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ABSTRACT

Multi-modal dataset distillation (MDD) seeks to compress the large-scale multi-
modal data, e.g., images and text, into a compact set of synthetic pairs. Existing
methods typically employ a bi-trajectory distillation framework to align the tra-
jectories of expert and student models within each modality. Although effective,
this paradigm incurs significant storage and computational overhead due to the
large number of checkpoints and the need for double backpropagation, limiting
its efficiency and scalability. To overcome these limitations, we propose analytic
parameter matching (APM), which directly matches the analytic parameters of
the modal projectors rather than the entire trajectory, offering two key advantages:
First, instead of storing multiple checkpoints, APM only caches two matrices,
which significantly reduces the storage budget. Second, APM avoids the bi-level
optimization, as the analytic parameters can be computed in a single forward pass.
Theoretically, we establish the connection between these analytic parameters and
matrix whitening, clarifying their benefits for MDD. Empirically, APM achieves up
to 65× storage reduction, 9.6× distillation speedup, and scales to 1000 synthetic
pairs. Extensive experiments on Flickr30k and MS-COCO demonstrate the effec-
tiveness of APM in cross-modal retrieval tasks, e.g., 12.8 IR@1 and 17.8 TR@1
under 100-pairs, outperforming existing MDD methods in most scenarios.

1 INTRODUCTION

Dataset distillation (DD) (Wang et al., 2018) has emerged as a de facto framework for improving data
efficiency and accelerating the training of neural networks (Yu et al., 2024; Lei & Tao, 2024). Tradi-
tional DD methods focus on compressing the large-scale vision datasets, e.g., CIFAR (Krizhevsky
et al., 2009) and ImageNet-1k (Deng et al., 2009) into smaller yet representative ones. Roughly
speaking, these methods can be divided into three categories: Gradient Matching (Zhao et al., 2021;
Kim et al., 2022), Trajectory Matching (Cazenavette et al., 2022; Guo et al., 2024), and Statistical
Matching (Zhao & Bilen, 2023; Yin et al., 2023; Shao et al., 2024). Recently, the distillation of
multi-modal datasets (Wu et al., 2024), e.g., images and text, has drawn increasing attention due to its
broader applications in downstream tasks such as cross-modal retrieval and conditional generation.

Existing multi-modal dataset distillation (MDD) methods (Wu et al., 2024; Xu et al., 2024a; Zhang
et al., 2025; Dang et al., 2025) adopt trajectory matching (TM) as the distillation framework, where
expert trajectories are used to supervise the student models trained on the synthetic dataset. Despite
its effectiveness, this framework suffers from two visible drawbacks: First, TM requires storing the
entire expert trajectories, e.g., a series of checkpoints {θ0, θ1, θ2} in Figure 1, leading to significant
storage overhead. For example, LoRS (Xu et al., 2024a) trains 20 trajectories, each containing 10
model checkpoints. This takes up over 30GB of space, even larger than the dataset itself, as shown in
Table 1. Second, TM involves double backpropagation during distillation, which first updates the
model parameters and then optimizes the synthetic dataset by minimizing the differences between
expert and student trajectories, limiting its efficiency and scalability.

Once the weaknesses of existing MDD methods are identified, it is natural to ask: How can we
improve the efficiency and scalability of MDD while preserving its effectiveness? To answer this
question, we first note that the computational bottleneck of MDD stems from the inner model
optimization on synthetic datasets. Instead of relying solely on iterative gradient descent, a more
efficient alternative is to explore its analytic formulations. In particular, we observe that multi-modal

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

	𝜃! 	𝜃#" 	𝜃##

{𝑋#, 𝐾&} {𝑋#, 𝐾&}

	𝜃#ℒ!"

	𝜃# 	𝜃#∗

{𝑋#, 𝐾&}

	𝜃∗ℒ#$"
Forward 1st Backward 2nd Backward

Learned Parameters

Analytic Parameters

Figure 1: Schema of TM and APM

Table 1: The storage, time, and space overhead of three
MDD methods. APM has a 65× storage reduction and 9.6×
speedup over LoRS (Xu et al., 2024a).

Method
Buffer (Offline) Distillation (Online)

Storage (GB) Time (s/iter) Space (GB)

LoRS 32.6 11.50 21.78
RepBlend 14.6 1.71 10.17
APM 0.5 1.20 11.17

models with linear modal projectors, e.g., CLIP (Radford et al., 2021), allow us to derive the analytic
solutions of their projector parameters by solving a least-squares optimization problem.

Motivated by this insight, we propose analytic parameter matching (APM). For any given model, e.g.,
θ2 in Figure 1, APM first computes the analytic parameters of the real and synthetic datasets, and then
minimizes their discrepancy to narrow the data distribution gap. Instead of storing the entire trajectory,
APM only needs to pre-calculate the analytic parameters of the real dataset, which significantly
reduces the storage budget, as shown in Table 1. Furthermore, since these parameters can be obtained
directly in the forward pass, APM eliminates the need for double backpropagation, thereby further
improving its efficiency and scalability. The contributions of this paper are summarized below:

• We analyze the limitations of existing MDD methods, highlighting their substantial storage overhead
due to storing multiple expert trajectories and their inefficiency caused by double backpropagation.

• We propose APM, which replaces the inner model optimization with analytic parameter com-
putation, thereby eliminating trajectory storage and double backpropagation, and improving the
efficiency and scalability of MDD.

• Extensive experiments on Flickr30k and MS-COCO demonstrate that APM not only achieves
competitive or superior performance compared to state-of-the-art MDD methods, but also reduces
storage overhead by up to 65× and time overhead by 9.6× during distillation.

2 PRELIMINARIES

Before presenting our method, we introduce some key concepts relevant to this work, including
multi-modal contrastive learning and multi-modal dataset distillation. More detailed discussions can
be found in Section 5.

Multi-modal Contrastive Learning (MCL) aims to learn a shared embedding space across modal-
ities, where semantically matched samples, e.g., an image and its caption, are pulled together,
while unmatched samples are pushed apart. Consider an image–text dataset with paired samples
(xi,κi) ∈ D, where xi represents the i-th image, and κi denotes its caption. To project data into the
shared space, MCL trains a vision–language model M = {fE, fP, gE, gP}, where fE and fP denote
the image encoder and projector, and gE and gP are the text encoder and projector, respectively.
Finally, a contrastive learning loss function, e.g., InfoNCE (van den Oord et al., 2018), is adopted to
optimize the model. This learning process can be formally described as:

ui =
fP
(
fE(xi)

)∥∥fP
(
fE(xi)

)∥∥
2

, vi =
gP
(
gE(κi)

)∥∥gP
(
gE(κi)

)∥∥
2

, LNCE = − 1

|D|

|D|∑
i=1

log
exp(zii)∑|D|
j=1 exp(zij)

, (1)

where zij = u⊤
i vj/τ measures the similarity between image and text, and τ is a temperature ratio.

