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Abstract

Although there is an extensive body of work characterizing the sample complexity
of discounted-return offline RL with function approximations, prior work on the
average-reward setting has received significantly less attention, and existing ap-
proaches rely on restrictive assumptions, such as ergodicity or linearity of the MDP.
In this work, we establish the first sample complexity results for average-reward
offline RL with function approximation for weakly communicating MDPs, a much
milder assumption. To this end, we introduce Anchored Fitted Q-Iteration, which
combines the standard Fitted Q-Iteration with an anchor mechanism. We show
that the anchor, which can be interpreted as a form of weight decay, is crucial
for enabling finite-time analysis in the average-reward setting. We also extend
our finite-time analysis to the setup where the dataset is generated from a single-
trajectory rather than IID transitions, again leveraging the anchor mechanism.

1 Introduction

The goal of offline Reinforcement Learning (RL) is to find a near-optimal policy using a precollected
dataset without any direct interaction with the environment. Characterizing the sample complexity
for finding an ϵ-optimal policy using function approximation under assumptions that the offline
data has sufficient coverage over the whole state-action space has been an active area of theoretical
RL research. However, more prior work focuses on the discounted cumulative reward setup, and
research on obtaining sample complexity in the average reward has been limited due to the absence
of the discount factor and the complexity of the Bellman equation. Specifically, all prior works with
function approximation rely on restrictive assumptions such as ergodicity or linearity of the MDP.

Although theoretical RL research often focuses on the discounted return setup due to the theoretical
convenience offered by the discount factor and the simpler Bellman equation, many practical scenarios
are more naturally modeled as agents aim to maximize the average reward. In fact, many practical
RL applications do not use discounting at all. These considerations make the sample complexity of
average-reward RL relevant, despite the additional technical challenges this setting presents.

Contribution. In this work, we introduce the Anchored Fitted Q-Iteration and establish the sample
complexity on average reward MDPs with general function approximation for weakly communicating
MDPs for the first time. We consider the cases with IID data and with single-trajectory data. Then,
we show that by using the relative normalization mechanism from the classical relative value iteration,
we can further improve the sample complexity.
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Prior works MDP class dataset Coverage
coefficient

Ozdaglar et al. [63] ergodic∗ IID samples partial

Gabbianelli et al. [30] unichain∗ (+ linear) IID samples partial

Our work weakly communicating∗ IID samples full

Our work weakly communicating∗ β-mixing single-trajectory full

Table 1: Comparison of analyses of offline average-reward MDPs. Our work, which assumes the
MDP is weakly communicating, significantly relaxes the structural assumption on the MDP compared
to prior work. (Clarification∗: Ergodic, unichain, and weakly communicating are respectively the
standard MDP classes for which the results of [63], [30], and our work apply. However, the precise
conditions are slightly more general in each case. See Section 1.2 for detailed definitions.)

weakly communicating

unichain

ergodic

Figure 1: The MDP classes satisfy the inclusion: ergodic ⊂ unichain ⊂ weakly communicating

1.1 Preliminaries and notations

We briefly review the basic notions of average-reward Markov decision processes (MDPs) and
reinforcement learning (RL) and refer the readers to standard references for further details [66, 7, 78].

Average-reward MDP. Let M(X ) be the space of probability distributions over X and F(X )
be the space of bounded real-valued functions over X . Write (S,A, P, r) to denote an infinite-
horizon undiscounted MDP with finite state space S, finite action space A, transition matrix
P : S × A → M(S), bounded reward r : S × A → [−R,R]. Denote π : S → M(A) for a
policy, gπ(s, a) = lim infT→∞

1
T Eπ

[∑T
t=1 r(st, at) | s0 = s, a0 = a

]
for the average-reward of a

policy π given an initial state-action pair (s, a), where Eπ denotes the expectation over all trajectories
(s0, a0, s1, a1, . . . , sT , aT ) induced by P and π.

We say π⋆ is an optimal policy if gπ⋆(s, a) = maxπ g
π(s, a) for all s ∈ S and a ∈ A, and we say

gπ⋆ is the optimal average reward. (The optimal policy and optimal average reward exists for finite
state-action space [66, Theorem 9.1.8].) We say π is an ϵ-optimal policy if ∥gπ⋆ − gπ∥∞ ≤ ϵ. Define
Pπ as

Pπ((s, a) → (s′, a′)) = Prob((s, a) → (s′, a′) | s′ ∼ P (· | s, a), a′ ∼ π(· | s′)),

the transition matrix induced by policy π. Then, (PπQ)(s, a) = Ea′∼π(· | s′),s′∼P (· | s,a)[Q(s′, a′)]
for Q ∈ F(S ×A). Define the weighted Lp-norm of Q ∈ F(S ×A) under state-action distribution
ρ as ∥Q∥p,ρ = [E(s,a)∼ρ|Q(s, a)|p]1/p for p ≥ 1.

Coverage coefficient. A coverage coefficient quantifies the shift between the distribution of the
offline data and the distribution induced by policies [61, 18]. Loosely speaking, the full coverage
assumption, as stated in Table 1, assumes that the offline data sufficiently explores the whole state-
action space regardless of policy [4, 92], while partial coverage only requires the offline data to
sufficiently explore the state-action pairs that an optimal policy would visit [94, 42]. These types of
assumptions are fundamentally necessary for the complexity analysis of offline RL [18], and different
works use different types of coverage coefficients (cf. [80, 71]). The coverage coefficient we use is
defined in Section 3.
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Value Iteration. Given an undiscounted MDP (S,A, P, r), the Bellman optimality operator T is

TQ(s, a) = r(s, a) + Es′∼P (· | s,a)

[
max
a′∈A

Q(s′, a′)
]

for all s ∈ S and a ∈ A. We define the standard Value Iteration (VI) as

Qk = TQk−1 for k = 1, 2, . . . ,K,

where Q0 is an initial point.

MDP classes. MDPs are classified according to the structure of the transition matrices. (For
definitions on irreducible classes, recurrent classes, transient states, and aperiodicity of transition
matrices, refer to [66, Appendix A.2].) An MDP is ergodic if the transition matrices induced by every
policy π has a single recurrent class and is aperiodic. An MDP is unichain if the transition matrices
induced by every policy π has a single recurrent class plus a possibly empty set of transient states. An
MDP is weakly communicating if there is a set of states where every state in the set is accessible from
every other state in that set under some policy, plus a possibly empty set of states that are transient
for all policies. Otherwise, in general, an MDP is multichain. We note that classification of MDPs is
crucial in the analyses of average-reward MDPs [96, 97, 88, 50].

1.2 Conditions of Prior works

In Table 1, we remarked that the precise conditions on the MDPs are slightly general than ergodic,
unichain, and weakly communicating. In this section, we state the precise conditions.

Uniform mixing [63]. The uniform mixing condition assumes that there exist positive tmix ∈ N
(which does not depend on π and ρ) such that ∥ρ⊤(Pπ)t−νπ∥1 ≤ 1/2 for all t ≥ tmax for any policy
π and initial distribution ρ, where νπ is the stationary distribution of Pπ. (This condition requires
that the stationary distribution νπ is unique for all π.) The prior work [63] uses this assumption for
its analysis of average-reward MDPs. Ergodic MDPs satisfy the uniform mixing condition [13, 52],
but unichain MDPs do not [66, Example 8.2.1].

All-policy Bellman equation and linear MDPs [30]. The all-policy Bellman equation states that
for any policy π, the average reward gπ does not depend on (s, a) and there exist a Qπ : S ×A → R
such that

r(s, a) + Ea′∼π(· | s′),s′∼P (· | s,a) [Q
π(s′, a′)] = Qπ(s, a) + gπ

for all s ∈ S and a ∈ A. The prior work [30] uses this assumption for its analysis of average-reward
MDP. Unichain MDPs satisfy the all-policy Bellman equation while weakly communicating MDPs, in
general, do not [66, Section 8.4]. Also, the uniform mixing condition implies the all-policy Bellman
equation [88, Lemma 6].

An MDP is linear if there exist ϕ : S ×A → Rd, ψ : S → Rd, and w ∈ Rd such that

r(s, a) = ⟨ϕ(s, a), w⟩, P (s′ | s, a) = ⟨ϕ(s, a), ψ(s′)⟩.

The linear MDP assumption is often used for theoretical analyses [39, 30], but it requires knowledge
of the mapping ϕ and ψ and often fails to hold in practice [32, 82].

Bellman optimality equation (our work).
Assumption 1 (Bellman optimality equation). The optimal average reward gπ⋆ does not depend on
(s, a) and there exist a Qπ⋆ : S ×A → R such that

r(s, a) + Es′∼P (· | s,a)

[
max
a′

Qπ⋆(s′, a′)
]
= Qπ⋆(s, a) + gπ⋆ ,

for all s ∈ S and a ∈ A.

A policy π⋆ satisfying the Bellman optimality equation is an optimal policy [88, Section 2]. The
all-policy Bellman equation implies the Bellman optimality equation, and the weakly communicating
condition of MDPs also implies the Bellman optimality equation [66, Theorem 8.3.2, 8.4.1].
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2 Anchored Fitted Q-Iteration

Consider the offline RL setup with precollected dataset D = {si, ai, ri, s′i}ni=1, where ri = r(si, ai)
and s′i ∼ P (· | si, ai). Let F be a nonempty function space to approximate Q-value. We now
introduce our novel algorithm, Anchored Fitted Q-Iteration (Anc-F-QI).

Algorithm 1 Anchored Fitted Q-Iteration (D,K, {Fi}Ki=1{λi}Ki=1)

Input: D = {si, ai, ri, s′i}ni=1, f0 = 0, K ≥ 1, {λi}Ki=1 ⊂ (0, 1)
for k = 0, 1, . . . ,K − 1 do

T̂ fk = argminf∈Fk+1

∑n
i=1

(
f(si, ai)− ri −maxa∈A fk(s

′
i, a)

)2
fk+1 = (1− λk+1)f0 + λk+1T̂ fk ▷ With f0 = 0, this is weight decay

end for
π(a | s) = argmaxa∈A fK(s, a)
Output π, fK

In Section 4, we present our sample complexity results for Anc-F-QI. Roughly speaking, Theorem 1
establishes Õ(1/ϵ6) sample complexity with IID data and Theorem 2 establishes Õ(1/ϵ12) sample
complexity with β-mixing single-trajectory data. In Section 5, to further improve the sample
complexity with the Relative Anchored Fitted-Q Iteration, establishing Õ(1/ϵ4) and Õ(1/ϵ8) sample
complexities for IID and single-trajectory data, respectively.

