊇ Cl
i

...
⋂

C∈Cl91
±

((
C ̸⊇ Cl

i

)
∪

(
ω ∈ C

))

u ∈ Ñ l
i

...

ω ∈ Cl
i

...

. .
.

. . .

. . .

Figure B.1: Probabilistic Graphical Model of NLN’s probabilistic modeling (rectangles: random variables,
arrows: dependencies, such that two sets of random variables are conditionally independent with respect to a
third set of random variables if they are d-separated by it)

• The observed and unobserved data x and u can be correlated;

• The zero-th layer containing the input features x ∈ C0
i depends only on the input x;

• The unobserved necessary/sufficient concepts u ∈ Ñ l
i and u ∈ S̃l

i depend only on the unobserved u;

• [1st assumption] The role of a concept Cl91
j as necessary/sufficient to a concept in the next layer

Cl91
j ⊇ Cl

i or Cl91
j ⊆ Cl

i is independent of every presence of concept ω ∈ Cl′

i′ in the layers l′ ≤ l − 1;

• [2nd assumption] The role of a concept Cl91
j as necessary/sufficient to a concept in the next layer

Cl91
j ⊇ Cl

i or Cl91
j ⊆ Cl

i is independent of every other roles in the network except for (Cl91
j)c ⊇ Cl

i or
(Cl91

j)c ⊆ Cl
i , depending on Cl

i ’s node type.

Critically, we can see that the

• [3rd assumption] The presence of concepts in the same layer ω ∈ Cl
i and ω ∈ Cl

j (with i ≠ j) are
conditionally independent given the input x.

is incorrect whenever two concepts share a common necessary/sufficient concept in the previous layers. In
that case, this common “ancestor” creates a fork that d-connects the two concepts, even when conditioning
on x.

25

Under review as submission to TMLR

B.1.2 Derivation with the 3rd assumption

AND (conjunction) We will derive the following formula for the probability of an AND node Cl
i given x

P
[
ω ∈ Cl

i

∣∣x] = P
[
u ∈ Ñ l

i

∣∣ω ∈ D
]

·
nl91∏
j=1

(
1 − P

[
Cl91

j ⊇ Cl
i

]
·
(
1 − P

[
ω ∈ Cl91

j

∣∣x]))(1 − P
[
(Cl91

j)c ⊇ Cl
i

]
· P
[
ω ∈ Cl91

j

∣∣x]),

where we define the observed part of definition

ω ∈ D :=
⋂

C∈Cl91
±

((
C ̸⊇ Cl

i

)
∪
(
ω ∈ C

))
.

To make this derivation easier to read, we will abuse notation in the following ways

Y := Cl
i ,

Cj := Cl91
j .

We will also omit the conditioning on x for the same reason. We remind the reader that the roles of necessary
concepts Cj ⊇ Y are independent of the input x.

We want to compute

P [ω ∈ Y] = P

(u ∈ Ñ l
i) ∩

⋂
C∈Cl91

±

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) .

Let D be the observed part of the definition

ω ∈ D :=
⋂

C∈Cl91
±

((
C ̸⊇ Y

)
∪
(
ω ∈ C

))
.

Then P [ω ∈ Y] can be written

P [ω ∈ Y] = P [ω ∈ D] · P
[
u ∈ Ñ l

i

∣∣ω ∈ D
]

,

and we only need to compute P [ω ∈ D]. We will derive it by induction by considering the contribution of
every concept Cj in the previous layer, one at a time. We begin with the law of total probability with respect
to the role of C1 or its negation as a necessary concept, of which there are three possible cases

C1 ⊇ Y , (C1)c ̸⊇ Y , (C1)c ⊇ Y , C1 ̸⊇ Y , C1 ̸⊇ Y , (C1)c ̸⊇ Y .

Since we assume that at most one of C1 and (C1)c can be a necessary concept, we will note these three cases
as

C1 ⊇ Y , (C1)c ⊇ Y , C1 ̸⊇ Y , (C1)c ̸⊇ Y .

We obtain

P [ω ∈ D] = P [C1 ⊇ Y] · P [ω ∈ D | C1 ⊇ Y]
+ P [(C1)c ⊇ Y] · P [ω ∈ D | (C1)c ⊇ Y]
+ P [C1 ̸⊇ Y , (C1)c ̸⊇ Y] · P [ω ∈ D | C1 ̸⊇ Y , (C1)c ̸⊇ Y] .

Expanding P [ω ∈ D | C1 ⊇ Y], we get

P [ω ∈ D | C1 ⊇ Y] = P [ω ∈ C1 | C1 ⊇ Y] · P [ω ∈ D | ω ∈ C1, C1 ⊇ Y]

+
(
1 − P [ω ∈ C1 | C1 ⊇ Y]

)
·
��������������:0

P [ω ∈ D | ω ∈ (C1)c, C1 ⊇ Y]

= P [ω ∈ C1] · P [ω ∈ D | ω ∈ C1, C1 ⊇ Y]

26

Under review as submission to TMLR

where we assume [1st assumption] independence between the presence of concept C1 and its role

ω ∈ C1 ⊥⊥ C1 ⊇ Y .

Expanding P [ω ∈ D | (C1)c ⊇ Y], we get

P [ω ∈ D | (C1)c ⊇ Y] = P [ω ∈ (C1)c | (C1)c ⊇ Y] · P [ω ∈ D | ω ∈ (C1)c, (C1)c ⊇ Y]

+
(
1 − P [ω ∈ (C1)c | (C1)c ⊇ Y]

)
·
��������������:0

P [ω ∈ D | ω ∈ C1, (C1)c ⊇ Y]

= P [ω ∈ (C1)c] · P [ω ∈ D | ω ∈ (C1)c, (C1)c ⊇ Y]

where we assume [1st assumption] independence between the presence of concept C1 and its negated role

ω ∈ (C1)c ⊥⊥ (C1)c ⊇ Y .

Combining the two previous cases, so far we have

P [ω ∈ D] = P [C1 ⊇ Y] · P [ω ∈ C1] · P [ω ∈ D | ω ∈ C1, C1 ⊇ Y]

+ P [(C1)c ⊇ Y] ·
(
1 − P [ω ∈ C1]

)
· P [ω ∈ D | ω ∈ (C1)c, (C1)c ⊇ Y]

+ P [C1 ̸⊇ Y , (C1)c ̸⊇ Y] · P [ω ∈ D | C1 ̸⊇ Y , (C1)c ̸⊇ Y] .

By using the logical definition of D, we get

P [ω ∈ D] = P [C1 ⊇ Y] · P [ω ∈ C1] · P

 ⋂
C∈Cl91

±

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ C1, C1 ⊇ Y


+ P [(C1)c ⊇ Y] ·

(
1 − P [ω ∈ C1]

)
· P

 ⋂
C∈Cl91

±

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ (C1)c, (C1)c ⊇ Y


+ P [C1 ̸⊇ Y , (C1)c ̸⊇ Y] · P

 ⋂
C∈Cl91

±

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣C1 ̸⊇ Y , (C1)c ̸⊇ Y


= P [C1 ⊇ Y] · P [ω ∈ C1] · P

 ⋂
C∈(Cl91

± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ C1, C1 ⊇ Y


+ P [(C1)c ⊇ Y] ·

(
1 − P [ω ∈ C1]

)
· P

 ⋂
C∈(Cl91

± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ (C1)c, (C1)c ⊇ Y


+ P [C1 ̸⊇ Y , (C1)c ̸⊇ Y] · P

 ⋂
C∈(Cl91

± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣C1 ̸⊇ Y , (C1)c ̸⊇ Y


27

Under review as submission to TMLR

If we assume the following independences

C1 ⊇ Y ⊥⊥
⋂

C∈(Cl91
± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ x,

(C1)c ⊇ Y ⊥⊥
⋂

C∈(Cl91
± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ x,

ω ∈ C1 ⊥⊥
⋂

C∈(Cl91
± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ x,

i.e. if we additionally assume

• [1st assumption] The role of a concept Cj as necessary to Y (Cj ⊇ Y) is independent of every
presence of concept ω ∈ Cj′ ;

• [2nd assumption] The role of a concept Cj as necessary to Y (Cj ⊇ Y) is independent of every
other concept Cj′ ’s role as necessary to Y except for (Cj)c ⊇ Y ;

• [3rd assumption] The presence of concepts in the same layer ω ∈ Cj and ω ∈ Cj′ (with j ̸= j′) are
conditionally independent given the input x;

we get

P [ω ∈ D] =
(
P [C1 ⊇ Y] · P [ω ∈ C1] + P [(C1)c ⊇ Y] ·

(
1 − P [ω ∈ C1]

)
+ P [C1 ̸⊇ Y , (C1)c ̸⊇ Y]

)
· P

 ⋂
C∈(Cl91

± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

))
=

nl91∏
j=1

(
P [Cj ⊇ Y] · P [ω ∈ Cj] + P [(Cj)c ⊇ Y] ·

(
1 − P [ω ∈ Cj]

)
+ P [Cj ̸⊇ Y, (Cj)c ̸⊇ Y]

)
︸ ︷︷ ︸

Pj

.

