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Abstract

Efficient sampling from the Boltzmann distri-
bution defined by an energy function is a key
challenge in modeling physical systems such as
molecules. Boltzmann Generators tackle this by
leveraging Continuous Normalizing Flows that
transform a simple prior into a distribution that
can be reweighted to match the Boltzmann distri-
bution using sample likelihoods. However, obtain-
ing likelihoods requires computing costly Jaco-
bians during integration, making it impractical for
large molecular systems. To overcome this, we
propose learning the likelihood of the generated
distribution via an energy-based model trained
with noise contrastive estimation and score match-
ing. By using stochastic interpolants to anneal
between the prior and generated distributions,
we combine both the objective functions to ef-
ficiently learn the density function. On the ala-
nine dipeptide system, we demonstrate that our
method yields free energy profiles and energy
distributions comparable to those obtained with
exact likelihoods. Additionally, we show that free
energy differences between metastable states can
be estimated accurately with orders-of-magnitude
speedup.

1. Introduction
Obtaining the equilibrium distribution of molecular confor-
mations, the geometric arrangements of atoms in a molecule,
defined by an energy function is a fundamental yet challeng-
ing problem in the physical sciences (Abramson et al., 2024;
Zheng & Wang, 2025; Lin et al., 2022). The Boltzmann
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distribution describes the probability density induced by an
energy function and is given by p(x) ∝ exp(−U(x)/KBT )
where U(x) is the energy of molecular conformer x, KB is
the Boltzmann constant and T is temperature. Traditional
approaches for sampling conformers, such as Markov Chain
Monte Carlo (MCMC), and Molecular Dynamics (MD)
simulations often get trapped in energy wells, requiring
long simulation timescales to produce uncorrelated sam-
ples. Consequently, it is particularly inefficient to obtain
samples from independent metastable states — a limitation
commonly known as the sampling problem.

In recent years, several generative deep learning methods
have been developed to address the sampling problem. One
such class of methods is known as Boltzmann Generators
(Noé et al., 2019; Klein & Noé, 2024; Coretti et al., 2024;
Dibak et al., 2022). These models work by transforming a
simple prior distribution (such as a multivariate Gaussian)
into a distribution over molecular conformers, which can
then be reweighted to approximate the Boltzmann distribu-
tion. When the generative model does not involve reweight-
ing, it is referred to as a Boltzmann Emulator (Klein & Noé,
2024). The main goal of a Boltzmann Emulator is to effi-
ciently sample from the metastable states of the molecular
ensemble.

To compute the likelihoods of generated samples, Boltz-
mann Generators are constrained to the class of normalizing
flows. While earlier methods built these flows using invert-
ible neural networks (Noé et al., 2019; Köhler et al., 2021),
more recent approaches prefer using continuous normalizing
flows (CNFs) (Klein & Noé, 2024; Klein et al., 2023) due
to enhanced expressitivity and flexibility in model design.

However, computing likelihoods for CNF-generated sam-
ples requires expensive Jacobian trace evaluations along the
integration path (Chen et al., 2018; Grathwohl et al., 2018).
This computational overhead limits their scalability, particu-
larly for large, full-scale protein systems. In this work, we
explore whether these likelihoods can be efficiently approx-
imated by a separate model to avoid the Jacobian trace path
integral.

We investigate the use of Energy-Based Models (EBMs)
as a means to learn likelihoods. EBMs model the density
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function as being proportional to the exponential of the pre-
dicted energy, i.e., pθ(x) ∝ exp(Eθ(x)) (Song & Kingma,
2021). However, scalable training of EBMs remains a ma-
jor challenge due to the need for sampling from the model
distribution, which often requires simulation during training
(Du & Mordatch, 2019; Du et al., 2020). Therefore, devel-
oping efficient training algorithms for EBMs continues to
be an active area of research (Song & Kingma, 2021; Singh
et al., 2023; Arbel et al., 2020; Florence et al., 2022).

We adopt Noise Contrastive Estimation (NCE) as a training
strategy for Energy-Based Models (EBMs) (Gutmann &
Hyvärinen, 2010). NCE trains a classifier to distinguish
between samples drawn from the target data distribution
and those from a carefully chosen noise distribution. A key
advantage of this approach is that it circumvents the need
to compute intractable normalizing constants (Gutmann &
Hyvärinen, 2012; Dyer, 2014). However, NCE can suffer
from the density-chasm problem (Rhodes et al., 2020) that
leads to flat optimization landscapes when the data and
noise distributions differ significantly, i.e, when the KL
divergence between them is large (Lee et al., 2022).

We tackle this issue by annealing between a simple noise
distribution and the data distribution using stochastic inter-
polants (Albergo et al., 2023; Ma et al., 2024). We further
enhance the training process by incorporating an InfoNCE
(Oord et al., 2018) loss along with the score matching ob-
jective defined on stochastic interpolants. We show that
training with both loss functions shows significant perfor-
mance improvement over using either individually. Notably,
our proposed method for training the EBM is simulation-
free, avoids the computation of normalizing constants, and
is therefore scalable to large systems.

To summarize, the main contributions of this work are as
follows.