2.1 The anchor mechanism and weight decay

Our method Anc-F-QI stated as Algorithm 1 consists of two main components. The first component
is the first line of the for-loop, the classical Fitted Q-Iteration [25, 61] step without discount factor.
Its goal is to find the function T̂ fk ≈ Tfk, where T is the Bellman operator. However, unlike Fitted
Q-Iteration in the discounted cumulative reward case, T̂ fk ≈ Tfk is not enough to establish a finite
sample complexity in the average-reward setup. In the tabular case where the Fitted Q-Iteration
reduces to Value Iteration (VI), it is known that VI might not converge. Specifically, there exists an
average-reward MDP such that the policy error of VI does not converge to zero [22, Example 4].
Even if an aperiodicity condition is assumed, VI guarantees only asymptotic convergence without
any known explicit convergence rate in the average-reward setup [66, Theorem 9.4.5].

Recently, Anchored Value Iteration (Anc-VI) was proposed to obtain finite-time bounds of policy
error for average-reward MDPs [14, 50, 48]. Particularly, the Anchored Q-Value Iteration is

Qk = (1− λk)Q
0 + λkTQ

k−1 for k = 1, 2, . . . . (Anc-QI)

where λk parameter is to be chosen. Compared to the standard VI, Anc-QI obtains the next iterate as
a convex combination between the output of T and the starting point Q0. We call the (1− λk)Q0

term the anchor term since it serves to pull the iterates back toward the starting point Q0. With
this Anc-VI, [50] establish non-asymptotic convergence in the average-reward setup. Specifically,
Anc-VI exhibits the O(1/k)-rate in terms of policy error [50][Theorem 2 and Corollary 2] without
any restrictions on the MDP.

This anchoring mechanism, classically also known as the Halpern iteration [33], has been widely
studied in minimax optimization and fixed-point problems [70, 55, 65, 20, 93]. In the context of
reinforcement learning, [49, 50] applied the anchoring mechanism to VIs for cumulative-return and
average-reward MDPs under the tabular setting, and [14, 48] applied the anchoring mechanism to
Q-Value Iteration for cumulative-return and average reward MDPs under the generative model setting.

In this work, we combine Fitted Q-Iteration with anchoring, as shown in the second line of the
for-loop of Algorithm 1, and establish finite-time bounds on the sample complexity.

2.2 Assumptions on the function space F

Assumption 2 (existence of argmin). In Anc-F-QI, the argmin defining T̂ fk exist for k = 0, . . . ,K − 1.

This assumption is needed for the regression step of Algorithm 1 to be well defined.
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Assumption 3 (star-shaped function space). If f ∈ F , ηf ∈ F for all η ∈ [0, 1].

This assumption implies that the anchor step of Anc-F-QI to be well defined. Star-shaped function
space is a classical notion that relaxes convexity [31, 34, 51], and if F corresponds to a parametrized
neural network with a linear layer as the output layer, F is star-shaped.
Definition 1 (Inherent Bellman error). Define ϵB(F ,F ′) = maxf∈F minf ′∈F ′ ∥f ′ − Tf∥ as the
inherent Bellman error with respect to the norm ∥ · ∥.

The inherent Bellman error ϵB quantifies the error due to the function spaces F ,F ′ in approximating
the output of the Bellman operator [61, 3, 18]. Note that if the function spaces F ,F ′ are bounded (in
the ∥ · ∥∞-norm), then ϵB is also bounded.
Assumption 4 (Bellman completeness). ϵB(F ,F ′) = 0, where ϵB the is inherent Bellman error.

Bellman completeness states that if f ∈ F , then Tf ∈ F ′. I.e., F ,F ′ are closed under the Bellman
operator. Although the Bellman completeness assumption is seemingly strong, it is often considered
in sample complexity analyses in the offline RL literature [18, 26]. In fact, the Bellman completeness
condition is fundamental in the sense that the prior work [28] showed that a polynomial sample
complexity cannot be established without Bellman completeness assumption.

3 Approximate Anchored Q-Value Iteration

In this section, we conduct an Lp bound analysis that will later be used to establish the main sample
complexity results of Sections 4 and 5. Define the Approximate Anchored Q-Value Iteration as

Qk = (1− λk)Q
0 + λk(TQ

k−1 + ϵk) (Apx-Anc-QI)
for k = 1, 2, . . . ,K, where T is the Bellman operator, Q0 ∈ Rn is a starting point, and ϵk represents
the evaluation error of TQk−1. We choose λk = k

k+2 for k = 1, . . . ,K, motivated by [70, 20].

We now establish a convergence analysis of Apx-Anc-QI based on Lp bounds of ϵk. Similar to the
prior work [59, 60, 26], we assume the following coverage coefficient for our analysis.
Assumption 5 (uniform stochastic transition). For a given distribution µ on S ×A,

Cµ
def
= sup

s,a,π

∥∥∥∥Pπ(· | s, a)
µ(·)

∥∥∥∥
∞
<∞.

Assumption 6 (uniform future state distribution). For given distributions µ and ρ on S ×A,

Cµ,ρ
def
= sup

π1,π2,...πk

∥∥∥∥ρ⊤Pπ1Pπ2 · · · Pπk(·)
µ(·)

∥∥∥∥
∞
<∞,

where π1, π2, . . . πk represents an arbitrary sequence of policies.

The coverage coefficients measure the mismatch between the distribution of offline data and the
distribution induced by the transition matrices and initial distributions. We note that Assumption 5
implies Assumption 6 with Cµ,ρ ≤ Cµ [61, Section 5].
Proposition 1. Let p ∈ [1,∞], and let µ and ρ be distributions on S ×A. Under Assumption 1 and
5 (Bellman optimality equation, uniform stochastic transition), the policy error of Apx-Anc-QI with
λk = k

k+2 satisfies

∥gπ⋆ − gπK∥∞ ≤ C1/p
µ

8

K + 2
∥Qπ⋆ −Q0∥p,µ + C1/p

µ

2K

3
max

1≤k≤K
∥ϵk∥p,µ.

Similarly, under Assumption 1 and 6 (Bellman optimality equation, uniform future state distribution),
the policy error of Apx-Anc-QI with λk = k

k+2 satisfies

∥gπ⋆ − gπK∥p,ρ ≤ C1/p
µ,ρ

8

K + 2
∥Qπ⋆ −Q0∥p,µ + C1/p

µ,ρ

2K

3
max

1≤k≤K
∥ϵk∥p,µ.

To clarify, the g-, Q-, and ϵ-terms in Proposition 1 are functions of (s, a) and the norms ∥ · ∥p,ρ and
∥ · ∥p,µ are taking expectations with respect to the distributions ρ and µ.

The bounds of Proposition 1 serve as the technical crux of our sample complexity results later
presented in Theorems 1, 2, 3, and 4. In the bound, the first term decreases with order O(1/K) but
the second error term increases with order Θ(K). Therefore, our subsequent arguments will ensure
∥ϵk∥p,µ = O(1/K2) by using sufficient offline samples.
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4 Sample complexity of Anchored Fitted Q-Iteration

We now present sample complexity analyses of Anc-F-QI with IID and single-trajectory data.

4.1 Range of function space F

Before analyzing the complexity of those, we explain our issue on range of function space in
average-reward setup and our choice of function space.

When considering Fitted Q-Iteration in the discounted reward setup, the functions are often assumed
to be bounded by

∥∥Q⋆
γ

∥∥
∞ [61, 18], where Q⋆

γ is optimal state-action function with discount factor
γ, since ∥f∥∞ ≤

∥∥Q⋆
γ

∥∥
∞ implies ∥Tf∥∞ ≤

∥∥Q⋆
γ

∥∥
∞. In the average-reward setup (without

discounting), this property does not hold, and the Fitted Q-Iteration is expected to produce an
unbounded sequence of functions. To address this issue, we allow the range of the function space to
increase with each iteration.

Assumption 7 (increasing function range). Let F0 = {0} and Fk ⊂ {f : S × A → [−kR, kR] :
f ∈ B(S ×A)} and fk ∈ Fk in Anc-F-QI for all k .

Roughly speaking,

∥fk∥ ∼ ∥Tfk−1∥∞ =

∥∥∥∥r + P max
a∈A

fk−1

∥∥∥∥
∞

≲ R+ ∥fk−1∥∞ ≲ kR+ ∥f0∥∞ ,

so we increase the function bound as kR.

4.2 IID dataset

In this subsection, we study sample complexity with IID dataset.

Assumption 8 (IID dataset). There is a distribution µ such that the dataset is D = {si, ai, ri, s′i}ni=1
generated IID with (si, ai) ∼ µ and s′i ∼ P (· | si, ai) for i = 1, . . . , n.

Since we consider possibly infinite function space, as measurement of the capacity of function space,
we use covering number [21, 83].

Definition 2. An ϵ-cover of set S with respect to metric d is a set {θi}Ni=1 ⊂ S such that for all
θ ∈ S, there is an i ∈ {1, . . . , N} such that d(θ, θi) ≤ ϵ. The covering number N (ϵ;S, d) is the
cardinality of the smallest ϵ-cover. By convention, we define N (+∞;S, d) = 1.

We now present lemma which bounds approximation error of Anc-F-QI for IID dataset.

Lemma 1. Assume Assumptions 1, 2, 3, 7, and 8 (Bellman optimality equation, existence of argmin,
star-shaped function space, increasing function range, IID dataset). Let µ be the distribution
generating the dataset. Let ϵ > 0 and δ > 0. With probability 1 − δ, {fk, T̂ fk}K−1

k=0 of Anc-F-QI
with λk = k

k+2 satisfies

∥Tfk − T̂ fk∥2µ,2 ≤ 60(k + 2)2R2 ln(2KNk,ϵNk+1,ϵ/δ)

n
+ 3ϵ+ 13ϵB(Fk,Fk+1),

where
Nk,ϵ = N ( ϵ

108(2k+1)R ;Fk, ∥·∥∞), for k = 0, 1, . . . ,K − 1.