We make one final assumption about the probability structure of Cj ⊇ Y and (Cj)c ⊇ Y . We assume that if
the network believes one is possible (probability > 0), then it believes the other is impossible (probability = 0)
and vice versa. This is how we are able to model both P [Cj ⊇ Y] and P [(Cj)c ⊇ Y] with a single variable

Al
i,j = P [Cj ⊇ Y]︸ ︷︷ ︸

[Al
i,j

]+

−P [(Cj)c ⊇ Y]︸ ︷︷ ︸
[Al

i,j
]−

.

28

Under review as submission to TMLR

If we look at the term Pj in the product on j, we can see that

Pj =


P [Cj ⊇ Y] · P [ω ∈ Cj] + P [Cj ̸⊇ Y, (Cj)c ̸⊇ Y] , if P [Cj ⊇ Y] > 0, P [(Cj)c ⊇ Y] = 0,

P [(Cj)c ⊇ Y] ·
(
1 − P [ω ∈ Cj]

)
+ P [Cj ̸⊇ Y, (Cj)c ̸⊇ Y] , if P [Cj ⊇ Y] = 0, P [(Cj)c ⊇ Y] > 0,

P [Cj ̸⊇ Y, (Cj)c ̸⊇ Y] , if P [Cj ⊇ Y] = P [(Cj)c ⊇ Y] = 0.

=


P [Cj ⊇ Y] · P [ω ∈ Cj] +

(
1 − P [Cj ⊇ Y]

)
, if P [Cj ⊇ Y] > 0, P [(Cj)c ⊇ Y] = 0,

P [(Cj)c ⊇ Y] ·
(
1 − P [ω ∈ Cj]

)
+
(
1 − P [(Cj)c ⊇ Y]

)
, if P [Cj ⊇ Y] = 0, P [(Cj)c ⊇ Y] > 0,

1, if P [Cj ⊇ Y] = P [(Cj)c ⊇ Y] = 0.

=


1 − P [Cj ⊇ Y] ·

(
1 − P [ω ∈ Cj]

)
, if P [Cj ⊇ Y] > 0, P [(Cj)c ⊇ Y] = 0,

1 − P[(Cj)c ⊇ Y] · P[ω ∈ Cj], if P [Cj ⊇ Y] = 0, P [(Cj)c ⊇ Y] > 0,

1, if P [Cj ⊇ Y] = P [(Cj)c ⊇ Y] = 0.

=
(

1 − P [Cj ⊇ Y] ·
(
1 − P [ω ∈ Cj]

))
·
(

1 − P[(Cj)c ⊇ Y] · P[ω ∈ Cj]
)

= 1 − P [Cj ⊇ Y] ·
(
1 − P [ω ∈ Cj]

)
− P[(Cj)c ⊇ Y] · P[ω ∈ Cj] +

������������:0
P [Cj ⊇ Y] ·P[(Cj)c ⊇ Y]·

(
1 − P [ω ∈ Cj]

)
·P[ω ∈ Cj]

= 1 − P [Cj ⊇ Y] ·
(
1 − P [ω ∈ Cj]

)
− P[(Cj)c ⊇ Y] · P[ω ∈ Cj]

since we only ever have at most one of P [Cj ⊇ Y] and P[(Cj)c ⊇ Y] that is non-zero. We conclude

P [ω ∈ Y] = P
[
u ∈ Ñ l

i

∣∣ω ∈ D
] nl91∏

j=1

(
1 − P [Cj ⊇ Y] ·

(
1 − P [ω ∈ Cj]

))(
1 − P[(Cj)c ⊇ Y] · P[ω ∈ Cj]

)

= P
[
u ∈ Ñ l

i

∣∣ω ∈ D
] nl91∏

j=1

(
1 − P [Cj ⊇ Y] ·

(
1 − P [ω ∈ Cj]

)
− P[(Cj)c ⊇ Y] · P[ω ∈ Cj]

)
.

OR (disjunction) We will derive the following formula for the probability of an AND node Cl
j given x

P
[
ω ∈ Cl

i

∣∣x] = 1 −
(
1 − P

[
u ∈ S̃l

i

∣∣ (ω ∈ D
)c]) nl91∏

j=1

(
1 − P

[
Cl91

j ⊆ Cl
i

]
· P
[
ω ∈ Cl91

j

∣∣x])(1 − P
[
(Cl91

j)c ⊆ Cl
i

]
·
(
1 − P

[
ω ∈ Cl91

j

∣∣x])),

where we define the observed part of definition

ω ∈ D :=
⋃

C∈Cl91
±

((
C ⊆ Y

)
∩
(
ω ∈ C

))
.

To make this derivation easier to read, we will again abuse notation in the following ways

Y := Cl
i ,

Cj := Cl91
j .

We will also omit the conditioning on x for the same reason. We remind the reader that the roles of sufficient
concepts Cj ⊆ Y are independent of the input x.

We want to compute

P [ω ∈ Y] = P

(u ∈ S̃l
i

)
∪

⋃
C∈Cl91

±

((
C ⊆ Y

)
∩
(
ω ∈ C

)) .

29

Under review as submission to TMLR

Let ω ∈ D be the observed part of the definition

ω ∈ D :=
⋃

C∈Cl91
±

((
C ⊆ Y

)
∩
(
ω ∈ C

))
.

Then P [ω ∈ Y] can be rewritten

P [ω ∈ Y] = P
[(

u ∈ S̃l
i

)
∪
(
ω ∈ D

)]
.

Considering the complement of ω ∈ Y (its absence (ω ∈ Y)c), we have

1 − P [ω ∈ Y] = P [(ω ∈ Y)c]

= P
[
(u ∈ S̃l

i)c ∩ (ω ∈ D)c
]

= P [(ω ∈ D)c] · P
[
(u ∈ S̃l

i)c
∣∣ (ω ∈ D)c

]
=
(
1 − P [ω ∈ D]

)
·
(
1 − P

[
u ∈ S̃l

i

∣∣ (ω ∈ D)c
])

P [ω ∈ Y] = 1 −
(
1 − P [ω ∈ D]

)
·
(
1 − P

[
u ∈ S̃l

i

∣∣ (ω ∈ D)c
])

,

and we only need to compute P [D]. Again, we will derive it by induction by considering the contribution of
every concept Cj in the previous layer, one at a time. We begin with the law of total probability with respect
to the role of C1 or its negation as a sufficient concept, of which there are three possible cases

C1 ⊆ Y, (C1)c ̸⊆ Y, (C1)c ⊆ Y, C1 ̸⊆ Y, C1 ̸⊆ Y, (C1)c ̸⊆ Y.

Since we assume that at most one of C1 and (C1)c can be a sufficient concept, we will note these three cases
as

C1 ⊆ Y, (C1)c ⊆ Y, C1 ̸⊆ Y, (C1)c ̸⊆ Y.

We obtain

P [ω ∈ D] = P [C1 ⊆ Y] · P [ω ∈ D | C1 ⊆ Y]
+ P [(C1)c ⊆ Y] · P [ω ∈ D | (C1)c ⊆ Y]
+ P [C1 ̸⊆ Y, (C1)c ̸⊆ Y] · P [ω ∈ D | C1 ̸⊆ Y, (C1)c ̸⊆ Y] .