• We develop a scalable, simulation free framework for
training EBMs by taking advantage of stochastic inter-
polants, score matching and noise contrastive estima-
tion

• We demonstrate that both loss functions are crucial for
effective model training, and are subsequently used
to learn likelihoods of generated molecular conforma-
tions.

• We show that the learned likelihoods can be used to
reweight conformations to match the Boltzmann distri-
bution. To the best of our knowledge, this is the first
method to recover the Boltzmann distribution without
requiring exact likelihood computations.

• We further demonstrate that our model enables accurate
estimation of free energy differences with orders-of-
magnitude speedup.

2. Related Works
Boltzmann Generators: Boltzmann Generators have be-
come an active and popular area of research since the publi-
cation of the initial work using invertible neural networks
(Noé et al., 2019). They have been used to sample the Boltz-
mann distributions of molecules (Dibak et al., 2022; Köhler
et al., 2021; Wirnsberger et al., 2020; Midgley et al., 2022;
Ding & Zhang, 2021; Kim et al., 2024) as well as lattice
systems (Dibak et al., 2022; Ahmad & Cai, 2022; Nicoli
et al., 2021; Schebek et al., 2024). Recent work (Tan et al.,
2025) also introduces a more stable reweighting scheme
that takes advantage of Jarzynski’s equality to attain the
equilibrium distribution. However, most of these methods
have required input through system-specific featurizations
such as internal coordinates, thereby hindering transferabil-
ity. The emergence of CNFs and equivariant neural network
architectures has enabled the development of Boltzmann
Generators on Cartesian coordinates (Klein & Noé, 2024;
Klein et al., 2023). Despite these advancements, transfer-
ability has so far only been demonstrated on small systems,
such as dipeptides, primarily due to the computational limi-
tations associated with likelihood evaluation at scale.

Boltzmann Emulators: Boltzmann Emulators, unlike
Boltzmann Generators, are designed solely to produce high-
quality samples without reweighting to the Boltzmann dis-
tribution. Because they are not required to be invertible,
they can typically be applied to much larger systems. This
flexibility also enables the use of a wider range of generative
approaches, including diffusion models. Boltzmann Emu-
lators have been employed to generate peptide ensembles
(Abdin & Kim, 2023), protein conformer distributions (Jing
et al., 2024; Zheng et al., 2024; Schreiner et al., 2023; Wang
et al., 2024), small molecules (Diez et al., 2024; Jing et al.,
2022; Song et al., 2023), and coarse-grained protein struc-
tures (Charron et al., 2023; Kohler et al., 2023). However,
they are inherently limited by the data distribution they were
trained on. As a result, they are generally unsuitable for gen-
erating unbiased samples from the Boltzmann distribution
or for performing free energy calculations independently.
In this work, we aim to leverage the strengths of Boltz-
mann Emulators and bridge the gap between Emulators and
Generators using energy-based models (EBMs).

Energy Based Models: Energy-Based Models (EBMs) are
particularly appealing in the physical sciences, as they de-
scribe density functions in a manner analogous to the Boltz-
mann distribution. This similarity enables the use of various
techniques from statistical physics to compute thermody-
namic properties of interest (Ding & Zhang, 2021; Sevekari
et al., 2024). Despite their promise, training EBMs remains
a challenging task. However, recent advancements have
introduced training objectives inspired by noise contrastive
estimation (Singh et al., 2023; Florence et al., 2022; Rhodes
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Figure 1: Method overview: Samples from a simple prior are transformed to a distribution of conformers/states by a
Boltzmann Emulator. The generated samples are then reweighted with likelihoods estimated by the BoltzNCE model which
is trained to approximate the generated distribution. After reweighting we achieve samples from the desired Boltzmann
distribution.

et al., 2020; Sevekari et al., 2024; Liu et al., 2021; Choi
et al., 2022), contrastive learning (Oord et al., 2018; Lee
et al., 2023), and score matching (Song & Kingma, 2021;
Yadin et al., 2024; Du et al., 2023). Recent work (OuYang
et al., 2024) has also proposed an ”energy-matching” objec-
tive to train a neural sampler on the Boltzmann distribution;
however more work needs to be done to make this approach
practical for molecules.

3. Background
3.1. Boltzmann Generators

Boltzmann Generators (BG) utilize generative methods that
sample conformers along with exact likelihoods so that the
generated samples can be reweighted to the Boltzmann dis-
tribution. For instance, a BG model is trained to sample
from a distribution p̃(x) that is close to the Boltzmann distri-
bution µ(x) ∝ exp(−U(x)/KBT ). Boltzmann generators
are usually limited to the class of invertible methods due to
the requirement of obtaining exact likelihoods.

Boltzmann generators can be used to obtain unbiased
samples of the Boltzmann distribution by first sampling
x ∼ p̃(x) with the exact likelihood and then reweight-
ing with the corresponding importance weight given by
w(x) = exp(−U(x)

KBT )/p̃(x). Leveraging these weights we
can also approximate any observable,O(x), under the Boltz-
mann distribution µ using self-normalized importance sam-
pling:

⟨O⟩µ = Ex∼p̃(x) [w(x)O(x)] ≈
∑N

i=1 w(x
i)O(xi)∑N

i=1 w(x)
(1)

3.2. Continuous Normalizing Flows

Normalizing flows are a class of generative models that
transform samples from a simple prior distribution x1 ∼
q(x) to samples of the generated distribution x0 ∼ p̃(x)

through a composition of invertible transforms.

