

000 001 002 003 004 005 EASYTUNE: EFFICIENT STEP-AWARE FINE-TUNING 006 FOR DIFFUSION-BASED MOTION GENERATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 In recent years, motion generative models have undergone significant advancement,
031 yet pose challenges in aligning with downstream objectives. Recent studies have
032 shown that using differentiable rewards to directly align the preference of diffusion
033 models yields promising results. However, these methods suffer from (1) inefficient
034 and coarse-grained optimization with (2) high memory consumption. In this work,
035 we first theoretically and empirically identify the *key reason* of these limitations: the
036 recursive dependence between different steps in the denoising trajectory. Inspired
037 by this insight, we propose **EasyTune**, which fine-tunes diffusion at each denoising
038 step rather than over the entire trajectory. This decouples the recursive dependence,
039 allowing us to perform (1) a dense and fine-grained, and (2) memory-efficient
040 optimization. Furthermore, the scarcity of preference motion pairs restricts the
041 availability of motion reward model training. To this end, we further introduce a
042 **Self-refinement Preference Learning (SPL)** mechanism that dynamically identifies
043 preference pairs and conducts preference learning. Extensive experiments demon-
044 strate that EasyTune outperforms DRaFT-50 by 8.91% in alignment (MM-Dist)
045 improvement while requiring only 31.16% of its additional memory overhead.
046
047

1 INTRODUCTION

048 Text-to-motion generation aims to synthesize realistic and coherent human motions from natural
049 language, enabling applications in animation (Azadi et al., 2023), human-computer interaction (Peng
050 et al., 2024), and virtual reality (Tashakori et al., 2025). Recent advances are driven by diffusion
051 models (Ho et al., 2020; Song et al., 2020a), which capture complex distributions and synthesize high-
052 quality motions from text (Chen et al., 2023; Zhang et al., 2024a). However, their likelihood-based
053 training (Guo et al., 2022a) often misaligns with downstream goals such as semantic consistency
(Tan et al., 2025), motion plausibility (Wang et al., 2024), and user preference (Xu et al., 2023).

054 To bridge this gap, reinforcement learning from human feedback (RLHF) (Kirstain et al., 2023)
055 has been explored to fine-tune diffusion models toward human preferences and task-specific goals.
056 Existing approaches include differentiable reward methods (Clark et al., 2024), reinforcement learning
057 (Black et al., 2023), and direct preference optimization (DPO) (Wallace et al., 2024). Among these,
058 DPO provides a effective way to align models using preference pairs. However, acquiring large-scale,
059 high-quality preference pairs remains challenging due to the cost and difficulty of capturing nuanced
060 semantic and preference signals. A more efficient alternative is to fine-tune models using a reward
061 model that captures semantic alignment and task preference. Reinforcement learning methods, such
062 as DDPO (Black et al., 2023) and DPOK (Fan et al., 2023a), treat the denoising trajectory as a Markov
063 Decision Process, where intermediate motions are states and final motions are evaluated by a reward
064 model. Differentiable reward methods, including DRaFT (Clark et al., 2024) and DRTune (Wu et al.,
065 2025), directly backpropagate gradients from a differentiable reward $\mathcal{R}(\mathbf{x}^\theta)$ to optimize the model θ .

066 However, these methods still face several primary limitations that hinder their application to diffusion-
067 based motion generation: (1) **Sparse and coarse-grained optimization**: Most approaches only
068 optimize model parameters θ once after completing a multi-step denoising trajectory, resulting in
069 sparse optimization signals and slowing down convergence. (2) **Excessive memory consumption**:
070 These methods optimize the model θ by backpropagating the gradients of the reward value $\nabla_\theta \mathcal{R}(\mathbf{x}_\theta)$,
071 which is related to the overall denoising trajectory. Notably, this requires storing a large computation
072 graph of the entire trajectory, leading to excessive memory consumption. Beyond these computational
073

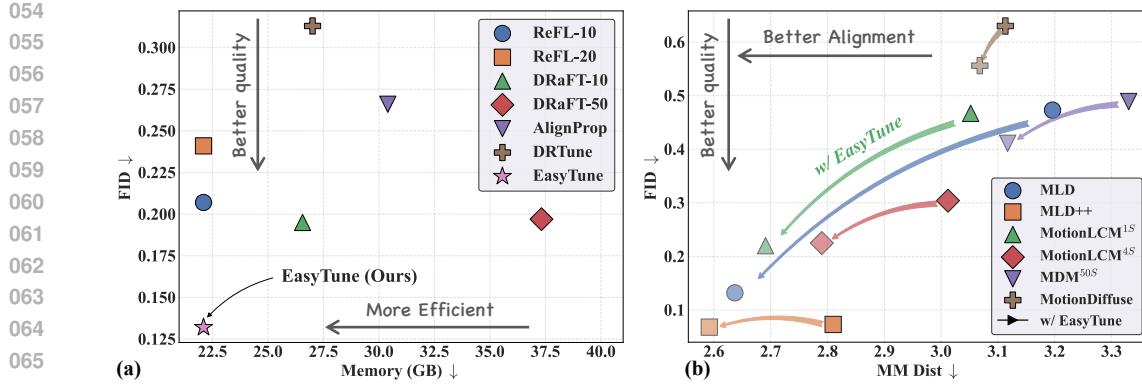


Figure 1: Comparison of the training costs and generation performance on HumanML3D (Guo et al., 2022a). (a) Performance comparison of different fine-tuning methods (Clark et al., 2024; Prabhudesai et al., 2023; Wu et al., 2025). (b) Generalization performance across six pre-trained diffusion-based models (Chen et al., 2023; Dai et al.; 2024; Tevet et al., 2023; Zhang et al., 2024a).

challenges, existing methods rely on intricate designs such as early stopping or partial gradient blocking, increasing implementation complexity and limiting applicability. Moreover, research on motion-specific reward models is limited, so current approaches (Tan et al., 2025) typically use general-purpose retrieval models, which may inadequately capture motion preferences.

Contributions. In this work, we first theoretically (Corollary 1) and empirically (Fig. 6) identify a key factor of the significant computational and memory overhead: *the optimization is recursively related to the multi-step denoising trajectory*, causing the reward value of generated motions, $\mathcal{R}(\mathbf{x}^\theta)$, to be recursively depended on each denoised step throughout the overall trajectory. Specifically, each denoised motion \mathbf{x}_t^θ is generated from the diffusion model, $\mathbf{x}_t^\theta \sim \epsilon_\theta$, and recursively dependent on previous steps $\mathbf{x}_t^\theta \sim \mathbf{x}_{t+1}^\theta$. Thus, computing the gradient $\nabla_\theta \mathbf{x}_t^\theta$ requires solving for that of the prior step, $\nabla_\theta \mathbf{x}_1^\theta$, which in turn depends on those of subsequent steps, $\nabla_\theta \mathbf{x}_2^\theta, \nabla_\theta \mathbf{x}_3^\theta, \dots, \nabla_\theta \mathbf{x}_T^\theta$, leading to the large significant computational and memory overhead. Building on this, we then theoretically analyze and empirically validate (Fig.3) the primary limitation of existing methods: *coarse-grained chain optimization leads to vanishing gradients, hindering optimization of early denoising steps*.

To address this, we introduce a simple and effective insight: **perform optimization at each denoising step, thereby decoupling gradients from the full reverse trajectory**. By decoupling gradients from the denoising trajectory, our *EasyTune* framework facilitates: (1) dense and fine-grained optimization through clearing the computational graph after each denoising step, (2) avoiding storing them until denoising completes, and thus (3) obviation of the need for complex memory-saving techniques.

Nevertheless, two critical challenges remain: the lack of a reliable motion reward model and reward perception for intermediate denoising steps. The first issue stems from limited large-scale, high-quality preference data, making it difficult to train a motion-specific reward model directly. To overcome this, we propose a **Self-refinement Preference Learning (SPL)**, which adapts a pre-trained text-to-motion retrieval model for preference evaluation without human annotations. We dynamically construct preference pairs from the retrieval datasets and fail-retrieved results, and fine-tune this retrieval model to capture implicit preferences. For noisy intermediate steps, we employ single-step prediction rewards for ODE-based models and noise-aware rewards for SDE-based models.

Finally, we evaluate EasyTune on HumanML3D (Guo et al., 2022a) and KIT-ML (Plappert et al., 2016) with six pre-trained diffusion models. As shown in Fig.1, EasyTune achieves SoTA performance (FID = **0.132**, 72.1% better than MLD (Chen et al., 2023)), while cutting memory usage to **22.10** GB. In summary, our contributions are as follows:

1. We theoretically and empirically identify the cost and performance limitations of existing differentiable-reward methods, and propose EasyTune, a effective step-aware fine-tuning method.
2. To the best of our knowledge, this work is the first to explore fine-tuning motion diffusion models by differentiable reward. To achieve this, we introduce the SPL mechanism to fine-tune pre-trained retrieval models for preference evaluation, without any human-annotated preference data pairs.

108 3. Extensive experiments demonstrate that EasyTune significantly outperforms existing methods in
 109 terms of performance, optimization efficiency, and storage requirements.
 110

111 **2 RELATED WORKS**
 112

113 **Text-to-Motion Generation.** Text-to-motion generation (Chen et al., 2023; Guo et al., 2023) produces
 114 human motion sequences from textual descriptions. Among these works, as a powerful generative
 115 model, diffusion models (Chen et al., 2023; Tevet et al., 2023) iteratively denoise latent motions
 116 under text guidance, offering higher quality and stability. Recent advances include transformer-based
 117 diffusion with geometric losses (Tevet et al., 2023), few-step controllable inference (Dai et al., 2024),
 118 and hybrid discrete-continuous modeling (Meng et al., 2025). However, these methods primarily
 119 target the pretraining stage by aligning to fixed dataset distributions (Guo et al., 2022a), yet they
 120 remain misaligned with semantic coherence (Tan et al., 2025) and physical reality.
 121

122 **Post-training in Motion Generation.** To address the aforementioned issues, recent studies have
 123 explored post-training along two primary strands: enhancing semantic coherence (Tan et al., 2025;
 124 Pappa et al., 2024) and improving physical realism (Yuan et al., 2023; Han et al., 2025; Wang et al.,
 125 2025). Specifically, Tan et al. (2025) constructs semi-online preference pairs (semantically aligned
 126 vs. misaligned) and optimizes the model via a DPO-based approach; Motioncritic (Wang et al., 2025)
 127 curates a human-preference dataset and employs PPO to bolster realism; and (Han et al., 2025) adopts
 128 rule-based reward. However, these methods typically optimize within the pretraining reward domain,
 129 whereas the reward model operates in a separate, often black-box space (Janner et al., 2019; Yao
 130 et al., 2022; 2024), resulting in limited and potentially insufficient feedback (Wang et al., 2025).
 131 Moreover, these approaches exhibit substantial data dependence (Tan et al., 2025; Pappa et al., 2024).
 132 By contrast, we improve semantic alignment in text-to-motion generation using a differentiable
 133 reward model and a lightweight, efficient RL algorithm. Accordingly, we focus on text-to-motion,
 134 where semantic alignment generally takes precedence over physical realism.
 135

136 **Differentiable Reward Fine-Tuning for Diffusion Models.** Fine-tuning pre-trained diffusion
 137 models (Clark et al., 2024; Prabhudesai et al., 2023; Wu et al., 2025) with differentiable reward
 138 models is a key strategy for aligning models to downstream tasks. However, as discussed in Sec.3,
 139 these approaches are limited by sparse gradients, slow convergence, and high memory costs.
 140

141 **3 MOTIVATION: RETHINKING DIFFERENTIABLE REWARD-BASED METHODS**
 142

143 **Preliminaries.** As illustrated in Fig. 2, existing methods fine-tune a pre-trained motion diffusion
 144 model by maximizing the reward value $\mathcal{R}_\phi(\mathbf{x}_0^\theta, c)$ of the motion \mathbf{x}_0^θ generated via a T -step reverse
 145 process. Notably, this generated motion \mathbf{x}_t^θ requires retaining gradients throughout the entire denoising
 146 trajectory \mathbf{x}_t^θ , and thus the model can be optimized via maximizing its reward value $\nabla_\theta \mathcal{R}_\phi(\mathbf{x}_0^\theta, c)$.
 147

148 Given a pre-trained motion diffusion model parameterized by ϵ_θ , the optimization objective is to
 149 fine-tune θ to maximize the reward value $\mathcal{R}_\phi(\mathbf{x}_0^\theta, c)$, with the loss defined as:
 150

$$\mathcal{L}(\theta) = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot | c)} [\mathcal{R}_\phi(\mathbf{x}_0^\theta, c)], \quad (1)$$

