
Early Attentive Sparsification Accelerates Neural Speech Transcription

Zifei Xu 1 Sayeh Sharify 1 Hesham Mostafa 1 Tristan Webb 1 Wanzin Yazar 1 Xin Wang 1

Abstract
Transformer-based neural speech processing has
achieved state-of-the-art performance. Since
speech audio signals are known to be highly com-
pressible, here we seek to accelerate neural speech
transcription by time-domain signal sparsification
early in the neural encoding stage, taking advan-
tage of the interpretability of the self-attention
mechanism in transformer audio encoders. With
the Whisper family of models, we perform a sys-
tematic architecture search over the joint space
of sparsification stage (a certain encoder layer)
and compression ratio (sparsity). We found that
the best resulting solutions under 1% accuracy
degradation choose to sparsify the hidden state to
40-60% sparsity at an early encoding stage, and
thereby achieve up to 1.6× runtime acceleration
in English speech transcription tasks on Nvidia
GPUs without any fine-tuning.

1. Introduction
Transformer-based automatic speech recognition (ASR) sys-
tems have set recent state-of-the-art records on numerous
speech transcription benchmarks (Radford et al., 2023). Un-
like older approaches that required special audio-text align-
ment during training (Graves et al., 2006; Amodei et al.,
2016), or that trained the audio model independently from
the language model (Baevski et al., 2020), transformer ar-
chitectures use an encoder-decoder architecture to encode
the audio sequence and then decode the text transcription
from the audio sequence embeddings. The self-attention
and cross-attention mechanisms in the encoder and decoder
allow information to flow between audio tokens, and from
audio tokens to text tokens. The Whisper model family is
a popular and highly-performant transformer-based ASR
model family. In this paper, we investigate token-dropping

1d-Matrix, Santa Clara, USA. Correspondence to: Zifei Xu
<xuzifei@d-matrix.ai>, Xin Wang <xwang@d-matrix.ai>.

Accepted at Efficient Systems for Foundation Models Workshop at
the International Conference on Machine Learning (ICML) 2025
(ES-FoMo@ICML2025) and ICML 2025 Workshop on Machine
Learning for Audio (ICMLWMLA). Copyright 2025 by the au-
thor(s).

strategies to reduce the number of tokens in the encoder
stack of Whisper models.

Token-eviction or token-dropping methods have tradition-
ally been applied to reduce the size of the KV (key-value)
cache in large language models (Zhang et al., 2023a; 2024).
They are driven by the observation that language token se-
quences are often highly redundant with several tokens that
contribute little information to the language modeling task.
One common approach to identify these unimportant to-
kens is to use their cumulative attention scores across heads
and source tokens (Wang et al., 2021; Zhang et al., 2023a).
These cumulative scores indicate how strongly these tokens
are used (aggregated) by other tokens. However, it is still an
open question whether such token redundancy is present in
tokenized audio signals, and if such redundancy exists, what
the optimal token dropping strategies are that can exploit
this redundancy to reduce the compute and memory cost of
the audio encoder.

In this paper, our goal is to exploit possible audio token
redundancies in the Whisper model family. We analyze the
attention scores across multiple layers to obtain insights into
how the importance of different audio tokens varies across
layers. We experiment with several token dropping strate-
gies. We construct a Pareto front of token dropping recipes
that achieve optimal tradeoffs between WER (Word Error
Rate) and inference latency. We show that these recipes
generalize well across multiple Whisper model variants.

2. Related work
2.1. Encoder-decoder transformer models

The transformer (Vaswani et al., 2017) architecture’s ability
to model long range dependencies has made it the method
of choice in many domains with sequential input. Au-
dio data, in particular, can be naturally represented as a
temporal sequence of audio samples Early models such as
Wave2Vec (Baevski et al., 2020) and HuBERT (Hsu et al.,
2021) extended the Transformer architecture and utilized
large audio datasets (Panayotov et al., 2015). These models
trained directly end-to-end on raw audio input spectrograms
in a self-supervised manner. Radford et al. 2023 took advan-
tage of the underappreciated nature of weakly supervised
pre-training, leading to Whisper models, a staged multi-

1

MLP

Self-attention

MLP

Cross-attention

Self-attention

2×Conv1d+GELU

Add enc. pos. emb.