By narrowing the gap between positive pairs and enlarging the gap between negative pairs, M can
learn the semantic correspondence between images and text, which can be used in downstream
retrieval or generation tasks.

Multi-modal Dataset Distillation seeks to learn some informative synthetic pairs S = {(x̂i, κ̂i)}|S|
i=1,

where |S| ≪ |D|, such that a multi-modal model trained on D and S will have comparable perfor-
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Figure 2: Pipeline of APM. We use the gray arrow to represent the forward pass and the black arrow
to denote the calculation of loss functions. Ŵ ∗
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mance. We formulate this task as a bi-level optimization problem:

min
S

|D|∑
i=1

LNCE(M∗(xi,κi)), M∗ = argmin
θ

|S|∑
i=1

LNCE(M(x̂i, κ̂i)), (2)

where the inner loop trains the model M on the synthetic data until convergence, and the outer loop
optimizes the synthetic data by minimizing the loss function on the real data. However, solving
this bi-level optimization issue is time-consuming. Existing methods (Wu et al., 2024; Xu et al.,
2024a) adopt the trajectory matching (Cazenavette et al., 2022) as a surrogate, which minimizes
the model optimization trajectories between the real and synthetic data. Despite some efforts, TM
requires double backpropagation during training, which greatly limits its efficiency and scalability.
This observation motivates the design of our model.

3 THE PROPOSED METHOD

In this section, we introduce our proposed method in detail. We begin by deriving the analytic
parameters for the image and text projectors, followed by the formulation of the objective function
for APM. The overall pipeline of APM is illustrated in Figure 2.

3.1 ANALYTIC SOLUTIONS OF MODAL PROJECTORS

To improve the efficiency of MDD, we propose to align the optimal parameters of the modal projectors
trained on real and synthetic datasets than their trajectories. The advantages are two-fold: First, we
can throw off the massive model checkpoints and focus on distilling the essentials of the dataset.
Second, during distillation, we avoid bi-level optimization and only need to propagate the gradient
once, which significantly improves the efficiency and scalability of MDD.

However, it is hard to calculate the analytic form of all model parameters due to the non-linearity
of neural networks. To solve this issue, we switch to match the image and text projectors as they
carry the semantic information across modalities. Specifically, we study the CLIP-style (Radford
et al., 2021) network architecture, containing two linear projectors, i.e., fP = WI and gP = WT . For
clarity, we use the matrix form to represent the set of {xi}|D|

i=1 and {κi}|D|
i=1, denoted as X and K. As

a result, Equation 1 can be reformulated as:

HI = fE(X) ∈ R|D|×dI , HT = gE(K) ∈ R|D|×dT , U = HIWI , V = HTWT ∈ R|D|×d, (3)

where dI and dT are the embedding dimensions of image and text, respectively, and d is the dimension
of the shared semantic space. Next, we omit the L2-normalization of image and text embeddings,
and simplify the MCL loss function as:

LMCL = ∥UV ⊤ − I∥2F = ∥(HIWI)(HTWT )
⊤ − I∥2F , (4)

where I ∈ R|D|×|D| is an identity matrix.

3
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Proposition 1. For the linear projectors U = HIWI and V = HTWT , both LNCE and LMCL have
analytical solutions with respect to WI and WT , defined as:

W ∗
I =

(
H⊤

I HI

)−1
H⊤

I︸ ︷︷ ︸
Image Whitening

V
(
V ⊤V

)−1︸ ︷︷ ︸
Text Whitening

, W ∗
T =

(
H⊤

T HT

)−1
H⊤

T︸ ︷︷ ︸
Text Whitening

U
(
U⊤U

)−1︸ ︷︷ ︸
Image Whitening

. (5)

Proof. See Appendix B.1.

Proposition 2. For the non-linear projectors U = σ(HIWI) and V = σ(HTWT ), the analytic
solutions becomes:

W ∗
I = (H⊤

I HI)
−1H⊤

I σ−1(V (V ⊤V )−1), W ∗
T = (H⊤

T HT )
−1H⊤

T σ−1(U(U⊤U)−1), (6)

where σ−1(·) is the inverse function of the activation function σ(·).

Proof. See Appendix B.2.

Since inverse functions may lead to numerical instability, this paper adopts the linear projectors.
Building on Proposition 1, the optimal projector for each modality can be decomposed into two
important factors: image whitening and text whitening. Here, we take W ∗

I as an example, explain the
benefit for MDD, and interpret its behind intuition:

• Existing MDD methods focus on the retrieval task, isotropic distributions (Su et al., 2021) are more
suitable for cosine similarity-based searches. However, embeddings learned by modal encoders are
typically anisotropic. The analytic projectors leverage matrix whitening to address this issue:(

H⊤
I HI

)−1
H⊤

I =
(
H⊤

I HI

)−1/2︸ ︷︷ ︸
Whitening matrix

(
H⊤

I HI

)−1/2
H⊤

I︸ ︷︷ ︸
Whitened embeddings

, (7)

where the covariance of whitened embeddings is a unit matrix1, preserving the isotropic property.

For text embeddings, we have
(
V
(
V ⊤V

)−1
)⊤

=
(
V ⊤V

)−1
V , which is also a matrix whitening.

• The goal of DD is to match the distribution between the real and synthetic datasets (Zhao & Bilen,
2023). Hence, we should consider the isotropic distribution as the target, which is easier than the
anisotropic one because it does not need to consider the differences between directions. As the
optimal parameters of the modal projectors contain whitened embeddings, it is reasonable to use
them as a surrogate for the entire model parameters.

3.2 ANALYTIC PARAMETER MATCHING

Once the advantages of analytic modal projectors are identified, the next step is to align the distribu-
tions of the real and synthetic datasets by matching their analytic parameters. However, there are
some instabilities in the calculation of Equation 5: (1) Embedding Shift. Matrix whitening requires
embeddings to have zero mean (Kessy et al., 2018), but the analytic parameters omit it, which may
result in embedding shift. (2) Scale Explosion. The whitening matrix involves the sum of sample
outer products, i.e.,

(
H⊤

I HI

)−1/2
=

(∑
i h

⊤
i hi

)−1/2
, which may affect the scale of the analytic

parameters of real and synthetic datasets. (3) Matrix Inversion. As the size of the synthetic dataset is
less than the embedding dimension, the analytic parameters of the synthetic dataset are not full-rank2.
As a result, directly calculating its inversion may lead to unstable distillation.

1Here we omit the mean of the embeddings, which will be discussed in Section 3.2
2The dimension of embeddings is determined by specific encoder architectures. When NFNet (Brock et al.,

2021) and BERT (Devlin et al., 2019) are employed as the image and text encoders, their embedding dimensions
are dI = 2078 and dT = 768, respectively, and the maximum size of the synthetic set |S| is 500.