151 where c is a text condition from the training set \mathcal{D}_T , and \mathbf{x}_0^θ is the motion generated from noise
 152 $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ via a T -step reverse process π_θ . The t -th step of the reverse process is denoted as:
 153

$$\mathbf{x}_{t-1}^\theta = \pi_\theta(\mathbf{x}_t^\theta, t, c) := \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t^\theta - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(\mathbf{x}_t^\theta, t, c) \right), \quad (2)$$

154 where \mathbf{x}_{t-1}^θ is the denoised motion at step $t - 1$, and α_t, β_t are noise schedule parameters.
 155

156 **Gradient Analysis.** To optimize the loss in Eq. (1), we further analyze the gradient computation,
 157 where the gradient of $\mathcal{L}(\theta)$ w.r.t. the model parameters θ is computed via the chain rule:
 158

$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot | c)} \left[\frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta, c)}{\partial \mathbf{x}_0^\theta} \cdot \frac{\partial \mathbf{x}_0^\theta}{\partial \theta} \right]. \quad (3)$$

159 Here, $\frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta, c)}{\partial \mathbf{x}_0^\theta}$ represents the gradient of the reward model w.r.t. the generated motion, and $\frac{\partial \mathbf{x}_0^\theta}{\partial \theta}$
 160 captures the dependence of the generated motion \mathbf{x}_t^θ on the model θ through the reverse trajectory.
 161

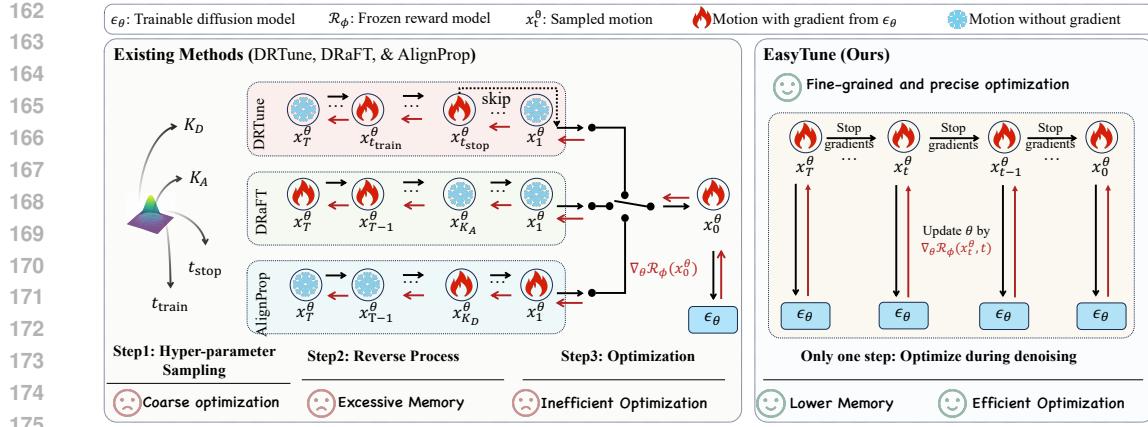


Figure 2: The framework of existing differentiable reward-based methods (left) and our proposed EasyTune (right). Existing methods backpropagate the gradients of the reward model through the overall denoising process, resulting in (1) excessive memory, (2) inefficient, and (3) coarse-grained optimization. In contrast, EasyTune optimizes the diffusion model by directly backpropagating the gradients at each denoising step, overcoming these issues.

Eq. (3) indicates that the gradient of loss function can be divided into two terms: $\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta, c) / \partial \mathbf{x}_0^\theta$, which can be directly computed from the reward model, and $\partial \mathbf{x}_0^\theta / \partial \theta$, which depends on the denoising trajectory π_θ . Here, we introduce **Corollary 1** to analyze this gradient (See the proof in App. C.1).

Corollary 1. *Given the reverse process in Eq. (2), $\mathbf{x}_{t-1}^\theta = \pi_\theta(\mathbf{x}_t^\theta, t, c)$, the gradient w.r.t diffusion model θ , denoted as $\frac{\partial \mathbf{x}_{t-1}^\theta}{\partial \theta}$, can be expressed as:*

$$\frac{\partial \mathbf{x}_{t-1}^\theta}{\partial \theta} = \frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \theta} + \frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \mathbf{x}_t^\theta} \cdot \frac{\partial \mathbf{x}_t^\theta}{\partial \theta}. \quad (4)$$

Corollary 1 shows that the computation involves two parts: (1) a direct term (in blue) from the dependence of the diffusion model π_θ on θ , and (2) an indirect term (in red) that depends on the t -th step generated motion \mathbf{x}_t^θ . However, the reverse process in diffusion models is inherently recursive, where the denoised motion \mathbf{x}_{t-1}^θ is relied on \mathbf{x}_t^θ , which in turn depends on \mathbf{x}_{t+1}^θ , resulting in substantial computational complexity for T time steps intermediate variables.

To compute the full gradient $\partial \mathcal{L}(\theta) / \partial \theta$, we unroll the $\partial \mathbf{x}_0^\theta / \partial \theta$ using **Corollary 1** and substitute it into Eq. (3) resulting in (see proof in App. C.3):

$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot | c)} \left[\frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta)}{\partial \mathbf{x}_0^\theta} \cdot \sum_{t=1}^T \underbrace{\left(\prod_{s=1}^{t-1} \frac{\partial \pi_\theta(\mathbf{x}_s^\theta, s, c)}{\partial \mathbf{x}_s^\theta} \right)}_{\text{tend to 0 when } t \text{ is larger}} \underbrace{\left(\frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \theta} \right)}_{\text{optimizing } t\text{-th step}} \right]. \quad (5)$$

Limitations. Eq. (5) reveals the core optimization mechanism of existing methods: the motions \mathbf{x}_0^θ are generated via the reverse process π_θ , with the full computation graph preserved to enable the maximization of the reward $\mathcal{R}_\phi(\mathbf{x}_0^\theta, c)$. However, as shown in Fig. 2, this optimization incurs severe limitations:

- (1) *Memory-intensive and sparse optimization*: Gradient computation over T reverse steps demands storing the entire trajectory $\mathbf{x}_{t=1}^\theta$ and corresponding Jacobians, leading to high memory consumption and inefficient, sparse optimization compared to the sampling process.
- (2) *Vanishing gradient due to coarse-grained optimization*: Eq. (5) indicates that the optimization of t -th noisy step relies on the gradient $\frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \theta}$ with a coefficient $\prod_{s=1}^{t-1} \frac{\partial \pi_\theta(\mathbf{x}_s^\theta, s, c)}{\partial \mathbf{x}_s^\theta}$. However, during

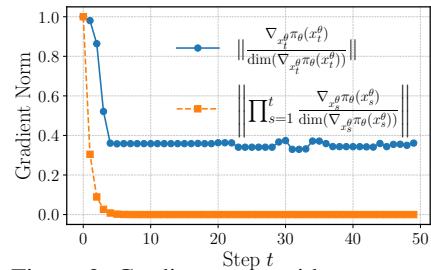


Figure 3: Gradient norm with respect to denoising steps.. Here, $\dim(\cdot)$ denotes the gradient dimension. Detailed settings are provided in App. A.2.

optimization, the term $\frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \mathbf{x}_t^\theta}$ tends to converge to 0 (see the blue line in Fig. 3), causing the coefficient $\prod_{s=1}^{t-1} \frac{\partial \pi_\theta(\mathbf{x}_s^\theta, s, c)}{\partial \mathbf{x}_s^\theta}$ to also approach 0 (see the orange line in Fig. 3). Consequently, the optimization process tends to neglect the contribution of $\frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \theta}$. More importantly, the ignored optimization at these early noise steps may be more crucial than at later ones (Xie & Gong, 2025).

Motivation. To address the aforementioned limitations, we argue that the key issue lies in [Corollary 1](#): the computation of $\partial \mathbf{x}_t^\theta / \partial \theta$ recursively depends on $\partial \mathbf{x}_{t+1}^\theta / \partial \theta$, making the computation of $\partial \mathbf{x}_0^\theta / \partial \theta$ reliant on the entire T-step reverse process. This dependency necessitates storing a large computation graph, resulting in substantial memory consumption and delayed optimization. To overcome this, an intuitive insight is introduced: *optimizing the gradient step-by-step during the reverse process*. As illustrated in Fig. 2, step-by-step optimization offers several advantages: (1) *Lower memory consumption and dense optimization*: each update only requires the computation graph of the current step, allowing gradients to be computed and applied immediately instead of waiting until the end of the T-step reverse process. (2) *Fine-grained optimization*: each step is optimized independently, so that the update of the t -th step does not depend on the vanishing product of coefficients $\prod_{s=1}^{t-1} \frac{\partial \pi_\theta(\mathbf{x}_s^\theta, s, c)}{\partial \mathbf{x}_s^\theta}$.

However, in domains such as image generation, reward are predominantly output-level (Xu et al., 2023) rather than step-aware, since noised states with complex semantics are difficult to interpret. In contrast, motion representations exhibit simpler and more interpretable semantics, thereby making step-aware motion reward viable (Fig. 4; see further details in App. A.6).

Inspired by the above discussion, we propose EasyTune, a step-aware differentiable reward-based fine-tuning framework for diffusion models, introduced in Sec. 4.1. Specifically, EasyTune employs a step-aware differentiable reward model designed to evaluate noised, rather than clean, motion data, allowing us to perform optimization at each step without storing multi-steps computation graph. Nevertheless, due to the scarcity of human-annotated motion pairs, the primary challenge lies in training such a reward model without any paired data. To address this issue, we present a self-refinement preference learning mechanism, in Sec. 4.2, to identify preference data pairs specifically targeting the weaknesses of the pre-trained model, facilitating the acquisition of a reward model.

4 METHOD

4.1 EFFICIENT STEP-AWARE FINE-TUNING FOR MOTION DIFFUSION

Assuming the reward model for evaluating noisy motion, we aim to propose a step-aware fine-tuning method that reduces the excessive memory usage and performs efficient and fine-grained optimization. As discussed in Sec. 3, limitations of existing methods (Clark et al., 2024; Wu et al., 2025) stem from the recursive gradients computation. To address these issues, we introduce EasyTune, a simple yet effective method for fine-tuning motion diffusion models. The key idea is to maximize the reward value at each step, allowing the parameter to be optimized at each step without storing the full trajectory, as shown in Fig. 5. Specifically, the training objective function is defined as:

$$\mathcal{L}_{\text{EasyTune}}(\theta) = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_t^\theta \sim \pi_\theta(\cdot | c), t \sim \mathcal{U}(0, T)} [\mathcal{R}_\phi(\mathbf{x}_t^\theta, t, c)], \quad (6)$$

where $\mathcal{R}_\phi(\mathbf{x}_t^\theta, t, c)$ is the reward value of the *stop gradient* noised motion \mathbf{x}_t^θ at time step t , and $\mathcal{U}(0, T)$ is a uniform distribution over the time steps. Here, the stop gradient noised motion \mathbf{x}_t^θ and its gradient w.r.t. the diffusion parameter θ are represents as:

$$\mathbf{x}_{t-1}^\theta = \pi_\theta(\text{sg}(\mathbf{x}_t^\theta), t, c) := \frac{1}{\sqrt{\alpha_t}} \left(\text{sg}(\mathbf{x}_t^\theta) - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(\text{sg}(\mathbf{x}_t^\theta), t, c) \right), \quad (7)$$

where $\text{sg}(\cdot)$ denotes the stop gradient operations. Eq. (6) and Eq. (7) indicate that EasyTune aims to optimize the diffusion model by maximizing the reward value of the noised motion \mathbf{x}_t^θ at each step t .

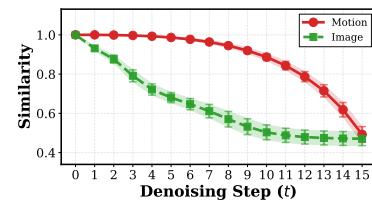


Figure 4: Similarity between t -th step noised and clean motion.