MLP

Self-attention

Importance

Gather

TopK indices

attn. scores

spectrogram current token

next token

Add dec. pos. emb.

Figure 1. Architecture of the Whisper model modified with early attentive sparsification. The original Whisper model is composed of
an encoder stack E’s (middle column) and a decoder stack D’s (right column), of depth L. Flowing through the encoder stack are
hidden states of sequence dimension T , determined by embedded audio signal duration. At an early encoding stage i ∈ {1, · · · , L},
we compress the hidden state by a time-domain sparsifier C (left column, see Section 3 for details) at sparsity s ∈ [0, 1), to a reduced
sequence dimension ⌊(1− s)T ⌉, which persists in the rest of the encoder stack and in the subsequent decoder stack. In the choice of (i, s)
consists the architectural search space.

task training pipeline which processed 680,000 hours of
multi-lingual audio data and paired text transcripts during
pre-training.

The encoder-decoder transformer block architecture (con-
sisting of attention, feedforward, and convolutional layers)
has formed the backbone for numerous other ASR models.
Architectures used in recent industrial applications (Zhang
et al., 2023b; Ramirez et al., 2024) consist of encoder-
decoder architecture comprised of conformer blocks (Gulati
et al., 2020; Rekesh et al., 2023) in the encoder, and RNN-
T layers (Graves, 2012; Ghodsi et al., 2020; Kuang et al.,
2022) in the decoder stack. The encoder stack is more
critical to runtime efficiency than the decoder stack (Prab-
havalkar et al., 2023). Others have proposed elimination of
convolutions entirely from the architecture, instead relying
solely on self-attention (Hou et al., 2024).

3. Methods
3.1. Models and benchmarking tasks

We experiment with 10 publicly available models from
the HuggingFace Hub with parameter counts span-

ning three orders of magnitude: the OpenAI Whisper
family (Radford et al., 2023) and the HuggingFace
Distil-Whisper family (Gandhi et al., 2023). These
models are whisper-tiny (37.8M), whisper-base
(72.6M), whisper-small (242M), whisper-medium
(764M), whisper-large-v3-turbo
(809M), whisper-large-v3 (1.54B),
distil-small.en (166M), distil-medium.en
(394M), distil-large-v3.5 (756M) and
distil-large-v3 (756M).

The models are benchmarked on the Librispeech ASR au-
tomatic speech transcription task (Panayotov et al., 2015)
yielding word error rate (WER) as a performance metric. A
subset, 300 task examples, of the clean validation split is
used for architecture search (see Appendix 6.1 for analysis
on the adequacy of the choice of this data set size).

3.2. Early attentive sparsification (EAS) mechanism

As shown in Figure 1, we sparsify the hidden state zl ∈
RN×T at an early encoder stage l = i ∈ {1, · · · , L} to a

2

sparsity level s ∈ [0, 1), where N is the embedding dimen-
sion and T the number of audio samples in the time domain.
The sparsification mechanism is based on top-k selection of
a heuristic importance score I l ∈ RT computed from the
previous encoder layer’s (post-softmax) self-attention score
Al−1 ∈ RH×T×T (H denoting the number of attention
heads) as the arithmetic mean across attention heads

I lt =
1

HT

∑
h,t′

Al−1
h,t′,t. (1)

The sparsifier effectively reduces the temporal sequence
length from T to ⌊(1− s)T ⌉ at encoding stage l = i,

zi ← gather

(
zi, argtopk

t|k=⌊(1−s)T⌉
Iit

)
. (2)

3.3. Runtime speedup measurement

The aforementioned sparsification mechanism impacts the
inference-time computational efficiency in two ways: ap-
plying the sparsifier introduces a constant overhead at an
encoder stage, and from then on the reduced hidden state
temporal dimension speeds up the rest of the model execu-
tion. As such, the earlier the sparsification stage i is, and the
higher the sparsity s is, the faster the overall computation
will be.

