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Abstract

Medical image segmentation is an important task in the con-
text of medical care, with applications in diagnostic and treat-
ment processes. Segment Anything (SAM), a generalist foun-
dation model trained on a corpus of 11 million natural im-
ages, demonstrates limited adaptability to the medical do-
main in a zero-shot prompting context, but shows promise
under parameter-efficient fine-tuning. MedSAM is a founda-
tion model which adapts SAM to the medical domain via
training on a diverse medical corpus consisting of different
modalities (one million images of modality CT, MRI, CXR,
etc). In this work, we evaluate the advantage of MedSAM
over SAM for medical task-specific adaptation achieved via
parameter-efficient fine-tuning. Our results demonstrate that
MedSAM does not yield a consistent advantage over SAM in
this setting. We also introduce a novel parameter-efficient ap-
proach, LoRaMedNet, which combines elements of previous
fine-tuning methods to achieve greater flexibility of adapta-
tion for SAM, and find that LoRaMedNet-adapted SAM at-
tains the best performance. The implication of this finding is
that generalist models like SAM can achieve superior adapta-
tion to specific medical tasks even when compared to models
with medical pre-training.

Introduction

Medical image segmentation, a vital aspect of patient di-
agnosis and treatment, has greatly benefited from advance-
ments in deep learning. A significant development in this
field is the emergence of generalist Al models like Meta
ATl’s Segment Anything (SAM), designed to handle diverse
segmentation tasks (Kirillov et al. 2023). Despite its versa-
tility, SAM’s training on general imagery poses limitations
for medical applications, where specific imaging character-
istics, like the amorphous structure of tissues, are present
(Huang et al. 2024). In particular, zero-shot performance
on medical benchmarks lags behind that of specialist deep
learning models (Roy et al. 2023).

Addressing this gap, Ma et al. (2023) introduced Med-
SAM, trained exclusively on medical datasets to cater to
the unique challenges of medical image segmentation. Med-
SAM showed improved zero-shot capabilities and in particu-
lar cases rivals that of specialist models. However, it remains
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an open question whether MedSAM’s specialized training
translates into superior performance compared to SAM, par-
ticularly when both models undergo advanced fine-tuning
techniques.

Contribution Our hypothesis is that a foundation model
does not need medical pre-training to successfully adapt to a
downstream medical task using fine-tuning. This hypothesis
is motivated by the reasoning that the medical pre-training
dataset size is too small to provide a significant advan-
tage under task-specific adaptation. We prove our hypothesis
by introducing LoRaMedNet, a novel fine-tuning technique
combining Low-Rank Adaptation (LoRA) of the SAM im-
age encoder with a ConvNet prediction head. In particular,
using the LoRaMedNet approach on SAM yields higher per-
formance than that using LoRaMedNet on MedSAM, and
also a higher performance than that of previous fine-tuning
approaches on either SAM or MedSAM. This shows that
for certain fine-tuning approaches, the advantages of med-
ical pre-training are not clear. The important implication is
that in the context of medical task-specific adaptation, gen-
eralist models like SAM need not be abandoned in favor of
models with medical pre-training.

Related Work

Large Vision Model After the release of SAM, there have
been many papers on the adaptation of SAM to medical im-
age tasks. The most direct method of adapting SAM has
been by prompting it. Zero-shot prompting performance
generally falls short of specialist models (Roy et al. 2023).

Parameter-Efficient Fine-tuning Fine-tuning ap-
proaches have seen greater success, with examples
including ConvNet/ViT prediction head, LoRA adaptation
of image encoder, and custom “g-network” prompt encoder
(Hu, Xu, and Shi 2023; Zhang and Liu 2023; Shaharabany
et al. 2023). These methods achieve state-of-the-art per-
formance for foundation model based approaches, and in
certain cases, as in the case of g-network, rival specialist
models on benchmarks. The common approach is to keep
the original SAM image encoder weights frozen, while
fine-tuning the rest of the model which accounts for a small
percentage of the total number of parameters. In particular it
is possible to achieve state-of-the-art performance on down-
stream medical tasks using parameter-efficient fine-tuning
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Figure 1: The LoRaMedNet Approach (diagram adapted from Zhang and Liu (2023))

of SAM, underscoring the potential of foundation models
with natural image pre-training for domain adaptation to
medical contexts.

Medical Foundation Model MedSAM is a medical im-
age segmentation foundation model adapting the SAM base
(vit_b) model. SAM was adapted to the medical domain by
fine-tuning the image encoder and mask decoder on a large
corpus of over one million medical images consisting of
various modalities, including CT scans, MRIs, CXR, Ultra-
sound, and Endoscopy (Ma et al. 2023). MedSAM’s zero-
shot performance on a general array of medical benchmarks
exceeds previous segmentation foundation models and, in
certain cases, exceeds specialist models.