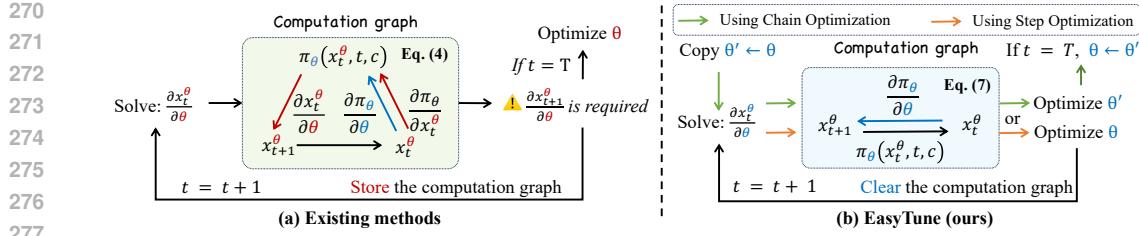


Figure 5: Core insight of EasyTune. By replacing the recursive gradient in Eq.(4) with step-level ones in Eq.(7), *EasyTune* removes recursive dependencies, enabling (1) step-wise graph storage, (2) efficiency, and (3) fine-grained optimization. See App. B for pseudocode and discussion.

Corollary 2. Given the reverse process in Eq. (7), the gradient w.r.t. diffusion model θ is denoted as:

$$\frac{\partial \mathbf{x}_{t-1}^\theta}{\partial \theta} = \frac{\partial \pi_\theta(\text{sg}(\mathbf{x}_t^\theta), t, c)}{\partial \theta}. \quad (8)$$

Corollary 2 shows that EasyTune overcomes the recursive gradient issue, enabling efficient, fine-grained updates with substantially reduced memory. As Fig. 6 illustrates, while prior methods incur $\mathcal{O}(T)$ memory by storing the multi-steps trajectory, EasyTune maintains a constant $\mathcal{O}(1)$ memory. Guided by **Corollary 2**, we optimize the loss function $\mathcal{L}_{\text{EasyTune}}(\theta)$ as follows:

$$\mathcal{L}_{\text{EasyTune}}(\theta) = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_t^\theta \sim \pi_\theta(\cdot | c), t \sim \mathcal{U}(0, T)} \frac{\partial \mathcal{R}(\mathbf{x}_t^\theta, t, c)}{\partial \mathbf{x}_{t-1}^\theta} \cdot \frac{\partial \pi_\theta(\text{sg}(\mathbf{x}_t^\theta), t, c)}{\partial \theta}. \quad (9)$$

Discussion of Existing Methods. Unlike prior methods (Eq. (5)), EasyTune updates the diffusion model θ using Eq. (6), computing the gradient $\frac{\partial \pi_\theta(\text{sg}(\mathbf{x}_t^\theta), t, c)}{\partial \theta}$ at each step t without storing the full $\mathcal{O}(T)$ -step computation graph. Among related works, the closest is DRTune (Wu et al., 2025), which also uses stop-gradient operations $\text{sg}(\cdot)$ to solve the limitations of previous methods:

$$\begin{aligned} \mathbf{x}_{t-1}^\theta &= \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t^\theta - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(\text{sg}(\mathbf{x}_t^\theta), t, c) \right), \\ \frac{\partial \mathbf{x}_{t-1}^\theta}{\partial \theta} &= \frac{1}{\sqrt{\alpha_t}} \left(\frac{\partial \mathbf{x}_t^\theta}{\partial \theta} - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \frac{\partial \epsilon_\theta(\text{sg}(\mathbf{x}_t^\theta), t, c)}{\partial \theta} \right). \end{aligned} \quad (10)$$

However, recursive gradient computation remains an issue in existing methods (Eq. (10)). As shown in Fig. 6, their memory usage grows linearly with the number of denoising steps ($\mathcal{O}(T)$), while EasyTune maintains a constant memory footprint ($\mathcal{O}(1)$). These analyses and experiments highlight the efficiency of our method and details discussion are provided in App. B.

4.2 SELF-REFINING PREFERENCE LEARNING FOR REWARD MODEL

Our goal is to develop a reward model without the requirement of human-labeled data. Existing works (Tan et al., 2025) often repurpose pre-trained text-to-motion retrieval models (Petrovich et al., 2023) to score text-motion alignment. However, this is suboptimal: retrieval models focus on matching positive pairs in a shared embedding space, whereas reward models must distinguish between preferred and non-preferred motions. Given their shared architecture, retrieval models can be fine-tuned for preference learning. The challenge, however, lies in the scarcity of such preference data in the motion domain. To this end, we propose **Self-refining Preference Learning (SPL)**, which leverages a retrieval-based auxiliary task to construct preference pairs for reward learning. SPL involves two steps: (1) *Preference Pair Mining*: retrieve motions for each text; treat the ground-truth as preferred and top incorrect retrieval as non-preferred if it's not retrieved; (2) *Preference Fine-tuning*: updating the encoders to assign higher scores to preferred motions.

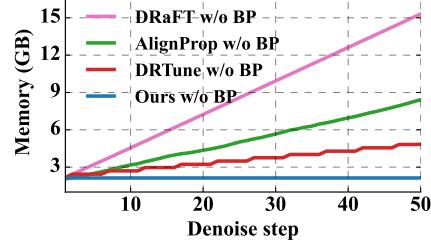


Figure 6: Memory usage comparison. Here, “w/o BP” indicates memory measured without backpropagation. Comprehensive analysis are in App. A.9.

324 **Reward Model.** Given a motion \mathbf{x} and a text description c , the reward value is computed based on
 325 the similarity between the motion features \mathbf{x} and text features c , denoted as:

$$326 \quad 327 \quad \mathcal{R}_\phi(\mathbf{x}, c) = \mathcal{E}_M(\mathbf{x}) \cdot \mathcal{E}_T(c) \cdot \tau, \quad (11)$$

328 where \mathcal{E}_M and \mathcal{E}_T are the motion and text encoders from the pre-trained retrieval model (Weng et al.,
 329 2025), and τ is a trainable temperature parameter.

330 Additionally, dealing with noisy motions remains a key challenge in step-level optimization. Current
 331 diffusion-based models can be divided into SDE-based (Song et al., 2020b) and ODE-based (Lu et al.,
 332 2022) models. For ODE-based settings (Dai et al.), thanks to their deterministic sampling, we use
 333 the reward value of the coarse clean motion $\hat{\mathbf{x}}_0$ predicted by one-step prediction $\hat{\mathbf{x}}_0 = \pi_\theta(\mathbf{x}_t, t, c)$
 334 as the final reward value. For both SDE- and ODE-based settings (Tevet et al., 2023), we adopt a
 335 noise-aware reward model to accurately calculate their reward values:

$$336 \quad 337 \quad \mathcal{R}_\phi(\mathbf{x}_t, t, c) = \begin{cases} \mathcal{R}_\phi(\hat{\mathbf{x}}_0, 0, c), & \text{Only for ODE-based settings,} \\ \mathcal{R}_\phi(\mathbf{x}_t, t, c), & \text{For SDE- and ODE-based settings.} \end{cases} \quad (12)$$

339 **Preference Data Mining** To identify non-preferred motions often incorrectly retrieved, we retrieve
 340 the top- k motions \mathcal{D}_R from the training set or subset \mathcal{D}_T given a text condition c :

$$341 \quad 342 \quad \mathcal{D}_R = \text{top}_k \arg \max_{\mathbf{x} \in \mathcal{D}_T} \mathcal{R}_\phi(\mathbf{x}, c) = \arg \max_{\mathcal{D}_R \subset \mathcal{D}_T, |\mathcal{D}_R|=k} \sum_{\mathbf{x} \in \mathcal{D}_R} \mathcal{R}_\phi(\mathbf{x}, c). \quad (13)$$

344 where $\text{top}_k \arg \max_{\mathbf{x} \in \mathcal{D}_T} \mathcal{R}_\phi(\mathbf{x}, c)$ denotes the top- k motion with the largest reward value.

345 Given a ground-truth motion \mathbf{x}^{gt} and its text condition c , we retrieve the top- k motions \mathcal{D}_R based
 346 on reward scores. If $\mathbf{x}^{gt} \notin \mathcal{D}_R$, we treat it as the preferred motion and the highest-scoring retrieved
 347 motion as the non-preferred one. Otherwise, both are set to \mathbf{x}^{gt} , and optimization is skipped:

$$348 \quad 349 \quad \mathbf{x}^w = \mathbf{x}^{gt}, \quad \mathbf{x}^l = \begin{cases} \arg \max_{\mathbf{x} \in \mathcal{D}_R} \mathcal{R}_\phi(\mathbf{x}, c), & \text{if } \mathbf{x}^{gt} \notin \mathcal{D}_R, \\ \mathbf{x}^{gt}, & \text{otherwise.} \end{cases} \quad (14)$$

351 **Preference Fine-tuning.** Given a preference pair consisting of a preferred motion \mathbf{x}^w and a non-
 352 preferred motion \mathbf{x}^l , we compute their reward scores and convert them into softmax probabilities:

$$354 \quad 355 \quad \mathcal{P} = (\mathcal{P}(\mathbf{x}^w, c), \mathcal{P}(\mathbf{x}^l, c)) = \text{Softmax}(\mathcal{R}_\phi(\mathbf{x}^w, c), \mathcal{R}_\phi(\mathbf{x}^l, c)). \quad (15)$$

356 Following Pick-a-pic (Kirstain et al., 2023), we optimize model by aligning the predicted softmax
 357 distribution \mathcal{P} with a target distribution \mathcal{Q} , which reflects the ground-truth preference between \mathbf{x}^w and
 358 \mathbf{x}^l , defined as:

$$359 \quad 360 \quad \mathcal{Q} = \begin{cases} (1.0, 0.0), & \text{if } \mathbf{x}^w \text{ is preferred over } \mathbf{x}^l, \\ (0.5, 0.5), & \text{if } \mathbf{x}^w = \mathbf{x}^l. \end{cases} \quad (16)$$

361 Formally, the target distribution \mathcal{Q} encodes the preference between a preferred motion \mathbf{x}^w and a
 362 non-preferred motion \mathbf{x}^l . If \mathbf{x}^w is preferred, we set $\mathcal{Q} = (1.0, 0.0)$, encouraging $\mathcal{P}(\mathbf{x}^w, c) \rightarrow 1$ and
 363 $\mathcal{P}(\mathbf{x}^l, c) \rightarrow 0$. If the two are identical ($\mathbf{x}^w = \mathbf{x}^l$), we set $\mathcal{Q} = (0.5, 0.5)$, indicating no preference.

364 To optimize the reward model ϕ , we minimize the KL divergence between them:

$$366 \quad 367 \quad \mathcal{L}_{SPL}(\phi) = D_{KL}(\mathcal{Q} \parallel \mathcal{P}) = \sum_{\mathbf{x} \in \{\mathbf{x}^w, \mathbf{x}^l\}} \mathcal{Q}(\mathbf{x}, c) \log \frac{\mathcal{Q}(\mathbf{x}, c)}{\mathcal{P}(\mathbf{x}, c)}. \quad (17)$$

369 where \mathcal{Q} and \mathcal{P} are the target and reward distribution. By mining preference motion pairs by
 370 *preference data mining*, we can fine-tune pre-trained retrieval models by Eq. (17), to obtain reward
 371 models without human-annotated data. More details are provided in App. B.4.

373 5 EXPERIMENT

375 5.1 EXPERIMENTAL SETUP

377 **Datasets & Evaluation.** We conduct experiments on HumanML3D (Guo et al., 2022a) and KIT-
 378 ML (Plappert et al., 2016). Following standard practice (Guo et al., 2023; Li et al., 2025), we report

378
 379 **Table 1: Comparison of SoTA fine-tuning methods on HumanML3D dataset.** The arrows \uparrow , \downarrow , and
 380 \rightarrow indicate higher, lower, and closer-to-real-motion values are better, respectively. **Bold** and underline
 381 highlights the best and second-best results. Percentages in subscripts indicate improvements.