To assess the practical runtime speedup resulting from archi-
tecture choice (i, s), we measure wall-clock time of model
inference on a single Nvidia A100 GPU with 80GB HBM.
We record the encoding and decoding time for individual
instances of the transcription task, and quantify real time
factor (RTF, Srivastav et al. 2023), defined as the dimen-
sionless ratio between the total inference time and the total
duration of the raw speech audio signals. The lower the
RTF, the faster the transcription. Relative speedup is cal-
culated as RTF0

RTF , RTF0 being the baseline RTF. Note that,
though other independent optimizations such as using lower
numerical precision, data batching, low-rank weight com-
pression (Kamahori et al., 2025), and FlashAttention-2 (Dao,
2023) could push RTF to even lower levels, in addition to
our technique, the relative speedup due to early attentive
sparsification persists in the presence of other orthogonal
runtime optimizations (see Appendix 6.4).

3.4. Architecture search

We perform a grid search of sparsification stage and
sparsity (i, s) ∈ [L] × S, where [L] ≜ {1, ...L}, and
S = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Along
the empirical Pareto front, we minimize the overall real
time factor RTF constrained by accuracy, viz. 1 −WER,
degrades no more than 1% relative to the baseline. Formally,

the optimization problem is

(i∗, s∗) = argmin
(i,s)∈[L]×S

RTF(i, s),

s.t. {(i′, s′)|WER(i′, s′) < WER(i, s),

RTF(i′, s′) < RTF(i, s)} = ∅,

and 1−WER(i, s) ≥ 0.99 (1−WER0) ,

(3)

where WER0 is the word error rate achieved by the baseline
model.

Model (i, s) WER [%] RTF

whisper-tiny

Baseline 6.266 0.020
(3, 0.7) 7.050 (0.992) 0.020 (1.018×)

(37.8M, 4) (2, 0.6) 6.406 (0.999) 0.020 (1.007×)
(2, 0.5) 6.075 (1.002) 0.020 (1.003×)

whisper-base

Baseline 4.352 0.027
(1, 0.6) 5.274 (0.990) 0.026 (1.052×)

(72.6M, 6) (3, 0.6) 4.682 (0.997) 0.026 (1.050×)
(4, 0.5) 4.282 (1.001) 0.026 (1.047×)

whisper-small

Baseline 3.064 0.049
(1, 0.6) 3.185 (0.999) 0.045 (1.097×)

(242M, 12) (1, 0.5) 3.064 (1.000) 0.046 (1.076×)
(6, 0.5) 2.977 (1.001) 0.047 (1.046×)

whisper-medium

Baseline 2.019 0.103
(7, 0.7) 2.837 (0.992) 0.089 (1.150×)

(764M, 24) (1, 0.6) 2.106 (0.999) 0.090 (1.145×)
(1, 0.5) 2.071 (0.999) 0.090 (1.136×)

whisper-large-v3-turbo

Baseline 1.671 0.049
(2, 0.6) 2.489 (0.992) 0.031 (1.601×)

(809M, 32) (3, 0.6) 1.984 (0.997) 0.031 (1.577×)
(6, 0.6) 1.984 (0.997) 0.033 (1.498×)

whisper-large-v3

Baseline 1.514 0.144
(3, 0.7) 2.245 (0.993) 0.116 (1.237×)

(1.54B, 32) (1, 0.6) 1.810 (0.997) 0.118 (1.216×)
(3, 0.6) 1.741 (0.998) 0.121 (1.190×)

distil-small.en

Baseline 2.924 0.025
(1, 0.5) 3.325 (0.996) 0.022 (1.168×)

(166M, 12) (1, 0.4) 2.855 (1.001) 0.022 (1.131×)

distil-medium.en

Baseline 3.377 0.027
(1, 0.5) 3.969 (0.994) 0.019 (1.418×)

(394M, 24) (2, 0.5) 3.934 (0.994) 0.020 (1.383×)
(3, 0.5) 3.377 (1.000) 0.020 (1.368×)

distil-large-v3

Baseline 1.932 0.041
(1, 0.5) 2.280 (0.996) 0.026 (1.600×)

(756M, 32) (3, 0.5) 2.228 (0.997) 0.027 (1.538×)
(4, 0.5) 2.193 (0.997) 0.027 (1.523×)

distil-large-v3.5

Baseline 7.371 0.041
(1, 0.5) 7.686 (0.997) 0.026 (1.596×)

(756M, 32) (1, 0.4) 6.236 (1.012) 0.029 (1.431×)
(2, 0.3) 6.183 (1.013) 0.033 (1.247×)

Table 1. WER and RTF of the top-3 2 architecture search results
for each model. Parenthesized numbers show relative changes
from baseline. Under each model name we marked the parameter
count of the model and number of encoder layers.