Continuous Normalizing Flows (CNFs) are a continuous,
time conditioned variant of normalizing flows that construct
the invertible transformation on samples using the following
ordinary differential equation

dxt
dt

= vθ(t, xt) (2)

where vθ(t, x) : Rn× [0, 1]→ Rn defines a time-dependent
vector field and is parameterized by θ. We can define a
process that goes from time t = 1 to t = 0 that evolves xt
according to vθ. Solving this initial value problem provides
the transformation equation:

x0 = x1 +

∫ 0

1

vθ
(
t, xt

)
dt (3)

We can calculate the change in log density associated with
the path integral described in Eq 3 through the following
integral:

log p̃(x0) = log q(x1) −
∫ 0

1

∇· vθ
(
t, xt

)
dt (4)

This likelihood integral involves computing the trace of
the Jacobian along the vector field path. It require O(DT )
backpropogations where D is the dimensionality of the data
and T is the number of integration timesteps. Therefore this
approach is not scalable to large systems.

CNFs can be trained in a simulation-free manner using flow
matching. For more details refer Section A.1.

3.3. Stochastic Interpolants

Stochastic Interpolants are processes that turn noise sampled
from a simple Gaussian prior x1 ∼ N (0, I) to data x0 ∼
p∗(x). The time dependent process is as follows:
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xt = αtx0 + σtx1 (5)

Here, αt is a decreasing function of t and σt is a increasing
function of t. The process is restricted on t ∈ [0, 1] such
that xt is exactly x1 at t = 1 (α1 = 0, σ1 = 1) and x0 at
t = 0 (α0 = 1, σ0 = 0).

The sample xt under the stochastic interpolant evolves ac-
cording to a vector field:

dxt
dt

= v(t, xt), (6)

where the vector field is given by the following conditional
expectation:

v(t, x) = α̇tE [x0|xt = x] + σ̇tE [x1|xt = x] (7)

The score function, s(t, x) = ∇ log pt(x), of the probability
flow ODE associated with the interpolant is given by the
following conditional expectation:

s(t, x) = σ−1
t E [x1|xt = x] (8)

Given a coupling of the prior and data distribution
C(x0, x1), we can learn the vector field and score function
through the following objective functions:

Lv = Et∼U(0,1), (x0,x1)∼C(x0,x1)

[
∥vθ(t, xt)− α̇tx0 − σ̇tx1∥2

]
(9)

Ls = Et∼U(0,1), (x0,x1)∼C(x0,x1)

[
∥σtsθ(t, xt) + x1∥2

]
(10)

The vector field objective (Eq. 9) can be further modified
so that the model is trained to predict the final endpoint
x0 instead of the vector field. Through simple algebraic
rearrangement, it can be shown that the objective function 9
is equivalent to the following endpoint objective:

LEP = Et∼U(0,1), (x0,x1)∼C(x0,x1)

[
∥ α̇tσt−αt

σt
(x̂0(t, xt)− x0)∥2

]
(11)

Where x̂0(t, xt) is the predicted endpoint by the neural
network model. For more detail, refer section A.2. In this
work we use both the vector field (Eq. 9) and endpoint
(Eq. 11) objectives to train our CNF models.

4. Energy Based Model training with InfoNCE
and Score Matching

Enery Based Models parametrize the density function as
proportional to the exponential of a learned energy function
Eθ(x) as follows:

pθ =
exp(Eθ(x))

Zθ
, Zθ =

∫
exp(Eθ(x))dx (12)

We can also make the density function time-dependant when
the samples xt evolves according to a time process (e.g. with
stochastic interpolants)

pθ(t, xt) =
exp(Eθ(t, xt))

Zθ(t)
, Zθ(t) =

∫
exp(Eθ(t, x))dx

(13)

Given access to samples from a simple prior distribution
x1 ∼ N (0, I), samples from a data distribution x0 ∼ p∗(x)
and a coupling function C(x0, x1), we can obtain sample
xt at time point t with stochastic interpolants, as given by
Eq.5.

To maximize the likelihood of pair (t, xt) occurring under
the distribution pθ modeled by the energy based model, we
minimize the negative log likelihood given by:

LNLL =

N∑
i=1

− log
exp(Eθ(t

i, xit))∫
exp(Eθ(t, xit))dt

(14)

The intractable integral in the denominator can be approx-
imated by appropriately sampling a set of negative time
points {t̃i} yielding the InfoNCE loss given by:

LInfoNCE =

N∑
i=1

− log
exp(Eθ(t

i, xit))∑
t′∈{t̃i}∪ti exp(Eθ(t′, xit))

(15)