We defer the proofs to Appendix D, but we quickly note that the proof is based on Bernstein inequality
and is motivated by [21, 18].

Lemma 1 tells that the square of approximation error of the Bellman operator decreases sublinearly
with respect to number of sample. Combining Theorem 1 and Lemma 1, we obtain following sample
complexity result of Anc-F-QI with IID dataset.

Theorem 1. Assume Assumptions 1, 2, 3, 5, 7, and 8 (Bellman optimality equation, existence of
argmin, star-shaped function space, uniform stochastic transition, increasing function range, IID
dataset). Let µ be the distribution generating the dataset. Let ϵ > 0 and δ > 0. With probability
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1 − δ, the policy error of Anc-F-QI with λk = k
k+2 and K = ⌈18C1/2

µ ∥Qπ⋆∥2,µ/ϵ⌉ satisfies

∥gπ⋆ − gπK∥∞ ≤ ϵ+ 3KC
1/2
µ max

k=0,...,K−1

√
ϵB(Fk,Fk+1) with sample complexity

n = Õ

(
R2C3

µ∥Qπ⋆∥42,µ log(N2
ϵ /δ)

ϵ6

)
,

where Õ ignores all logarithmic factors except the logarithmic dependence on the covering number
Nϵ defined as

Nϵ = max
k=1,...,K

Nk,ϵ, Nk,ϵ = N
(

ϵ4

106kRC2
µ∥Qπ⋆∥2

2,µ
;Fk, ∥·∥∞

)
, for k = 1, . . . ,K.

Alternatively assume Assumptions 1, 2, 3, 6, 7, and 8 (Bellman optimality equation, existence of
argmin, star-shaped function space, uniform future state distribution, increasing function range, IID
dataset). Let µ be the distribution generating the dataset and ρ be an arbitrary distribution on S ×A.
Let ϵ > 0 and δ > 0. With probability 1 − δ, the policy error of Anc-F-QI with λk = k

k+2 and

K = ⌈18C1/2
µ,ρ ∥Qπ⋆∥2,µ/ϵ⌉, satisfies ∥gπ⋆ − gπK∥2,ρ ≤ ϵ + 3KC

1/2
µ,ρ max

k=0,...,K−1

√
ϵB(Fk,Fk+1)

with sample complexity

n = Õ

(
R2C3

µ,ρ∥Qπ⋆∥42,µ log(N2
ϵ /δ)

ϵ6

)
,

where Õ ignores all logarithmic factors except the logarithmic dependence on the covering number
Nϵ defined as

Nϵ = max
k=1,...,K

Nk,ϵ, Nk,ϵ = N
(

ϵ4

106kRC2
µ,ρ∥Qπ⋆∥2

2,µ
;Fk, ∥·∥∞

)
, for k = 1, . . . ,K

In the Appendix D, we show the full sample complexity with the logarithmic factors.

Under the additional assumption of Bellman completeness (ϵB = 0), this theorem guarantee that Anc-
F-QI produces an ϵ-optimal policy with Õ(1/ϵ6) sample complexity. To the best of our knowledge,
this is the first sample complexity result only assuming the Bellman optimality equation or a weakly
communicating MDP. In Section 5, we improve this sample complexity to Õ(1/ϵ4) using the relative
normalization mechanism.

4.3 Single-trajectory dataset

In this subsection, we study sample complexity with single-trajectory dataset.
Assumption 9 (single-trajectory dataset). For given behavior policy πb and initial distribution ν on
S, dataset is D = {si, ai, ri}ni=1 where s1 ∼ ν, ai ∼ πb(· | si), si+1 ∼ P (· | si, ai).

The main technical challenge with single-trajectory data is handling the dependency between samples.
Following [4, 3], we introduce the following β-mixing condition ensuring that samples are sufficiently
representative and rapidly mixing.
Definition 3 (β-mixing). Let {Zt}∞t=1 be a stochastic process. Denote by Z1:t the collection of
(Z1, . . . , Zt) where we allowed t = ∞. Let σ(Zi:j) denote the σ-algebra generated by Zi:j(i ≤ j).
The m-th β-mixing coefficient of {Zt} is defined as

βm = sup
t≥1

E

[
sup

B∈σ(Zt+m:∞)

∣∣P (B |Z1:t)− P (B)
∣∣] .

{Zt} is said to be β-mixing if βm → 0 as m → ∞. In particular, we say that a β-mixing process
mixes at exponent rate with parameters β̄, b, κ > 0 if βm ≤ β̄exp(−bmκ) holds for all m ≥ 0.

Roughly speaking, the β-mixing condition ensures that future samples depend weakly on the past
samples. We assume that our single-trajectory is β-mixing and the distribution is in a steady state,
following [4, 3].
Assumption 10 (β-mixing single-trajectory). For single-trajectory dataset {si, ai, ri}ni=1, assume
that si is strictly stationary with si ∼ ν and β-mixing at exponent rate with parameters β̄, b, κ > 0.
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Again, following [4, 3], as measurement of the capacity of function space, we use pseudo dimension
which has been widely studied for complexity analyses with various function classes [2, 83].
Definition 4 (pseudo dimension). For a given function class F of binary-valued functions, we say the
set xn1 = (x1, . . . , xn) is shattered by F if cardinality of {(f(x1), . . . , f(xn)) : f ∈ F} is 2n. The
VC-dimension VF of F is defined as the largest integer n such that there exist the set xn1 shattered
by F . For a given class F of real-valued functions, the pseudo-dimension VF of is defined as the
VC-dimension of the set of indicator function of the subgraphs of functions in F .

We now present lemma which bounds approximation error of of Anc-F-QI for single-trajectory
dataset.
Lemma 2. Assume Assumptions 1, 2, 3, 7, 9, and 10 (Bellman optimality equation, existence of
argmin, star-shaped function space, increasing function range, single-trajectory dataset, β-mixing
single-trajectory). Let µ be the distribution generating the dataset defined as µ(s, a) = ν(s)πb(a | s).
Let ϵ > 0 and δ > 0. With probability 1− δ, {fk, T̂ fk}K−1

k=0 of Anc-F-QI with λk = k
k+2 satisfies

∥Tfk − T̂ fk∥2µ,2 ≤

√
c0,k(max{c0,k/b, 1})1/κ

c2,kn
+ ϵB(Fk,Fk+1),

where c0,k = (VFk+1
+V(Fk)max

) log n/2+log(e/(Kδ))+log(max(c1,k, β̄)), c1,k = 16e2(VFk+1
+

1)(V(Fk)max
+ 1)(24e)VFk+1

+V(Fk)max , c2,k = 1
512(2k+3)4R4 , V(Fk)max

= 2|A|VFk
log(3|A|).

We defer the proofs to Appendix D, but we quickly note that the proof strategy closely follow [4, 3]
and relies on the Hoeffding inequality under a mixing condition.

Rougbly speaking, Lemma 2 tells that the square of approximation error of the Bellman operator
decreases at a 1/

√
n rate with respect to number of sample. Combining Theorem 1 and Lemma 2,

we obtain following sample complexity result of Anc-F-QI with single-trajectory dataset.
Theorem 2. Assume Assumptions 1, 2, 3, 5, 7, 9, and 10 (Bellman optimality equation, existence
of argmin, star-shaped function space, uniform stochastic transition, increasing function range,
single-trajectory dataset, β-mixing single-trajectory). Let µ be the distribution generating the
dataset defined as µ(s, a) = ν(s)πb(a | s). Let ϵ > 0 and δ > 0. With 1 − δ probability, the
policy error of Anc-F-QI with λk = k

k+2 and K = ⌈9C1/2
µ ∥Qπ⋆∥2,µ/ϵ⌉ satisfies ∥gπ⋆ − gπK∥∞ ≤

ϵ+KC
1/2
µ max

k=0,...,K−1

√
ϵB(Fk,Fk+1) with sample complexity

n = Õ
(
1/ϵ12

)
,

where Õ only shows the dependence on ϵ. Alternatively, Assume Assumptions 1, 2, 3, 6, 7, 9,
and 10 (Bellman optimality equation, existence of argmin, star-shaped function space, uniform
future state distribution, increasing function range, single-trajectory dataset, β-mixing single-
trajectory). Let µ be the distribution generating the dataset defined as µ(s, a) = ν(s)πb(a | s)
and ρ be an arbitrary distribution on S × A. Let ϵ > 0 and δ > 0. With 1 − δ proba-
bility, the policy error of Anc-F-QI with λk = k

k+2 and K = ⌈9C1/2
µ,ρ ∥Qπ⋆∥2,µ/ϵ⌉ satisfies

∥gπ⋆ − gπK∥2,ρ ≤ ϵ+KC
1/2
µ,ρ max

k=0,...,K−1

√
ϵB(Fk,Fk+1) with sample complexity

n = Õ
(
1/ϵ12

)
,

where Õ only shows the dependence on ϵ.

In the Appendix D, we show the full sample complexity with all of the factors.

To the best of our knowledge, this is the first sample complexity result with single-trajectory data
in the average-reward setup. In Section 5, we improve this sample complexity to Õ(ϵ−8) using the
relative normalization mechanism
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5 Relative Anchored Fitted Q-Iteration

In this section, we propose Relative Anchored Fitted Q-Iteration (R-Anc-F-QI) and improve the
sample complexity. We are motivated by the classical relative value iteration [90]. In the tabular case,
it is known that standard VI diverges in the average-reward setup [66, Theorem 9.4.1], and relative
value iteration normalizes the divergent vectors [66, Section 8.5.5]. In the case of (Anchored) Fitted
Q-Iteration, this normalization allows the fk functions to be bounded and removes the inefficiency
associated with the increasing function classes described in Section 4.1.

Algorithm 2 Relative Anchored Fitted Q-Iteration (D,K,F , {λi}Ki=1)

Input: D = {si, ai, ri, s′i}ni=1, f0 = 0, K ≥ 1, {λi}Ki=1 ⊂ (0, 1)
for k = 0, 1, . . . ,K − 1 do

T̂ fk = argminf∈F
∑n

i=1

(
f(si, ai)− ri −maxa∈A fk(s

′
i, a)

)2
fk+1 = (1− λk+1)f0 + λk+1(T̂ fk − max T̂ fk+min T̂ fk

2 1)
end for
π(a | s) = argmaxa∈A fK(s, a)
Output π, fK

The only difference with Anchored Fitted Q-Iteration is the subtraction of max T̂ fk+min T̂ fk
2 1 in the

second line of the for-loop. By direct calculation, we can check that
∥∥f − max f+min f

2 1
∥∥
∞ ≤ ∥f∥∞

and subtracting a uniform constant does not effect on greedy policy due the fact that the Bellman
operator satisfies T (c1 + x) = c1 + T (x). Thus, we can still apply Proposition 1 to Relative
Anchored Fitted Q-Iteration.