4. Experimental results
We present empirical optimization results for the OpenAI
Whisper and the HuggingFace Distil-Whisper models in
Figure 2, and report top solutions in Table 1.

The top solutions from the architecture search have sparsi-
ties between 0.4 and 0.6 at a very early (typically among
the first 3) encoding stage, indicating a high level of task-
irrelevant redundancy in the embedded hidden state. This is

3

Figure 2. Empirical results of architecture search for OpenAI’s Whisper (top) and HuggingFace’s Distil-Whisper (bottom) models,
showing tradeoff between WER and RTF in the context of the benchmark transcription task. Each colored symbol represents a unique
(i, s) configuration (see Section 3) for a certain model (identity of the model encoded by symbol shape). Large, black symbols represent
the baseline configuration for each model, from which a thick, vertical bar rises to 1% accuracy degradation (Equation 3) from baseline,
leading to the 99% accuracy boundary (horizontal dotted lines) serving as a constraint of the optimization. Empirical Pareto fronts of each
model are marked by thin, gray curves. We identify top-3 configurations (circled) on the Pareto fronts of each model that satisfy the
accuracy constraint as admissible solutions to report in Table 1.

particularly amenable to runtime efficiency, resulting in up
to 1.6× speedup from baseline.

Notably, the highest speedup is achieved in Whisper
models produced by post-training compression, sug-
gesting a synergy between these compression tech-
niques and our early attentive sparsification. First,
whisper-large-v3-turbo, a further fine-tuned
whisper-large-v3 with a much lighter decoder, EAS
leads to 1.60× speedup when it is only 1.24× for
whisper-large-v3. Second, EAS results in even
higher speedups in Distil-Whisper models than in their
larger, teacher Whisper models; for example, EAS achieved
1.60× speedup in distil-large-v3 as compared to
1.24× for whisper-large-v3, its teacher. These find-
ings suggest that, EAS might be complementary or even
synergistic to existing efficiency optimization techniques in

speeding up neural ASR.

5. Conclusion
We introduce early attentive sparsification (EAS), a simple
mechanism that shortens the hidden state in Whisper-based
ASR models early in the encoding stage based on local
self-attention scores. Without any fine-tuning, our method
prunes 40-60% of audio samples at an early encoder layer
while maintaining≥ 99% of the baseline accuracy in speech
transcription tasks. This results in up to 1.6× speedups on
a single A100 GPU. Our method is complementary to other
efficiency optimization techniques, holding the promise in
further improving inference-time efficiency of neural ASR.

2There are only 2 configurations in the search grid that satisfy
the optimization constraints for distil-small.en.

4

References
Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,

Christine McLeavey, and Ilya Sutskever. Robust speech
recognition via large-scale weak supervision. In Inter-
national conference on machine learning, pages 28492–
28518. PMLR, 2023.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. Connectionist temporal classifica-
tion: labelling unsegmented sequence data with recurrent
neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376, 2006.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-
hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared
Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen,
et al. Deep speech 2: End-to-end speech recognition in
english and mandarin. In International conference on
machine learning, pages 173–182. PMLR, 2016.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli. wav2vec 2.0: A framework for self-
supervised learning of speech representations. Advances
in neural information processing systems, 33:12449–
12460, 2020.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen,
Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian,
Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter
oracle for efficient generative inference of large language
models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023a.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura,
Beidi Chen, and Atlas Wang. Q-hitter: A better token
oracle for efficient llm inference via sparse-quantized kv
cache. Proceedings of Machine Learning and Systems, 6:
381–394, 2024.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Effi-
cient sparse attention architecture with cascade token and
head pruning. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 97–110. IEEE, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrah-
man Mohamed. Hubert: Self-supervised speech repre-
sentation learning by masked prediction of hidden units.
IEEE/ACM transactions on audio, speech, and language
processing, 29:3451–3460, 2021.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. Librispeech: An asr corpus based
on public domain audio books. In 2015 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5206–5210, 2015. doi:
10.1109/ICASSP.2015.7178964.