Method	R Precision \uparrow			FID \downarrow	MM Dist \downarrow	Diversity \rightarrow	Memory (GB) \downarrow
	Top 1	Top 2	Top 3				
Real	0.511	0.703	0.797	0.002	2.974	9.503	-
MLD (Chen et al., 2023) (Baseline)	0.481	0.673	0.772	0.473	3.196	9.724	15.21
w/ ReFL-10 (Clark et al., 2024)	0.533 _{+10.8%}	0.720 _{+7.0%}	0.821 _{+6.4%}	0.207 _{+56.2%}	2.852 _{+10.7%}	10.129 _{+0.405}	22.10_{+6.89}
w/ ReFL-20 (Clark et al., 2024)	0.528 _{+9.8%}	0.718 _{+6.7%}	0.813 _{+5.3%}	0.241 _{+49.0%}	2.883 _{+9.8%}	10.189 _{+0.465}	22.10_{+6.89}
w/ DRaFT-10 (Clark et al., 2024)	0.565 _{+17.5%}	0.757 _{+12.5%}	0.846 _{+9.6%}	0.195 _{+58.8%}	2.703 _{+15.4%}	9.851 _{-0.127}	26.56 _{+11.35}
w/ DRaFT-50 (Clark et al., 2024)	0.528 _{+8.8%}	0.724 _{+7.6%}	0.819 _{+6.1%}	0.197 _{+58.4%}	2.872 _{+10.1%}	9.641 _{+0.083}	37.32 _{+22.11}
w/ AlignProp (Prabhudesai et al., 2023)	0.560 _{+16.4%}	0.753 _{+11.9%}	0.841 _{+8.9%}	0.266 _{+43.8%}	2.739 _{+14.3%}	9.877 _{-0.153}	30.40 _{+15.19}
w/ DRTune (Wu et al., 2025)	0.549 _{+14.1%}	0.746 _{+10.8%}	0.836 _{+8.3%}	0.313 _{+33.8%}	2.795 _{+12.5%}	9.930 _{-0.206}	27.01 _{+11.80}
w/ EasyTune (Ours, Step Optimization)	0.581_{+20.8%}	0.769_{+14.3%}	0.855_{+10.8%}	0.132_{+72.1%}	2.637 _{+17.5%}	9.465_{+0.183}	22.10_{+6.89}
w/ EasyTune (Ours, Chain Optimization)	0.574 _{+19.3%}	0.766 _{+13.8%}	0.854 _{+10.6%}	0.172 _{+63.6%}	2.614_{+18.2%}	9.348 _{+0.066}	24.21 _{+9.00}

391
 392
 393 R-Precision@ k , Fréchet Inception Distance (FID), Multi-Modal Distance (MM Dist), and Diversity.
 394 We also measure peak memory usage to assess efficiency. Additionally, our SPL mechanism is
 395 evaluated using R-Precision@ k under the previous setup (Li et al., 2025).
 396

397 **Implementation.** Our method consists of two components: fine-tuning the diffusion model with
 398 EasyTune and fine-tuning a pretrained retrieval model to obtain the reward model. For EasyTune, we
 399 evaluate pretrained backbones—MLD (Chen et al., 2023), MLD++ (Dai et al.), MotionLCM (Dai
 400 et al., 2024), and MDM (Tevet et al., 2023)—with hyperparameters: a learning rate of 1×10^{-5} and
 401 a batch size of 256. EasyTune is benchmarked against differentiable reward-based baselines with
 402 their official hyperparameters, detailed in App.A.2. We fine-tune the reward model initialized with
 403 ReAlign (Weng et al., 2025) using our SPL with top- K samples ($K = 10$). Then, the reward model
 404 is frozen and provides supervision for optimizing the diffusion model. The experimental results for
 405 the ODE-based model, using both reward computation methods from Eq. (12), are provided. Results
 406 corresponding to the first and second terms are presented in Tab. 1 and 3, and Tab. 2, respectively.
 407 Experiments are conducted on a single NVIDIA RTX A6000 GPU with 48GB memory, detailed
 408 overhead is provided in App. A.9.

5.2 EVALUATION ON MOTION DIFFUSION FINE-TUNING

410
 411 **Comparison with SoTA Fine-Tuning Methods.** To assess the effectiveness and efficiency of Easy-
 412 Tune, we compare it with recent state-of-the-art fine-tuning methods, including DRaFT, AlignProp,
 413 and DRTune, as shown in Tab. 1. EasyTune consistently achieves the best overall performance across
 414 key metrics, including R-Precision, FID (0.132, +72.1%), MM Dist (2.637, +17.5%), and Diversity,
 415 while also requiring the least GPU memory (22.10 GB). We attribute these gains to two core designs:
 416 optimizing rewards at each denoising step for finer supervision, and discarding redundant computation
 417 graphs to reduce memory usage.
 418

419 **Efficiency of the Optimization.** To
 420 assess convergence efficiency, we
 421 compare optimization curves of fine-
 422 tuning methods in Fig. S1 (in App.
 423 A). EasyTune converges faster and
 424 achieves consistently lower loss, sug-
 425 gesting better local optima with higher
 426 reward values. This improvement
 427 stems from its fine-grained, step-wise
 428 optimization, in contrast to the sparser,
 429 trajectory-level updates used in prior
 430 work (Clark et al., 2024), enabling
 431 more precise gradient signals and ac-
 432 celerated training.

420
 421 **Table 2: Performance enhancement of diffusion-based**
 422 **motion generation methods. For ODE samplings (MLD,**
 423 **MLD++, MLCM), we adopt the one-step prediction reward.**

Method	R Precision \uparrow			FID \downarrow	MM Dist \downarrow	Diversity \rightarrow	
	Top 1	Top 2	Top 3				
Real	0.511	0.703	0.797	0.002	2.974	9.503	
MLD (Chen et al., 2023)	0.481	0.673	0.772	0.473	3.196	9.724	
w/ EasyTune	0.568 _{+18.1%}	0.754 _{+12.0%}	0.846 _{+9.6%}	0.194 _{+59.0%}	2.672 _{+16.4%}	9.368 _{+0.09}	
MLD++ (Dai et al.)	0.548	0.738	0.829	0.073	2.810	9.658	
w/ EasyTune	0.581 _{+6.0%}	0.762 _{+3.3%}	0.849 _{+2.4%}	0.073 _{+0.0%}	2.603 _{+7.4%}	9.719 _{-0.06}	
MLCM ^{1,S} (Dai et al., 2024)	0.502	0.701	0.803	0.467	3.052	9.631	
w/ EasyTune	0.571 _{+13.7%}	0.766 _{+9.3%}	0.854 _{+6.4%}	0.188 _{+59.7%}	2.647 _{+13.3%}	9.692 _{-0.06}	
MLCM ^{1,S} (Dai et al., 2024)	0.502	0.698	0.799	0.304	3.012	9.607	
w/ EasyTune	0.565 _{+12.5%}	0.760 _{+8.8%}	0.848 _{+6.3%}	0.200 _{+34.2%}	2.691 _{+10.7%}	9.812 _{-0.20}	
MDM ^{50,S} (Tevet et al., 2023)	0.455	0.645	0.749	0.489	3.330	9.920	
w/ EasyTune	0.472 _{+3.7%}	0.679 _{+5.3%}	0.787 _{+5.1%}	0.411 _{+16.0%}	3.117 _{+6.4%}	9.239 _{+0.15}	
MoDiffuse (Zhang et al., 2024a)	0.491	0.681	0.775	0.630	3.113	9.410	
w/ EasyTune	0.488 _{-0.6%}	0.686 _{+0.7%}	0.788 _{+1.7%}	0.556 _{+11.7%}	3.068 _{+1.4%}	9.215 _{-0.20}	

432 Table 3: Comparison of text-to-motion generation performance on the HumanML3D dataset.
433

434 Method	435 R Precision \uparrow			436 FID \downarrow	437 MM Dist \downarrow	438 Diversity \rightarrow
	439 Top 1	440 Top 2	441 Top 3			
442 Real	443 0.511	444 0.703	445 0.797	446 0.002	447 2.974	448 9.503
449 TM2T (Guo et al., 2022b)	450 0.424 \pm 0.003	451 0.618 \pm 0.003	452 0.729 \pm 0.002	453 1.501 \pm 0.017	454 -	455 8.589 \pm 0.076
456 T2M (Guo et al., 2022a)	457 0.455 \pm 0.002	458 0.636 \pm 0.003	459 0.736 \pm 0.003	460 1.087 \pm 0.002	461 3.347 \pm 0.008	462 9.175 \pm 0.002
463 MDM (Tevet et al., 2023)	464 0.455 \pm 0.006	465 0.645 \pm 0.007	466 0.749 \pm 0.006	467 0.489 \pm 0.047	468 3.330 \pm 0.25	469 9.920 \pm 0.083
470 M2DM (Kong et al., 2023)	471 0.497 \pm 0.003	472 0.682 \pm 0.002	473 0.763 \pm 0.003	474 0.352 \pm 0.005	475 -	476 9.926 \pm 0.073
477 T2M-GPT (Zhang et al., 2023a)	478 0.492 \pm 0.003	479 0.679 \pm 0.002	480 0.775 \pm 0.002	481 0.141 \pm 0.005	482 3.121 \pm 0.009	483 9.722 \pm 0.082
484 Fg-T2M (Wang et al., 2023)	485 0.492 \pm 0.002	486 0.683 \pm 0.003	487 0.783 \pm 0.002	488 0.243 \pm 0.019	489 -	490 9.278 \pm 0.072
491 ReMoDiffuse (Zhang et al., 2023b)	492 0.510 \pm 0.005	493 0.698 \pm 0.006	494 0.795 \pm 0.004	495 0.103 \pm 0.004	496 -	497 9.018 \pm 0.075
498 AttT2M (Zhong et al., 2023)	499 0.499 \pm 0.003	500 0.690 \pm 0.002	501 0.786 \pm 0.002	502 0.112 \pm 0.006	503 3.038 \pm 0.007	504 9.700 \pm 0.090
505 MotionDiffuse (Zhang et al., 2024a)	506 0.491 \pm 0.001	507 0.681 \pm 0.001	508 0.775 \pm 0.001	509 0.630 \pm 0.001	510 3.113 \pm 0.001	511 9.410 \pm 0.049
512 OMG (Liang et al., 2024)	513 -	514 -	515 0.784 \pm 0.002	516 0.381 \pm 0.008	517 -	518 9.657 \pm 0.085
519 MotionLCM (Dai et al., 2024)	520 0.502 \pm 0.003	521 0.698 \pm 0.002	522 0.798 \pm 0.002	523 0.304 \pm 0.012	524 3.012 \pm 0.007	525 9.607 \pm 0.066
526 MotionMamba (Zhang et al., 2024b)	527 0.502 \pm 0.003	528 0.693 \pm 0.002	529 0.792 \pm 0.002	530 0.281 \pm 0.011	531 3.060 \pm 0.000	532 9.871 \pm 0.084
533 CoMo (Huang et al., 2024)	534 0.502 \pm 0.002	535 0.692 \pm 0.007	536 0.790 \pm 0.002	537 0.262 \pm 0.004	538 3.032 \pm 0.015	539 9.936 \pm 0.066
540 ParCo (Zou et al., 2024)	541 0.515 \pm 0.003	542 0.706 \pm 0.003	543 0.801 \pm 0.002	544 0.109 \pm 0.005	545 2.927 \pm 0.008	546 9.576 \pm 0.088
547 SiT (Meng et al., 2025)	548 0.500 \pm 0.004	549 0.695 \pm 0.003	550 0.795 \pm 0.003	551 0.114 \pm 0.007	552 -	553 -
554 SoPo (Tan et al., 2025)	555 0.528 \pm 0.005	556 0.722 \pm 0.004	557 0.827 \pm 0.004	558 0.174 \pm 0.005	559 2.939 \pm 0.011	560 9.584 \pm 0.074
561 MLD (Chen et al., 2023) (Baseline)	562 0.481 \pm 0.003	563 0.673 \pm 0.003	564 0.772 \pm 0.002	565 0.473 \pm 0.013	566 3.196 \pm 0.010	567 9.724 \pm 0.082
568 w/ EasyTune (Ours)	569 0.581 \pm 0.003	570 0.769\pm0.002	571 0.855\pm0.002	572 0.132\pm0.005	573 2.637\pm0.007	574 9.465\pm0.075
575 MLD++ (Dai et al.) (Baseline)	576 0.548 \pm 0.003	577 0.738 \pm 0.003	578 0.829 \pm 0.002	579 0.073 \pm 0.003	580 2.810 \pm 0.008	581 9.658 \pm 0.089
582 w/ EasyTune (Ours)	583 0.591\pm0.004	584 0.777\pm0.002	585 0.859\pm0.002	586 0.069\pm0.003	587 2.592\pm0.008	588 9.705 \pm 0.06

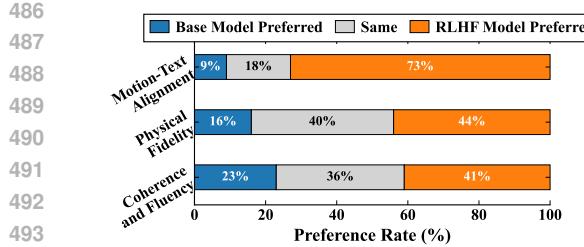
452
453 Table 4: Evaluation on text-motion retrieval benchmark, HumanML3D and KIT-ML. The
454 column ‘‘Noise’’ indicates whether the method can handle noisy motion from the denoised process.
455