4
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To overcome these issues, we reformulate the analysis parameters into three parts: image term, cross
term, and text term, and introduce some tricks to stabilize the distillation process:

ΣII = 1
|D| (HI − µI)

⊤(HI − µI) + αI, ΣUU = 1
|D| (U − µU )

⊤(U − µU ) + αI, (Image)
ΣIV = 1

|D| (HI − µI)
⊤(V − µV ), ΣTU = 1

|D| (HT − µT )
⊤(U − µU ), (Cross)

ΣTT = 1
|D| (HT − µT )

⊤(HT − µT ) + αI, ΣV V = 1
|D| (V − µV )

⊤(V − µV ) + αI, (Text)

where µI , µT , µU , and µV denote the mean values of HI , HT , U , and V , respectively. The
hyperparameter α is used to ensure that the matrix is full-rank. Besides, for the synthetic dataset, we
use a hat notation to represent their corresponding analytic parameters, e.g., Σ̂II , and do not repeat
their definitions for clarity. The objective function of APM is defined as:

LAPM = ∥Σ−1
II ΣIV Σ

−1
V V − Σ̂−1

II Σ̂IV Σ̂
−1
V V ∥

2
F + ∥Σ−1

TTΣTUΣ
−1
UU − Σ̂−1

TT Σ̂TU Σ̂
−1
UU∥

2
F . (8)

It is worth noting that calculating the analytic parameters will introduce quadratic complexity with
respect to the number of samples. To avoid this issue, we need to pre-compute the analytic parameters
of the real dataset to reduce the time and space overhead during distillation. Therefore, we first
pre-train a teacher model Mt on the real dataset and freeze its weights during the distillation process,
so that we can cache the analytic parameters based on the fixed modal encoders and projectors.
Finally, we combine the objectives of MCL and APM as the overall loss function for distillation:

L =

|S|∑
i=1

LNCE(Mt(x̂i, κ̂i)) + ηLAPM, (9)

where η = 0.01 is a hyperparameter to balance these two loss functions.

3.3 SIMILARITY MINING

In APM, we mainly focus on aligning the channel-level correspondence between the real and
synthetic datasets, i.e., the covariance matrices of multi-modal data. On the other hand, mining
the correspondence between samples is also crucial for MDD, as pointed out by LoRS (Xu et al.,
2024a). Specifically, LoRS uses a LoRA-like (Xu et al., 2024b) matrix, Z = ωI + LR⊤, to record
the similarities between samples and optimizes it during distillation.

In the evaluation stage, the similarity matrix is used to weight the binary cross-entropy loss function,
aiding the training of multi-modal models. However, this method poses additional computational
and space overhead for MDD. Different from LoRS, we directly use the teacher model to generate a
similarity matrix of the synthetic pairs rather than training it, and adopt a knowledge distillation loss
to train the model from scratch:

Pi = Softmax(Z̃i/τ), Qi = Softmax(Zi/τ), LKD =

|S|∑
i=1

∑
j

Pij log
Pij

Qij
, (10)

where Z̃ = Mt(X̂, K̂) and Z = Ms(X̂, K̂) are the similarity matrices learned by the teacher and
student networks. We notice that the similarity matrix of APM is larger than that of LoRS. To address
this issue, we can apply SVD on the similarity matrix and preserve eigenvectors corresponding to the
top-K singular values.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness of our proposed method.
Specifically, we first introduce the experimental setup and then exhibit the quantitative results in
Section 4.2. Moreover, we make the ablation studies (Section 4.3) and in-depth analysis (Section 4.4)
to further demonstrate the advantages of APM.

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. Following previous work (Wu et al., 2024; Xu et al., 2024a), we benchmark
various MDD methods in two widely used vision-language datasets: Flickr-30k (Plummer et al.,

5
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Table 2: Results on Flickr-30k dataset. We use NFNet+BERT as the distillation and evaluation net-
works. Full dataset performance: IR@1=21.3, IR@5=51.0, IR@10=63.6; TR@1=31.1, TR@5=61.7,
TR@10=74.3. The best results are highlighted in bold.

Pairs
(Ratio) Metric

Coreset Selection Dataset Distillation

Rand Herd K-Cent Forget MTT-VL TESLA LoRS RepBlend APM

100
(0.3%)

IR@1 1.0 0.7 0.7 0.7 4.7±0.2 0.5±0.2 8.3±0.2 11.5±0.4 12.8±0.4
IR@5 4.0 2.8 3.1 2.4 15.7±0.5 2.3±0.2 24.1±0.2 32.0±0.7 34.2±0.2
IR@10 6.5 5.3 6.1 5.6 24.6±1.0 4.7±0.4 35.1±0.3 44.5±0.6 47.1±0.3
TR@1 1.3 1.1 0.6 1.2 9.9±0.3 5.5±0.5 11.8±0.2 16.2±0.8 17.8±0.5
TR@5 5.9 4.7 5.0 4.2 28.3±0.5 19.5±0.9 35.8±0.6 41.7±0.9 43.0±1.2
TR@10 10.1 7.9 7.6 9.7 39.1±0.7 28.9±1.0 49.2±0.5 55.5±0.4 57.2±1.1

200
(0.7%)

IR@1 1.1 1.5 1.5 1.2 4.6±0.9 0.2±0.1 8.6±0.3 12.7±0.8 14.6±0.1
IR@5 4.8 5.5 5.4 3.1 16.0±1.6 1.3±0.2 25.3±0.3 34.7±0.6 38.5±0.2
IR@10 9.2 9.3 9.9 8.4 25.5±2.6 2.5±0.2 36.6±0.3 47.6±0.5 52.0±0.3
TR@1 2.1 2.3 2.2 1.5 10.2±0.8 2.8±0.5 14.5±0.5 18.6±0.7 18.9±1.2
TR@5 8.7 8.4 8.2 8.4 28.7±1.0 10.4±1.5 38.7±0.5 46.0±0.8 47.8±1.4
TR@10 13.2 14.4 13.5 10.2 41.9±1.9 17.4±1.6 53.4±0.5 60.0±0.6 62.2±1.1

500
(1.7%)

IR@1 2.4 3.0 3.5 1.8 6.6±0.3 1.1±0.2 10.0±0.2 17.0±0.6 17.5±0.3
IR@5 10.5 10.0 10.4 9.0 20.2±1.2 7.3±0.4 28.9±0.7 42.5±0.5 43.5±0.2
IR@10 17.4 17.0 17.3 15.9 30.0±2.1 12.6±0.5 41.6±0.6 55.9±0.6 56.8±0.3
TR@1 5.2 5.1 4.9 3.6 13.3±0.6 5.1±0.2 15.5±0.5 22.5±0.4 21.6±0.4
TR@5 18.3 16.4 16.4 12.3 32.8±1.8 15.3±0.5 39.8±0.6 53.2±0.3 52.7±0.2
TR@10 25.7 24.3 23.3 19.3 46.8±3.0 23.8±0.3 53.7±0.3 66.7±0.3 66.4±0.4

2015) and MS-COCO (Lin et al., 2014), which have 31k and 123k, respectively, and each image is
paired with five human-annotated captions. We focus on the cross-modal retrieval task, which aims
to retrieve the top-K semantically relevant samples in the target modality conditioned on a query
from the source modality. We use Recall at K (R@K) as the metric and consider two scenarios:
image-to-text retrieval (TR@K) and text-to-image retrieval (IR@K).