Yu Zhang, Wei Han, James Qin, Yongqiang Wang, Ankur
Bapna, Zhehuai Chen, Nanxin Chen, Bo Li, Vera Axel-
rod, Gary Wang, et al. Google USM: Scaling automatic
speech recognition beyond 100 languages. arXiv preprint
arXiv:2303.01037, 2023b.

Francis McCann Ramirez, Luka Chkhetiani, Andrew Ehren-
berg, Robert McHardy, Rami Botros, Yash Khare, Andrea
Vanzo, Taufiquzzaman Peyash, Gabriel Oexle, Michael
Liang, et al. Anatomy of industrial scale multilingual
ASR. arXiv preprint arXiv:2404.09841, 2024.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar,
Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong
Zhang, Yonghui Wu, et al. Conformer: Convolution-
augmented transformer for speech recognition. arXiv
preprint arXiv:2005.08100, 2020.

Dima Rekesh, Nithin Rao Koluguri, Samuel Kriman,
Somshubra Majumdar, Vahid Noroozi, He Huang, Olek-
sii Hrinchuk, Krishna Puvvada, Ankur Kumar, Jagadeesh
Balam, et al. Fast conformer with linearly scalable at-
tention for efficient speech recognition. In 2023 IEEE
Automatic Speech Recognition and Understanding Work-
shop (ASRU), pages 1–8. IEEE, 2023.

Alex Graves. Sequence transduction with recurrent neural
networks. arXiv preprint arXiv:1211.3711, 2012.

Mohammadreza Ghodsi, Xiaofeng Liu, James Apfel, Ro-
drigo Cabrera, and Eugene Weinstein. Rnn-transducer
with stateless prediction network. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7049–7053. IEEE,
2020.

Fangjun Kuang, Liyong Guo, Wei Kang, Long Lin, Ming-
shuang Luo, Zengwei Yao, and Daniel Povey. Pruned rnn-
t for fast, memory-efficient asr training. arXiv preprint
arXiv:2206.13236, 2022.

Rohit Prabhavalkar, Takaaki Hori, Tara N Sainath, Ralf
Schlüter, and Shinji Watanabe. End-to-end speech recog-
nition: A survey. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 32:325–351, 2023.

Zejiang Hou, Goeric Huybrechts, Anshu Bhatia, Daniel
Garcia-Romero, Kyu Han, and Katrin Kirchhoff. Revisit-
ing convolution-free transformer for speech recognition.
2024.

5

Sanchit Gandhi, Patrick von Platen, and Alexander M Rush.
Distil-whisper: Robust knowledge distillation via large-
scale pseudo labelling. arXiv preprint arXiv:2311.00430,
2023.

Vaibhav Srivastav, Somshubra Majumdar, Nithin
Koluguri, Adel Moumen, Sanchit Gandhi, et al.
Open automatic speech recognition leader-
board. https://huggingface.co/spaces/
hf-audio/open_asr_leaderboard, 2023.

Keisuke Kamahori, Jungo Kasai, Noriyuki Kojima, and
Baris Kasikci. Liteasr: Efficient automatic speech recog-
nition with low-rank approximation, 2025. URL https:
//arxiv.org/abs/2502.20583.

Tri Dao. Flashattention-2: Faster attention with better
parallelism and work partitioning, 2023. URL https:
//arxiv.org/abs/2307.08691.