Note that this objective function is simulation-free as it only
requires sampling of negative time points. Furthermore,
the gradient of the energy function is also the score of the
model’s density∇ log pθ(t, xt) = ∇Eθ(t, xt), therefore we
can use the well defined score matching objective (Eq. 10)
associated with stochastic interpolants as an additional ob-
jective to train the EBM as follows:

LSM = Et∼U(0,1), (x0,x1)∼C(x0,x1)

[
∥σt∇Eθ(t, xt) + x1∥2

]
(16)

Where C(x0, x1) is a coupling function, and xt is computed
using Eq. 5. We show that both objectives are important
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True Density NCE Score Matching Score Matching & NCE

Figure 2: EBM density learnt on toy 2D systems - 8 Gaussians (above) and Checkerboard (below). The true density for the
systems is shown on the left and the results for using different objective functions are labeled. It is clear that using both the
NCE and score matching objectives (right) provides the best performance.

for optimal model performance on toy 2D systems in Fig-
ure 2 and therefore use both loss functions for subsequent
experiments on molecular systems.

5. Methods
5.1. Overview

Our method is designed to calculate free energy values and
attain the Boltzmann distribution in a scalable manner. We
first train Boltzmann Emulators on a dataset of conform-
ers to learn the distribution p̃(x). An EBM is then trained
on conformers sampled from the emulator x ∼ p̃(x) to
approximate the learnt distribution pθ(x) ≈ p̃(x) (up to a
normalization constant). Specifically, the EBM is trained
using stochastic interpolants, therefore the density func-
tion at time point ”0” approximates the desired distribution
pθ(t = 0, x) ≈ p̃(x). The generated samples are then
reweighted to the Boltzmann distribution with the (unnor-
malized) importance weights being a ratio of Boltzmann
factors and EBM densities w(x) = exp(−U(x)/KBT )

pθ(0,x)
. An

overview of our method is shown in Figure 1.

5.2. Datasets

For our experiments, we use the well-studied alanine dipep-
tide molecule. The dataset employed is the same as that
used in (Klein & Noé, 2024). Briefly, it is generated via
molecular dynamics (MD) simulations using the classical
force field Amber ff99SBildn, followed by relaxation with
the semi-empirical GFN-xTB force field. We utilize the

dataset in two variants: one in its original form (referred to
as unbiased), and another in which the positive φmetastable
state (see Ramachandran plots, Figures 3) is oversampled
to ensure equal representation of both positive and nega-
tive states (referred to as biased). For more details refer
Section E.1.

5.3. Training and inference algorithms

Both the Boltzmann Emulator and EBMs are trained taking
advantage of stochastic interpolants where samples (x1, x0)
are coupled through mini-batch optimal transport. In prac-
tice, we use the Hungarian algorithm for OT coupling as it
provides the best scalability with batch size.

Boltzmann Emulator models are trained using either the
vector field or the endpoint loss functions specified by the
stochastic interpolant (Eqs 9, 11). With the endpoint param-
eterization, the vector field integrated for sampling is given
by:

vθ(t, x) = σ−1
t (σ̇txt + (α̇tσt − αt)x̂0) (17)

where x̂0 is the predicted endpoint at time-point t. Note
that the given vector field diverges at t = 0 (σ0 = 0). In
practice, we integrate endpoint models only till t = 1e− 3
to account for this.

The EBMs are trained using InfoNCE (Eq. 15) and score
matching (Eq. 10) objectives. In practice, we found that us-
ing a single negative time point per sample was sufficient for
effective training. These negative time points are sampled
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Figure 3: Alanine dipeptide (left) with dihedral angles labelled, Ramachandran plots of unbiased (center) and biased (right)
datasets.

from a narrow Gaussian distribution centered around the
corresponding positive time point, t′ ∼ N (t, 0.025) which
yields informative negatives for training the model.

For more details on model training and inference, refer
sections B, E.5, E.7 in the appendix.

5.4. Model architectures

For both models, the data is featurized using the same atom
typing scheme as described in (Klein & Noé, 2024). Briefly,
all atoms are kept distinguishable, except for hydrogen
atoms bonded to the same carbon or nitrogen. The molecu-
lar structures are passed as fully connected graphs, and both
models operate directly on the Cartesian coordinates of the
atoms.

Boltzmann Emulators are parameterized with a SE(3) -
equivariant graph neural network that leverages Geomet-
ric Vector Perceptrons (GVPs) (Jing et al., 2020). Briefly,
GVP maintains a set of equivariant vector and scalar features
per node that are updated in an SE-(3) equivarant/invariant
manner through graph convolutions. We utilize this archi-
tecture as it has been shown to have improved performance
over Equivariant Graph Neural Networks (EGNNs) (Sator-
ras et al., 2021) in molecular design tasks (Dunn & Koes,
2024a).

EBMs are implemented using the Graphormer (Ying et al.,
2021) architecture, which has demonstrated state-of-the-
art performance in molecular property prediction tasks.
Graphormers function similarly to standard Transformers,
with the key difference being the incorporation of an at-
tention bias derived from graph-specific features. In 3D-
Graphormers, this attention bias is computed by passing a
Euclidean distance matrix through a Multi-Layer Perceptron
(MLP).

For more details on model architectures and hyperparame-
ters, refer sections C, E.3 in the appendix.