	Methods	Noise	Text-Motion Retrieval \uparrow					Motion-Text Retrieval \uparrow				
			R@1	R@2	R@3	R@5	R@10	R@1	R@2	R@3	R@5	R@10
HumanML3D	TEMOS (Petrovich et al., 2022)	\times	40.49	53.52	61.14	70.96	84.15	39.96	53.49	61.79	72.40	85.89
	T2M (Guo et al., 2022a)	\times	52.48	71.05	80.65	89.66	96.58	52.00	71.21	81.11	89.87	96.78
	TMR (Petrovich et al., 2023)	\times	67.16	81.32	86.81	91.43	95.36	67.97	81.20	86.35	91.70	95.27
	LaMP (Li et al., 2025)	\times	67.18	81.90	87.04	92.00	95.73	68.02	82.10	87.50	92.20	96.90
	ReAlign (Weng et al., 2025) (Baseline)	\checkmark	67.59	82.24	87.44	91.97	96.28	68.94	82.86	87.95	92.44	96.28
	w/ SPL(Ours)	\checkmark	69.31	83.71	88.66	92.81	96.75	70.23	83.41	88.72	93.07	97.04
KIT-ML	T2MOS (Petrovich et al., 2022)	\times	43.88	58.25	67.00	74.00	84.75	41.88	55.88	65.62	75.25	85.75
	T2M (Guo et al., 2022a)	\times	42.25	62.62	75.12	87.50	96.12	39.75	62.75	73.62	86.88	95.88
	TMR (Petrovich et al., 2023)	\times	49.25	69.75	78.25	87.88	95.00	50.12	67.12	76.88	88.88	94.75
	LaMP (Li et al., 2025)	\times	52.50	74.80	84.70	92.70	97.60	54.00	75.30	84.40	92.20	97.60
	ReAlign (Weng et al., 2025) (Baseline)	\checkmark	52.84	71.66	82.96	91.19	97.59	52.98	72.87	84.38	92.61	96.87
	w/ SPL(Ours)	\checkmark	53.27	73.58	84.52	93.18	97.73	55.11	75.28	86.36	93.18	97.44

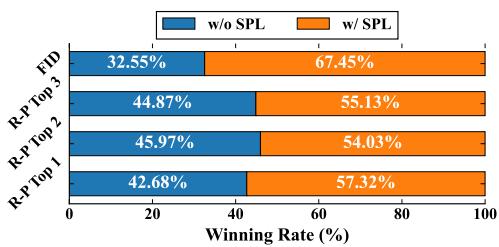
467
468 5.3 EVALUATION ON TEXT-TO-MOTION GENERATION
469

470 **Comparison with SoTA Text-to-Motion Methods.** We evaluate EasyTune on text-to-motion
471 generation using MLD (Chen et al., 2023) and MLD++ (Dai et al.) as base models, comparing with
472 state-of-the-art methods on the HumanML3D (Guo et al., 2022a) and KIT-ML (Plappert et al., 2016)
473 datasets, as shown in Tab. 3 and S3 (in App. A.4). On HumanML3D, EasyTune improves the R-P@1
474 of MLD from 0.481 to 0.581 and MLD++ from 0.548 to 0.591, surpassing baselines like ParCo (Zou
475 et al., 2024) (0.515) and ReMoDiffuse (Zhang et al., 2023b) (0.510). It also achieves the best MM
476 Dist (2.637 and 2.592) and competitive FID (0.132 and 0.069).

477 **Generalization across Different Pre-trained Models.** To evaluate the generalization of EasyTune
478 across pre-trained text-to-motion models, we applied it to MLD (Chen et al., 2023), MLD++ (Dai
479 et al.), MLCM^{1S} (Dai et al., 2024), and MDM^{50S} (Tevet et al., 2023). As shown in Tab. 2, EasyTune
480 consistently improved performance. For instance, MLD saw an 18.1% increase in R-P@1 (0.568)
481 and a 58.0% reduction in FID (0.194). MLD++ achieved a 6.0% gain in R-Precision@1 (0.581) and
482 a 7.4% improvement in MM Dist (2.603). MLCM^{1S} and MDM^{50S} also showed significant FID
483 reductions of 59.7% and 16.0%, respectively. These results highlight the generalization of EasyTune
484 across various diffusion-based architectures.



486
487
488
489
490
491
492
493
494
495
496
Figure 7: User study on HumanML3D test set.
We use MLD model as base model.



497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
Figure 8: Comparison of models fine-tuned with
and without SPL.

5.4 ABLATION STUDY, USER STUDY & VISUALIZATION

500 **Self-refinement Preference Learning for Reward Model Training.** We evaluate SPL on text-
501 motion retrieval, comparing it with ReAlign and state-of-the-art methods. As shown in Tab. 4, SPL
502 boosts ReAlign (Weng et al., 2025) on HumanML3D (R@1: 69.31, +2.5%; R@3: 88.66, +1.4%);
503 motion-to-text R@1: 70.23, +1.9%), outperforming LaMP (Li et al., 2025) and TMR (Petrovich
504 et al., 2023). On KIT-ML, SPL achieves R@5 of 93.18 (+2.2%), and motion-to-text R@3 of 86.36
505 (+2.3%), consistently surpassing baselines.

506 **Self-refinement Preference Learning for Fine-Tuning.** To evaluate the effect of SPL, we fine-tune
507 MLD (Chen et al., 2023) using reward models trained with and without SPL, and compare their win
508 rates across epochs, as shown in Fig. 8. The model with SPL consistently outperforms the baseline,
509 achieving win rates of 57.32%, 54.03%, 55.13%, and 67.45% on R-P Top 1, Top 2, Top 3, and FID,
510 respectively. This shows that SPL can improve motion generation by enhancing the reward model.

511 **Human Evaluation.** To assess whether our fine-tuned model exhibits reward hacking, we conducted
512 a user study and visualized the corresponding motions. These visualizations are presented in Fig. 7,
513 with additional visualization in Fig. S3 (App. A.5). Results shows that our method enhance the
514 alignment, fidelity, and coherence of generated motions. A more detailed discussion and further
515 experimental results are provided in App. A.3.

6 CONCLUSION

516 In this work, we theoretically identify recursive dependence in denoising trajectories as the key
517 limitation in aligning motion generative models. Our proposed **EasyTune** method decouples this
518 dependence, enabling denser, more memory-efficient, and fine-grained optimization. Combined with
519 the **SPL** mechanism to dynamically generate preference pairs, experimental results demonstrate that
520 EasyTune significantly outperforms existing methods while requiring less memory overhead.

521 **Limitation.** In this work, we focus on enhancing the semantics alignment of generated motions,
522 a key issue of text-to-motion generation. Due to the scarcity of preference data, SPL depends on
523 retrieval-based mining, which may introduce noisy or ambiguous pairs and lack physical grounding
524 in the reward design. Fortunately, we observe that this semantics reward still exhibits an implicit
525 ability to distinguish real motions from generated ones, as discussed in App. A.11. Nevertheless, a
526 unified and comprehensive reward model that explicitly accounts for both physical plausibility and
527 semantic alignment is still worth exploring. Developing such a reward model that can simultaneously
528 enhance both physical and semantic signals remains an important direction for future work.

529
530
531
532
533
534
535
536
537
538
539

540
541
ETHICS STATEMENT542
543
544
545
546
547
Our work on EasyTune, a method for fine-tuning motion generative models, introduces several ethical
considerations that warrant careful discussion. As our method is designed to align existing generative
diffusion models, it inherits the potential biases and limitations of these foundational models. The
large-scale motion datasets used to train these base models may contain demographic biases (e.g.,
representation of age, gender, or physical ability) or may underrepresent certain types of human
movement.548
549
550
551
552
553
Furthermore, like other generative technologies, motion generation models could be misused by
malicious actors. The ability to create realistic human motions could be exploited to generate
convincing deepfakes or synthetic media for the purpose of disinformation, harassment, or creating
non-consensual content. As EasyTune makes the process of aligning models to specific objectives
more efficient, it could inadvertently lower the barrier for adapting these models to generate harmful
or undesirable motions.554
555
556
557
558
559
560
561
Finally, the advancement of motion generation technology may have a significant socio-economic
impact. On one hand, such tools could automate tasks traditionally performed by animators, choreog-
raphers, and motion capture actors, potentially displacing jobs in creative industries. On the other
hand, EasyTune could also serve as a powerful creative tool, democratizing animation and enabling
new forms of artistic expression for independent creators and small studios. It also holds potential for
positive applications in fields like robotics, virtual reality, and physical rehabilitation. We believe that
continued research and community dialogue are essential to mitigate the risks while harnessing the
benefits of this technology.562
563
REPRODUCIBILITY STATEMENT
564565
566
567
568
We commit to releasing all *code, model weights, and baseline implementations* upon acceptance. To
ensure the reproducibility of our experiments, we put the key parts in Appendix A.2. For datasets, we
use open source datasets described in Sec. 5.1. For generated results, we upload generated videos to
the supplementary material.569
570
LARGE LANGUAGE MODELS USAGE STATEMENT
571572
573
574
575
576
577
578
We used Large Language Models (LLMs) as auxiliary tools during the preparation of this manuscript.
In particular, LLMs were employed to polish the language, improve grammar, and enhance readability
of the text. All conceptual ideas, technical contributions, analyses, and conclusions presented in
this work are entirely our own and were developed independently of LLM assistance. The models
were not used to generate novel scientific content, perform data analysis, or contribute to the design
of experiments. We have carefully verified all statements and ensured that the final version of the
manuscript accurately reflects our intended meaning and contributions.579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Samaneh Azadi, Akbar Shah, Thomas Hayes, Devi Parikh, and Sonal Gupta. Make-an-animation:
597 Large-scale text-conditional 3d human motion generation. In *Proceedings of the IEEE/CVF
598 International Conference on Computer Vision*, pp. 15039–15048, 2023. 1

599 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
600 with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023. 1, 27
601

602 Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu. Executing your
603 commands via motion diffusion in latent space. In *Proceedings of the IEEE/CVF Conference on
604 Computer Vision and Pattern Recognition*, pp. 18000–18010, 2023. 1, 2, 3, 8, 9, 10, 18, 19, 20, 22,
605 25, 26

606 Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
607 on differentiable rewards. In *The Twelfth International Conference on Learning Representations*,
608 2024. URL <https://openreview.net/forum?id=1vmSEVL19f>. 1, 2, 3, 5, 8, 20, 22,
609 29

610 Wenzun Dai, Ling-Hao Chen, Yufei Huo, Jingbo Wang, Jinpeng Liu, Bo Dai, and Yansong Tang.
611 Real-time controllable motion generation via latent consistency model. 2, 7, 8, 9
612

613 Wenzun Dai, Ling-Hao Chen, Jingbo Wang, Jinpeng Liu, Bo Dai, and Yansong Tang. Motionlcm:
614 Real-time controllable motion generation via latent consistency model. In Aleš Leonardis, Elisa
615 Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gürkaynak Varol (eds.), *European Conference
616 on Computer Vision*, pp. 390–408, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-
617 72640-8. 2, 3, 8, 9

618 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter
619 Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Rein-
620 forcement learning for fine-tuning text-to-image diffusion models. In A. Oh, T. Nau-
621 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural
622 Information Processing Systems*, volume 36, pp. 79858–79885. Curran Associates, Inc.,
623 2023a. URL [https://proceedings.neurips.cc/paper_files/paper/2023/
624 file/fc65fab891d83433bd3c8d966edde311-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/fc65fab891d83433bd3c8d966edde311-Paper-Conference.pdf). 1

625 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
626 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
627 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
628 36:79858–79885, 2023b. 27

629 Alessandro Flaborea, Luca Collorone, Guido Maria D’Amely Di Melendugno, Stefano D’Arrigo,
630 Bardh Prenkaj, and Fabio Galasso. Multimodal motion conditioned diffusion model for skeleton-
631 based video anomaly detection. In *Proceedings of the IEEE/CVF international conference on
632 computer vision*, pp. 10318–10329, 2023. 27

633 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
634 diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF Conference on
635 Computer Vision and Pattern Recognition*, pp. 5152–5161, 2022a. 1, 2, 3, 7, 9, 19