Assumption 11 (normalized function space). If f ∈ F , f − max f+min f
2 1 ∈ F .

This assumption ensures that the normalization operation is well ldefined.
Assumption 12 (range of function space). F ⊂ {f : S × A → [−2 ∥Qπ⋆∥∞ , 2 ∥Qπ⋆∥∞] | f ∈
B(S ×A)}, where Qπ⋆ is solution of Bellman optimality equation.

Now, unlike increasing function range used for the non-relative Anchored Fitted Q-Iteration, we now
have a function space bounded by Qπ⋆ . This difference leads to improved efficiency as the following
sample complexity results show.
Theorem 3. Assume Assumptions 1, 2, 3, 5, 8, 11, and 12 (Bellman optimality equation, existence of
argmin, star-shaped function space, uniform stochastic transition, normalized function space, range
of function space, IID dataset). Let µ be the distribution generating the dataset. Let ϵ > 0 and δ > 0.
With probability 1−δ, the policy error of R-Anc-F-QI with λk = k

k+2 andK = ⌈18C1/2
µ ∥Qπ⋆∥2,µ/ϵ⌉

satisfies ∥gπ⋆ − gπK∥∞ ≤ ϵ+ 3KC
1/2
µ

√
ϵB(F ,F) with sample complexity

n = Õ

(
(R+ ∥Qπ⋆∥∞)2 ∥Qπ⋆∥2∞ C3

µ log(N
2
ϵ /δ)

ϵ4

)
,

where Õ ignores all logarithmic factors except the logarithmic dependence on the covering number
Nϵ defined as

Nϵ = N
(

ϵ4

106C2
µ(R+∥Qπ⋆∥∞)∥Qπ⋆∥2

∞
;F , ∥·∥∞

)
.

Alternatively, assume Assumptions 1, 2, 3, 6, 8, 11, and 12 (Bellman optimality equation, existence
of argmin, star-shaped function space, uniform future state distribution, normalized function space,
range of function space, IID dataset) Let µ be the distribution generating the dataset and ρ be
an arbitrary distribution on S × A. Let ϵ > 0 and δ > 0. With probability 1 − δ, the policy
error of R-Anc-F-QI with λk = k

k+2 and K = ⌈18C1/2
µ,ρ ∥Qπ⋆∥2,µ/ϵ⌉ satisfies ∥gπ⋆ − gπK∥2,ρ ≤

ϵ+ 3KC
1/2
µ,ρ

√
ϵB(F ,F) with sample complexity

n = Õ

(
(R+ ∥Qπ⋆∥∞)2 ∥Qπ⋆∥2∞ C3

µ,ρ log(N
2
ϵ /δ)

ϵ4

)
,
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where Õ ignores all logarithmic factors except the logarithmic dependence on the covering number
Nϵ defined as

Nϵ = N
(

ϵ4

106C2
µ,ρ(R+∥Qπ⋆∥∞)∥Qπ⋆∥2

∞
;F , ∥·∥∞

)
.

Theorem 4. Assume Assumptions 1, 2, 3, 5, 9, 10, 11, and 12 (Bellman optimality equation,
existence of argmin, star-shaped function space, uniform stochastic transition, normalized function
space, range of function space, single-trajectory dataset, β-mixing single-trajectory). Let µ be the
distribution generating the dataset defined as µ(s, a) = ν(s)πb(a | s). Let ϵ > 0 and δ > 0. With
probability 1 − δ, the policy error of Anc-F-QI with λk = k

k+2 and K = ⌈9C1/2
µ ∥Qπ⋆∥2,µ/ϵ⌉

satisfies ∥gπ⋆ − gπK∥∞ ≤ ϵ+KC
1/2
µ

√
ϵB(F ,F) with sample complexity

n = Õ
(
1/ϵ8

)
,

where Õ only shows the dependence on ϵ. Alternatively, assume Assumptions 1, 2, 3, 6, 9, 10,
11, and 12 (Bellman optimality equation, existence of argmin, star-shaped function space, uniform
future state distribution, normalized function space, range of function space, single-trajectory
dataset, β-mixing single-trajectory). Let µ be the distribution generating the dataset defined as
µ(s, a) = ν(s)πb(a | s) and ρ be an arbitrary distribution on S × A. Let ϵ > 0 and δ > 0. With
probability 1 − δ, the policy error of Anc-F-QI with λk = k

k+2 and K = ⌈9C1/2
µ,ρ ∥Qπ⋆∥2,µ/ϵ⌉

satisfies ∥gπ⋆ − gπK∥2,ρ ≤ ϵ+KC
1/2
µ,ρ

√
ϵB(F ,F) with sample complexity

n = Õ
(
1/ϵ8

)
,

where Õ only shows the dependence on ϵ.

Indeed, with the relative normalization mechanism, we improve the sample complexities from
Õ(1/ϵ6) to Õ(1/ϵ4) and Õ(1/ϵ12) to Õ(1/ϵ8) for IID and single-trajectory data cases, respectively,

6 Conclusion

In this work, we introduced Anchored Fitted Q-Iteration (Anc-F-QI) and established new sample
complexity results for the average-reward offline RL with general function approximation under the
assumption of weakly communicating MDPs. Our approach combines the classical Fitted Q-Iteration
with an anchoring mechanism, and the anchor mechanism is the crucial component that enables the
finite-time analysis. Roughly speaking, we establish a Õ(1/ϵ6) sample complexity with IID data
and Õ(1/ϵ12) sample complexity with single-trajectory data. Then, using the relative normalization
technique, we improve the sample complexity to Õ(1/ϵ4) and Õ(1/ϵ8) for IID and single-trajectory
data, respectively.

One limitation of this work is the reliance on full coverage coefficients as described in Assumptions 5
and 6. Some prior work, such as [64] and [30], utilizes a weaker assumption that we refer to as partial
coverage coefficients, albeit with much stronger structural assumptions on the MDP. Extending our
analysis to relax the full coverage coefficient would be a worthwhile direction of future work. Another
possible direction of future work is to utilize variance reduction techniques in the style of [84, 75, 48]
to further improve the sample complexity.
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depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
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Justification: Yes, we clearly state full set of assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA] .
Justification: Our work does not include numerical experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA] .
Justification: Our paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA] .
Justification: Our paper does not include numerical experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA] .
Justification: Our paper does not include numerical experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: Ou paper does not include numerical experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: Our paper conforms, in every respect, with the NeurIPS Code of Ethic.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: Since our work is a theory paper, there is no societal impact of the work
performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: Our paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: Our paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Prior works

Average-Reward MDP The setup of average reward MDPs was introduced in the dynamic pro-
gramming literature by [36], and [9] established a theoretical framework for their analysis. In
reinforcement learning (RL), average-reward MDP was mainly considered in the sample-based setup
where the transition matrix and reward are unknown [57, 23]. For this setup, various methods were
proposed: model-based methods [41, 97], Q-learning methods [89, 85], and policy gradient methods
[5, 62, 46]. Sample complexity to obtain ϵ-optimal under generative model [86, 96, 48, 54, 40] and
for regret minimization [15, 38, 95, 11] also have been actively studied.

Value Iteration Value iteration (VI) was first introduced in the dynamic programming literature [6]
and serve as a fundamental algorithm to compute the value functions. The sample-based variants, such
as TD-Learning [77], Fitted Value Iteration [25, 61], and Deep Q-Network [58] are the workhorses of
modern reinforcement learning algorithms [8, 78, 79]. VI is also routinely applied in diverse settings,
including factored MDPs [68], robust MDPs [47], MDPs with reward machines [12], MDPs with
options [29], and generative model [84, 75, 48].

The convergence of VI in average-reward MDPs also has been extensively studied. For unichain
MDPs, delta coefficient, ergodicity coefficient, and the J-stage span contraction demonstrate the
linear rate of VI [74, 37, 27, 81]. When MDP is multichain, it is known that policy error of VI
might not converge to zero [22, Example 4]. Even with the aperiodicity assumption, VI guarantees
only asymptotic convergence. [66, Theorem 9.4.5]. [72, 73] established necessary and sufficient
conditions of convergence of VI and asymptotic linear convergence on Bellman error.

Offline Reinforcement Learning In offline RL, the agent learns decision-making strategies utiliz-
ing precollected data [53]. This framework is often applied when interaction with the environment
can be expensive, and the quantities of data that can be gathered online are substantially lower
than the precollected dataset [19, 43, 53]. Consequently, various offline RL methods have been
actively proposed [25, 76, 45, 1], and Fitted Q-Iteration is one of the representative methods based
on sample-based value iteration with function approximation [25, 61].

One issue in offline RL is the distribution mismatch between the behavior policy that collected the
data and the learned policy of the agent [44, 87]. For theoretical analysis, coverage coefficient is
assumed to ensure that offline dataset sufficiently explores whole state and action space. [60, 71, 80].
Under this assumption, sample complexity of offline RL methods actively analyzed [4, 69, 18, 64],
and in particular, an Lp bound of approximate value iteration was obtained, which in turn yields
convergence results for Fitted Q-Iteration [60, 61]. More recently, several works succeeded relaxing
the full coverage assumption to partcal coverage [56, 67, 91, 42].

Another issue in offline RL is the representation capacity of the chosen function space. To handle large
state space and action spaces, many RL frameworks including offline RL use function approximation,
ranging from linear functions [24] and nonlinear (general) functions such as neural networks [26] and
kernel functions [17]. In offline RL, the inherent Bellman error measures the approximation error
incurred when projecting the output of Bellman operator into chosen function space, and Bellamn
completeness assumes the inherent Bellman error is zero [61, 18]. Most sample complexity analyses
in offline RL rely on inherent Bellman error or Bellman completeness assumption [56, 67, 91, 42].
Recently, however, several works achieved finite sample complexity under weaker realizabiltiy
assumption, which only requires that optimal function value lies within chosen function space
[92, 94].