Preprocessing. The derivation of the analytic parameters of modal projectors is based on the one-
to-one correspondence between images and text. However, in Flickr-30k and MS-COCO, the ratio
of the number of images to captions is 1:5, which makes it impossible to directly use APM. To
address this issue, we uniformly divide the captions into five datasets and ensure that each image has
a corresponding caption. During distillation, we cyclically select one sub-dataset to participate in the
calculation of the real analytic parameter, thereby preventing the overfitting of the synthetic dataset.

Networks. We use a CLIP-style (Radford et al., 2021) network architecture as our distillation
backbone, consisting of an image encoder, a text encoder, and two linear modal projectors. For the
image encoder, we choose NFNet (Brock et al., 2021), RegNet (Xu et al., 2023), ResNet-50 (He
et al., 2016), and ViT (Dosovitskiy et al., 2021). For the text encoder, we use BERT (Devlin et al.,
2019) and DistilBERT (Sanh et al., 2019). We directly optimize the synthetic images in the pixel
space and update the embedding of the synthetic captions instead of the original text, as suggested
by Wu et al. (2024). We use the officially pre-trained weights to initialize both the image and text
encoders. During distillation and evaluation, both encoders are frozen, and we only focus on the
modal projectors, as suggested by Zhang et al. (2025).

Baselines. We benchmark APM with various MDD methods to demonstrate its effectiveness.
Specifically, we consider two categories of methods: Coreset-based methods, including Random,
Herding (Welling, 2009), K-Center (Wolf, 2011), and Forgetting (Toneva et al., 2019), as well as the
advanced distillation-based methods, including MTT-VL (Wu et al., 2024), LoRS (Xu et al., 2024a),
and RepBlend (Zhang et al., 2025).

Others. Similar to LoRS, APM also uses the similarity matrix to aid the training of models. To
ensure a fair comparison, we remove one synthetic pair to keep the total budget unchanged, i.e.,
100→99, 200→199, and 500→499. Moreover, to remove randomness, we evaluate our methods
five times and report the mean and standard deviation. See Appendix D for more details, such as
hyperparameters and algorithms.
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Table 3: Results on MS-COCO dataset. We use NFNet+BERT as the distillation and evaluation net-
works. Full dataset performance: IR@1=11.1, IR@5=31.5, IR@10=44.7; TR@1=14.6, TR@5=37.6,
TR@10=50.5. The best results are highlighted in bold.

Pairs
(Ratio) Metric

Coreset Selection Dataset Distillation

Rand Herd K-Cent Forget MTT-VL TESLA LoRS RepBlend APM

100
(0.8‰)

IR@1 0.3 0.5 0.4 0.3 1.3±0.1 0.3±0.2 1.8±0.1 4.1±0.3 4.7±0.2
IR@5 1.3 1.4 1.4 1.5 5.4±0.3 1.0±0.4 7.1±0.2 13.9±0.8 16.2±0.2
IR@10 2.7 3.5 2.5 2.5 9.5±0.5 1.8±0.5 12.2±0.2 22.3±0.5 25.8±0.3
TR@1 0.8 0.8 1.4 0.7 2.5±0.3 2.0±0.2 3.3±0.2 5.2±0.5 6.2±0.4
TR@5 3.0 2.1 3.7 2.6 10.0±0.5 7.7±0.5 12.2±0.3 17.9±0.9 20.0±0.5
TR@10 5.0 4.9 5.5 4.8 15.7±0.4 13.5±0.3 19.6±0.3 28.0±0.3 31.1±0.5

200
(1.7‰)

IR@1 0.6 0.9 0.7 0.6 1.7±0.1 0.1±0.1 2.4±0.1 6.1±0.8 6.1±0.2
IR@5 2.3 2.4 2.1 2.8 6.5±0.4 0.2±0.1 9.3±0.2 19.3±0.7 19.6±0.2
IR@10 4.4 4.1 5.8 4.9 12.3±0.8 0.5±0.1 15.5±0.2 29.8±0.5 30.4±0.3
TR@1 1.0 1.0 1.2 1.1 3.3±0.2 0.7±0.2 4.3±0.1 6.9±0.6 7.7±0.5
TR@5 4.0 3.6 3.8 3.5 11.9±0.6 3.1±0.5 14.2±0.3 21.8±0.9 23.6±0.7
TR@10 7.2 7.7 7.5 7.0 19.4±1.2 5.3±0.8 22.6±0.2 32.3±0.7 35.3±0.9

500
(4.4‰)

IR@1 1.1 1.7 1.1 0.8 2.5±0.5 0.8±0.2 2.8±0.2 6.2±0.1 7.1±0.2
IR@5 5.0 5.3 6.3 5.8 8.9±0.7 3.6±0.6 9.9±0.5 19.9±0.3 21.8±0.3
IR@10 8.7 9.9 10.5 8.2 15.8±1.5 6.7±0.9 16.5±0.7 30.6±0.1 33.3±0.4
TR@1 1.9 1.9 2.5 2.1 5.0±0.4 1.7±0.4 5.3±0.3 7.0±0.2 8.0±0.4
TR@5 7.5 7.8 8.7 8.2 17.2±1.3 5.9±0.8 18.3±1.5 22.0±0.3 24.3±0.3
TR@10 12.5 13.7 14.3 13.0 26.0±1.9 10.2±1.0 27.9±1.4 32.9±0.6 37.1±0.4

Table 4: Ablation study on the loss function of APM under 100 pairs.
“Random” means we randomly pick data for evaluation without training.

Flickr IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Random 3.4 11.5 18.5 4.1 12.8 21.3
+LMCL 6.0 19.0 28.5 8.1 25.5 38.0
+LAPM 12.8 34.2 47.1 17.8 43.0 57.2

Table 5: Effect of hyperpa-
rameters in Flickr-30k.