Expanding P [ω ∈ D | C1 ⊆ Y], we get

P [ω ∈ D | C1 ⊆ Y] = P [ω ∈ C1 | C1 ⊆ Y] ·
�������������:1
P [ω ∈ D | ω ∈ C1, C1 ⊆ Y]

+
(
1 − P [ω ∈ C1 | C1 ⊆ Y]

)
· P [ω ∈ D | ω ∈ (C1)c, C1 ⊆ Y]

= P [ω ∈ C1] +
(
1 − P [ω ∈ C1]

)
· P [ω ∈ D | ω ∈ (C1)c, C1 ⊆ Y]

where we assume [1st assumption] independence between the presence of concept C1 and its role

ω ∈ C1 ⊥⊥ C1 ⊆ Y.

Expanding P [ω ∈ D | (C1)c ⊆ Y], we get

P [ω ∈ D | (C1)c ⊆ Y] = P [ω ∈ (C1)c | (C1)c ⊆ Y] ·
���������������:1

P [ω ∈ D | ω ∈ (C1)c, (C1)c ⊆ Y]

+
(
1 − P [ω ∈ (C1)c | (C1)c ⊆ Y]

)
· P [ω ∈ D | ω ∈ C1, (C1)c ⊆ Y]

= P [ω ∈ (C1)c] +
(
1 − P [ω ∈ (C1)c]

)
· P [ω ∈ D | ω ∈ C1, (C1)c ⊆ Y]

30

Under review as submission to TMLR

where we assume [1st assumption] independence between the presence of concept C1 and its role

ω ∈ (C1)c ⊥⊥ (C1)c ⊆ Y.

Combining the two previous cases, so far we have

P [ω ∈ D] = P [C1 ⊆ Y] ·
(
P [ω ∈ C1] +

(
1 − P [ω ∈ C1]

)
· P [ω ∈ D | ω ∈ (C1)c, C1 ⊆ Y]

)
+ P [(C1)c ⊆ Y] ·

(
P [ω ∈ (C1)c] +

(
1 − P [ω ∈ (C1)c]

)
· P [ω ∈ D | ω ∈ C1, (C1)c ⊆ Y]

)
+ P [C1 ̸⊆ Y, (C1)c ̸⊆ Y] · P [ω ∈ D | (C1)c ̸⊆ Y, C1 ̸⊆ Y] .

By using the logical definition of D and by denoting Cl91
±,−1 := Cl91

± \ {C1, ¬C1}, we get

P [ω ∈ D] = P [C1 ⊆ Y] ·

P [ω ∈ C1] +
(
1 − P [ω ∈ C1]

)
· P

 ⋃
C∈Cl91

±

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ (C1)c, C1 ⊆ Y




+ P [(C1)c ⊆ Y] ·

P [ω ∈ (C1)c] +
(
1 − P [ω ∈ (C1)c]

)
· P

 ⋃
C∈Cl91

±

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ C1, (C1)c ⊆ Y




+ P [C1 ̸⊆ Y, (C1)c ̸⊆ Y] · P

 ⋃
C∈Cl91

±

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ (C1)c ̸⊆ Y, C1 ̸⊆ Y


= P [C1 ⊆ Y] ·

P [ω ∈ C1] +
(
1 − P [ω ∈ C1]

)
· P

 ⋃
C∈Cl91

±,−1

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ (C1)c, C1 ⊆ Y




+ P [(C1)c ⊆ Y] ·

P [ω ∈ (C1)c] +
(
1 − P [ω ∈ (C1)c]

)
· P

 ⋃
C∈Cl91

±,−1

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ C1, (C1)c ⊆ Y




+ P [C1 ̸⊆ Y, (C1)c ̸⊆ Y] · P

 ⋃
C∈Cl91

±,−1

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ (C1)c ̸⊆ Y, C1 ̸⊆ Y

 .

If we assume the following independences

C1 ⊆ Y ⊥⊥
⋃

C∈(Cl91
± \{C1,¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ x,

(C1)c ⊆ Y ⊥⊥
⋃

C∈(Cl91
± \{C1,¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ x,

ω ∈ C1 ⊥⊥
⋃

C∈(Cl91
± \{C1,¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ x,

i.e. if we additionally assume

• [1st assumption] The role of a concept Cj as sufficient to Y (Cj ⊆ Y) is independent of every
presence of concept ω ∈ Cj′ ;

31

Under review as submission to TMLR

• [2nd assumption] The role of a concept Cj as sufficient to Y (Cj ⊆ Y) is independent of every
other concept Cj′ ’s role as sufficient to Y except for (Cj)c ⊆ Y ;

• [3rd assumption] The presence of concepts in the same layer ω ∈ Cj and ω ∈ Cj′ (with j ̸= j′) are
conditionally independent given the input x;

we get

P [ω ∈ D] = P [C1 ⊆ Y] · P [ω ∈ C1] + P [(C1)c ⊆ Y]
(
1 − P [ω ∈ C1]

)
+
(
P [C1 ⊆ Y]

(
1 − P [ω ∈ C1]

)
+ P [(C1)c ⊆ Y] · P [ω ∈ C1] + P [C1 ̸⊆ Y, (C1)c ̸⊆ Y]

)
︸ ︷︷ ︸

R1

· P

 ⋃
C∈(Cl91

± \{C1,¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) .

If we look at R1, we can see that

R1 =


P [C1 ⊆ Y] ·

(
1 − P [ω ∈ C1]

)
+ P [C1 ̸⊆ Y, (C1)c ̸⊆ Y] , if P [C1 ⊆ Y] > 0, P [(C1)c ⊆ Y] = 0,

P [(C1)c ⊆ Y] · P [ω ∈ C1] + P [C1 ̸⊆ Y, (C1)c ̸⊆ Y] , if P [C1 ⊆ Y] = 0, P [(C1)c ⊆ Y] > 0,

P [C1 ̸⊆ Y, (C1)c ̸⊆ Y] , if P [C1 ⊆ Y] = P [(C1)c ⊆ Y] = 0.

=


P [C1 ⊆ Y] ·

(
1 − P [ω ∈ C1]

)
+
(
1 − P [C1 ⊆ Y]

)
, if P [C1 ⊆ Y] > 0, P [(C1)c ⊆ Y] = 0,

P [(C1)c ⊆ Y] · P [ω ∈ C1] +
(
1 − P [(C1)c ⊆ Y]

)
, if P [C1 ⊆ Y] = 0, P [(C1)c ⊆ Y] > 0,

1, if P [C1 ⊆ Y] = P [(C1)c ⊆ Y] = 0.

=


1 − P [C1 ⊆ Y] · P[ω ∈ C1], if P [C1 ⊆ Y] > 0, P [(C1)c ⊆ Y] = 0,

1 − P[(C1)c ⊆ Y] ·
(
1 − P [ω ∈ C1]

)
, if P [C1 ⊆ Y] = 0, P [(C1)c ⊆ Y] > 0,

1, if P [C1 ⊆ Y] = P [(C1)c ⊆ Y] = 0.

=
(

1 − P [C1 ⊆ Y] · P[ω ∈ C1]
)

·
(

1 − P[(C1)c ⊆ Y] ·
(
1 − P [ω ∈ C1]

))
= 1 − P [C1 ⊆ Y] · P[ω ∈ C1] − P[(C1)c ⊆ Y] ·

(
1 − P [ω ∈ C1]

)
+
������������:0
P [C1 ⊆ Y] ·P[(C1)c ⊆ Y]·P[ω ∈ C1]·

(
1 − P [ω ∈ C1]

)
= 1 − P [C1 ⊆ Y] · P[ω ∈ C1] − P[(C1)c ⊆ Y] ·

(
1 − P [ω ∈ C1]

)
We conclude that

P [ω ∈ Y] = 1 −
(
1 − P

[
u ∈ S̃l

i

∣∣ (ω ∈ D)c
]) nl91∏

j=1

(
1 − P [Cj ⊆ Y] · P[ω ∈ Cj]

)(
1 − P[(Cj)c ⊆ Y] ·

(
1 − P [ω ∈ Cj]

))

= 1 −
(
1 − P

[
u ∈ S̃l

i

∣∣ (ω ∈ D)c
]) nl91∏

j=1

(
1 − P [Cj ⊆ Y] · P[ω ∈ Cj] − P[(Cj)c ⊆ Y] ·

(
1 − P [ω ∈ Cj]

))
.

To get this final form, we proceed by induction to prove

P [ω ∈ D] = 1 −
nl91∏
j=1

(
1 − P [Cj ⊆ Y] · P[ω ∈ Cj] − P[(Cj)c ⊆ Y] ·

(
1 − P [ω ∈ Cj]

))
.