636 Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. Tm2t: Stochastic and tokenized modeling for
637 the reciprocal generation of 3d human motions and texts. In *European Conference on Computer
638 Vision*, pp. 580–597. Springer, 2022b. 9, 19

639 Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. Momask: Generative
640 masked modeling of 3d human motions. 2023. 3, 7

641 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
642 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
643 ment learning. *Nature*, 645(8081):633–638, 2025. 27

648 Gaoge Han, Mingjiang Liang, Jinglei Tang, Yongkang Cheng, Wei Liu, and Shaoli Huang. ReinDiffuse: Crafting Physically Plausible Motions with Reinforced Diffusion Model . In *2025 IEEE/CVF*
 649 *Winter Conference on Applications of Computer Vision (WACV)*, pp. 2218–2227, Los Alamitos, CA,
 650 USA, March 2025. IEEE Computer Society. doi: 10.1109/WACV61041.2025.00222. URL <https://doi.ieeecomputersociety.org/10.1109/WACV61041.2025.00222>. 3
 651
 652
 653 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 654 *neural information processing systems*, 33:6840–6851, 2020. 1
 655
 656 Yiming Huang, Weilin Wan, Yue Yang, Chris Callison-Burch, Mark Yatskar, and Lingjie Liu.
 657 *Como: Controllable motion generation through language guided pose code editing*. In *Computer*
 658 *Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024,*
 659 *Proceedings, Part XXIX*, pp. 180–196, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-
 660 031-73396-3. doi: 10.1007/978-3-031-73397-0_11. URL https://doi.org/10.1007/978-3-031-73397-0_11. 9, 19
 661
 662 Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
 663 policy optimization. *Advances in neural information processing systems*, 32, 2019. 3
 664
 665 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 666 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural*
 667 *Information Processing Systems*, 36:36652–36663, 2023. 1, 7
 668
 669 Hanyang Kong, Kehong Gong, Dongze Lian, Michael Bi Mi, and Xinchao Wang. Priority-centric
 670 human motion generation in discrete latent space. In *Proceedings of the IEEE/CVF International*
 671 *Conference on Computer Vision*, pp. 14806–14816, 2023. 9, 19
 672
 673 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024. 20
 674
 675 Zhe Li, Weihao Yuan, Yisheng HE, Lingteng Qiu, Shenhao Zhu, Xiaodong Gu, Weichao Shen, Yuan
 676 Dong, Zilong Dong, and Laurence Tianruo Yang. LaMP: Language-motion pretraining for motion
 677 generation, retrieval, and captioning. In *The Thirteenth International Conference on Learning*
 678 *Representations*, 2025. URL <https://openreview.net/forum?id=LYawG8YkPa>. 7,
 679 8, 9, 10
 680
 681 Han Liang, Jiacheng Bao, Ruichi Zhang, Sihan Ren, Yuecheng Xu, Sibei Yang, Xin Chen, Jingyi
 682 Yu, and Lan Xu. Omg: Towards open-vocabulary motion generation via mixture of controllers.
 683 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 684 482–493, 2024. 9
 685
 686 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang,
 687 and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv preprint*
 688 *arXiv:2505.05470*, 2025. 27
 689
 690 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 691 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural*
 692 *information processing systems*, 35:5775–5787, 2022. 7
 693
 694 Zichong Meng, Yiming Xie, Xiaogang Peng, Zeyu Han, and Huaizu Jiang. Rethinking diffusion for
 695 text-driven human motion generation. 2025. 3, 9, 19
 696
 697 Massimiliano Pappa, Luca Collorone, Giovanni Ficarra, Indro Spinelli, and Fabio Galasso. Modipo:
 698 text-to-motion alignment via ai-feedback-driven direct preference optimization. *arXiv preprint*
 699 *arXiv:2405.03803*, 2024. 3
 700
 701 Wenshuo Peng, Kaipeng Zhang, and Sai Qian Zhang. T3m: Text guided 3d human motion synthesis
 702 from speech. *arXiv preprint arXiv:2408.12885*, 2024. 1
 703
 704 Mathis Petrovich, Michael J Black, and Gü̈l Varol. Temos: Generating diverse human motions from
 705 textual descriptions. In *European Conference on Computer Vision*, pp. 480–497. Springer, 2022. 9
 706
 707 Mathis Petrovich, Michael J Black, and Gü̈l Varol. Tmr: Text-to-motion retrieval using contrastive 3d
 708 human motion synthesis. In *Proceedings of the IEEE/CVF International Conference on Computer*
 709 *Vision*, pp. 9488–9497, 2023. 6, 9, 10, 25, 26

702 Matthias Plappert, Christian Mandery, and Tamim Asfour. The kit motion-language dataset. *Big data*,
 703 4(4):236–252, 2016. 2, 7, 9
 704

705 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-image
 706 diffusion models with reward backpropagation, 2023. 2, 3, 8, 29
 707

708 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 709 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 710 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021. 20
 711

712 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
 713 Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
 714 *arXiv preprint arXiv:2409.00588*, 2024. 27
 715

716 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 preprint arXiv:2010.02502*, 2020a. 1
 717

718 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 719 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 arXiv:2011.13456*, 2020b. 7
 720

721 Xiaofeng Tan, Hongsong Wang, Xin Geng, and Pan Zhou. Sopo: Text-to-motion generation using
 722 semi-online preference optimization. *Advances in Neural Information Processing Systems*, 2025.
 723 1, 2, 3, 6, 9, 25
 724

725 Arvin Tashakori, Arash Tashakori, Gongbo Yang, Z Jane Wang, and Peyman Servati. Flexmo-
 726 tion: Lightweight, physics-aware, and controllable human motion generation. *arXiv preprint
 arXiv:2501.16778*, 2025. 1
 727

728 Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano.
 729 Human motion diffusion model. In *The Eleventh International Conference on Learning Represen-
 730 tations*, 2023. 2, 3, 7, 8, 9
 731

732 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 733 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 734 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 and Pattern Recognition (CVPR)*, pp. 8228–8238, June 2024. 1
 735

736 Haoru Wang, Wentao Zhu, Luyi Miao, Yishu Xu, Feng Gao, Qi Tian, and Yizhou Wang. Aligning
 737 human motion generation with human perceptions. *arXiv preprint arXiv:2407.02272*, 2024. 1
 738

739 Haoru Wang, Wentao Zhu, Luyi Miao, Yishu Xu, Feng Gao, Qi Tian, and Yizhou Wang. Aligning motion
 740 generation with human perceptions. In *International Conference on Learning Representations
 (ICLR)*, 2025. 3
 741

742 Yin Wang, Zhiying Leng, Frederick WB Li, Shun-Cheng Wu, and Xiaohui Liang. Fg-t2m: Fine-
 743 grained text-driven human motion generation via diffusion model. In *Proceedings of the IEEE/CVF
 744 International Conference on Computer Vision*, pp. 22035–22044, 2023. 9, 19
 745

746 Wanjiang Weng, Xiaofeng Tan, Hongsong Wang, and Pan Zhou. Realign: Text-to-motion generation
 747 via step-aware reward-guided alignment. *arXiv preprint arXiv:2505.04974*, 2025. 7, 8, 9, 10
 748

749 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 750 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
 751 synthesis. *arXiv preprint arXiv:2306.09341*, 2023. 20
 752

Xiaoshi Wu, Yiming Hao, Manyuan Zhang, Keqiang Sun, Zhaoyang Huang, Guanglu Song,
 753 Yu Liu, and Hongsheng Li. Deep reward supervisions for tuning text-to-image diffu-
 754 sion models. In *Computer Vision and Pattern Recognition (ECCV)*, pp. 108–124, Cham,
 2025. Springer Nature Switzerland. URL https://link.springer.com/chapter/10.1007/978-3-031-73010-8_7. 1, 2, 3, 5, 6, 8, 29
 755

756 Xin Xie and Dong Gong. Dymo: Training-free diffusion model alignment with dynamic multi-
 757 objective scheduling. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 758 pp. 13220–13230, 2025. [5](#), [17](#), [22](#)

759 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 760 Imagereward: Learning and evaluating human preferences for text-to-image generation. *Advances*
 761 in *Neural Information Processing Systems*, 36:15903–15935, 2023. [1](#), [5](#)

762 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
 763 Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv*
 764 preprint *arXiv:2505.07818*, 2025. [27](#)

765 Heyuan Yao, Zhenhua Song, Baoquan Chen, and Libin Liu. Controlvae: Model-based learning of
 766 generative controllers for physics-based characters. *ACM Transactions on Graphics (TOG)*, 41(6):
 767 1–16, 2022. [3](#)

768 Heyuan Yao, Zhenhua Song, Yuyang Zhou, Tenglong Ao, Baoquan Chen, and Libin Liu. Moconvq:
 769 Unified physics-based motion control via scalable discrete representations. *ACM Transactions on*
 770 *Graphics (TOG)*, 43(4):1–21, 2024. [3](#)

771 Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided human
 772 motion diffusion model. In *Proceedings of the IEEE/CVF international conference on computer*
 773 *vision*, pp. 16010–16021, 2023. [3](#)

774 Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Yong Zhang, Hongwei Zhao, Hongtao Lu, Xi Shen,
 775 and Ying Shan. Generating human motion from textual descriptions with discrete representations.
 776 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 777 14730–14740, 2023a. [9](#), [19](#)

778 Mingyuan Zhang, Xinying Guo, Liang Pan, Zhongang Cai, Fangzhou Hong, Huirong Li, Lei Yang,
 779 and Ziwei Liu. Remodiffuse: Retrieval-augmented motion diffusion model. In *Proceedings of the*
 780 *IEEE/CVF International Conference on Computer Vision*, pp. 364–373, 2023b. [9](#)

781 Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei Liu.
 782 Motiondiffuse: Text-driven human motion generation with diffusion model. *IEEE Transactions on*
 783 *Pattern Analysis and Machine Intelligence*, 46(6):4115–4128, 2024a. [1](#), [2](#), [8](#), [9](#), [18](#), [19](#)

784 Zeyu Zhang, Akide Liu, Ian Reid, Richard Hartley, Bohan Zhuang, and Hao Tang. Motion mamba:
 785 Efficient and long sequence motion generation. In *European Conference on Computer Vision*, pp.
 786 265–282. Springer, 2024b. [9](#), [19](#)

787 Chongyang Zhong, Lei Hu, Zihao Zhang, and Shihong Xia. Attt2m: Text-driven human motion gen-
 788 eration with multi-perspective attention mechanism. In *Proceedings of the IEEE/CVF International*
 789 *Conference on Computer Vision*, pp. 509–519, 2023. [9](#), [19](#)

790 Qiran Zou, Shangyuan Yuan, Shian Du, Yu Wang, Chang Liu, Yi Xu, Jie Chen, and Xiangyang Ji.
 791 Parco: Part-coordinating text-to-motion synthesis. *arXiv preprint arXiv:2403.18512*, 2024. [9](#), [19](#)

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 EasyTune: Efficient Step-Aware Fine-Tuning for Diffusion-Based 811 Motion Generation

812 813 Supplementary Material 814

815 816 SUPPLEMENTARY CONTENTS 817

818	A More Experimental Results	16
819	A.1 Experimental Details and Discussion of Gradient Analysis.	16
820	A.2 Experimental Setting for Baseline .	17
821	A.3 Experimental Results and Discussion about Reward Hacking .	17
822	A.4 Text-to-Motion Generation Evaluation on KIT-ML dataset .	18
823	A.5 Visualizations .	20
824	A.6 Noise-Perception Analysis of Image and Motion .	20
825	A.7 Failure Case Analysis: Reward Hacking.	20
826	A.8 Quantitative Results on Step-Level Reward Reweighting .	22
827	A.9 Comprehensive Statistics on Overhead .	23
828	A.10 Sensitivity Analysis .	24
829	A.11 Evaluation on Physical Perception Ability of Reward Model.	26
830	B More Technical Discussions	27
831	B.1 Discussion on Step Optimization and Policy Gradient Methods	27
832	B.2 Discussion on the Chain and Step Optimization .	28
833	B.3 Discussions on Existing Fine-Tuning Methods.	29
834	B.4 Details on Self-Refining Preference Learning .	29
835	B.5 Discussion on Noise-Aware and One-Step Reward .	31
836	C Proof	32
837	C.1 Proof of Corollary 1 .	32
838	C.2 Convergence Analysis .	32
839	C.3 Proof of Eq. (5) .	35

851
 852 This supplementary document provides additional experimental results, technical discussions, and
 853 theoretical analysis. It is organized as follows: Sec. A presents extended experimental results,
 854 including results about reward hacking, user study, text-to-motion generation performance on the
 855 KIT-ML dataset, and qualitative visualizations. Sec. B offers in-depth discussions on existing fine-
 856 tuning methods and our proposed SPL mechanism. Sec. C contains theoretical proofs, including
 857 Theorem 1 and the derivation of Eq. (5).