α

IR@1 η
0.1 0.01 0.001

0.01 5.2 8.1 9.9
0.05 7.3 12.8 11.5

0.1 10.6 11.4 11.0

4.2 QUANTITATIVE RESULTS

Tables 2 and 3 report the distillation performance of various MDD methods on Flickr-30k and
MS-COCO datasets, from which we have the following observations: First, APM consistently
outperforms existing methods in IR. For example, on Flickr-30k with 100 pairs, APM reaches 12.8
IR@1, surpassing RepBlend and LoRS. On MS-COCO with 100 pairs, APM achieves 4.7 IR@1,
while RepBlend remains at 4.1. This advantage is not accidental: APM encourages embeddings to be
more isotropic and better aligned across modalities, thereby reducing the semantic gap. As a result, it
provides consistent improvements on the text-to-image side. Second, APM has a clear improvement
in the more challenging MS-COCO benchmark, where the full dataset performance is 11.1 IR@1
and 14.6 TR@1. When the budget increases from 200 to 500 pairs, RepBlend improves IR@1 only
marginally (6.1→6.2), while APM gains +0.9 (6.1→7.1). Similar trends hold at higher recall levels,
confirming the effectiveness of APM. Third, the improvements are most pronounced under small
budgets: on Flickr-30k with 100 pairs, APM improves TR@1 by +5.2 over RepBlend. At larger
budgets, the gap narrows. We hypothesize that this is because all methods are initialized with the real
dataset, leaving limited room for further improvement.

4.3 ABLATION STUDIES

To further verify the effectiveness of each component in APM, we make a series of ablation studies
about loss functions, hyperparameters, and cross-architecture generalization.

Loss Functions. We first evaluate the role of loss functions, including LMCL and LAPM. The results
are shown in Table 4. It can be observed that the randomly selected data outperforms the coreset-
based methods, validating the effectiveness of similarity mining. We further add the contrastive loss
function LMCL to optimize the synthetic data and slightly improve the performance, e.g., 3.4→6.0 in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 6: Cross-architecture performance of various MDD methods in the Flickr-30k with 500 pairs.
The synthetic dataset is distilled on NFNet+BERT and evaluated by other networks.

Evaluation Model Method IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

ResNet + BERT

TESLA-VL 3.0±0.2 10.8±0.5 17.0±0.8 6.0±0.9 18.8±0.7 27.7±1.2
LoRS 3.3±0.2 12.7±0.3 20.4±0.2 6.8±0.2 19.6±1.3 31.1±0.3
RepBlend 4.2±0.2 14.1±0.2 23.6±0.6 8.4±0.2 23.1±0.8 35.0±1.3
APM 6.9±0.2 21.2±0.3 31.2±0.4 8.7±0.7 24.5±0.5 35.9±1.2

RegNet + BERT

TESLA-VL 3.2±0.8 11.1±1.8 17.5±1.3 5.8±0.1 18.6±0.6 28.1±1.0
LoRS 3.5±0.1 12.6±0.3 21.1±0.4 6.8±0.3 20.8±0.3 30.2±0.3
RepBlend 3.9±0.2 13.9±0.3 24.0±0.6 7.9±0.3 24.2±0.3 36.2±1.1
APM 5.4±0.1 16.7±0.4 25.3±0.5 7.9±0.5 22.2±0.6 32.1±0.6

IR@1. Finally, we add both LMCL and LAPM in the distillation process, which significantly improves
the IR@1 value from 6.0 to 12.8, demonstrating the superiority of APM.

Hyperparameters. We next evaluate the influence of hyperparameters on the performance of APM.
Specifically, we focus on two important hyperparameters: α in analytic parameters and η in loss
functions. We can observe from Table 5 that the best result is obtained with η = 0.01 and α = 0.05.
Generally, the hyperparameter α controls the frequency of the covariance matrix (Bo et al., 2025). A
smaller value of α introduces more high-frequency noise, while a large value of α makes the images
blurred. On the other hand, a larger value of η may enforce the synthetic dataset to overfit the real
analytic parameters, and a smaller value cannot narrow the distribution gap between the real and
synthetic datasets.

Cross-Architecture Generalization. Finally, we evaluate the cross-architecture generalization of
different MDD methods. Following previous work (Zhang et al., 2025), we use NF-ResNet-50 and
NF-RegNet as the image encoders, respectively, and BERT as the text encoder. The results are shown
in Table 6, from which we can find that APM exhibits the strongest generalization ability across
architectures. First, when evaluated on ResNet+BERT, APM achieves the best performance on all
metrics, e.g., 6.9 IR@1 and 8.7 TR@1, surpassing RepBlend by +2.7 and +0.3, respectively. Second,
on RegNet+BERT, APM consistently outperforms the baselines, reaching 5.4 IR@1 and 7.9 TR@1,
while the second-best method only achieves 3.9 and 6.8. This demonstrates that APM not only learns
compact and effective synthetic datasets but also transfers well to unseen architectures. The results
validate our claim that APM preserves the essential modality alignment in a way that is independent
of specific backbone choices, highlighting its scalability and robustness for real-world deployment.

4.4 IN-DEPTH ANALYSIS

Data Entropy. The goal of DD is to reduce the redundancy in the real datasets. To verify whether
APM can achieve this objective, we analyze the entropy of the image and text embeddings in the
synthetic dataset. Specifically, we use the SVD entropy, which is defined as H = −

∑
i pi log pi,

where pi =
σi∑
i σi

and σi denote the i-th singular value of the data embeddings. Intuitively, data
embeddings with smaller SVD entropy have more redundancy as their information is dominated by
a few principal singular values, and vice versa. Based on this property, we draw the trends of loss
and SVD entropy of the image and text embeddings in Figure 3. We can observe that as the loss
function decreases, the SVD entropy of the data embeddings gradually increases, implying that APM
can effectively reduce data redundancy and improve data diversity.

Scalability. In addition to the efficacy and efficiency, we also emphasize the scalability of the method.
Generally, we expect models trained on synthetic datasets to have comparable performance to those
trained on real datasets. However, lossless performance is only possible on relatively large-scale
synthetic datasets. For example, in the setting of Flickr-30k with 500 pairs, the results of APM
are 17.5 in IR@1 and 21.6 in TR@1, which are still far behind the performance on the full dataset
(21.3 in IR@1 and 31.1 in TR@1). To evaluate the scalability of APM, we increase the maximum
budget from 500 pairs to 1,000 pairs. The results are listed in Table 7. It can be observed that APM
achieves the best results in 4 of 6 metrics, while only slightly outperformed by RepBlend in TR@5
and TR@10, demonstrating its scalability.
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Figure 3: Trends of loss and SVD
entropy during distillation.

Table 7: Scalability experiments on Flickr-30k datasets. Results
of MDW and EDGE are taken from Dang et al. (2025) and Zhao
et al. (2025), while other results were implemented by ourselves.

Pairs
(Ratio) Method

Flickr-30k

IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

1000
(3.4%)

LoRS 11.0 30.8 42.5 16.0 41.1 54.8
MDW 12.5 32.2 45.8 19.2 49.1 63.0
EDGE 9.9 28.2 40.5 14.5 38.3 51.7
RepBlend 17.8 44.7 56.9 23.0 54.4 67.3
APM 18.4 45.5 57.9 23.2 53.8 66.9

Figure 4: Distribution of the
synthetic dataset (Flickr).