32

Under review as submission to TMLR

For nl91 = 1, we have

P [ω ∈ D] = P [C1 ⊆ Y] · P [ω ∈ C1] + P [(C1)c ⊆ Y]
(
1 − P [ω ∈ C1]

)
+
(

1 − P [C1 ⊆ Y] · P[ω ∈ C1] − P[(C1)c ⊆ Y]
(
1 − P [ω ∈ C1]

))
· 0

= 1 −
(

1 − P [C1 ⊆ Y] · P[ω ∈ C1] − P[(C1)c ⊆ Y]
(
1 − P [ω ∈ C1]

))
= 1 −

nl91∏
j=1

(
1 − P [Cj ⊆ Y] · P[ω ∈ Cj] − P[Cj ̸⊆ Y]

(
1 − P [ω ∈ Cj]

))
.

If this expression is true for nl = k, for nl = k + 1, we have

P [ω ∈ D] = P [C1 ⊆ Y] · P [ω ∈ C1] + P [(C1)c ⊆ Y]
(
1 − P [ω ∈ C1]

)
+
(

1 − P [C1 ⊆ Y] · P[ω ∈ Cj] − P[(Cj)c ⊆ Y]
(
1 − P [ω ∈ C1]

))
· P

 ⋃
C∈(Cl91

± \{C1¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

))
= P [C1 ⊆ Y] · P [ω ∈ C1] + P [(C1)c ⊆ Y]

(
1 − P [ω ∈ C1]

)
+
(

1 − P [C1 ⊆ Y] · P[ω ∈ Cj] − P[(Cj)c ⊆ Y]
(
1 − P [ω ∈ C1]

))
·

1 −
nl91∏
j=2

(
1 − P [Cj ⊆ Y] · P[ω ∈ Cj] − P[(Cj)c ⊆ Y] ·

(
1 − P [ω ∈ Cj]

))
= P [C1 ⊆ Y] · P [ω ∈ C1] + P [(C1)c ⊆ Y]

(
1 − P [ω ∈ C1]

)
+
(

1 − P [C1 ⊆ Y] · P[ω ∈ Cj] − P[(Cj)c ⊆ Y]
(
1 − P [ω ∈ C1]

))
−

nl91∏
j=1

(
1 − P [Cj ⊆ Y] · P[ω ∈ Cj] − P[(Cj)c ⊆ Y] ·

(
1 − P [ω ∈ Cj]

))

= 1 −
nl91∏
j=1

(
1 − P [Cj ⊆ Y] · P[ω ∈ Cj] − P[(Cj)c ⊆ Y] ·

(
1 − P [ω ∈ Cj]

))
.

B.1.3 Derivation without the 3rd assumption

The third assumption of conditional independence between concepts in the same layer is necessary for both
AND and OR nodes to obtain an easily computable solution at the last step when we need, for AND,

P

 ⋂
C∈(Cl91

± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) = P

 ⋂
C∈(Cl91

± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ C1, C1 ⊇ Y


= P

 ⋂
C∈(Cl91

± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ (C1)c, (C1)c ⊇ Y


= P

 ⋂
C∈(Cl91

± \{C1,¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ (C1)c ̸⊇ Y , C1 ̸⊇ Y


33

Under review as submission to TMLR

and, for OR,

P

 ⋃
C∈(Cl91

± \{C1,¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) = P

 ⋃
C∈(Cl91

± \{C1,¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ (C1)c, C1 ⊆ Y


= P

 ⋃
C∈(Cl91

± \{C1,¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ C1, (C1)c ⊆ Y


= P

 ⋃
C∈(Cl91

± \{C1,¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ (C1)c ̸⊆ Y, C1 ̸⊆ Y

 .

Given the other assumptions of independence between aleatoric and epistemic probabilities as well as between
all epistemic probabilities in the same node, what remains is, for AND,

P

 ⋂
C∈(Cl91

± \{C1¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) = P

 ⋂
C∈(Cl91

± \{C1¬C1})

((
C ̸⊇ Y

)
∪
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ C1


and, for OR,

P

 ⋃
C∈(Cl91

± \{C1¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) = P

 ⋃
C∈(Cl91

± \{C1¬C1})

((
C ⊆ Y

)
∩
(
ω ∈ C

)) ∣∣∣∣∣∣∣ω ∈ C1

 .

To conclude, we need the missing assumption of conditional independence between all concepts in the same
layer

ω ∈ Cl
i ⊥⊥ ω ∈ Cl

j

∣∣ x.

This assumption seems improbable to say the least since, for l > 0, the concepts Cl
i and Cl

j depend in general
on the same upstream concepts, i.e. on the concepts from the previous layers. However, if we condition on
the concepts of the preceding layer l − 1, the concepts in layer l become independent by d-separation

ω ∈ Cl
i ⊥⊥ ω ∈ Cl

j

∣∣∣ Cl91(ω) ,

where we introduce the notation Cl91(ω) = 1
(
ω ∈ Cl91) ∈ {0, 1}nl to represent the vector of indicator binary

random variables Cl91
i (ω) = 1

(
ω ∈ Cl91

i

)
such that the random event ω ∈ Cl91

i is equal to Cl91
i (ω) = 1 and

its complement ω /∈ Cl91
i is equal to Cl91

i (ω) = 0. The conditional probabilities P
[
ω ∈ Cl

j

∣∣Cl91(ω) = cl91]
given the previous layer for both AND and OR nodes can be easily computed with

P
[
ω ∈ Cl

j

∣∣Cl91 = cl91] = al
j

nl91∏
i=1

(
1 − [Al

i,j]+
(
1 − cl91

i

))(
1 − [−Al

i,j]+ cl91
i

)
,

for AND and

P
[
ω ∈ Cl

j

∣∣Cl91(ω) = cl91] = 1 −
(
1 − ol

j

) nl91∏
i=1

(
1 − [Ol

i,j]+ cl91
i

)(
1 − [−Ol

i,j]+
(
1 − cl91

i

))
,

for OR. These are the same formulas as when there is full independence and we derive them in the same
way. Moreover, because of their conditional independence, their joint conditional probability is given by,
∀(cl91, cl) ∈ {0, 1}nl91×nl ,

P
[
Cl(ω) = cl

∣∣Cl91(ω) = cl91] =
nl∏

i=1

(
cl

i · P
[
ω ∈ Cl

i

∣∣Cl91 = cl91]+
(
1 − cl

i

)(
1 − P

[
ω ∈ Cl

i

∣∣Cl91 = cl91])).

34

Under review as submission to TMLR

The input layer 0 has no preceding layer, but it does satisfy

x ∈ C0
i ⊥⊥ x ∈ C0

j | x.

Its joint probability is thus given by

P[C0(x) = c0] =
n0∏

i=1

(
c0

i · P[x ∈ C0
i] +

(
1 − c0

i

)(
1 − P[x ∈ C0

i]
))

, ∀c0 ∈ {0, 1}n0

where the probabilities P[x ∈ C0
i] are given.

Armed with these independences, we can take into account the dependences between concepts that are defined
partially on the same concepts. We compute the probabilities layer by layer starting with the first logical
layer. We can compute their joint probability with

P[Cl(ω) = cl] =
∑

cl91∈{0,1}nl91

P[Cl91(ω) = cl91] · P
[
Cl(ω) = cl

∣∣Cl91(ω) = cl91]
and their marginal probabilities with

P[ω ∈ Cl
j] =

∑
cl91∈{0,1}nl91

P[Cl91(ω) = cl91] · P
[
ω ∈ Cl

j

∣∣Cl91(ω) = cl91] .

The issue with this approach is that we need full joint probability distributions P
[
Cl(ω) = cl

∣∣Cl91 = cl91],
for every pair of joint values (cl91, cl) ∈ {0, 1}nl91×nl , for every layer. For each layer, a tensor of 2nl91+nl

entries taking values in [0, 1] would be needed for inference and would have to be re-computed after every
learning step. This combinatorial explosion results in a exponential number of computations and memory
that is only viable in applications with a very small number of nodes per layer.

Moreover, based on preliminary test results, it seems that this extended formulation does not improve the
modeling ability of the framework meaningfully. We tested both formulations on randomly generated data
that follows the assumptions of our model. We sampled random logical networks of 10 conjunction layers with

• inputs modeled by independent Bernouillis with parameters uniformly sampled in (0, 1),

• weights between layers of either Al
i,j = 0 with probability 1/2 or Al

i,j ∈ {1, −1} with probability 1/4
each,

• and unobserved concepts also modeled by independent Bernouillis of parameter al
j uniformly sampled

in (0, 1).