6. Appendix
6.1. Choice of data set size for the architectural search

The LibriSpeech ASR dataset (Panayotov et al., 2015) val-
idation split has 2,703 audio examples. Due to the large
search space across encoder layers and sparsity for our ex-
periments, it is inefficient and impractical to run the whole
validation split. To determine the smallest subset that still
yields stable accuracy estimates, we ran experiments on
the whole split on a whisper-large-v3-turbomodel
with drop layer 21 and sparsity 0.6 (a sparsification config-
uration that provides reasonable speedup without much ac-
curacy degradation), and the non sparsified baseline model.
We partitioned the data split into groups with different sizes
and plot the accuracy degradation versus dataset size, as
shown in Fig. 3. We selected 300 as the optimal dataset size
since it is a reasonable size while its error bar falls within
our tolerance of 0.01 accuracy degradation for selecting
the optimal sparsification configuration, striking a balance
between statistical reliability and computational cost.

Figure 3. Accuracy ratio between model with encoder sparsi-
fication and baseline model at different dataset sizes, where
accuracy = 1−WER. Hollow circles represent mean of accu-
racy degradation with error bars for one standard deviation.

6.2. Aggregation function for importance score

We asked if any statistics than than arithmetic mean serve
as a better aggregation function in computing importance
scores from attention scores.

To answer this question, we performed a search over the
set for the choice of aggregation function. Fig. 6 and Table
2 shows the WER of models sparsified at the last encoder
layer using importance scores aggregated across all encoder
layers. Among the aggregation functions, mean produces
the lowest WER most of the time, hence it was selected to
be used in our main experiments. For all model sizes, we

6

https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
https://arxiv.org/abs/2502.20583
https://arxiv.org/abs/2502.20583
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691

observe that sparsity can go up to 0.6 without noticeable
degradation in WER when using the mean aggregation
function.

6.3. Runtime decomposition

We profiled the time spent in each component of the Whisper
model with increasing sparsity at a specific sparsification
layer (layer 20) for whisper-large-v3-turbo in Fig.
4. We find that time spent before the encoder stack (Conv
and GELU ops) did not change with increasing sparsity
while time spent in the encoder and decoder stack both de-
creases, at a slope where the former is steeper than the latter.
There is a surge of decoder time at very high sparsities. This
can be explained by the tendency to generate more text to-
kens when the model is at high sparsity, as depicted in Fig.
5. For example, at sparsity=0.9, the model would generate

”He also thought of his managerial position, his managerial
position, his managerial position, his managerial position,
his managerial position, his managerial position, his man-
agerial position, his managerial position, his managerial
position, his managerial position, his managerial position,
his managerial position, his managerial position”, instead
of ”He also thought of his managerial position.” generated
by the baseline model. This also agrees with our observation
that when padded audios tokens are removed for shorter au-
dio sequences, the model would have difficulty identifying
the stopping point and generate indefinitely.

Figure 4. Average time spent at different components
of the Whisper model per example vs sparsity for
whisper-large-v3-turbo model at sparsification
layer of 20. To reduce the effect of system noise, the same
experiment was repeated 3 times and plotted on top of each other.

6.4. Compatibility with other efficient methods

Our baseline real time factors (RTF) are higher than the
figures reported on the OpenASR Leaderboard (Srivastav

Figure 5. Average number of tokens generated per example vs spar-
sity for whisper-large-v3-turbo model at sparsification
layer of 20. The dashed line indicates the average number of to-
kens generated per example for the baseline model.

et al., 2023) because we benchmark with float32 preci-
sion and a batch size of 1, whereas the leader board uses
bf16 and large batches (64). Importantly, the proposed
token-dropping scheme operates on sequence length, mak-
ing it orthogonal to weight-space optimizations such as
low-rank factorization (Kamahori et al., 2025), pruning, or
quantization, and complementary to kernel-level accelera-
tors. Appendix 6.4 demonstrates that combining our method
with FlashAttention-2 (Dao, 2023) or PyTorch SDPA yields
additional speed-ups without compromising accuracy.

To demonstrate the compatibility with kernel optimizations,
we applied our encoder sparsification strategy to alternative
attention implementations, including FlashAttention-2 and
PyTorch SDPA. We plot the trade off between WER and
RTF of whisper-large-v3-turbo using different at-
tention implementations in Fig. 7. Similar to the eager
attention implementation, the Pareto front of models with
alternative attention implementation is also dominated by
sparsities between 0.4 to 0.6, providing speedups within the
accuracy degradation range. Because our algorithm needs
raw attention scores from only one encoder layer, we com-
pute that single layer with the standard eager attention and
run every other layer with the accelerated FlashAttention-2
or SDPA kernels. Consequently the method inherits the full
speedup benefits of the optimized kernels, confirming that
our method and kernel-level acceleration are complemen-
tary.