6. Results
GVP-based Boltzmann Emulators trained using the vector
field (referred to as GVP-VF) and endpoint objectives (re-
ferred to as GVP-EP) are compared in Section 6.1. These
emulators are evaluated on the unbiased dataset.

In Section 6.2, the emulators are trained on the biased
dataset, and their performance as Boltzmann Generators for
generating the semi-empirical distribution of alanine dipep-
tide induced by the GFN-xTB forcefield is assessed. The
EBMs trained on the GVP-based emulators are also eval-
uated and are referred to as BoltzNCE-VF/BoltzNCE-EP.
Free energy differences between the positive and negative φ
metastable states are computed as it is the slowest process
(Figure 3).

In both sections we benchmark our models against the
Equivariant Continuous Normalizing Flow (ECNF) model
from (Klein & Noé, 2024) trained on respective datasets.
For more details on the metrics used, refer section D in the
appendix.

6.1. GVP models are good Boltzmann Emulators

Inference results for the Boltzmann Emulators are presented
in Table 1 and Figure 4. The Energy (E) and Torsion angle
(T) Wasserstein-2 (W2) distances quantify the discrepancy
between the distributions of generated conformers and those
in the dataset with respect to energy and torsion angles
respectively. The results show that while the T-W2 distance
remains relatively consistent across all methods, the GVP
models capture the dataset’s energy distribution better, with
the Endpoint model showing the best performance (Figure 4)
indicating that it is a very good Boltzmann Emulator on this
dataset.

The ECNF and GVP-VF models are comparable on the
Negative Log Likelihood (NLL) metric, whereas the GVP-
EP model yields the worst values. It is important to note,
however, that the endpoint vector field (Eq. 17) diverges at
time-point 0. Consequently, the likelihoods for the GVP-
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Figure 4: Ramachandran plots of samples generated by the GVP Vector field model (left), GVP Endpoint model (center)
and energy distribution of generated samples (right).

Table 1: Comparison of NLL and W2 metrics of Boltzmann
Emulators across 5 runs

Method E-W2 T-W2 NLL NLL std

ECNF 5.84 ± 0.04 0.27 ± 0.01 -125.53 ± 0.10 5.09 ± 0.09
GVP Vector Field 3.76 ± 0.08 0.27 ± 0.02 -125.42 ± 0.15 6.92 ± 0.62
GVP Endpoint 1.76 ± 0.11 0.26 ± 0.02 -92.04 ± 3.24 175.12 ± 35.51

EP model were evaluated starting from a later time point
t = 1e−3. Furthermore, the divergence at t→ 0 can lead to
inaccurate likelihood estimates due to instability in the ODE
integration. The standard deviation of NLL values within
each run is also reported, and the large variance observed
for the GVP-EP model further highlights the potential unre-
liability of its likelihood computations. As we will see in the
next section, this inaccuracy in likelihood calculations also
make the GVP-EP model unsuitable Boltzmann Generators
despite being excellent invertible Emulators.

6.2. Reweighting Emulators with BoltzNCE yields
accurate free energy estimates

Free energy differences computed by all models across five
runs are reported in Table 2. We also reproduce the ECNF
model and report results for the same. The ECNF, GVP-VF,
and GVP-EP models estimate likelihoods using the Jacobian
trace integral and serve as Boltzmann Generators. In con-
trast, the BoltzNCE models are EBMs trained on conformers
generated by the GVP models (Boltzmann Emulators) and
provide direct access to predicted likelihoods of generated
conformers.

Focusing on the Boltzmann Generator models, we observe
that the GVP models produce less accurate estimates of free
energy difference despite being comparable or better Boltz-
mann Emulators. This inaccuracy may stem from unreliable
likelihood estimates produced during ODE integration. The
instability in accurate likelihood estimation in continuous
normalizing flows (CNFs) requires the model to behave
consistently under the Jacobian trace integral. Various fac-

tors, including model architecture, training protocol, etc,
can affect the numerical stability of this integral. As a re-
sult, Boltzmann Generator models face additional design
constraints to ensure stability and reliability in likelihood
estimation.

In contrast, the BoltzNCE models yield more accurate esti-
mates of the free energy difference compared to the GVP-
based Boltzmann Generators. This indicates that the like-
lihoods predicted by BoltzNCE may be more reliable than
those obtained via the Jacobian trace integral in these gen-
erators. On comparison, the BoltzNCE-EP model exhibits
higher variance compared to the free energy estimates from
the BoltzNCE-VF models. Representative energy histogram
and free energy surfaces with confidence intervals along the
slowest transition (φ dihedral angle) for the BoltzNCE-VF
model is shown in Figure 5. For energy histograms and free
energy projections of other methods, refer section F.

The inference time costs includes the time to generate and
estimate likelihoods for 1∗106 conformers of alanine dipep-
tide. BoltzNCE provides an overwhelming inference time
advantage over the Boltzmann Generator by multiple orders-
of-magnitude. This is especially advantageous as it is often
desirable to perform evaluation across multiple sets of sam-
ples to get more confident estimates. It is important to note,
however, that BoltzNCE has an upfront cost of training the
EBM associated with it.