We additionally added weights of either +1 or −1 when a concept node had only incoming weights of 0 (i.e.
an empty definition) or when a node had only outgoing weights of 0 (i.e. was unused in the next layer). We
assumed a fixed width for each network that had the same number of inputs, outputs and concepts in all
layers. We considered widths between 2 and 6 and, for each width, we sampled 30 such generating models,
which produced datasets of 1000 points for each. We then measured the L2 loss of both of our frameworks on
these datasets. We computed this loss between our frameworks and the data points for all concepts at all
depths, from layer l = 1 to l = L = 10. The results are given in Figure B.2 where the independent inputs
are labeled “min” (for minimal independence hypothesis) and independent concepts in all layers are labeled
“max” (for maximal independence hypothesis). For l = 1, the two frameworks are equivalent and their results
are the same. Only for bigger depths do we start to see a small difference in performance, although it seems
negligible in this preliminary testing.

35

Under review as submission to TMLR

Figure B.2: Preliminary comparison of independence hypotheses

36

Under review as submission to TMLR

B.2 Logical modeling

B.2.1 De Morgan’s laws for the AND/OR concepts

Between (P-AND) and (P-OR) Since (F-AND) and (F-OR) are equivalent rewritings and since product
fuzzy logic’s t-norm

P
∧ and t-conorm

P
∨ follow de Morgan’s laws with strong negation P¬ (van Krieken et al.,

2022), it is easier to show the De Morgan’s laws between (F-AND) and (F-OR).

Let Cl
i be an AND concept with

cl
i(x) = al

i

P
∧

P∧
j∈{1,...,nl91}

(
P¬ [Al

i,j]+
P
∨ cl91

j (x)
)

P
∧
(

P¬ [Al
i,j]−

P
∨ P¬ cl91

j (x)
)

.

We want to show that its opposite is an OR concept Cl
i′ with

cl
i′(x) = ol

i′
P
∨

P∨
j∈{1,...,nl91}

(
[Ol

i′,j]+
P
∧ cl91

j (x)
)

P
∨
(

[Ol
i′,j]−

P
∧ P¬ cl91

j (x)
)

.

We begin by taking the opposite of the AND concept Cl
i .

P¬ cl
i(x) = P¬

al
i

P
∧

P∧
j∈{1,...,nl91}

(
P¬ [Al

i,j]+
P
∨ cl91

j (x)
)

P
∧
(

P¬ [Al
i,j]−

P
∨ P¬ cl91

j (x)
)

= P¬ al
i

P
∨

P∨
j∈{1,...,nl91}

P¬
(

P¬ [Al
i,j]+

P
∨ cl91

j (x)
)

P
∨ P¬

(
P¬ [Al

i,j]−
P
∨ P¬ cl91

j (x)
)

= P¬ al
i

P
∨

P∨
j∈{1,...,nl91}

(
[Al

i,j]+
P
∧ P¬ cl91

j (x)
)

P
∨
(

[Al
i,j]−

P
∧ cl91

j (x)
)

By identification, we can see that

ol
i′ = P¬ al

i = 1 − al
i, and Ol

i′,j = −Al
i,j ,

i.e. and AND concept can be converted to an OR concept, and vice versa, by taking the complement of its
bias and flipping the signs of its incoming and outgoing weights.

Between (D-AND) and (D-OR) Since there is a one-to-one translation from (D-AND) and (D-OR) to
(L-AND) and (L-OR) and since both intersection (∩) and union (∪) as well as conjunction (∧) and disjunction
(∨) follow De Morgan’s laws, it is enough to show that De Morgan’s laws hold between (D-AND) and (D-OR)
to have the same between (L-AND) and (L-OR).

Let Cl
i be an AND concept with

ω ∈ Cl
i = (u ∈ Ñ l

i) ∩
⋂

C∈Cl91
±

((
C ⊇ Cl

i

)c ∪
(
ω ∈ C

))
,

We want to show that its opposite is an OR concept Cl
i′ with

ω ∈ Cl
i′ = (u ∈ S̃l

i′) ∪
⋃

C∈Cl91
±

((
C ⊆ Cl

i′

)
∩
(
ω ∈ C

))
,

37

Under review as submission to TMLR

We begin by taking the opposite of the AND concept Cl
i .

ω ∈ (Cl
i)c = (ω ∈ Cl

i)c =

(u ∈ Ñ l
i) ∩

⋂
C∈Cl91

±

((
C ⊇ Cl

i

)c ∪
(
ω ∈ C

))
c

= (u ∈ Ñ l
i)c ∪

⋃
C∈Cl91

±

((
C ⊇ Cl

i

)c ∪
(
ω ∈ C

))c

= (u ∈ Ñ l
i)c ∪

⋃
C∈Cl91

±

((
C ⊇ Cl

i

)
∩
(
ω ∈ C

)c
)

= (u ∈ (Ñ l
i)c) ∪

⋃
C∈Cl91

±

((
C ⊇ Cl

i

)
∩
(
ω ∈ (C)c

))
= (u ∈ (Ñ l

i)c) ∪
⋃

C′∈Cl91
±

((
(C ′)c ⊇ Cl

i

)
∩
(
ω ∈ C ′))

= (u ∈ (Ñ l
i)c) ∪

⋃
C′∈Cl91

±

((
C ′ ⊆ (Cl

i)c
)

∩
(
ω ∈ C ′))

= (u ∈ (Ñ l
i)c) ∪

⋃
C′∈Cl91

±

((
C ′ ⊆ Cl

i′

)
∩
(
ω ∈ C ′))

By identification, we can see that

S̃l
i′ = (Ñ l

i)c,

and that a concept C in the previous layer is a sufficient concept C ⊆ Cl
i′ of OR concept Cl

i′ whenever its
opposite (C)c was a necessary concept (C)c ⊇ Cl

i of AND concept Cl
i .

38

Under review as submission to TMLR

B.3 Interpretation

Since any finite combination of AND (resp. OR) concepts can be represented by a single AND (resp.
OR) concept, each type of concept can represent an infinite number of cases. We give some intuitive and
counter-intuitive examples below. Furthermore, in any such case, the missing necessary (resp. sufficient)
concepts that are needed to determine the presence of the target concept ω ∈ Cl

i can all be absorbed into the
unobserved concepts u ∈ Ñ l

i (resp. u ∈ S̃l
i), through the probability al

i (resp. ol
i). Moreover, this multiplicity

of cases is exacerbated by the fact that a logical formula can be rewritten in many equivalent ways through
De Morgan’s laws and distributivity. This makes the interpretation of a NLN very difficult without additional
expert knowledge. However, the equivalence of AND/OR concepts through De Morgan’s laws can also be
used as an advantage in the learning of deep NLNs. A layer of concepts using negation that is followed by
another layer allowing negation can be learned with an arbitrary type and then be interpreted a posteriori,
once the learning is done, by experts.

In the following figures of causal structures, the circles are concepts, the arrows are cause-to-consequence
relations (implications) and the bracket signifies a conjunction (AND) of concepts. The whites circles are
the necessary concepts, the black circle is the target concept and the gray circles are concepts that are not
needed to determine the target’s presence if given the white circles.

B.3.1 Examples of causal structures that can be represented by an AND node

︸ ︷︷ ︸

(a) (b) (c)

︸ ︷︷ ︸

(d)

Figure B.3: Examples of causal structures that can be represented by an AND node

An AND node can represent a consequence of necessary causal ingredients (Figure B.3a). The same AND
node can represent the opposite direction of causality, where the AND concept is the cause and the necessary
concepts are its consequences (Figure B.3b). In this case, the unobserved concepts probability al

i quantifies
how often this common cause is what caused these consequences, when they are all present simultaneously. A
similar case is when the AND node represents another one of these consequences from the same common
cause (Figure B.3c). An AND node can even represent a consequence of causal ingredients which, themselves
produce their own individual necessary consequences (Figure B.3d).