Most of prior works in offline RL focused on discounted-reward setup, and to the best of our
knowledge, two prior works established the finite sample complexity in the offline average-reward
setup [63, 30]. Both proposed a primal-dual approach, reformulating the Bellman equation as
a bilinear saddle-point problem, to obtain an ϵ-optimal policy under partial coverage. However,
they imposed restrictive structural assumptions on MDP such as uniform mixing or linearity and
considered only IID dataset. (See the Table 1.)
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B Preliminaries

The followings are inequalities from prior works used in the proof.

Fact 1 (Bernstein inequality). Let X1, . . . , Xn are indepedent random variables. If Xi ≤ b for all i,
then

P

(
1

n

n∑
i=1

Xi − E[Xi] ≥ ϵ

)
≤ exp

[
− n2ϵ2

2
∑n

i=1 E[X2
i ] + nbϵ/3

]
Furthermore, if all the E[X2

i ] are equal, with 1− δ probability,

1

n

n∑
i=1

Xi − EXi ≤
√
2E[X2

1 ] ln(1/δ)/n+
2b ln(1/δ)

3n
.

Fact 2 ([4], Lemma 4). Suppose that Z1, . . . , Zn ∈ Z is a stationary β-mixing process with mixing
coefficients βm, Z ′

t ∈ Z(t ∈ H) are the block-independent ghost samples. H = {2ikN + j : 0 ≤
i < mn, 1 ≤ j ≤ kN} and F is permissible class of Z → [−M,M ] functions. Then

P

(
sup
f∈F

∣∣∣∣∣ 1N
N∑

n=1

f(Zn)− E[f(Z1)]

∣∣∣∣∣ > ϵ

)
≤ 16E[N (ϵ/8,F , l(Z′

t)t∈H
)]e−

mNϵ2

128M2 + 2mNβkN+1.

C Omitted proofs in Section 3

C.1 Proof of Proposition 1

Define the limiting matrix Pπ
∗ as the Cesàro limit of Pπ , i.e., Pπ

∗ = lim 1
n

∑n
i=1(Pπ)i. (The limiting

matrix always exists for finite state-action spaces [66, Appendix A.4].) Then, Pπ
∗ is stochastic and,

by definition, gπ = Pπ
∗ r [66, Proposition 8.1.1].

We first prove following lemma.

Lemma 3. Let λK+1 = 1. Under Assumption 1 (Bellman optimality equation), the policy error of
Apx-Anc-QI satisfies

gπ⋆ − gπK = PπK
∗ (gπ⋆ − TQK +QK)

≤ PπK
∗

( K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1Pπi

(
l∑

m=0

Πl
i=m+1λi(1− λm)(Pπ⋆)l+1−m − I

)
(Q0 −Qπ⋆)

+

K∑
l=1

ΠK
i=lλi

(
K∑

m=l

(λm+1 − λm)ΠK
i=m+1Pπi(Pπ⋆)m+1−l +ΠK

i=l+1Pπi(λlPπl − I)

)
ϵl

)
.

Proof of Lemma 3. By definition of Apx-Anc-QI, we have

TQK −QK

= (1− λK)(TQK −Q0) + λK(TQK − TQK−1)− λKϵK

≥ (1− λK)(TQK −Q0) + λKPπK (QK −QK−1)− λKϵK

≥ (1− λK)(TQK −Q0)− λKϵK

+ λKPπK ((λK − λK−1)(TQ
K−1 −Q0) + λK−1(TQ

K−1 − TQK−2) + λKϵK − λK−1ϵK−1)

≥
K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1Pπi(TQl −Q0) +

K∑
l=1

ΠK
i=lλiΠ

K
i=l+1Pπi(λlPπl − I)ϵl

where first inequality comes from greedy policy and last inequality comes from induction.
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For any 0 ≤ l ≤ K,

TQl −Q0

= TQl −Qπ⋆ − (Q0 −Qπ⋆)

= TQl − TQπ⋆ + gπ⋆ − (Q0 −Qπ⋆)

≥ Pπ⋆(Ql −Qπ⋆) + gπ⋆ − (Q0 −Qπ⋆)

= Pπ⋆(λl(TQ
l−1 −Qπ⋆) + (1− λl)(Q

0 −Qπ⋆) + λlϵl) + gπ⋆ − (Q0 −Qπ⋆)

≥

(
l∑

m=0

Πl
i=m+1λi(Pπ⋆)l+1−m(1− λm)− I

)
(Q0 −Qπ⋆) +

l∑
m=0

Πl
i=m+1λig

π⋆

+

l∑
m=1

Πl
i=mλi(Pπ⋆)l+1−mϵm,

where second equality comes from Bellman optimality equation. By combining previous two
inequalities, we get

TQK −QK

≥
K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1Pπi

l∑
m=0

Πl
i=m+1λig

π⋆

+

K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

k
i=l+1Pπi

(
l∑

m=0

Πl
i=m+1λi(Pπ⋆)l+1−m(1− λm)− I

)
(Q0 −Qπ⋆)

+

K∑
l=1

ΠK
i=lλiΠ

K
i=l+1Pπi(λlPπl − I)ϵl

+

K∑
l=1

l∑
m=1

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1PπiΠl

i=mλi(Pπ⋆)l+1−mϵm

= gπ⋆ +

K∑
l=1

( k∑
m=l

ΠK
i=m+1λi(λm+1 − λm)Πm

i=lλiΠ
K
i=m+1Pπi(Pπ⋆)m+1−l

+ΠK
i=lλiΠ

K
i=l+1Pπi(λlPπl − I)

)
ϵl

+

K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1Pπi

(
l∑

m=0

Πl
i=m+1λi(1− λm)(Pπ⋆)l+1−m − I

)
(Q0 −Qπ⋆).

This implies

TQK −QK − gπ⋆

≥
K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1Pπi

(
l∑

m=0

Πl
i=m+1λi(1− λm)(Pπ⋆)l+1−m − I

)
(Q0 −Qπ⋆)

+

K∑
l=1

ΠK
i=lλi

(
K∑

m=l

(λm+1 − λm)ΠK
i=m+1Pπi(Pπ⋆)m+1−l +ΠK

i=l+1Pπi(λlPπl − I)

)
ϵl.

Finally, following the proof of [66, Theorem 8.5.5], we have

gπ⋆ − gπK = PπK
∗ (gπ⋆ − r) = PπK

∗ (gπ⋆ − r − PπKQK +QK)

= PπK
∗ (gπ⋆ − TQK +QK),
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where first equality comes from Bellman optimality equation and second equality comes from
property of limiting matrix. This implies that

gπ⋆ − gπK = PπK
∗ (gπ⋆ − TQK +QK)

≤ PπK
∗

( K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1Pπi

(
l∑

m=0

Πl
i=m+1λi(1− λm)(Pπ⋆)l+1−m − I

)
(Q0 −Qπ⋆)

+

K∑
l=1

ΠK
i=lλi

(
K∑

m=l

(λm+1 − λm)ΠK
i=m+1Pπi(Pπ⋆)m+1−l +ΠK

i=l+1Pπi(λlPπl − I)

)
ϵl

)
.

The following are lemmas about coverage coefficient Cµ,ρ.

Lemma 4. If P1 and P2 are stochastic matrix satisfying ρ⊤Pi ≤ Cµ,ρµ for i = 1, 2 and given
distribution µ and ρ on S ×A, then ρ⊤(aP1 + (1− a)P2) ≤ Cµ,ρµ for 0 ≤ a ≤ 1.

Lemma 5. Under Assumption 6 (uniform future state distribution),

sup
π1,π2,...πk

∥∥∥∥ρ⊤Pπ⋆
∗ Pπ1Pπ2 · · · Pπk(·)

µ(·)

∥∥∥∥
∞

≤ Cµ,ρ

where π⋆π1, π2, . . . πk represents an arbitrary sequence of policies with optimal policy.

Proof. Under Assumption 6, for any non negative integer n, we have ρ⊤(Pπ⋆)nPπ1Pπ2 · · · Pπk(·) ≤
Cµ,ρµ. This implies ρ⊤Pπ⋆

∗ Pπ1Pπ2 · · · Pπk(·) ≤ Cµ,ρµ by definition of limiting matrix.

Lemma 6. If P is stochastic matrix satisfying ρ⊤P ≤ Cµ,ρµ
⊤ for given distribution µ and ρ on

S ×A, then ∥PQ∥p,ρ ≤ C
1/p
µ ∥Q∥p,µ.

Proof. Since |PQ(s, a)|p = |E(s′,a′)∼P(· | s,a)[Q(s′, a′)]|p ≤ E(s′,a′)∼P(· | s,a)[|Q(s′, a′)|p]) =

P|Q|p(s, a) by Jensen’s inequality, ρ⊤|PQ|p ≤ ρ⊤P|Q|p ≤ Cµ,ρµ
⊤|Q|p.

Now, we are ready to prove Proposition 1.

Proof of Proposition 1. By Lemma 3,

gπ⋆ − gπK

≤ PπK
∗

( K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1Pπi

(
l∑

m=0

Πl
i=m+1λi(1− λm)(Pπ⋆)l+1−m − I

)
(Q0 −Qπ⋆)

+

K∑
l=1

ΠK
i=lλi

(
K∑

m=l

(λm+1 − λm)ΠK
i=m+1Pπi(Pπ⋆)m+1−l +ΠK

i=l+1Pπi(λlPπl − I)

)
ϵl

)

≤ PπK
∗

( K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)Π

K
i=l+1Pπi

(
l∑

m=0

Πl
i=m+1λi(1− λm)(Pπ⋆)l+1−m + I

)
|Q0 −Qπ⋆ |

+

K∑
l=1

ΠK
i=lλi

(
K∑

m=l

(λm+1 − λm)ΠK
i=m+1Pπi(Pπ⋆)m+1−l +ΠK

i=l+1Pπi(λlPπl + I)

)
|ϵl|
)
.