7. Discussion
In this work, we propose a novel, scalable, and simulation-
free training framework for energy-based models that lever-
ages stochastic interpolants, InfoNCE, and score matching.
We demonstrate that both the InfoNCE and score matching
objectives play a complementary role in enhancing model
performance. Our training approach is applied to learn
the density function of conformers sampled from a Boltz-
mann Emulator, thereby eliminating the need for expensive
Jacobian trace calculations for reweighting, resulting in
orders-of-magnitude speedup. Furthermore, experiments
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Figure 5: BoltzNCE results for alanine dipeptide trained on the biased dataset. The GVP vector field model is used as the
Boltzmann Emulator. Ramachandran plot of generated samples is shown on the left, energy histogram along with BoltzNCE
reweighting on the center and calculated free energy surfaces for the angle φ on the right.

Table 2: Dimensionless free energy differences calculated for the slowest transition of alanine dipeptide along the φ angle
by several methods. Errors shown across 5 runs. Free energy difference values for Umbrella sampling and ECNF taken from
(Klein & Noé, 2024).

Method ∆ F / kBT Inference-time (h) Train-time(h) Jac-trace integral

Umbrella Sampling 4.10 ± 0.26 - - -

ECNF (Klein & Noé, 2024) 4.09 ± 0.05 9.366 3.85 ✓
ECNF - reproduced 4.07 ± 0.23 9.366 3.85 ✓
GVP Vector field 4.38 ± 0.67 18.42 4.42 ✓
GVP Endpoint 4.89 ± 2.61 26.24 4.42 ✓
BoltzNCE Vector field 4.08 ± 0.13 0.09 12.22 ✗
BoltzNCE Endpoint 4.14 ± 0.94 0.164 12.22 ✗

conducted on alanine dipeptide indicate that in certain cases
BoltzNCE is even capable of providing more accurate es-
timates than ODE integration of the divergence operator.
This framework, therefore, effectively bridges the gap be-
tween Boltzmann Emulators and Generators, and removes
the requirement for invertible architectures in Boltzmann
Generator design or costly Jacobian trace calculations.

8. Limitations and Future Work
The present work is limited to the alanine dipeptide molecu-
lar system. However, although not explicitly demonstrated,
the proposed framework is potentially transferable across
multiple molecular systems and also scalable to larger
molecular systems. The accuracy of the method needs to be
further tested in these scenarios.

Training the energy-based model requires applying the score
matching loss to its gradients, which increases compute re-
quirements beyond typical levels for neural networks train-
ing. Additionally, since the likelihoods estimated by the
EBM are approximate, a degree of mismatch between the
samples and their predicted likelihoods is inevitable.

Although the current work is limited to a molecular setting,
we believe the proposed EBM training framework could be

broadly applicable in other domains where energy-based
models are useful, such as robotics.
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A. Vector field training objectives
A.1. Training with Conditional Flow Matching

CNFs can be trained in a simulation-free manner through flow matching. One can formulate the flow matching objective
using:

LFM(θ) = Et∼U(0,1), x∼pt(x)||vθ(t, x)− vt(x)||
2
2 (18)

where vt is the target vector field and vθ(t, x) is the learned vector field. The conditional flow matching objective (Tong
et al., 2023), however, utilizes a conditioning variable z to make it more tractable

LCFM(θ) = Et∼U(0,1), x∼pt(x|z)||vθ(t, x) − ut(x | z)||22 (19)

where ut(x | z) is the conditional vector field. There are several different ways to construct the conditional vector field and
probability path. For example, a simple parametrization used by (Klein et al., 2023) for training Boltzmann Generators is as
follows:

z = (x0, x1), p(z) = π(x0, x1) (20)

vt(x | z) = x1 − x0 pt(x | z) = N (x | t.x1 + (1− t).x0, σ2) (21)

where π is the 2-Wasserstein optimal transport plan between the prior q(x0) and data distribution µ(x1). For further details
please refer (Klein et al., 2023).

A.2. Proof of Endpoint Parametrization Eq. 11

Stochastic interpolants anneal between x1 ∼ N (0, I) and x0 ∼ p∗(x) with:

xt = αtx0 + σtx1 (22)

solving for x1:

x1 =
xt − αtx0

σt
(23)

xt evolves according to the vector field given by the conditional expectation:

v(t, x) = α̇tE [x0|xt = x] + σ̇tE [x1|xt = x] (24)

Substituting 23 in 24 we get:

v(t, x) = α̇tE [x0|xt = x] +
σ̇t(x− αtE [x0|xt = x])

σt
(25)

v(t, x) = σ−1
t (σ̇tx+ (α̇tσt − αt)E [x0|xt = x]) (26)

Similarly, the model estimate of the vector field is given by:

vθ(t, x) = σ−1
t (σ̇tx+ (α̇tσt − αt)x̂0(t, x)) (27)

Where x̂0(t, xt) is the predicted endpoint by the model. The objective is then given by:
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LEP =

∫ T

0

∥vθ(t, xt)− v(t, xt)∥2dt (28)

LEP =

∫ T

0

E
[
∥ α̇tσt − αt

σt
(x̂0(t, xt)− x0)∥2

]
dt (29)

B. EBM training algorithm

Figure 6: Energy Based Model training workflow

A diagramatic representation of the method used for training the energy based model is shown in Figure 6. The model takes
a sample x and time point t as input and outputs predicted energy Eθ(t, x). The gradient of the output w.r.t to the sample
∇xEθ(t, x) is used for the score matching loss. The same sample is also passed with negative time points {t′}, and the
predicted energies Eθ(t

′, x) is used along with the previously output energies Eθ(t, x) for the InfoNCE loss.