B.3.2 Examples of causal structures that can be represented by an OR node

(a)

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

(b)

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

(c)

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

(d)

Figure B.4: Examples of causal structures that can be represented by an OR node

An OR node can represent a consequence of some sufficient concepts (Figure B.4a). The same OR node
can represent the opposite direction of causality, where the OR concept is a causal ingredient and the
sufficient concepts are its possible consequences (Figure B.4b). In this case, the unobserved sufficient concepts
probability ol

i quantifies how often this common causal ingredient is still present even when none of these
consequences are present. A similar case is when the OR node represents a direct consequence of this common

39

Under review as submission to TMLR

causal ingredient (Figure B.4c). An OR node can even represent a consequence of causes which, together
with other causal ingredients produce their own consequences (Figure B.4d).

40

Under review as submission to TMLR

C Machine Learning pipeline

C.1 Post-processing

C.1.1 Other weight quantizing algorithms

For each layer l ∈ {1, .., L}, starting from the last layer L ,
Quantize all weights in the layer to their sign Al

·,· = sign(Al
·,·) (resp. Ol

i,j = sign
(
Ol

i,j

)
) and keep

original values in Ãl
·,· (resp. Õl

·,·).
Compute the new best loss e∗.
For each weight Al

i,j (resp. Ol
i,j), in increasing likeliness

∣∣Ãl
i,j

∣∣ (resp.
∣∣Õl

i,j

∣∣) ,
If it is non-zero ,

Compare the loss when we prune the weight Al
i,j = 0 (resp. Ol

i,j = 0) to the best loss e∗.
Commit to the pruning iff the loss is decreased and update the best loss e∗ in that case.

Do the same for the category and continuous input modules, one at a time.

Algorithm C.1: Subtractive quantizing algorithm

For each layer l ∈ {1, .., L}, starting from the last layer L ,
Prune all weights in the layer Al

·,· = 0 (resp. Ol
i,j = 0) and keep original values in Ãl

·,· (resp. Õl
·,·).

Compute the new best loss e∗.
For each weight Al

i,j (resp. Ol
i,j), in decreasing likeliness

∣∣Ãl
i,j

∣∣ (resp.
∣∣Õl

i,j

∣∣) ,
If it is non-zero ,

Compare the loss when we fix Al
i,j = sign(Ãl

i,j) (resp. Ol
i,j = sign(Õl

i,j)) to the best loss e∗.
Commit to the new value iff the loss is decreased and update the best loss e∗ in that case.

Do the same for the category and continuous input modules, one at a time.

Algorithm C.2: Additive quantizing algorithm

For each layer l ∈ {1, .., L}, starting from the last layer L ,
For each weight Al

i,j (resp. Ol
i,j), in increasing likeliness

∣∣Al
i,j

∣∣ (resp.
∣∣Ol

i,j

∣∣) ,
If it is non-zero ,

Compare the loss when we fix Al
i,j ∈

{
0, sign

(
Al

i,j

)}
(resp. Ol

i,j ∈
{

0, sign
(
Ol

i,j

)}
).

Commit to the best quantized value.

Do the same for the category and continuous input modules, one at a time.

Algorithm C.3: Ascending selection quantizing algorithm

41

Under review as submission to TMLR

D Experiments

D.1 Boolean networks

D.1.1 Examples of discovered logic programs

In this first example, on the mammalian dataset, the ground-truth logic program is discovered fully, except
for one redundant rule that is subsumed by the disjunction of two other ground-truth rules.

Ground-truth logic program

At
1 → At+1

1 ,

¬At
3 ∧ At

4 → At+1
2 ,

¬At
1 ∧ At

6 ∧ ¬At
10 → At+1

3 ,

¬At
1 ∧ ¬At

2 ∧ ¬At
5 ∧ ¬At

10 → At+1
3 ,

¬At
3 ∧ At

6 ∧ ¬At
10 → At+1

4 ,

¬At
3 ∧ ¬At

5 ∧ ¬At
10 → At+1

4 ,

¬At
3 ∧ At

5 ∧ ¬At
7 ∧ ¬At

8 → At+1
5 ,

¬At
3 ∧ At

4 ∧ ¬At
7 ∧ ¬At

9 → At+1
5 ,

¬At
3 ∧ At

5 ∧ ¬At
7 ∧ ¬At

9 → At+1
5 ,

¬At
3 ∧ At

4 ∧ ¬At
7 ∧ ¬At

8 → At+1
5 ,

¬At
1 ∧ ¬At

2 ∧ ¬At
5 ∧ ¬At

10 → At+1
6 ,

¬At
1 ∧ ¬At

5 ∧ At
6 ∧ ¬At

10 → At+1
6 ,

¬At
1 ∧ ¬At

2 ∧ At
6 ∧ ¬At

10 → At+1
6 ,

At
10 → At+1

7 ,

¬At
9 → At+1

8 ,

At
7 ∧ At

8 → At+1
8 ,

At
8 ∧ At

10 → At+1
8 ,

At
5 ∧ At

8 → At+1
8 ,

At
7 → At+1

9 ,

¬At
5 ∧ ¬At

10 → At+1
9 ,

At
6 ∧ At

10 → At+1
9 ,

¬At
5 ∧ At

6 → At+1
9 ,

¬At
7 ∧ ¬At

9 → At+1
10 ,

Discovered logic program

At
1 → At+1

1 ,

¬At
3 ∧ At

4 → At+1
2 ,

¬At
1 ∧ At

6 ∧ ¬At
10 → At+1

3 ,

¬At
1 ∧ ¬At

2 ∧ ¬At
5 ∧ ¬At

10 → At+1
3 ,

¬At
3 ∧ At

6 ∧ ¬At
10 → At+1

4 ,

¬At
3 ∧ ¬At

5 ∧ ¬At
10 → At+1

4 ,

¬At
3 ∧ At

5 ∧ ¬At
7 ∧ ¬At

8 → At+1
5 ,

¬At
3 ∧ At

4 ∧ ¬At
7 ∧ ¬At

9 → At+1
5 ,

¬At
3 ∧ At

5 ∧ ¬At
7 ∧ ¬At

9 → At+1
5 ,

¬At
3 ∧ At

4 ∧ ¬At
7 ∧ ¬At

8 → At+1
5 ,

¬At
1 ∧ ¬At

2 ∧ ¬At
5 ∧ ¬At

10 → At+1
6 ,

¬At
1 ∧ ¬At

5 ∧ At
6 ∧ ¬At

10 → At+1
6 ,

¬At
1 ∧ ¬At

2 ∧ At
6 ∧ ¬At

10 → At+1
6 ,

At
10 → At+1

7 ,

¬At
9 → At+1

8 ,

At
7 ∧ At

8 → At+1
8 ,

At
8 ∧ At

10 → At+1
8 ,

At
5 ∧ At

8 → At+1
8 ,

At
7 → At+1

9 ,

¬At
5 ∧ ¬At

10 → At+1
9 ,

At
6 ∧ At

10 → At+1
9 ,

¬At
7 ∧ ¬At

9 → At+1
10 ,

where ¬At
5 ∧ At

6 → At+1
9 is subsumed by the disjunction of ¬At

5 ∧ ¬At
10 → At+1

9 and At
6 ∧ At

10 → At+1
9 , i.e.

whenever the first rule should be activated, either the second or the third rule is activated, thus making the
first rule redundant.

42

Under review as submission to TMLR

In this second example, on the arabidopsis dataset, the ground-truth logic program is discovered fully, except
for one rule, which was discovered as two rules that imply it by their resolution.