7

Model Sparsity mean (ours) max min geometric mean random

whisper-tiny (6.266)

0.1 6.232 6.876 6.806 6.649 6.841
0.2 6.127 7.990 16.884 6.719 6.823
0.3 6.057 8.947 57.163 7.084 7.520
0.5 6.144 10.496 202.576 8.285 15.352
0.6 6.214 17.668 330.078 17.493 45.274
0.7 6.632 14.117 445.152 49.939 61.741
0.8 25.692 61.706 730.496 228.285 244.682
0.9 159.077 178.938 821.480 600.400 584.874

whisper-base (4.352)

0.1 4.282 4.421 4.334 4.595 4.508
0.2 4.230 4.299 5.048 4.752 4.648
0.3 4.247 4.386 10.270 4.769 5.292
0.5 4.247 4.769 61.793 5.292 12.533
0.6 4.386 5.048 187.485 6.179 35.161
0.7 4.665 6.719 348.947 43.725 114.221
0.8 11.802 21.166 760.644 188.442 344.804
0.9 86.510 75.857 1345.309 687.398 861.897

whisper-small (3.064)

0.1 3.064 3.011 3.708 3.064 3.725
0.2 3.046 3.081 3.272 3.081 3.220
0.3 2.994 3.064 3.516 3.655 3.464
0.5 2.924 4.961 28.216 2.994 6.005
0.6 2.959 15.213 102.402 7.502 21.410
0.7 10.026 49.800 294.552 5.326 138.120
0.8 26.075 261.410 596.014 78.016 347.050
0.9 229.017 1155.039 1052.916 556.588 648.721

whisper-medium (2.019)

0.1 1.967 2.106 2.054 1.967 2.019
0.2 2.002 2.089 2.141 2.002 2.124
0.3 1.984 2.193 15.161 1.984 2.228
0.5 2.002 10.357 127.746 2.002 3.307
0.6 2.071 31.158 279.582 2.263 5.379
0.7 2.332 51.506 510.218 3.394 28.077
0.8 39.130 120.035 835.892 56.623 169.974
0.9 384.421 95.352 613.020 457.685 610.653

whisper-large-v3-turbo (1.671)

0.1 1.671 1.741 1.793 1.671 1.845
0.2 1.671 1.775 1.932 1.671 2.002
0.3 1.688 1.793 2.419 1.688 2.350
0.5 1.775 8.651 14.151 1.723 13.908
0.6 1.810 24.352 73.299 1.706 45.379
0.7 1.880 102.367 80.470 1.915 185.396
0.8 5.257 76.258 195.753 2.507 433.542
0.9 75.144 238.416 327.850 49.678 921.410

whisper-large-v3 (1.514)

0.1 1.497 7.467 1.775 1.497 1.584
0.2 1.497 33.020 2.489 1.497 1.706
0.3 1.514 83.046 4.595 1.514 1.897
0.5 1.549 96.240 56.971 1.532 3.220
0.6 1.584 96.101 161.706 1.810 9.434
0.7 8.634 96.501 213.281 6.649 47.032
0.8 4.352 176.936 18.799 214.900
0.9 113.768 95.735 85.953 394.030

Table 2. WER (%) for models at different sparsities using various aggregation functions. Entries in bold presents the best results with
lowest WER. Number in parenthesis next to the model name is the baseline WER. WER at sparsity ≥ 0.8 for whisper-large-v3
using max aggregation function are missing as they are trapped in infinite generation loops.

8

Figure 6. WER versus sparsity for dropping at the last encoder layer using importance score aggregated across all encoder layers. Sub
figures correspond to different models and colored lines represent various aggregation function, with random meaning randomly dropping
audio samples.

Figure 7. Empirical results of architecture search for the OpenAI whisper-large-v3-turbo model with different attention imple-
mentations. Convention same as in Figure 2.

9