“a man is sleeping 
on a bench”

“a man holding a 
cane and wearing 
a hat is sleeping 

on a bench”

“a woman is 
crossing the 
street while a 

man looks at her”

“two men are 
walking on the 
street while a 

lady is walking 
on the sidewalk”

Real Dataset Synthetic Dataset

Figure 5: The real and synthetic data pairs of APM. We highlight
some fine-grained descriptions in the synthetic captions.

4.5 VISUALIZATION

Modality Distribution. A recent work (Zhang et al., 2025) highlights that MDD methods suffer
from the modality collapse issue, where intra-modality embeddings are overly concentrated, while
cross-modality embeddings are not well aligned. To verify whether APM can address this issue, we
project the image and text embeddings on a spherical surface, as shown in Figure 4. We can observe
that the image and text embeddings are well-matched in the shared space, indicating that APM can
preserve the data correspondence across modalities.

Synthetic Pairs. We compare the real dataset with the synthetic dataset learned by APM in Figure 5.
To be more intuitive, the synthetic data pairs are initialized by the real data. It can be observed that
the caption learned by APM contains more detailed descriptions, such as the clothing of people.
Moreover, the images also have high-frequency artifacts. We speculate that these textures will
increase the diversity of data.

5 RELATED WORK

Dataset Distillation. The concept of dataset distillation (DD) was first introduced by Wang et al.
(2018), with the goal of condensing a large dataset into a compact set of synthetic samples while
maintaining comparable performance. Existing methods can be broadly categorized into three groups:
gradient matching (Zhao et al., 2021; Kim et al., 2022), which aligns gradients computed on real and
synthetic data; trajectory matching (Cazenavette et al., 2022; Guo et al., 2024), which supervises
the student’s optimization trajectory using expert trajectories trained on real data; and statistical
matching (Zhao & Bilen, 2023), which aligns higher-order statistics such as feature distributions
or batch normalization statistics (Yin et al., 2023; Shao et al., 2024). Moreover, UniDD (Bo et al.,
2025) provides a unified spectral filtering view of DD, under which our proposed APM can also
be interpreted as a high-pass filter. DD has also been applied across diverse domains, including
images (Zhao et al., 2021; Yin et al., 2023), time series (Liu et al., 2024b; Ding et al., 2024), and
graphs (Jin et al., 2022; Liu et al., 2024a).
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Multi-modal Dataset Distillation. Compared with single-modal distillation, the multi-modal setting
introduces additional challenges, as it requires preserving both intra-modal semantics and cross-modal
alignment. Recent studies have extended trajectory matching (TM) to the multi-modal domain. For
instance, MTT-VL (Wu et al., 2024) proposes bi-trajectory matching to align the paired image-text
data. LoRS (Xu et al., 2024a) further introduces the concept of similarity mining, improving the
performance of MDD by a large margin. More recently, RepBlend (Zhang et al., 2025) identifies
the issue of modality collapse in MDD and proposes representation blending to preserve cross-
modal consistency. MDW (Dang et al., 2025) further investigates the robustness of MDD under
noisy environments. EDGE (Zhao et al., 2025) improves the efficiency and scalability of MDD by
leveraging the prior knowledge of generative models.

6 CONCLUSION

In this paper, we introduce APM, a framework that improves the efficiency and scalability of multi-
modal dataset distillation. APM uses the analytic parameters of linear modal projectors to replace the
inner model optimization in trajectory matching, enabling efficient alignment of real and synthetic
datasets. Extensive experiments on Flickr30k and MS-COCO demonstrate that APM not only reduces
both storage and computational overhead but also maintains superior performance. A promising
future direction is to extend APM to other modalities, such as audio-text datasets.
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A STATEMENT ON LLM USAGE

In preparing this manuscript, we employed LLMs solely to assist with language polishing and
grammar checking. No sections of the text were directly copied from LLM outputs, and all scientific
ideas, analyses, and conclusions are original contributions of the authors.

B DERIVATION

B.1 ANALYTIC SOLUTION OF LINEAR PROJECTOR

Recalling that Proposition 1 aims to give the analytic solutions of the linear modal projectors. Here
we provide the detailed derivations.

For the loss function LMCL = ∥UV ⊤ − I∥2F , we directly use the gradient of matrix trace to calculate
the analytic parameters.

Proof. We prove the statement for WI , and the proof for WT is analogous.

We consider the alternative Optimization of WI and WT , where we first fix WT and optimize WI :

L(WI) =
∥∥HIWIV

⊤ − I
∥∥2
F
= tr

(
(HIWIV

⊤ − I)⊤(HIWIV
⊤ − I)

)
.

Based on the trace of the matrix, we have:

L(WI) = tr
(
W⊤

I (H⊤
I HI)WI(V

⊤V )
)
− 2 tr

(
(H⊤

I V )⊤WI

)
+ tr(I).

We now apply standard matrix calculus identities:

∂

∂X
tr(X⊤AXB) = AX(B +B⊤),

∂

∂X
tr(C⊤X) = C.

Since both A = H⊤
I HI and B = V ⊤V are symmetric, we obtain:

∇WI
L = 2(H⊤

I HI)WI(V
⊤V )− 2H⊤

I V.

Setting the gradient to zero yields the normal equation:

(H⊤
I HI)WI(V

⊤V ) = H⊤
I V.

Assuming invertibility of H⊤
I HI and V ⊤V , the final solution is

W ⋆
I = (H⊤

I HI)
−1H⊤

I V (V ⊤V )−1.

We further consider the non-linear InfoNCE loss function LNCE = − 1
|D|

∑|D|
i=1 log

exp(uiv
⊤
i )∑|D|

j=1 exp(uiv⊤
j )

,

which is more challenging than the linear case, but the conclusion is similar.

We begin by introducing an existing result about the analytic solution of a linear layer with the
softmax function in the multi-class classification task:
Lemma 3. The probability that a sample belongs to a certain class is defined as:

p(i|x) = exp(xw⊤
i + bi)∑k

i=1 exp(xw
⊤
i + bi)

, (11)

where x is the sample, and wi and bi denote the weight and bias of the i-th class, respectively. The
analytic solutions of wi and bi are defined as:

wi = µiΣ
−1, bi = ln pi −

1

2
µiΣ

−1µ⊤
i , (12)

where pi is the ratio of the i-th class, µi is the mean value of the data embedding in the i-th class,
and Σ = Σ̂ + µ̂⊤µ̂+

∑
i piµ

⊤
i µi.
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Proof. See Equations 12-15 in Su (2021).

Notably, The InfoNCE loss can also be viewed as a multi-class classification task, where each pair
is a class. In this case, ui can be seen as the sample and v⊤i denotes the weight in the i-th class.
Therefore, we can directly obtain their analytic solutions:

ui =
1

τ
viΣ

−1
V , vi =

1

τ
uiΣ

−1
U , (13)

where ΣV and ΣU denote the covariance of each modality. Notably, we have Σ̂ + µ̂⊤µ̂ =
1
N

∑
i x

⊤
i xi =

1
NX⊤X , pi = 1

N , and µi = ui. Therefore, ΣV = 2
NU⊤U and ΣU = 2

N V ⊤V .