Let PQ
l = PπK

∗ ΠK
i=l+1Pπi

(∑l
m=0 Π

l
i=m+1λi(1− λm)(Pπ⋆)l+1−m + I

)
/2 and Pϵ

l =

PπK
∗
∑K

m=l(λm+1 − λm)ΠK
i=m+1Pπi(Pπ⋆)m+1−l + ΠK

i=l+1Pπi(λlPπl + I)/2. Then PQ
l and

Pϵ
l satisfying ρ⊤PQ

l ≤ Cµ,ρµ and ρ⊤Pϵ
l ≤ Cµ,ρµ for all 0 ≤ l ≤ K by Lemma 4 and 5. Thus, we
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have

∥gπ⋆ − gπK∥p,ρ ≤ 2

K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)∥Pl|Q0 −Qπ⋆ |∥p,ρ + 2

K∑
l=1

ΠK
i=lλi∥Pϵ

l |ϵl|∥p,ρ

≤ 2C1/p
µ

K∑
l=0

ΠK
i=l+1λi(λl+1 − λl)∥Q0 −Qπ⋆∥p,µ + 2C1/p

µ

K∑
l=1

ΠK
i=lλi∥ϵl∥p,µ,

where last inequality comes from Lemma 6. By plugging λk = k
k+2 , we conclude. Note that since

Cµ ≤ Cµ,ρ for any distribution ρ, then choosing ρ to be a Dirac distribution at each state proves the
case of Assumption 5 which implies first inequality of Proposition 1.

D Omitted proofs in Section 4

D.1 Proof of Lemma 1

Proof of Lemma 1. Let F ⊂ {f : S × A → [−fmax, fmax] | f ∈ B(S × A)} and G ⊂ {f :
S ×A → [−gmax, gmax] | f ∈ B(S×A)}. Let f1, . . . , fN cover the F and g1, . . . , gN ′ cover the G
where N = N (ϵ/M ;F , ∥·∥∞), N ′ = N (ϵ/M ;G, ∥·∥∞), M = 108(R + 2fmax). F × G = ∪Si,j

where Si,j = {(f, g) : ∥f − fi∥∞ ≤ ϵ, ∥g − gj∥∞ ≤ ϵ}. Without loss of generality, suppose
gmax ≤ fmax.

First note that Es′i∼P (· | si,ai)[r(si, ai) + maxa g(s
′
i, a)] = Tg(si, ai), |ri + maxa g(s, a)| ≤ R +

fmax, |Tg(s, a)| ≤ R+ fmax.

For arbitrary f ∈ F , g ∈ G, define Xf,g
i = (f(si, ai)− r(si, ai)−maxa g(s

′
i, a))

2 − (Tg(si, ai)−
r(si, ai)−maxa g(s

′
i, a))

2. Then, Esi,ai∼µ,s′i∼P (· | si,ai)[X
f,g
i ] = ∥Tg − f∥2µ,2 and E[(Xf,g

i )2] ≤
9(R + 2fmax)

2∥Tg − f∥2µ,2 since Xf,g
i = (f(si, ai) − Tg(si, ai))(f(si, ai) + Tg(si, ai) −

2r(si, ai)− 2maxa g(s
′
i, a)), and |Xf,g

i | ≤ 3(R+ 2fmax)
2.

By Bernstein inequality and union bound, with 1− δ probability, for all {fi, gj}i=1,...,N,j=1,...,N ′ ,

∥Tgj − fi∥2µ,2 −
n∑

i=1

X
fi,gj
i /n ≤

√
18(R+ 2fmax)2∥Tgj − fi∥2µ,2 ln(NF,G/δ)

n

+
2(R+ 2fmax)

2 ln(NF,G/δ)

n

where NF,G = N (ϵ/M ;G, ∥·∥∞)N (ϵ/M ;F , ∥·∥∞). Through 2
√
ab ≤ a+ b, we have

∀fi ∈ F ,∀gi ∈ G, ∥Tgj − fi∥2µ,2 − 2

n∑
i=1

X
fi,gj
i /n ≤ 22(R+ 2fmax)

2 ln(NF,G/δ)

n

Now, for covering number argument, we use following Lemma.

Lemma 7. For f ∈ F , g ∈ G, c > 0, ∥Tg − f∥2µ,2 − c
∑n

i=1X
f,g
i /n is (2 + 8c)(2fmax + R)-

Lipchitz.

Proof. Since ∥Tg1 − f1∥2µ,2 − ∥Tg2 − f2∥2µ,2 ≤ E|(Tg1 − Tg2 + f2 − f1)(Tg1 + Tg2 − f2 −
f1)| ≤ (∥g1 − g2∥∞ + ∥f1 − f2∥∞)2(R+ 2fmax), ∥Tg − f∥2µ,2 is 2(R+ 2fmax)- Lipchitz. Also,
since |

∑n
i=1X

f1,g1
i /n −

∑n
i=1X

f2,g2
i /n| = 1

n

∑n
i=1 |(max g2 − max g1 + f1 − f2)(f2 + f1 −

max g1 − max g2 − 2r) − (Tg1 − Tg2 + max g2 − max g1)(Tg1 + Tg2 + max g2 + max g1 −
2r)| ≤ (∥g1 − g2∥∞ + ∥f1 − f2∥∞)2(R+2fmax) + 8 ∥g1 − g2∥∞ (fmax +R) ≤ (∥g1 − g2∥∞ +

∥f1 − f2∥∞)8(2fmax + R),
∑n

i=1X
f1,g1
i /n 8(2fmax + R)-Lipchitz. By adding two Lipchitz

functions, we obtain desired result.

By Lipchitzness of ∥Tgj−fi∥2µ,2−2
∑n

i=1X
fi,gj
i /n and definition of covering number, if f, g ∈ Si,j

∥Tg − f∥2µ,2 − 2

n∑
i=1

Xf,g
i /n− (∥Tgj − fi∥2µ,2 − 2

n∑
i=1

X
fi,gj
i /n) ≤ ϵ.
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This implies that with 1− δ probability,

∀f ∈ F ,∀g ∈ G ∥Tg − f∥2µ,2 ≤ ϵ+
22(R+ 2fmax)

2 ln(NF,G/δ)

n
+ 2

n∑
i=1

Xf,g
i /n. (1)

By other side of Bernstein’s inequality and covering number, for all {fi, gj}i=1,...,N,j=1,...,N ′ , we
have

n∑
i=1

X
fi,gj
i /n− ∥Tgj − fi∥2µ,2 ≤

√
18(R+ 2fmax)2∥Tgj − fi∥2µ,2 ln(NF,G/δ)

n

+
2(R+ 2fmax)

2 ln(NF,G/δ)

n
.

If
∑n

i=1X
fi,gj
i /n ≥ 4(R+2fmax)

2 ln(NF,G/δ)
n , with 1−δ probability, for all {fi, gj}i=1,...,N,j=1,...,N ′ ,

we have

n∑
i=1

X
fi,gj
i /n−∥Tgj −fi∥2µ,2 ≤

√√√√4.5

n∑
i=1

X
fi,gj
i /n∥Tgj − fi∥2µ,2+

2(R+ 2fmax)
2 ln(NF,G/δ)

n

and by 2
√
ab ≤ a+ b, this implies

n∑
i=1

X
fi,gj
i /n− 6.5∥Tgj − fi∥2µ,2 ≤ 4(R+ 2fmax)

2 ln(NF,G/δ)

n
.

Even if
∑n

i=1X
fi,gj
i /n ≤ 4(R+2fmax)

2 ln(NF,G/δ)
n , previous inequality still holds. Since∑n

i=1X
fi,gj
i /n− 6.5∥Tgj − fi∥2µ,2 is 54(R+ 2fmax)-Lipshitz, with similar argument, we have

∀f ∈ F , g ∈ G,
n∑

i=1

Xf,g
i /n− 6.5∥Tg − f∥2µ,2 ≤ ϵ+

4(R+ 2fmax)
2 ln(NF,G/δ)

n
. (2)

Let T̃ g = argminf∈F ∥f − Tg∥2,µ and f = T̃ g in inequality (2). Then, by definition of Inherent
Bellman error,

∀g ∈ G,
n∑

i=1

X T̃ g,g
i /n ≤ ϵ+ 6.5ϵB +

4(R+ 2fmax)
2 ln(NF,G/δ)

n
.

Also, let f = T̂ g in inequality inequality (1). Then, by definition of T̂ g, we have
∑n

i=1X
T̂ g,g
i ≤∑n

i=1X
T̃ g,g
i . Combining with previous inequality, with 1− 2δ probability,

∀g ∈ G, ∥Tg − T̂ g∥2µ,2 ≤ 3ϵ+ 13ϵB +
30(R+ 2fmax)

2 ln(NF,G/δ)

n
.

Finally, let G = Fk,F = Fk+1, and g = fk, and by manipulating δ, we get desired result.

D.2 Proof of Theorem 1

Proof of Theorem 1. By combining Lemma 1 and Proposition 1, we directly obtain following results.
Under assumptions stated in Theorem 1, we have

∥gπ⋆ − gπK∥∞ ≤ C1/2
µ

8∥Qπ⋆∥2,µ
K + 2

+ C1/2
µ

2K

3

(
√
3ϵ′ +

√
60(K + 1)2R2 ln(2KN2

ϵ′/δ)

n
+ max

k=0,...,K−1

√
13ϵB(Fk,Fk+1)

)
,

28



∥gπ⋆ − gπK∥2,ρ ≤ C1/2
µ,ρ

8∥Qπ⋆∥2,µ
K + 2

+ C1/2
µ,ρ

2K

3

(
√
3ϵ′ +

√
60(K + 1)2R2 ln(2KN2

ϵ′/δ)

n
+ max

k=0,...,K−1

√
13ϵB(Fk,Fk+1)

)
,

where

N ′
ϵ = max

k=1,...,K
Nk,ϵ′ , Nk,ϵ = N

(
ϵ′

108(2k+1)R ;Fk, ∥·∥∞
)
, for k = 1, . . . ,K.