The authors of the paper did not investigate the perfor-
mance of MedSAM when fine-tuned for specific tasks, in
particular whether MedSAM’s medical pre-training was ad-
vantageous under parameter-efficient fine-tuning for task-
specific adaptation. In particular, while the MedSAM train-
ing dataset is sizable and has a smaller domain gap with spe-
cific medical benchmarks we are interested in, it has only
around one million image-mask pairs, which is dwarfed by
the one billion masks in the SA-1B dataset used for SAM
(Kirillov et al. 2023). Our hypothesis that MedSAM does
not yield a consistent advantage over SAM relies on the
idea that this medical pre-training adaptation is insignificant
compared to the adaptation that occurs during task-specific
fine-tuning, meaning that using MedSAM instead of SAM
may not yield significantly better results. In our work we
seek to test this hypothesis.

Methods

Foundation Model Comparison To understand the ef-
fect of using MedSAM instead of SAM under fine-tuning,
we utilize previously considered parameter-efficient meth-
ods on MedSAM and compare to performance with SAM
on a medical benchmark. This allows us to test if MedSAM
yields a consistent advantage over SAM in the context of

task-specific adaptation. Since our focus is on task-specific
adaptation, it makes sense to focus on automatic segmen-
tation models which do not require any prompt. One mo-
tivation for having an automatic model and not a prompt-
able one is that for promptable models, segmentation quality
would then depend on prompt quality derived from domain
expertise, which cannot be guaranteed in real-world scenar-
ios. This is why the parameter-efficient methods we chose to
evaluate on MedSAM all lead to automatic models.

To summarize, we evaluate performance using both SAM
and MedSAM (vit_b model) image encoder and weights.
The fine-tuning approaches we evaluate include the Con-
vNet and ViT prediction head from Hu, Xu, and Shi (2023)
and the g-network method from Shaharabany et al. (2023).

Novel Fine-tuning Method We also propose LoRaMed-
Net, which merges a LoRA adaptation of the SAM im-
age encoder with a ConvNet prediction head, following the
principles outlined in Hu, Xu, and Shi (2023). The LoRA
adaptation of the image encoder follows Zhang and Liu
(2023). The motivation for this approach is that we want a
method to inject medical knowledge into the SAM image
encoder, while also training a lightweight decoder network
from scratch to automatically produce masks from the image
embedding. While LoRaMedNet does train more parame-
ters as it combines previous approaches, it is still parameter-
efficient. The conceptual framework of LoRaMedNet is de-
picted in figure 1.

We designed this approach in an effort to maximize the
flexibility of domain adaptation available to SAM in an ef-
fort to increase its performance, while still being parameter-
efficient. The motivation for focusing on SAM is to under-
stand the model’s performance ceiling when compared to
MedSAM. In particular, maximizing SAM’s performance
will present a challenge to the idea that MedSAM will al-
ways obtain superior performance, which is relevant to our
hypothesis.



Method RV Dice | Myo Dice | LV Dice | Avg Dice
CNN Head (SAM) 59.87 62.81 78.96 67.21
CNN Head (MedSAM) 65.45 77.13 90.06 77.55
ViT Head (SAM) 58.48 62.18 80.58 67.08
ViT Head (MedSAM) 59.80 61.12 79.24 66.72
g Network (SAM) 57.92 66.23 84.04 69.40
g Network (MedSAM) 78.58 82.02 91.71 84.10
LoRaMedNet (ours) (SAM) 77.80 84.06 94.15 85.34
LoRaMedNet (ours) (MedSAM) 73.68 80.90 94.01 82.86

Table 1: Comparison of fine-tuning methods on SAM and MedSAM Weights

Existing Fine-Tuning Baselines Here we outline the de-

tails of previous fine-tuning methods, some of which we di-
rectly use on MedSAM. It is relevant for understanding Lo-
RaMedNet, which combines two of these approaches.

Hu, Xu, and Shi (2023) fine-tune a novel prediction head,
either a Convolutional Network or Vision Transformer that
decodes the output of SAM’s frozen image encoder. We
elaborate more on the ConvNet head, which is used as part of
LoRaMedNet. The ConvNet head follows the decoder struc-
ture of U-Net (Ronneberger, P.Fischer, and Brox 2015). The
image embedding output first reshaped to (256, 64, 64). This
prediction head is then designed to upscale the feature map
by 4x. LoRaMedNet utilizes a ConvNet head with depth 4 as
described in the paper. The ConvNet prediction head serves
as a benchmark in using advanced neural network architec-
tures to decode the SAM image embedding, which we can
compare LoRaMedNet to.

Zhang and Liu (2023) fine-tune SAM with Low-Rank
Adaptation (LoRA) for the image encoder (Hu et al. 2021).
LoRA is applied to query and value projection layers, and
is applied to every transformer block in the SAM image en-
coder. See figure 2 for LoRA design. This serves as a bench-
mark for adapting SAM’s image encoder for a downstream
task by injecting medical knowledge.