We then transform this equation into matrix form by stacking a series of vectors, and obtain:

U =
N

2τ
V (V ⊤V )−1, V =

N

2τ
U(U⊤U)−1. (14)

Based on the above analysis, we can find that both InfoNCE and the least-square loss ∥UV ⊤ − I∥2F
have similar results, and the softmax function does not affect the calculation of analytic solutions.

B.2 ANALYTIC SOLUTION OF NON-LINEAR PROJECTOR

For the non-linear projectors U = σ(HIWI) and V = σ(HTWT ), we have σ(HIWI) =
V (V ⊤V )−1 and σ(HTWT ) = U(U⊤U)−1. Since the activation σ is an element-wise function, we
can directly use its inversion function to calculate the analytic solutions:

W ∗
I = (H⊤

I HI)
−1H⊤

I σ−1(V (V ⊤V )−1), W ∗
T = (H⊤

T HT )
−1H⊤

T σ−1(U(U⊤U)−1), (15)

where σ−1(·) is the inverse function of σ(·).
We list some commonly used activation functions and their inverses below.

Table 8: Activation Functions σ(x) and their inverses σ−1(y)

Activation σ(x) σ−1(y)

Sigmoid σ(x) =
1

1 + e−x
σ−1(y) = ln

(
y

1− y

)
Tanh σ(x) = tanh(x) =

ex − e−x

ex + e−x
σ−1(y) = arctanh(y) =

1

2
ln

(
1 + y

1− y

)
LeakyReLU σ(x) =

{
x, x ≥ 0

αx, x < 0
σ−1(y) =

{
y, y ≥ 0
y
α , y < 0

C ADDITIONAL EXPERIMENTS

C.1 ISOTROPY AND ANISOTROPY DISTRIBUTIONS

We make an experiment to verify the effectiveness of isotropy distribution.

As mentioned Section 3.1, the analytic parameters (H⊤
I HI)

−1H⊤
I V (V ⊤V )−1 have a close connec-

tion with matrix whitening, which transforms the embeddings into a isotropy distribution.

To construct a anisotropy distribution, we remove the inverse covariance in the analytic parameters
and obtain H⊤

I V , which is dominated by the principle singular values.

The comparison between the isotropy and anisotropy distributions is shown in Table 9. We have
the following observations: First, the synthetic data learned by isotropy distribution has large
entropy, indicating that it can encode more information of the real data. Second, the isotropy
distribution outperforms anisotropy distribution by a large margin, verifying the effectiveness of
isotropy distribution and supporting our claims.
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Table 9: Comparison between isotropy and anisotropy distributions.

Type Equation Image Entropy Text Entropy IR@1 TR@1

Isotropy (H⊤
I HI)

−1H⊤
I V (V ⊤V )−1 3.93 3.87 12.8 17.8

Anisotropy H⊤
I V 3.87 3.79 7.9 11.2

C.2 ZERO-SHOT CLASSIFICATION

To verify whether the synthetic dataset can be used in downstream tasks beyond retrieval. We make a
zero-shot image classification task to benchmark the performance between real and synthetic datasets.

Specifically, we use three datasets, CIFAR-10, CIFAR-100, and ImageNet-1k. The results are shown
Table 10. We can see that the synthetic datasets have similar zero-shot classification performance
with the real dataset.

Table 10: Results of zero-shot image classification.

Dataset
CIFAR-10 CIFAR-100 ImageNet-1k

Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

Full 58.77 92.07 16.34 38.27 7.62 19.54
99 Pairs 52.44 87.54 13.53 32.19 4.28 12.50
199 Pairs 53.73 85.96 13.70 34.76 4.35 12.69
499 Pairs 55.03 90.28 14.45 36.14 5.06 14.77

C.3 ABLATION STUDY

In Section 3.2, we mentioned three issues of the analytic parameters, including Embedding Shift (ES),
Scale Explosion (SE), and Matrix Inversion (MI), and proposed three corresponding modifications.
We further make an ablation study on the Flickr-30k dataset to validate the effectiveness of these
modification. The results are shown Table 11. We have the following observations: First, removing
ES slightly affects the performance of APM. The reason is that synthetic data is initialized by real
data, thus they may have similar mean values. Second, removing SE significantly reduces the retrival
performance as the number of real data is larger than the synthetic data, making the scale of H⊤

I HI

and Ĥ⊤
I ĤI different. Third, removing MI cannot obtain the meaningful synthetic dataset. The

covariance of the synthetic dataset is low-rank, and directly solving for its inverse matrix will lead to
numerical instability.

Table 11: Ablation studies on the design of loss function.

IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

LAPM 12.8 34.2 47.1 17.8 43.0 57.2
w/o ES 11.6 32.0 44.9 17.3 41.8 57.5
w/o SE 2.1 7.5 12.9 3.9 13.3 19.9
w/o MI 0.2 0.8 1.3 0.0 0.0 0.0

C.4 COMPARISON WITH EDGE

EDGE leverages generative models to address the semantic correlation and diversity issues of existing
MDD methods. Notably, we have cited EDGE in the original paper.

EDGE mainly focuses on the large budget setting (500 / 1000 pairs). We report the performance of
EDGE and APM under the same settings in the revision. Below is a quick comparison.
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Table 12: Flickr Retrieval Results

Flickr IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

EDGE-500 6.7 21.0 30.5 13.3 35.6 47.5
APM-500 17.5 43.5 56.8 21.6 52.7 66.4
EDGE-1000 9.9 28.2 40.5 14.5 38.3 51.7
APM-1000 18.4 45.5 57.9 23.2 53.8 66.9

Table 13: MS-COCO Retrieval Results

MS-COCO IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

EDGE-500 1.8 6.5 11.2 2.9 9.5 15.7
APM-500 7.1 21.8 33.3 8.0 24.3 37.1

C.5 AUDIO-TEXT DATASET DISTILLATION

We make an additional experiment on the audio-text retrieval task to verify the generalization of
the proposed method. Following Zhang et al. (2025), we choose the AudioCaps (Kim et al., 2019)
dataset, consisting of 49,838 training audios, 495 validation audios, and 975 test audios. We use
EfficientAT (mn20 as) (Schmid et al., 2023) as the audio encoder and BERT as the text encoder.
Since RepBlend (Zhang et al., 2025) does not introduce its implementation details, we describe our
reproduction process below.

Data Preparation. The AudioCaps dataset contains files in WAV format. We use the AugmentMel-
STFT function from EfficientAT to preprocess the audio. We sample the audios in mono at a sampling
rate of 32 kHz and then calculate their log-mel-spectrogram in a 25-ms window with a step size of 10
ms. After processing, each audio has a feature map with shape [1, 128, 1000], as shown in Figure 6.