We also provide a pseudocode block for training the energy based model with stochastic interpolants, InfoNCE, and score
matching in algorithm block 1.

Algorithm 1 Training EBM with stochastic interpolants, InfoNCE, and score matching

Input: Energy-Based Model θ, samples from prior X1, dataset samples X0, interpolant functions αt, σt
for epoch = 1 to epochmax do

for each batch (x1, x0) in (X1, X0) do
(x1, x0)← mini-batch OT(x0, x1)
sample t ∼ U(0, 1)
xt ← αtx1 + σtx0
LSM ← 1

N

∑N
n=1 |σt∇Eθ(t

n, xnt ) + xn1 |2
sample t′ ∼ N (t, 0.025)

LInfoNCE ← 1
N

∑N
n=1− log

exp(Eθ(t
n,xn

t ))
exp(Eθ(tn,xn

t ))+exp(Eθ(t′n,xn
t ))

L ← LSM + LInfoNCE
θ ← Update(θ,∇θL)

end for
end for
Output: Updated model parameters θ
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C. Model Architecture
C.1. GVP Convolutions

For our models, we use a modified version of the GVP which has been shown to increase performance as describe in (Dunn
& Koes, 2024b). The message passing step is constructed by applying the GVP message passing operation defined in (Jing
et al., 2021).

(m
(s)
i→j , m

(v)
i→j) = ψM

(
[h

(l)
i : d

(l)
ij ], vi :

[
x
(l)
i − x

(l)
j

d
(l)
ij

])
(30)

Here m(v)
i→j and m(s)

i→j are the vector and scalar messages between nodes i, j. hi,dij are the scalar features, edge features
and a radial basis embedding respectively, while x represents the coordinates of the node. For the detailed Node Position
Update and Node Feature Update operations, refer to Appendix C of (Dunn & Koes, 2024b).

C.2. Graphormer Operations

Graphformers are neural network architectures where layer-wise GNN components are nested alongside typical transformer
blocks. (Yang et al., 2023) For our EBMs, we follow the implementation of the Graphformer with one minor modification.
For the original Graphformer, each attention head is calculated as :

head = softmax
(QKT

√
d

+B
)
V (31)

where B is a learnable bias matrix. In our implementation, B is calculated by passing the graph’s euclidean distance matrix
through an MLP.

D. Metrics
D.1. NLL

To calculate the NLL of the holdout conformers, we take (4) and evaluate the ODE in the reverse direction for a given
sample. This provides the NLL of the sample. NLL values are reported over batches of 1 ∗ 103 samples.

D.2. Energy - W2

In order to quantify the difference in energy distributions between generated molecules and MD relaxed samples, we calculate
the Wasserstein-2 distance between the two distributions. This can be intuitively thought of as the cost of transforming one
distribution to another using optimal transport. Mathematically, we solve the optimization process with the loss:

E-W2 =

(
inf
π

∫
c(x, y)2 dπ(x, y)

)1
2

(32)

where π(x, y) represents a coupling between two pairs (x, y) and c(x, y) is the euclidean distance. We use the Python
Optimal Transport package in our implementation (Flamary et al., 2021). E-W2 values are reported over batches of 1 ∗ 105
samples.

D.3. Angle - W2

Similar to the E-W2 metric, we seek to quantify the differences in the distributions of dihedral angles generated and those
from MD relaxed samples. Here, following the convention defined in (Tan et al., 2025) we define the optimal transport in
torsional angle space as:

T-W2 =

(
inf
π

∫
c(x, y)2 dπ(x, y)

)1
2

(33)
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where π(x, y) represents a coupling between two pairs (x, y). The cost metric on torsional space is defined as:

c(x, y) =

(
2s∑
i=1

(
(xi − yi)%π

)2)1
2

(34)

where (x, y) ∈ [−π, π)2s

Similar to Energy-W2 calculations, we use the Python Optimal transport package for implementation (Flamary et al., 2021).
T-W2 values are reported over batches of 1 ∗ 105 samples.

D.4. Free energy difference

Free energy differences are computed between the positive and negative metastable states of the φ dihedral angle. The
positive state is defined as the region between 0 and 2, while the negative state encompasses the remaining range. The free
energy associated with each state is estimated by taking the negative logarithm of the reweighted population count within
that state.