Shaharabany et al. (2023) replace and fine-tune SAM’s
prompt encoder with a custom ‘g-network’, tailored for im-
age processing. This method achieves performance which
surpasses previous state-of-the-art specialist models on vari-
ous medical benchmarks, including nuclei, gland, and polyp
segmentation. Hence g-network, which already achieves
high performance with SAM, should present a challenge
to MedSAM. Our goal with LoRaMedNet is to surpass g-
network’s performance in order to get closer to the perfor-
mance ceiling with SAM.

Dataset We employ the ACDC (Automated Cardiac Diag-
nosis Challenge) dataset, consisting of MRI scans of cardiac
structures (Bernard et al. 2018), as the basis for our exper-
iments. We chose this dataset for its applicability in testing
segmentation models in the medical imaging arena.

The dataset consists of 100 patients, with two 3D volumes
for each patient, and segmentation labels for three classes
we are interested in—Ileft ventricle, right ventricle, and my-
ocardium. Following Hu, Xu, and Shi (2023), patients are
split into train-validation-test with 70-15-15 ratio. For pre-
processing, pixels within a volume are normalized to zero
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Figure 2: LoRA Adaptation (taken from Zhang and Liu
(2023))

mean and unit variance, converted to RGB, and slices within
a volume are used as 2D image input to the model. Our fine-
tuning emphasizes label-efficiency, utilizing only 5 labeled
volumes from a total of 70 training volumes. We assess per-
formance based on the average Dice score across the three
classes.

Implementation We utilize the PyTorch codebase pro-
vided by Hu, Xu, and Shi (2023), making necessary mod-
ifications to implement our novel fine-tuning method, which
in particular involves utilizing part of the codebase provided
by Zhang and Liu (2023) for LoRA adaptation of image en-
coder.

Following Hu, Xu, and Shi (2023)’s setup for the ACDC
dataset, we utilize Adam optimizer with learning rate
0.0005, (81, 82) = (0.5,0.999), batch size of 4, and 120
epochs after which convergence is achieved (Kingma and
Ba 2017). During training, which was done on a single Tesla
M40 with 24GB memory, data augmentation on images in-
cluded Gaussian noise, brightness alteration, elastic defor-
mation, and rotation. Loss function is given by the sum of
cross entropy loss and dice loss (Sudre et al. 2017).

Results

Foundation Model Comparison In the comparison be-
tween MedSAM and SAM, we observed that MedSAM
did not consistently outperform SAM. While it showed im-
provements in segmentation accuracy with the ConvNet
head and g-network, there were no significant benefits with
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Figure 3: Comparison of Prediction Quality Across Methods

the Vision Transformer (ViT) head, and a slight decrease in
performance was noted with LoRaMedNet.

Fine-tuning Method Comparison LoRaMedNet, when
fine-tuned with the SAM base model, demonstrated supe-
rior performance compared to previous fine-tuning methods,
including those using MedSAM. With SAM, the next best
approach was g-network, with remaining ConvNet and ViT
head achieving comparable performance. With MedSAM, g-
network manages to have a slight gain in performance over
LoRaMedNet, with ConvNet now outperforming ViT head
significantly. Full table of results is displayed in table 1.

Prediction Quality Figure 3 shows a side-by-side com-
parison of predictions based on different fine-tuning meth-
ods on different foundation models. We observe that
LoRaMedNet-adapted SAM has consistently superior per-
formance which corroborates our table results. In particu-
lar LoRaMedNet outperforms g-network, a strong baseline
method which suffers from grainy predictions. This is the
most apparent with g-network-adapted SAM, and the effect
of using MedSAM instead seems to be a reduction in this
graininess. On the other hand, considering LoRaMedNet-
adapted SAM which already has high performance, using
MedSAM instead does not yield any noticeable advantage

and in fact seems to degrade performance.

Discussion Our hypothesis is supported by the observa-
tion that MedSAM does not yield consistent advantages
over SAM in performance, and that the highest performing
method, LoRaMedNet (ours), utilized SAM. The success of
LoRaMedNet as a parameter-efficient fine-tuning approach
is significant, given the high benchmarks set by recent meth-
ods like the g-network. Furthermore, LoRaMedNet achieves
consistent high performance on both SAM and MedSAM,
whereas previously considered methods achieve lower per-
formance with at least one of these two model weights. This
demonstrates the robustness of using LoRaMedNet on foun-
dation models with or without medical pre-training. Our re-
sults also demonstrate the feasibility of attaining high per-
formance in a label-efficient setting.

These results carry important implications for medical
imaging. They indicate that generalist AI models, such as
SAM, can be effectively and efficiently (both parameter-
wise and label-wise) adapted for medical image segmen-
tation tasks, even without specific pre-training on medical
datasets (Moor et al. 2023). The effectiveness of LoRaMed-
Net with SAM underscores the potential for more adaptable
and cost-efficient Al solutions in healthcare, which could
lead to enhanced patient diagnosis and treatment.
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