Ground-truth logic program

At
2 ∧ At

7 → At+1
1 ,

At
1 ∧ At

5 ∧ At
14 ∧ At

15 → At+1
1 ,

At
1 ∧ At

10 ∧ At
14 ∧ At

15 → At+1
1 ,

At
2 → At+1

2 ,

¬At
5 ∧ ¬At

13 → At+1
3 ,

¬At
6 → At+1

4 ,

At
4 ∧ ¬At

10 → At+1
5 ,

¬At
10 ∧ ¬At

13 → At+1
5 ,

At
7 ∧ ¬At

10 → At+1
5 ,

¬At
7 → At+1

6 ,

¬At
6 → At+1

7 ,

¬At
13 → At+1

7 ,

¬At
13 → At+1

8 ,

At
9 ∧ ¬At

15 → At+1
9 ,

At
9 ∧ ¬At

10 → At+1
9 ,

¬At
5 ∧ At

7 → At+1
10 ,

At
7 ∧ ¬At

11 → At+1
10 ,

At
7 ∧ At

10 ∧ At
15 → At+1

10 ,

¬At
8 ∧ ¬At

13 → At+1
10 ,

At
7 ∧ ¬At

8 → At+1
10 ,

At
7 ∧ At

9 → At+1
10 ,

At
7 ∧ ¬At

12 → At+1
10 ,

¬At
5 ∧ At

6 ∧ ¬At
7 → At+1

13 ,

At
1 ∧ At

5 ∧ At
14 ∧ At

15 → At+1
14 ,

At
1 ∧ At

10 ∧ At
14 ∧ At

15 → At+1
14 ,

At
1 ∧ At

7 → At+1
14 ,

At
7 ∧ At

10 → At+1
14 ,

At
7 → At+1

15 ,

Discovered logic program

At
2 ∧ At

7 → At+1
1 ,

At
1 ∧ At

5 ∧ At
14 ∧ At

15 → At+1
1 ,

At
1 ∧ At

10 ∧ At
14 ∧ At

15 → At+1
1 ,

At
2 → At+1

2 ,

¬At
5 ∧ ¬At

13 → At+1
3 ,

¬At
6 → At+1

4 ,

At
4 ∧ ¬At

10 → At+1
5 ,

¬At
10 ∧ ¬At

13 → At+1
5 ,

At
7 ∧ ¬At

10 → At+1
5 ,

¬At
7 → At+1

6 ,

¬At
6 → At+1

7 ,

¬At
13 → At+1

7 ,

¬At
13 → At+1

8 ,

At
9 ∧ ¬At

15 → At+1
9 ,

At
9 ∧ ¬At

10 → At+1
9 ,

¬At
5 ∧ At

7 → At+1
10 ,

At
7 ∧ ¬At

11 → At+1
10 ,

At
7 ∧ At

10 ∧ At
15 → At+1

10 ,

¬At
8 ∧ ¬At

13 → At+1
10 ,

At
7 ∧ ¬At

8 → At+1
10 ,

At
7 ∧ At

9 → At+1
10 ,

At
7 ∧ ¬At

12 → At+1
10 ,

¬At
5 ∧ At

6 ∧ ¬At
7 → At+1

13 ,

At
1 ∧ At

5 ∧ At
14 ∧ At

15 → At+1
14 ,

At
1 ∧ At

10 ∧ At
14 ∧ At

15 → At+1
14 ,

At
1 ∧ At

7 → At+1
14 ,

At
7 ∧ At

10 → At+1
14 ,

At
7 ∧ ¬At

10 → At+1
15 ,

At
7 ∧ At

10 → At+1
15 ,

where At
7 → At+1

15 is implied by the resolution of At
7 ∧ ¬At

10 → At+1
15 and At

7 ∧ At
10 → At+1

15 , i.e. the first rule
is a direct consequence of the second and third rules.

43

Under review as submission to TMLR

In this third example, on the budding dataset, we again have redundant ground-truth rules which are
subsumed by the disjunction of two other discovered rules. These have no impact on the predictive accuracy
of the model. In this case however, we also have two missing ground-truth rules that are instead incorrectly
discovered as a single more general rule.