The code for calculating the free energy difference is as follows:

l e f t = 0 .
r i g h t = 2

h i s t , edges = np . h i s t o g r a m ( phi , b i n s =100 , d e n s i t y =True , w e i g h t s = w e i g h t s )
c e n t e r s = 0 . 5 * ( edges [ 1 : ] + edges [ : − 1 ] )
c e n t e r s p o s = ( c e n t e r s > l e f t ) & ( c e n t e r s < r i g h t )

f r e e e n e r g y d i f f e r e n c e = −np . l o g ( h i s t [ c e n t e r s p o s ] . sum ( ) /
h i s t [ ˜ c e n t e r s p o s ] . sum ( ) )

Where phi is a numpy array containing the φ angles of the generated dataset (φ ∈ (−π, π]) and weights is an array containing
the importance weight associated with it.

D.5. Inference times

Inference time for free energy estimation is measured over 1 ∗ 106 samples. Specifically, we use a batch size of 500 and
generate 200 batches of conformers. During sample generation, Boltzmann Generators also computes the Jacobian trace.
All run times are recorded on NVIDIA L40 GPUs, and the reported values represent the mean of five independent runs.

E. Technical Details
E.1. Dataset Biasing

Since transitioning between the negative and positive φ is the slowest process, with the positive φ state being less probable,
we follow the convention of (Klein et al., 2023; Klein & Noé, 2024) and use a version of the dataset with bias to achieve
nearly equal density in both states, which helps in obtaining a more accurate estimation of free energy. To achieve the biased
distribution, weights based on the von Mises distribution, fvM , are incorporated and computed along the φ dihedral angle as

ω(φ) = 150 · fvM
(
φ | µ = 1, κ = 10

)
+ 1 (35)

For the biased dataset, samples are then drawn based on the weighted distribution.

E.2. Correcting for chirality

Since SE(3) equivariant neural networks are invariant to mirroring, the Emulator models tend to generate samples from both
chiral state. To account for this, we fix chirality post-hoc following the convention set by (Klein & Noé, 2024; Klein et al.,
2023).
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E.3. Model hyperparameters

Each GVP-Boltzmann Emulator model employs one message-passing GVP and one update GVP, each built from five hidden
layers with vector-gating layers. Within every GVP, the hidden representation comprises 64 scalar features and 16 vector
features.

Graphormer-based potential model were instantiated with a 256-dimensional node embedding and a matching 256-unit
feed-forward inner layer in each transformer block with a total of 8 layers. Self-attention is employed with 32 heads over
these embeddings,and inter-atomic distances are encoded via 50 gaussian basis kernels.

E.4. Endpoint training weights

The Endpoint loss function for training the Boltzmann Emulator is given by:

LEP = Et∼U(0,1), (x0,x1)∼C(x0,x1)

[
∥ α̇tσt − αt

σt
(x̂0(t, xt)− x0)∥2

]
(36)

Note that, the coefficients α̇tσt−αt

σt
become divergent near t→ 0 as σ0 = 0. Therefore, in practice, we threshold the min

and the max value of these coefficients as follows:

tw = min(max(0.005, | α̇tσt − αt

σt
|), 100) (37)

And optimize the following objective:

LEPmod = Et∼U(0,1), (x0,x1)∼C(x0,x1)

[
tw∥x̂0(t, xt)− x0∥2

]
(38)

E.5. Training protocols

Models were trained for 1,000 epochs using the Adam optimizer with a learning rate of 0.001 and a batch size of 512. A
learning rate scheduler was employed to reduce the rate by a factor of 2 after 20 consecutive epochs without improvement,
down to a minimum of 1e−5. An Exponential Moving Average (EMA) with β = 0.999 was applied to the model and updated
every 10 iterations. All models are trained on NVIDIA L40 GPUs with a batch size of 512. Mini-batch optimal transport is
computed using the scipy linear sum assignment function (Virtanen et al., 2020).

E.6. Interpolant Formulation

We specify the interpolant process following the design choices explored in (Ma et al., 2024). The Emulator models are
trained with linear interpolants while the energy based models use trigonometric interpolants. Both of which satisfy the
constraints to generate an unbiased interpolation process.

Linear : αt = 1− t, σt = t (39)

Trignometric: αt = cos(
1

2
πt), σt = sin(

1

2
πt) (40)

Trigonometric interpolants are called general vector preserving interpolants (GVP) in (Ma et al., 2024). However, we change
the naming of this notation to avoid confusion with geometric vector perceptrons (GVP), which are repeatedly discussed in
our paper.

E.7. Integration scheme

All models were integrated with the adaptive step size DOPRI5 solver implemented in the Torchdiffeq package (Kidger
et al., 2021). The tolerance values were set at atol = 1e−5, and rtol = 1e−5. For vector field models, each integral is
evaluated from 1 to 0, while endpoint models are evaluated from 1 to 1e−3 in order to avoid the numerical instability that
occurs with endpoint parametrization at time t = 0
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F. Additional Results
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Figure 7: Energy histograms and free energy projections with confidence intervals for the GVP-Vector Field (top), GVP-
Endpoint (center) and BoltzNCE-Endpoint (bottom) models.

Energy histograms and free energy projections for GVP Vector Field, GVP Endpoint, and BoltzNCE Endpoint methods are
show in Figure 7. The free energy values and energy histograms match up best with the BoltzNCE Endpoint method.
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