Given ϵ > 0, for the first inequality, let K = ⌈18C1/2
µ ∥Qπ⋆∥2,µ/ϵ⌉, ϵ′ = 4ϵ2

27K2Cµ
, n =

36K2Cµ

ϵ2 60R2(K + 1)2 ln(2KN 2
ϵ′/δ). Then, by direct calculation, we derive that

∥gπ⋆ − gπK∥∞ ≤ ϵ+ 3KC1/2
µ max

k=0,...,K−1

√
ϵB(Fk,Fk+1)

with sample complexity

n = O

(
∥Qπ⋆∥42,µC3

µR
2

ϵ6
ln(N 2

ϵ C
1/2
µ /(δϵ))

)
where

Nϵ = max
k=1,...,K

Nk,ϵ, Nk,ϵ = N
(

ϵ4

106kC2
µ∥Qπ⋆∥2

2,µR
;Fk, ∥·∥∞

)
, for k = 1, . . . ,K.

Similarly, given ϵ > 0, for second inequality, let K = ⌈18C1/2
µ,ρ ∥Qπ⋆∥2,µ/ϵ⌉, ϵ′ = 4ϵ2

27K2Cµ,ρ
, n =

36K2Cµ,ρ

ϵ2 60R2(K + 1)2 ln(2K2Nϵ′/δ), and

∥gπ⋆ − gπK∥2,ρ ≤ ϵ+ 3KC1/2
µ,ρ max

k=0,...,K−1

√
ϵB(Fk,Fk+1)

with sample complexity

n = O

(
∥Qπ⋆∥42,µC3

µ,ρR
2

ϵ6
ln(N 2

ϵ C
1/2
µ /(δϵ))

)
where

Nϵ = max
k=1,...,K

Nk,ϵ, Nk,ϵ = N ( ϵ4

106kC2
µ,ρ∥Qπ⋆∥2

2,µR
;Fk, ∥·∥∞), for k = 1, . . . ,K.

D.3 Proof of Lemma 2

We first introduce empirical covering number.
Definition 5 (empirical covering number). For a given function class F of real valued functions and
set x1:n = (x1, . . . , xn), denote the covering number of F equipped with the empirical l1 pseudo
metric lx1:n(f, g) = 1

n

∑n
i=1 |f(xi)− g(xi)| by N (ϵ,F , x1:n).

Although the empirical convering number depends on number of samples, but it can be bounded by
pseudo dimension which depends on only function space and ϵ as following fact shows.
Fact 3 ([35], Corollary 3). For any x1:n = (x1, . . . , xn), any function class F of real-valued
functions taking values in [0,M ] with pseudo-dimension VF <∞, and any ϵ > 0,

N (ϵ,F , lx1:N ) ≤ e(VF + 1)

(
2eM

ϵ

)VF

.

Define L(g, f) = Esi,ai∼µ[V ars′i∼P ( | si,ai)(r(si, ai) + max f(s′i, a))] + ∥g − Tf∥22,µ where V ar
denotes variance with respect to s′i, and L̂(g, f) = 1

n

∑n
i=1(g(si, ai)− r(si, ai)−maxa f(s

′
i, a))

2.
Then, E[L̂(g, f)] = L(g, f) and following lemma holds.
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Lemma 8. ∥T̂ f − Tf∥22,µ − infg∈G ∥g − Tf∥22,µ ≤ 2 supg∈G |L(g, f)− L̂(g, f)|.

Proof of Lemma 8. ∥T̂ f − Tf∥22,µ − infg∈G ∥g − Tf∥22,µ = L(T̂ f, f) − infg∈F L(g, f) =

L(T̂ f, f) − L̂(T̂ f, f) + L̂(T̂ f, f) − infg∈G L(g, f) ≤ 2 supf∈F |L(g, f) − L̂(g, f)| by definition
of T̂ f .

For {T̂ fk, fk}K−1
k=0 of Anc-F-QI, previous lemma implies that

∥T̂ fk − Tfk∥22,µ − inf
g∈G

∥g − Tfk∥22,µ ≤ sup
f∈F

(∥T̂ f − Tf∥22,µ − inf
g∈G

∥g − Tf∥22,µ)

≤ 2 sup
g∈G,f∈F

|L(g, f)− L̂(g, f)|.

Define the function lf,g : S × A × [−R,R] × S → R as lf,g(si, ai, ri, si+1) = (f(si, ai) −
ri − maxa g(si+1, a))

2 and the function space LF,G = {lf,g | f ∈ F , g ∈ G} and Gmax =
{maxa g(s, a) | g ∈ G}. The pseudo dimension of Gmax could be bounded by following Lemma.
Lemma 9. Define Gmax = {maxa∈A g(·, a) : g ∈ G}. VGmax

≤ 2|A|VG log(3|A|) .

Proof of Lemma 9. By the definition of pseudo dimension, we have VG ≥ VGi where Gi =
{g(x, ai) | g ∈ G)}. Since maxa∈A g(·, a) ≤ 0 ⇐⇒ ∀i g(·, ai) ≤ 0, the claim follows from
Lemma 3.2.3 of [10].

Now, we are ready to prove Lemma 2.

Proof of Lemma 2. Let F ⊂ {f : S×A → [−fmax, fmax] | f ∈ B(S×A)} and G ⊂ {g : S×A →
[−gmax, gmax] | g ∈ B(S ×A)}. Without loss of generality, gmax ≤ fmax.

By similar argument in proof of Proposition 4 of [16], {si, ai, ri} is also β-mixing with the coefficient
{βi} and this implies {si, ai, ri, si+1} is also stationary β-mixing with coefficient {βi−1}. By direct
calculation, |L̂(f, g)| ≤ (2fmax+R)

2. Now, we apply Fact 2 with l(f, g) and Zi = (si, ai, ri, si+1).
Then, we get

P

(
sup

f∈F,g∈G

∣∣∣L̂(f, g)− L(f, g)
∣∣∣ > ϵ

)
≤ 16E[N (ϵ/8,LF,G , (Z

′
t)t∈H)]e

− mNϵ2

128(2fmax+R)4 +2mNβkN
.

Since

L̂(f1, g1)− L̂(f2, g2)

=
1

n

∣∣∣∣∣
n∑

i=1

(f1(si, ai)− r(si, ai)−max
a∈A

g1(si+1, a))
2 −

n∑
i=1

(f2(si, ai)− r(si, ai)−max
a∈A

g2(si+1, a))
2

∣∣∣∣∣
≤ 2

2fmax +R

n

n∑
i=1

(|f1(si, ai)− f2(si, ai)|+ |max
a∈A

g1(si+1, a)−max
a∈A

g2(si+1, a)|),

this implies that

N (4(2fmax +R)ϵ,LF,G , (z
1:n) ≤ N (ϵ,F , s2:n+1)N (ϵ,Gmax, (s, a)

1:n)

where zi = (si, ai, ri, si+1) by definition of empirical covering number. Finally, by Fact 3, we get

N (ϵ/8,LF,G , (Z
′
t)t∈H)

≤ e(VF + 1)

(
128(2fmax +R)e

ϵ

)VF

e(VFmax + 1)

(
128(2fmax +R)e

ϵ

)VGmax

= C

(
1

ϵ

)VF+VGmax

where C = e2(VF + 1)(VGmax
+ 1)(128(2fmax +R)e)VF+VGmax .

For calculation, we use following prior result.

30



Fact 4 ([4], Lemma 14). Let βm ≤ β̄e(−bmκ), N ≥ 1, kN = ⌈(C2Nϵ
2/b)

1
1+κ ⌉,mN =

N/(2kN ), 0 < δ ≤ 1, V ≥ 2 and C1, C2, β̄, b, κ > 0. Define ϵ and C0 as

ϵ =

√
C0(max{C0/b, 1})1/κ

C2N

with C0 = V/2 logN + log(e/δ) + log(max(C1C
V/2
2 , β̄, 1))

C1

(
1

ϵ

)V

e−4C2mN ϵ2 + 2mNβkN
≤ δ.

Then, by this fact and previous arguments, for ϵ =
√

c0(max{c0/b,1})1/κ
c2n

,

P

(
sup

f∈F,g∈G

∣∣∣L̂(f, g)− L(f, g)
∣∣∣ ≤ ϵ

)
≥ 1− δ

where c0 = (VF +VGmax
)/2 log n+ log(e/δ)+ log(max(c1c

(VF+VGmax )/2
2 , β̄, 1), c1 = 16e2(VF +

1)(VGmax
+ 1)(128(2fmax + R)e2)VF+VGmax , c2 = 1

512(2fmax+R)4 , VGmax
= 2|A|VG log(3|A|).

Let G = Fk,F = Fk+1 and g = fk. By Lemma 8, this implies that with 1− δ probability,

∥Tfk − T̂ fk∥2µ,2 ≤ ϵB +

√
c0(max{c0/b, 1})1/κ

4c2n
.

Finally, by manipulating δ, we get desired result.

D.4 Proof of Theorem 2

Proof of Theorem 2. By combining Lemma 2 and Proposition 1, we directly obtain following results.
Under assumptions stated in Theorem 2, we have

∥gπ⋆ − gπK∥∞ ≤ C1/2
µ

8∥Qπ⋆∥2,µ
K + 2

+ C1/2
µ

2K

3

((
c0,K(max{c0,K/b, 1})1/κ

c2,Kn

)1/4

+ max
k=0,...,K−1

√
ϵB(Fk,Fk+1)

)
,

∥gπ⋆ − gπK∥2,ρ ≤ C1/2
µ,ρ

8∥Qπ⋆∥2,µ
K + 2

+ C1/2
µ,ρ

2K

3

((
c0,K(max{c0,K/b, 1})1/κ

c2,Kn

)1/4

+ max
k=0,...,K−1

√
ϵB(Fk,Fk+1)

)
,

where c0,K = maxk=0,...,K−1 c0,k, c0,k = (VFk+1
+ V(Fk)max

)/2 log n + log(e/(Kδ)) +

log(max(c1,k, β̄, 1)), c1,k = 16e2(VFk+1
+ 1)(V(Fk)max

+ 1)(24e)VFk+1
+V(Fk)max , c2,K =

1
512(2K+1)4R4 , V(Fk)max

= 2|A|, VFk
log(3|A|).