858 859 A MORE EXPERIMENTAL RESULTS 860

861 A.1 EXPERIMENTAL DETAILS AND DISCUSSION OF GRADIENT ANALYSIS

862
 863 Given a diffusion model ϵ_θ , we first sample a latent variable $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$. Starting from \mathbf{x}_T , we
 apply $T - t$ denoising steps to obtain \mathbf{x}_t , while retaining the computational graph for gradient analysis.

864

865 Table S1: Hyperparameters for EasyTune and baseline methods.

866

	MLD	AlignProp	ReFL-10	ReFL-20	DRaFT-10	DRaFT-50	DTune	EasyTune (Ours)	Meaning
Random seed	1234	1234	1234	1234	1234	1234	1234	1234	Seed for reproducibility
Batch size	256	256	256	256	256	256	256	256	Training examples per step
CLIP Range	-	1e0	1e0	1e0	1e0	1e0	1e0	1e0	Grad clipping range
Ckpt steps	-	1000	1000	1000	1000	1000	1000	1000	Steps between checkpoints
Reward Weight	-	1e-1	1e-1	1e-1	1e-1	1e-1	1e-1	1e-1	Reward/alignment loss weight
Learning Rate	1e-5	1e-5	1e-5	1e-5	1e-5	1e-5	1e-5	1e-5	Optimizer learning rate
K	-	-	10	20	[40,50]	[0,50]	[40,50]	[0,50]	Denoising timestep range for fine-tuning
T	50	50	50	50	50	50	50	50	The number of denoise scheduler steps
M	-	-	-	-	-	[40,50]	-	-	Range of early-stop timestep
P	-	25	-	-	-	-	-	-	Length of truncated backpropagation through time

873

874 At step t , we consider the Jacobian of the diffusion prediction with respect to its input,

875

$$\frac{\partial \pi_\theta(\mathbf{x}_t^\theta)}{\partial \mathbf{x}_t^\theta}, \quad (\text{S1})$$

878

879 and its sequential product across denoising steps,

880

$$\prod_{s=1}^t \frac{\partial \pi_\theta(\mathbf{x}_s^\theta)}{\partial \mathbf{x}_s^\theta}. \quad (\text{S2})$$

882

883 This quantity can be interpreted as the gradient of the noisy sample \mathbf{x}_t^θ with respect to the predicted
884 clean sample \mathbf{x}_0^θ , i.e., the effective coefficient governing optimization at step t . Consequently, the
885 gradient of the training objective takes the form

886

$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot | c)} \left[\frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta)}{\partial \mathbf{x}_0^\theta} \cdot \underbrace{\sum_{t=1}^T \left(\prod_{s=1}^{t-1} \frac{\partial \pi_\theta(\mathbf{x}_s^\theta, s, c)}{\partial \mathbf{x}_s^\theta} \right)}_{\text{tends to 0 as } t \text{ increases}} \underbrace{\left(\frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \theta} \right)}_{\text{optimizing t-th step}} \right]. \quad (\text{S3})$$

890

891 Importantly, during optimization, especially when t is large, these coefficients rapidly decay toward 0
(as shown in Fig. 3), i.e.,

892

$$\prod_{s=1}^t \frac{\partial \pi_\theta(\mathbf{x}_s^\theta)}{\partial \mathbf{x}_s^\theta} \rightarrow 0. \quad (\text{S4})$$

893

894 Thus, for large noise steps, which often determine the final generation quality (Xie & Gong, 2025),
895 this vanishing effect implies that existing methods tend to under-optimize such steps, thereby leading
896 to coarse or suboptimal results.

897

898 A.2 EXPERIMENTAL SETTING FOR BASELINE

899

900 The hyperparameter configurations for our EasyTune method and the baseline are provided, with the
901 majority of the settings following the official settings, as presented in Tab. S1.

902

903 A.3 EXPERIMENTAL RESULTS AND DISCUSSION ABOUT REWARD HACKING

904

905 **Discussion about Reward Hacking.** Previous studies have discussed reward-based differentiable
906 approaches to mitigating reward hacking. Specifically, the proposed strategies include early stopping
907 on a validation set, fine-tuning with LoRA instead of full-parameter tuning, and incorporating KL-
908 divergence regularization. Importantly, our method can be seamlessly combined with these strategies.
909 In our implementation, we provide support for early stopping on a validation set as well as fine-tuning
910 using LoRA.

911

912 Additionally, EasyTune is compatible with established techniques like KL regularization and multi-
913 aspect rewards, which effectively mitigate overfitting, as shown in prior work (D-RaFT, AlignProp,
914 DTune). Following these methods, we omitted KL regularization in our main loss:

915

$$\mathcal{L}_{\text{EasyTune}}^{\text{KL}}(\theta) = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_t^\theta \sim \pi_\theta(\cdot | c), t \sim \mathcal{U}(0, T)} \left[\mathcal{R}_\phi(\mathbf{x}_t^\theta, t, c) + \mathbb{D}_{\text{KL}}(\mathbf{x}_t^\theta \| \mathbf{x}_t^{\theta'}) \right], \quad (\text{S5})$$

916

917 **Experimental Results about Reward Hacking.** Quantitative analysis (Fig. S3) confirms that our
918 method is free from reward hacking. To further investigate this behavior, we conducted a user study

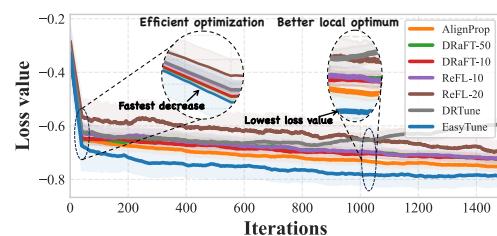


Figure S1: Loss curves for EasyTune and existing fine-tuning methods. Here, the x-axis represents the number of generated motion batches.

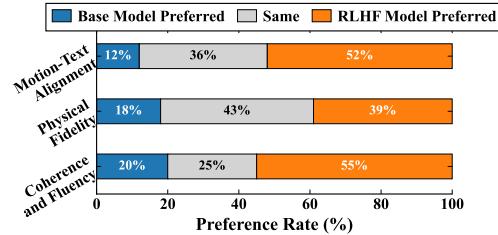


Figure S2: **User study on HumanML3D test set.** We use MDM model as base model.

adn compare the baseline method with a variant of our approach that incorporates KL-divergence regularization. Specifically, we generated motions for the first 100 prompts in the HumanML3D test set using both the pre- and post-finetuned models. Each generated motion was independently evaluated by five participants. Using MDM and MLD as base models, the results—presented in Fig. S2 and Fig. 7, respectively—show that our method consistently outperforms the baseline models in human evaluations without exhibiting signs of reward hacking.

Additionally, Tab. S2 provides a detailed comparison between the baseline and the KL-regularized variants. Results shows that KL regularization helps mitigate overfitting and improves diversity, although at a slight cost in generation quality.

A.4 TEXT-TO-MOTION GENERATION EVALUATION ON KIT-ML DATASET

Tab. S3 presents the quantitative performance of text-to-motion generation models on the KIT-ML dataset, evaluated across multiple metrics: R-Precision (Top-1, Top-2, Top-3) for text-motion alignment, Frechet Inception Distance (FID) for motion quality, Multi-Modal Distance (MM Dist) for semantic relevance, and Diversity for motion variety. The analysis compares models enhanced with EasyTune against a comprehensive set of baselines.

The results reveal significant improvements in models enhanced with EasyTune. For MDM (Chen et al., 2023), Top-1 R-Precision increases from 0.403 to 0.442 (a 9.7% gain), Top-2 R-Precision from 0.606 to 0.655 (8.1% gain), and Top-3 R-Precision from 0.731 to 0.773 (5.7% gain). FID of MDM decreases substantially from 0.497 to 0.284 (42.9% improvement), indicating enhanced motion quality. MM Dist of MDM improves from 3.096 to 2.755 (11.0% reduction), reflecting stronger semantic alignment, while Diversity of MDM slightly rises from 10.76 to 11.27, suggesting maintained motion variety. Similarly, for MoDiffuse (Zhang et al., 2024a), Top-1 R-Precision improves from 0.417 to 0.438 (5.0% gain), Top-2 R-Precision from 0.621 to 0.649 (4.5% gain), and Top-3 R-Precision from 0.739 to 0.777 (5.1% gain). FID of MoDiffuse decreases from 1.954 to 1.719 (12.0% improvement), and MM Dist of MoDiffuse reduces from 2.958 to 2.892 (2.2% improvement). However, Diversity of MoDiffuse slightly declines from 11.10 to 10.63, indicating a minor trade-off in variety for improved alignment and quality. Compared to baselines, EasyTune-enhanced models achieve superior performance. Top-1 R-Precision of MDM with EasyTune (0.442) surpasses that of ParCo (0.430) and MotionMamba (0.419), while FID of MDM with EasyTune (0.284) is competitive with SiT (0.242). MM Dist of MDM with EasyTune (2.755) outperforms most baselines, approaching the real data’s 2.788. These results establish EasyTune-enhanced models as new state-of-the-art on KIT-ML, highlighting their ability to improve text-motion alignment, motion quality, and semantic relevance.

Table S2: Performance comparison between EasyTune with/without KL-regularized.

Method	R@P1	R@P2	R@P3	FID ↓	MM-Dist ↓	Div. ↑	Memory ↓
EasyTune	0.581	0.769	0.855	0.132	2.637	9.465	22.10
EasyTune+KL	0.575	0.763	0.846	0.172	2.674	9.482	29.70

972

973

Table S3: Comparison of text-to-motion generation performance on the KIT-ML dataset.

Method	R Precision \uparrow			FID \downarrow	MM Dist \downarrow	Diversity \rightarrow
	Top 1	Top 2	Top 3			
Real	0.424	0.649	0.779	0.031	2.788	11.08
TM2T (Guo et al., 2022b)	0.280	0.463	0.587	3.599	4.591	9.473
T2M (Guo et al., 2022a)	0.361	0.559	0.681	3.022	2.052	10.72
M2DM (Kong et al., 2023)	0.416	0.628	0.743	0.515	3.015	11.42
T2M-GPT (Zhang et al., 2023a)	0.416	0.627	0.745	0.514	3.007	10.86
Fg-T2M (Wang et al., 2023)	0.418	0.626	0.745	0.571	3.114	10.93
AttT2M (Zhong et al., 2023)	0.413	0.632	0.751	0.870	3.039	10.96
MotionMamba (Zhang et al., 2024b)	0.419	0.645	0.765	0.307	3.021	11.02
CoMo (Huang et al., 2024)	0.422	0.638	0.765	0.332	2.873	10.95
ParCo (Zou et al., 2024)	0.430	0.649	0.772	0.453	2.820	10.95
SIT (Meng et al., 2025)	0.387	0.610	0.749	0.242	-	-
MDM (Chen et al., 2023)	0.403	0.606	0.731	0.497	3.096	10.76
w/ EasyTune (ours)	0.442_{+9.7%}	0.655_{+8.1%}	0.773_{+5.7%}	0.284_{+42.9%}	2.755_{+11.0%}	11.27 _{+0.13}
MoDiffuse (Zhang et al., 2024a)	0.417	0.621	0.739	1.954	2.958	11.10
w/ EasyTune (ours)	0.438 _{+5.0%}	0.649 _{+4.5%}	0.777_{+5.1%}	1.719 _{+12.0%}	2.892 _{+2.2%}	10.63 _{-0.43}