Ground-truth logic program
At

1 → At+1
2 ,

At
2 ∧ At

3 → At+1
3 ,

At
3 ∧ ¬At

9 → At+1
3 ,

At
2 ∧ ¬At

9 → At+1
3 ,

At
2 ∧ ¬At

9 → At+1
4 ,

At
4 ∧ ¬At

9 → At+1
4 ,

At
2 ∧ At

4 → At+1
4 ,

At
3 → At+1

5 ,

¬At
5 ∧ At

6 ∧ At
11 ∧ At

12 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
7 ∧ At

11 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
9 ∧ At

11 → At+1
6 ,

At
6 ∧ ¬At

7 ∧ ¬At
9 ∧ At

11 → At+1
6 ,

At
6 ∧ ¬At

9 ∧ At
11 ∧ At

12 → At+1
6 ,

¬At
7 ∧ ¬At

9 ∧ At
11 ∧ At

12 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
7 ∧ At

12 → At+1
6 ,

At
6 ∧ ¬At

7 ∧ At
11 ∧ At

12 → At+1
6 ,

At
6 ∧ ¬At

7 ∧ ¬At
9 ∧ At

12 → At+1
6 ,

¬At
5 ∧ ¬At

7 ∧ ¬At
9 ∧ At

11 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
7 ∧ ¬At

9 → At+1
6 ,

¬At
5 ∧ ¬At

7 ∧ At
11 ∧ At

12 → At+1
6 ,

¬At
5 ∧ ¬At

9 ∧ ¬At
11 ∧ At

12 → At+1
6 ,

¬At
5 ∧ ¬At

7 ∧ ¬At
9 ∧ At

12 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
9 ∧ At

12 → At+1
6 ,

At
4 ∧ At

7 ∧ ¬At
11 → At+1

7 ,

¬At
6 ∧ At

7 ∧ ¬At
11 → At+1

7 ,

At
4 ∧ ¬At

6 ∧ At
7 → At+1

7 ,

At
4 ∧ ¬At

6 ∧ ¬At
11 → At+1

7 ,

¬At
5 ∧ ¬At

7 ∧ At
8 ∧ At

11 → At+1
8 ,

¬At
5 ∧ At

8 ∧ ¬At
9 ∧ At

11 → At+1
8 ,

¬At
7 ∧ At

8 ∧ ¬At
9 ∧ At

11 → At+1
8 ,

¬At
5 ∧ ¬At

7 ∧ At
8 ∧ ¬At

9 → At+1
8 ,

¬At
5 ∧ ¬At

7 ∧ ¬At
9 ∧ At

11 → At+1
8 ,

¬At
6 ∧ At

7 ∧ ¬At
8 ∧ ¬At

11 → At+1
9 ,

At
7 ∧ At

9 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
8 ∧ At

9 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

7 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

At
7 ∧ ¬At

8 ∧ At
9 ∧ At

10 → At+1
9 ,

At
7 ∧ ¬At

8 ∧ At
9 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

7 ∧ ¬At
8 ∧ At

9 → At+1
9 ,

¬At
6 ∧ ¬At

8 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

7 ∧ ¬At
8 ∧ At

10 → At+1
9 ,

At
7 ∧ ¬At

8 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

9 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ ¬At

8 ∧ At
9 ∧ At

10 → At+1
9 ,

¬At
6 ∧ ¬At

8 ∧ At
9 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

7 ∧ At
9 ∧ At

10 → At+1
9 ,

¬At
6 ∧ At

7 ∧ At
9 ∧ ¬At

11 → At+1
9 ,

At
7 → At+1

10 ,

At
9 → At+1

10 ,

At
9 → At+1

11 ,

At
10 → At+1

11 ,

¬At
9 ∧ At

11 → At+1
12 ,

At
10 ∧ At

11 → At+1
12 ,

¬At
9 ∧ At

10 → At+1
12 ,

Discovered logic program
At

1 → At+1
2 ,

At
2 ∧ At

3 → At+1
3 ,

At
3 ∧ ¬At

9 → At+1
3 ,

At
2 ∧ ¬At

9 → At+1
3 ,

At
2 ∧ ¬At

9 → At+1
4 ,

At
4 ∧ ¬At

9 → At+1
4 ,

At
2 ∧ At

4 → At+1
4 ,

At
3 → At+1

5 ,

¬At
5 ∧ At

6 ∧ At
11 ∧ At

12 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
7 ∧ At

11 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
9 ∧ At

11 → At+1
6 ,

At
6 ∧ ¬At

7 ∧ ¬At
9 ∧ At

11 → At+1
6 ,

At
6 ∧ ¬At

9 ∧ At
11 ∧ At

12 → At+1
6 ,

¬At
7 ∧ ¬At

9 ∧ At
11 ∧ At

12 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
7 ∧ At

12 → At+1
6 ,

At
6 ∧ ¬At

7 ∧ At
11 ∧ At

12 → At+1
6 ,

At
6 ∧ ¬At

7 ∧ ¬At
9 ∧ At

12 → At+1
6 ,

¬At
5 ∧ ¬At

7 ∧ ¬At
9 ∧ At

11 → At+1
6 ,

¬At
5 ∧ At

6 ∧ ¬At
7 ∧ ¬At

9 → At+1
6 ,

¬At
5 ∧ ¬At

7 ∧ At
11 ∧ At

12 → At+1
6 ,

¬At
5 ∧ ¬At

9 ∧ ¬At
11 ∧ At

12 → At+1
6 ,

At
4 ∧ At

7 ∧ ¬At
11 → At+1

7 ,

¬At
6 ∧ At

7 ∧ ¬At
11 → At+1

7 ,

At
4 ∧ ¬At

6 ∧ At
7 → At+1

7 ,

At
4 ∧ ¬At

6 ∧ ¬At
11 → At+1

7 ,

¬At
5 ∧ ¬At

7 ∧ At
8 ∧ At

11 → At+1
8 ,

¬At
5 ∧ At

8 ∧ ¬At
9 ∧ At

11 → At+1
8 ,

¬At
7 ∧ At

8 ∧ ¬At
9 ∧ At

11 → At+1
8 ,

¬At
5 ∧ ¬At

7 ∧ At
8 ∧ ¬At

9 → At+1
8 ,

¬At
5 ∧ ¬At

7 ∧ ¬At
9 ∧ At

11 → At+1
8 ,

¬At
6 ∧ At

7 ∧ ¬At
8 ∧ ¬At

11 → At+1
9 ,

At
7 ∧ At

9 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
8 ∧ At

9 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

7 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

At
7 ∧ ¬At

8 ∧ At
9 ∧ At

10 → At+1
9 ,

At
7 ∧ ¬At

8 ∧ At
9 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

7 ∧ ¬At
8 ∧ At

9 → At+1
9 ,

¬At
6 ∧ ¬At

8 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

7 ∧ ¬At
8 ∧ At

10 → At+1
9 ,

At
7 ∧ ¬At

8 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ At

9 ∧ At
10 ∧ ¬At

11 → At+1
9 ,

¬At
6 ∧ ¬At

8 ∧ At
9 ∧ At

10 → At+1
9 ,

¬At
6 ∧ ¬At

8 ∧ At
9 ∧ ¬At

11 → At+1
9 ,

At
6 ∧ At

7 ∧ At
9 → At+1

9 ,

At
7 → At+1

10 ,

At
9 → At+1

10 ,

At
9 → At+1

11 ,

At
10 → At+1

11 ,

¬At
9 ∧ At

11 → At+1
12 ,

At
10 ∧ At

11 → At+1
12 ,

¬At
9 ∧ At

10 → At+1
12 ,

where

44

Under review as submission to TMLR

• ¬At
5 ∧ ¬At

7 ∧ ¬At
9 ∧ At

12 → At+1
6 is correctly subsumed by ¬At

5 ∧ ¬At
7 ∧ At

11 ∧ At
12 → At+1

6 and
¬At

5 ∧ ¬At
9 ∧ ¬At

11 ∧ At
12 → At+1

6 ,

• ¬At
5 ∧ At

6 ∧ ¬At
9 ∧ At

12 → At+1
6 is correctly subsumed by ¬At

5 ∧ At
6 ∧ ¬At

9 ∧ At
11 → At+1

6 and
¬At

5 ∧ ¬At
9 ∧ ¬At

11 ∧ At
12 → At+1

6 ,

• but ¬At
6 ∧ At

7 ∧ At
9 ∧ At

10 → At+1
9 and ¬At

6 ∧ At
7 ∧ At

9 ∧ ¬At
11 → At+1

9 are incorrectly discovered as
the more general ¬At

6 ∧ At
7 ∧ At

9 → At+1
9 , i.e. the third rule covers all the cases when the first two

rules are activated, but it is also activated in other cases where it should not.

45

Under review as submission to TMLR

D.2 Tabular classification

D.2.1 Comparison of interpretability in number of rules and average size of rules

To compare the interpretability of the learned models by NLN and by RRL, we use two traditional measures
of interpretability for logic programs: average number of rules per target and average rule size. Since both
networks can learn a rule in a factorized fashion through the previous layers, we consider the size of a rule to
be the number of nodes in the input layer that are used

• for binary features, if the feature itself is used;

• for categorical features, the number of its values that are used (in the one-hot encoding);

• for continuous features, the number of boundary nodes that are used (i.e. the number of fuzzy
dichotomies in our case).

The results are given in Table D.1.

Table D.1: Comparison of interpretability in number of rules and average size of rules

Datasets NLN RRL
f1 (%) nbr. size f1 (%) nbr. size

adult 66.03 77.4 22.95 80.20 3599.2 5.34
balance 58.78 33.7 11.70 77.72 341.3 2.27
balance (cat.) 59.69 18.5 4.99 82.20 97.5 1.23
chess 99.58 9.8 5.45 99.43 692.8 1.49
DARWIN 77.22 12.8 10.49 86.01 650.4 1.97
monk2 86.81 17.8 5.71 98.30 591.6 2.49
tic-tac-toe 100 8.0 3.00 100 462.0 2.07
wine 94.44 12.3 5.27 98.23 20.7 1.05

In general, the RRL uses many times more rules than the NLN and these rules are of even smaller size on
average. The average rule sizes in the NLN are already small enough to be easily interpretable, but those in
RRL are suspiciously simple in size with many rules involving only a single feature value. Since their number
is so high, it suggests that the actual rules learned by the RRL are contained in the distributed representation
of the output linear layer. Hence, it is difficult to interpret what is the value of the interpretable “rules” that
it learns in the preceding logical layer(s). In the two datasets where the NLN performs as well as or better
than the RRL, chess and tic-tac-toe, the NLN only needed 10 rules or less in all 5 runs while the RRL needed
over 300.

D.2.2 Example of rules found for the adult dataset

The adult dataset aims to predict whether an individual earns a salary of more than $ 50 K/year (in the US
in 1994) based on census data. The NLN with the best predictive performance on the whole dataset that was
found in the five-fold cross-validation is pictured in Figure D.1(a). It contains 70 rules, some of which are
pictured in Figures D.1(b-c) and D.2. Although this NLN only has a f1 score of 72.48 % on the full dataset,
the relevant rules that it found are for the most part easily interpretable. In some cases, as in D.2(a) and
D.2(e), a rule may be “overfitted” over a continuous feature like the individual’s age or number of work hours
per week, resulting in a less interpretable rule.

46

Under review as submission to TMLR

(a) Network

(b) 1st rule

(c) 12th rule

Figure D.1: Best NLN found for the adult dataset

47

Under review as submission to TMLR

(a) 29th rule

(b) 45nd rule

(c) 33rd rule

(d) 40th rule

(e) 59th rule

Figure D.2: More rules from the best NLN found for the adult dataset

48

Under review as submission to TMLR

D.2.3 Example of rules found for the DARWIN dataset

The DARWIN dataset aims to predict whether an individual has Alzheimer’s disease (is a Patient) from 25
handwriting tasks, totaling 450 continuous features. The NLN with the best predictive performance on the
whole dataset that was found in the five-fold cross-validation is pictured in Figure D.3(a). It contains 10
rules, some of which are pictured in Figures D.3(b) and D.4. This NLN achieves a f1 score of 96.09 % on the
full dataset, with rules that can be interpreted by experts in the handwriting test.

(a) Network (b) 1st rule

Figure D.3: Best NLN found for the DARWIN dataset

49

Under review as submission to TMLR

(a) 3rd rule

(b) 8th rule

(c) 10th rule

Figure D.4: More rules from the best NLN found for the DARWIN dataset

50

	Introduction
	Theory
	Probabilistic modeling
	Fuzzy logic equivalency
	Logical perspective
	Interpretation

	Machine Learning pipeline
	Interpretable structure
	Fully-connected DNF layers
	Input pre-processing modules
	Input encodings and rule modules

	Learning
	Training
	Post-processing

	Experiments
	Boolean networks discovery
	Tabular data classification

	Conclusion
	Symbols and notation
	Theory
	Probabilistic modeling
	Graphical summary of the first two assumptions of independence
	Derivation with the 3rd assumption
	Derivation without the 3rd assumption

	Logical modeling
	De Morgan's laws for the AND/OR concepts

	Interpretation
	Examples of causal structures that can be represented by an AND node
	Examples of causal structures that can be represented by an OR node

	Machine Learning pipeline
	Post-processing
	Other weight quantizing algorithms

	Experiments
	Boolean networks
	Examples of discovered logic programs

	Tabular classification
	Comparison of interpretability in number of rules and average size of rules
	Example of rules found for the adult dataset
	Example of rules found for the DARWIN dataset