Given ϵ > 0, for the first inequality, let K = ⌈9C1/2
µ ∥Qπ⋆∥2,µ/ϵ⌉. Then, by direct calculation, we

derive that
∥gπ⋆ − gπK∥∞ ≤ ϵ+KC1/2

µ max
k=0,...,K−1

√
ϵB(Fk,Fk+1)

with sample complexity

n = Õ

(
b−1/κ(c′0,K)

1+κ
κ R4∥Qπ⋆∥82,µC6

µ

ϵ12

)
where c′0,K = maxk=0,...,K−1 c

′
0,k, c

′
0,k = log(1/δ) + log(max(c1,k, β̄)), c1,k = 16e2(VFk+1

+

1)(V(Fk)max
+1)(24e)VFk+1

+V(Fk)max , V(Fk)max
= 2|A|, VFk

log(3|A|), and Õ ignores all logarith-
mic factors.
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Similarly, given ϵ > 0, for the second inequality, let K = ⌈9C1/2
µ,ρ ∥Qπ⋆∥2,µ/ϵ⌉. Then, by direct

calculation, we derive that

∥gπ⋆ − gπK∥∞ ≤ ϵ+KC1/2
µ,ρ max

k=0,...,K−1

√
ϵB(Fk,Fk+1)

with sample complexity

n = Õ

(
b−1/κ(c′0,K)

1+κ
κ R4∥Qπ⋆∥82,µC6

µ,ρ

ϵ12

)
where c′0,K = maxk=0,...,K−1 c

′
0,k, c

′
0,k = log(1/δ) + log(max(c1,k, β̄)), c1,k = 16e2(VFk+1

+

1)(V(Fk)max
+1)(24e)VFk+1

+V(Fk)max , V(Fk)max
= 2|A|, VFk

log(3|A|), and Õ ignores all logarith-
mic factors.

E Omitted proofs in Section 5

E.1 Proof of Theorem 3

We first prove following key lemma.
Lemma 10. Assume Assumptions 1, 2, 3, 8, 11, and 12 (Bellman optimality equation, existence of
argmin, star-shaped function space, normalized function space, range of function space, IID dataset).
Let µ be the distribution generating the dataset. Let ϵ > 0 and δ > 0. With probability 1 − δ,
{fk, T̂ fk}K−1

k=0 of R-Anc-F-QI satisfies

∥Tfk − T̂ fk∥2µ,2 ≤
30(R+ 4 ∥Qπ⋆∥∞)2 ln(2KN2

ϵ /δ)

n
+ 3ϵ+ 13ϵB(F ,F),

where
Nϵ = N ( ϵ

108(R+4∥Qπ⋆∥∞) ;F , ∥·∥∞).

Proof. The proof basically follows from the proof of Lemma 1.

Now, we prove Theorem 3.

Proof of Theorem 3. Consider Apporximate Relative Anchored Value Iteration

Qk
r = (1− λk)Q

0
r + λk(TQ

k−1
r + ϵk − ck1) (Apx-R-Anc-QI)

for ck ∈ R. Also, consider corresponding Approximate Anchored Value Iteration with same ϵk and
starting point Q0

r

Qk = (1− λk)Q
0
r + λk(TQ

k−1 + ϵk). (Apx-Anc-QI)

Since Qk − Qk
r = dk1 for some dk ∈ R, maxaQ

k(s, a) = maxaQ
k
r (s, a) for all s ∈ S by the

defintion of Bellman operator and this implies induced policies are same. Thus, Proposition 1 also
holds for Apx-R-Anc-QI.

By combining Lemma 10 and Proposition 1, we directly obtain following results. Under assumptions
stated in Theorem 3,

∥gπ⋆ − gπK∥∞ ≤ C1/2
µ

8∥Qπ⋆∥2,µ
K + 2

+ C1/2
µ

2K

3

(
√
3ϵ′ +

√
30(R+ 4 ∥Qπ⋆∥∞)2 ln(2KN2

ϵ′/δ)

n
+
√
13ϵB(F ,F)

)
.

∥gπ⋆ − gπK∥2,ρ ≤ C1/2
µ,ρ

8∥Qπ⋆∥2,µ
K + 2

+ C1/2
µ,ρ

2K

3

(
√
3ϵ′ +

√
30(R+ 4 ∥Qπ⋆∥∞)2 ln(2KN2

ϵ′/δ)

n
+
√
13ϵB(F ,F)

)
,
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where
Nϵ′ = N

(
ϵ′

108(R+4∥Qπ⋆∥∞) ;F , ∥·∥∞
)
.

Given ϵ > 0, for the first inequality, let K = ⌈18C1/2
µ ∥Qπ⋆∥2,µ/ϵ⌉, ϵ′ = 4ϵ2

27K2Cµ
, n =

36K2Cµ

ϵ2 30(R+ 4 ∥Qπ⋆∥∞)2 ln(2KN2
ϵ′/δ). Then, by direct calculation, we derive that

∥gπ⋆ − gπK∥∞ ≤ ϵ+ 3KC1/2
µ

√
ϵB(F ,F)

with sample complexity

n = O

(
(R+ ∥Qπ⋆∥∞)2 ∥Qπ⋆∥2∞ C3

µ

ϵ4
ln(N 2

ϵ C
1/2
µ /(δϵ))

)
where

Nϵ = N
(

ϵ4

106C2
µ(R+∥Qπ⋆∥∞)∥Qπ⋆∥2

∞
;F , ∥·∥∞

)
.

Similarly, given ϵ > 0, for second inequality, let K = ⌈18C1/2
µ,ρ ∥Qπ⋆∥2,µ/ϵ⌉, ϵ′ = 4ϵ2

27K2Cµ,ρ
, n =

36K2Cµ,ρ

ϵ2 30(R+ 4 ∥Qπ⋆∥∞)2 ln(2K2Nϵ′/δ), and

∥gπ⋆ − gπK∥2,ρ ≤ ϵ+ 3KC1/2
µ,ρ

√
ϵB(F ,F)

with sample complexity

n = O

(
(R+ ∥Qπ⋆∥∞)2 ∥Qπ⋆∥2∞ C3

µ,ρ

ϵ4
ln(N 2

ϵ C
1/2
µ,ρ /(δϵ))

)
where

Nϵ = N
(

ϵ4

106C2
µ,ρ(R+∥Qπ⋆∥∞)∥Qπ⋆∥2

∞
;F , ∥·∥∞

)
.

E.2 Proof of Theorem 4

We first prove following key Lemma.
Lemma 11. Assume Assumptions 1, 2, 3, 9, 10, 11, and 12 (Bellman optimality equation, existence
of argmin, star-shaped function space, normalized function space, range of function space, single-
trajectory dataset, β-mixing single-trajectory). Let µ be the distribution generating the dataset
defined as µ(s, a) = ν(s)πb(a | s). Let ϵ > 0 and δ > 0. With probability 1− δ, {fk, T̂ fk}K−1

k=0 of
R-Anc-F-QI satisfies

∥Tfk − T̂ fk∥2µ,2 ≤ ϵB(F ,F) +

√
c0(max{c0/b, 1})1/κ

c2n

where c0 = (VF +VFmax
) log n/2+ log(e/(Kδ))+ log(max(c1, β̄)), c1 = 16e2(VF +1)(VFmax

+
1)(24e)VF+VFmax , c2 = 1

512(R+4∥Qπ⋆∥∞)4 , VFmax
= 2|A|VF log(3|A|).

Proof. The proof basically follows from the proof of Lemma 2.

Now, we prove Theorem 4.

Proof of Theorem 4. By combining Lemma 11 and Proposition 1, we directly obtain following results.
Under assumptions stated in Theorem 11, we have

∥gπ⋆ − gπK∥∞ ≤ C1/2
µ

8∥Qπ⋆∥2,µ
K + 2

+ C1/2
µ

2K

3

((
c0(max{c0/b, 1})1/κ

c2n

)1/4

+
√
ϵB(F ,F)

)
,
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∥gπ⋆ − gπK∥2,ρ ≤ C1/2
µ,ρ

8∥Qπ⋆∥2,µ
K + 2

+ C1/2
µ,ρ

2K

3

((
c0(max{c0/b, 1})1/κ

c2n

)1/4

+
√
ϵB(F ,F)

)
,

where c0 = (VF+VFmax
)/2 log n+log(e/(Kδ))+log(max(c1, β̄, 1)), c1 = 16e2(VF+1)(VFmax

+
1)(24e)VF+VFmax , c2 = 1

512(R+4∥Qπ⋆∥∞)4 , VFmax
= 2|A|VF log(3|A|).

Given ϵ > 0, for the first inequality, let K = ⌈9C1/2
µ ∥Qπ⋆∥2,µ/ϵ⌉. Then, by direct calculation, we

derive that
∥gπ⋆ − gπK∥∞ ≤ ϵ+KC1/2

µ

√
ϵB(F ,F)

with sample complexity

n = Õ

(
b−1/κ(c′0)

1+κ
κ (R+ ∥Qπ⋆∥∞)4∥Qπ⋆∥4∞C4

µ

ϵ8

)
where c′0 = log(1/δ)+log(max(c1, β̄)), c1 = 16e2(VF +1)(VFmax

+1)(24e)VF+VFmax , VFmax
=

2|A|VF log(3|A|), and Õ ignores all logarithmic factors.

Similarly, given ϵ > 0, for the second inequality, let K = ⌈9C1/2
µ,ρ ∥Qπ⋆∥2,µ/ϵ⌉. Then, by direct

calculation, we derive that

∥gπ⋆ − gπK∥∞ ≤ ϵ+KC1/2
µ,ρ

√
ϵB(F ,F)

with sample complexity

n = Õ

(
b−1/κ(c′0)

1+κ
κ (R+ ∥Qπ⋆∥∞)4∥Qπ⋆∥4∞C4

µ,ρ

ϵ8

)
where c′0 = log(1/δ)+log(max(c1, β̄)), c1 = 16e2(VF +1)(VFmax

+1)(24e)VF+VFmax , VFmax
=

2|A|VF log(3|A|), and Õ ignores all logarithmic factors.

34


	Introduction
	Preliminaries and notations
	Conditions of Prior works 

	Anchored Fitted Q-Iteration
	The anchor mechanism and weight decay
	Assumptions on the function space F

	Approximate Anchored Q-Value Iteration
	Sample complexity of Anchored Fitted Q-Iteration
	Range of function space F
	IID dataset
	Single-trajectory dataset

	Relative Anchored Fitted Q-Iteration
	Conclusion
	Prior works
	Preliminaries
	Omitted proofs in Section 3
	Proof of Proposition 1

	Omitted proofs in Section 4
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Theorem 2

	Omitted proofs in Section 5
	Proof of Theorem 3
	Proof of Theorem 4