Distillation. Instead of distilling the raw audios, we directly synthesize the log-mel-spectrogram to
match the input of EfficientAT. The spectrogram has a shape of [1, 128, 1000], which can be seen as
an image with channel=1, width=128, and height=1000. Therefore, the code of image-text distillation
can be directly transferred to the audio-text datasets. See Table 15 for the hyperparameters.

Evaluation. In the test set of AudioCaps, each audio corresponds to 5 captions, which improves its
retrieval performance. We train the multi-modal network from scratch and evaluate it on the test set.
We repeat the experiments five times and report the average performance and standard deviation.

Results. The results are shown in Table 14. We can observe that APM outperforms LoRS and
RepBlend, especially in audio retrieval tasks, where it shows a significant performance improvement.
Figure 6 illustrates the original and distilled log-mel-spectrograms. We can see that the distilled log-
mel-spectrogram has more energy than the original one, indicating that it compresses the knowledge
of other audios.

Original Log-spectrogram Distilled Log-spectrogram

Figure 6: Visualizations of the original and distilled audio data.
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Table 14: Results on AudioCaps dataset. We use EfficientAT (mn20 as)+BERT as the distillation
and evaluation networks. Full dataset performance: AR@1=17.6, AR@5=47.7, AR@10=63.8;
TR@1=20.6, TR@5=49.6, TR@10=67.2. The best results are highlighted in bold.

Pairs Method AR@1 AR@5 AR@10 TR@1 TR@5 TR@10

100
LoRS 2.7±0.3 8.6±0.3 14.7±0.4 5.9±0.3 13.0±0.4 21.8±0.5
RepBlend 4.1±0.2 14.2±0.3 23.7±0.4 8.9±0.1 24.3±0.2 34.7±0.3
APM 8.3±0.3 28.6±0.3 42.1±0.4 11.3±0.6 33.4±0.6 46.7±0.8

200
LoRS 3.8±0.2 14.8±0.2 21.8±0.2 8.0±0.2 21.2±0.2 33.1±0.2
RepBlend 6.8±0.2 20.6±0.2 31.4±0.3 9.7±0.2 29.1±0.4 41.2±0.4
APM 10.1±0.1 32.5±0.3 47.3±0.2 11.7±0.7 35.6±0.8 51.1±1.1

500
LoRS 7.1±0.1 24.7±0.2 36.7±0.2 9.2±0.2 27.4±0.3 41.3±0.3
RepBlend 9.7±0.1 32.2±0.3 46.8±0.2 13.8±0.3 38.6±0.3 54.1±0.4
APM 11.4±0.1 35.8±0.4 51.3±0.3 13.6±0.7 39.3±0.7 54.8±0.5

D EXPERIMENTAL DETAILS

Hyperparameters. To improve the reproducibility of our work, we provide the hyperparameters
used in both distillation and evaluation stages in Tables 15 and 16.

Table 15: Hyperparameters used in the distillation stage.

Dataset Flickr COCO AudioCaps

Pairs 100 200 500 100 200 500 100 200 500

Epoch 400 400 400 400 400 400 400 400 400
Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam
LR 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01
Betas (0.6, 0.9) (0.6, 0.9) (0.6, 0.9) (0.6, 0.9) (0.6, 0.9) (0.6, 0.9) (0.6, 0.9) (0.6, 0.9) (0.6, 0.9)
α 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1
η 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Projector Dim. 256 256 256 256 256 256 256 256 256

Table 16: Hyperparameters used in the evaluation stage.

Dataset Flickr COCO AudioCaps

Pairs 100 200 500 100 200 500 100 200 500

Epoch 100 100 100 100 100 100 100 100 100
Optimizer SGD SGD SGD SGD SGD SGD SGD SGD SGD
LR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Momentum 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Weight Decay 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Scheduler StepLR StepLR StepLR StepLR StepLR StepLR StepLR StepLR StepLR
Projector Dim. 256 256 512 256 256 512 256 256 256
KD Temperature (τ ) 5 5 10 5 5 10 5 5 5

Algorithms Algorithm 1 illustrates the distillation process of APM. Algorithm 2 shows the Pytorch-
style core code of APM.
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Algorithm 1 Analytic Parameter Matching (APM)

Input: Distillation network M = {fE, fP, gE, gP}, real dataset D = (X,K), number of iteration I.
Output: Synthetic dataset S = (X̂, K̂)

1: Feed D into M, where HI = fE(X), HT = gE(K), U = gE(HI), V = gP(HT )
2: Calculate ΣII , ΣUU , ΣIV , ΣTU , ΣTT , and ΣV V

3: Calculate W ∗
I = Σ−1

II ΣIV Σ
−1
V V and W ∗

T = Σ−1
TTΣTUΣ

−1
UU

4: for iteration i = 1, · · · , I do
5: Feed S into M, where ĤI = fE(X̂), ĤT = gE(K̂), Û = gE(ĤI), V̂ = gP(ĤT )

6: Calculate Σ̂II , Σ̂UU , Σ̂IV , Σ̂TU , Σ̂TT , and Σ̂V V

7: Calculate Ŵ ∗
I = Σ̂−1

II Σ̂IV Σ̂
−1
V V and Ŵ ∗

T = Σ̂−1
TT Σ̂TU Σ̂

−1
UU

8: Minimize the discrepancy between analytic parameters based on Equation 8
9: end for

Algorithm 2 PyTorch code of APM

1 def Conv(img_embed, txt_embed, img_proj, txt_proj, alpha=0.1):
2 device = img_embed.device
3 N = img_embed.shape[0]
4
5 h_I = img_embed - img_embed.mean(0, keepdim=True)
6 h_T = txt_embed - txt_embed.mean(0, keepdim=True)
7 h_U = img_proj - img_proj.mean(0, keepdim=True)
8 h_V = txt_proj - txt_proj.mean(0, keepdim=True)
9

10 sigma_II = (h_I.T @ h_I) / N + alpha * torch.eye(h_I.shape[1], device=device)
11 sigma_IV = (h_I.T @ h_V) / N
12 sigma_VV = (h_V.T @ h_V) / N + alpha * torch.eye(h_V.shape[1], device=device)
13
14 tmp = torch.linalg.solve(sigma_II, sigma_IV)
15 w_I = torch.linalg.solve(sigma_VV, tmp, left=False)
16
17 sigma_TT = (h_T.T @ h_T) / N + alpha * torch.eye(h_T.shape[1], device=device)
18 sigma_TU = (h_T.T @ h_U) / N
19 sigma_UU = (h_U.T @ h_U) / N + alpha * torch.eye(h_U.shape[1], device=device)
20
21 tmp2 = torch.linalg.solve(sigma_TT, sigma_TU)
22 w_T = torch.linalg.solve(sigma_UU, tmp2, left=False)
23
24 return w_I, w_T
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