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

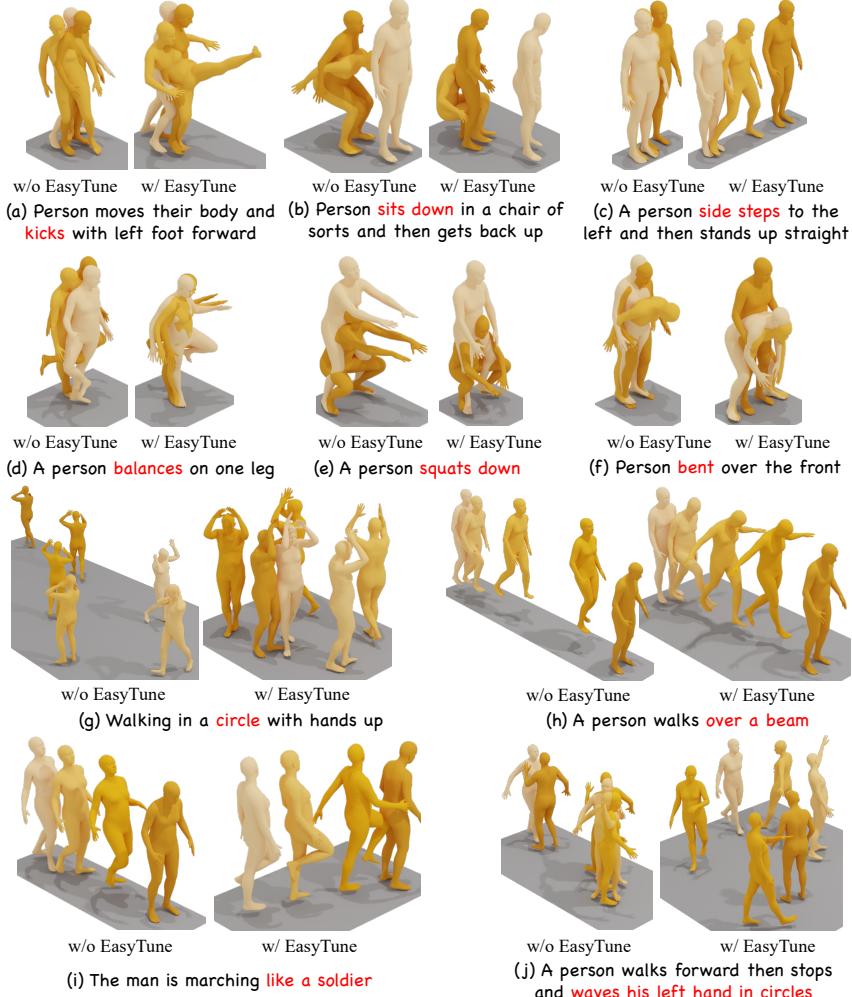


Figure S3: Visual results on HumanML3D dataset. “w/o EasyTune” refers to motions generated by the original MLD model (Chen et al., 2023), while “w/ EasyTune” indicates motions generated by the MLD model fine-tuned using our proposed EasyTune.

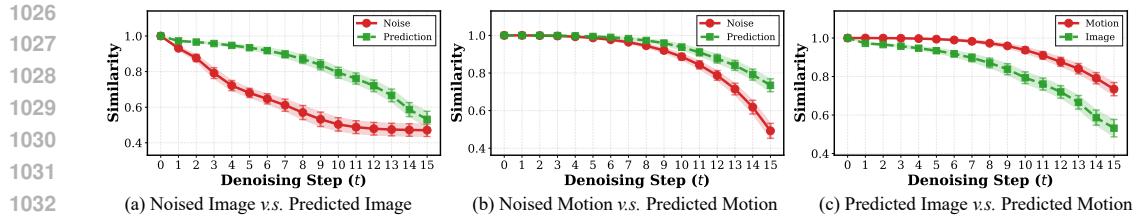


Figure S4: **Noise-perception comparison between images and motions.** We report the cosine similarity between noisy states and their ODE-based predictions between ODE-based predictions and trajectory-level rewards, across denoising steps for both the image (FLUX.1 dev) and motion (MLD) domains.

A.5 VISUALIZATIONS

We visualize motions generated by the original MLD (Chen et al., 2023) and by MLD fine-tuned with our EasyTune, as shown in Fig. S3. Our proposed EasyTune substantially improves the capacity of text-to-motion models to comprehend textual semantics. For example, in Fig. S3(j), the model fine-tuned with our proposed EasyTune effectively generates a motion that accurately reflects the semantic intent of the description “The man is marching like a soldier,” whereas the original model fails to capture this nuanced behavior.

A.6 NOISE-PERCEPTION ANALYSIS OF IMAGE AND MOTION

Experimental Settings. To quantify the perceptibility and sensitivity of noisy states, we perform a unified study on both image and motion generation. For the image domain, we select 50 prompts from HPDv2 (Wu et al., 2023) and use FLUX.1 dev (Labs, 2024) as the base model. For each prompt, we generate 12 images with 16 denoising steps, a guidance scale of 3.5, and a resolution of 720×720 . At each of the 16 steps, we store both the noisy image and its ODE-based prediction, and compute their cosine similarity using CLIP ViT-L/14 features (Radford et al., 2021). To ensure statistical significance and robustness, all experiments are repeated 50 times per prompt over 50 prompts, and we report the mean.

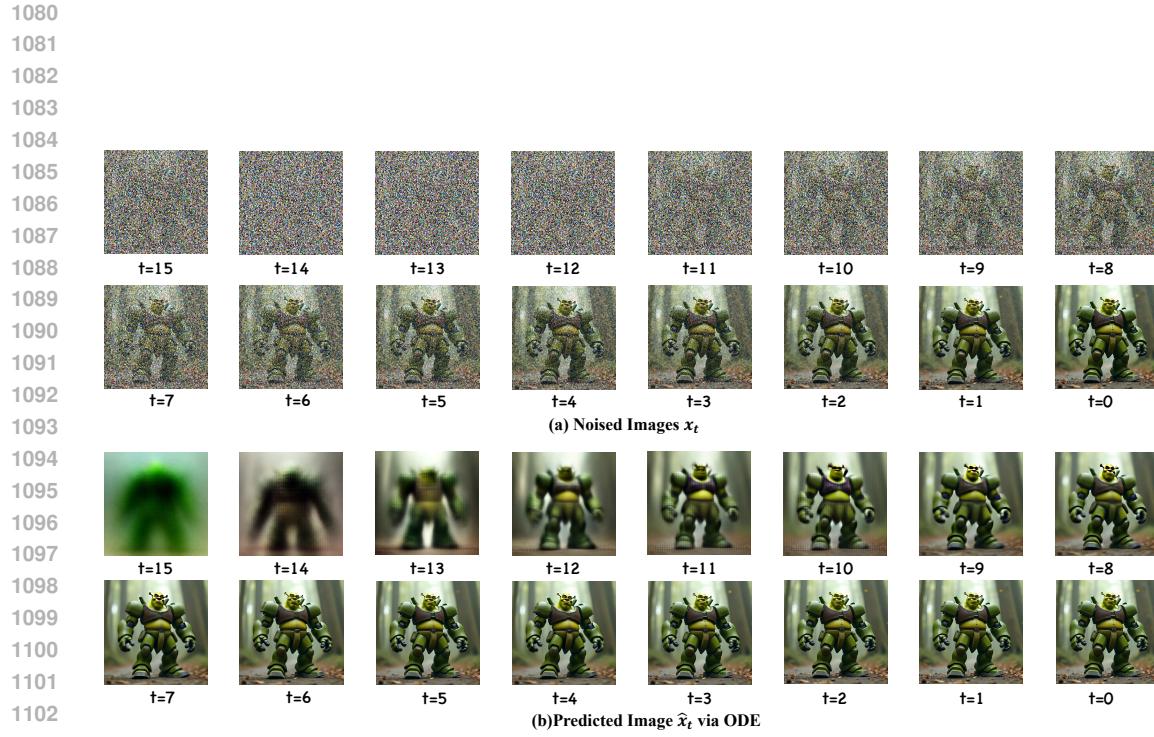
For the motion domain, we follow a similar protocol using MLD as the base model and TMR as the feature extractor. We randomly sample 50 text prompts from HumanML3D and, for each prompt, generate 12 motion samples along the full denoising trajectory. At each step, we compute the cosine similarity between the noisy motion and its ODE-based prediction in the TMR feature space.

Results and Discussion. As summarized in Fig. S4, both image and motion models exhibit increasing similarity between noisy states and ODE-based predictions as the denoising process proceeds. However, the image final results consistently shows weaker similarity with noised state, especially at high-noise steps. This indicates that image generation results have a poorer perception of early noise states compared to motion generation, making it harder for directly fine-tuning models by step-level optimization. Fortunately, their ODE-based prediction results show comparable performance, indicating that their step-aware optimization can still be performed by ODE-based prediction. Additionally, visual examples of noisy states and their ODE-based predictions are presented in Fig. S5 and Fig. S6, showing the perceptual differences across denoising steps for both domains.

A.7 FAILURE CASE ANALYSIS: REWARD HACKING.

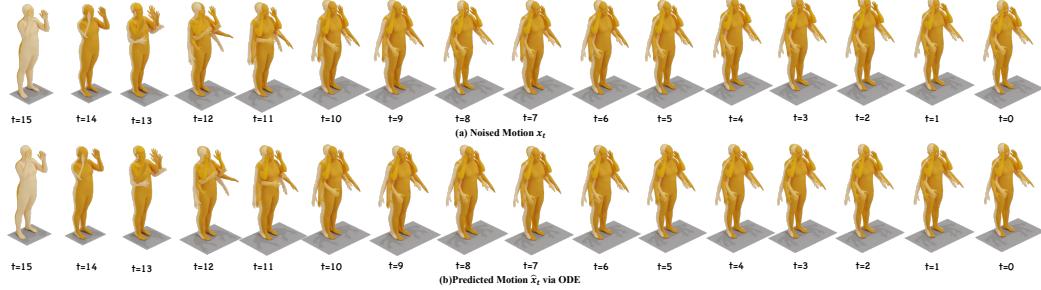
As a well-known challenge in reinforcement learning (Clark et al., 2024), reward hacking can emerge during model fine-tuning, where continued optimization after convergence may degrade generation quality.

As illustrated in Fig. S7, models may over-fit to semantic alignment while neglecting realistic motion dynamics. For example, given the prompt “A person stands up from the ground, lifts their right foot, and sets it back down,” a model suffering from reward hacking might generate a person **continuously** lifting their foot to over-fit to the “lifts their right foot” action. Similarly, for “A person squats down, **then stands up and moves forward**,” the model might misinterpret this as “A person squats down



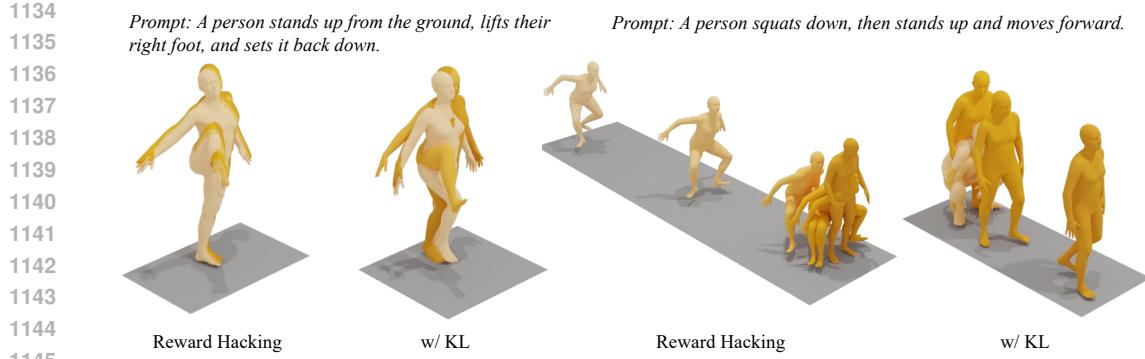
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

Figure S5: **Noisy states and ODE-based predictions for images across denoising steps.** Visualization of intermediate noisy images and their corresponding ODE-based predictions at different steps of the denoising process using FLUX.1 dev.



1127
1128
1129
1130
1131
1132
1133

Figure S6: **Noisy states and ODE-based predictions for motions across denoising steps.** Visualization of intermediate noisy motions and their corresponding ODE-based predictions at different steps of the denoising process using MLD.



1143
 1144
 1145
 1146
 1147 **Figure S7: Illustration of reward hacking in motion generation.** Examples demonstrating that
 1148 over-fitting to reward signals may lead to semantically aligned but physically unrealistic motions. For
 1149 better visualization, corresponding videos are provided in the supplementary materials.

1150
 1151 **while moving forward.”** Fortunately, our method combined with KL-divergence regularization (as
 1152 discussed in Sec. A.3) can effectively mitigate this phenomenon. We recommend early stopping
 1153 after initial convergence, with the stopping point determined by validation set performance, which
 1154 provides an effective strategy to alleviate reward hacking issues.

1155 A.8 QUANTITATIVE RESULTS ON STEP-LEVEL REWARD REWEIGHTING

1156 Prior work has demonstrated that early denoising steps exert a substantial influence on the final
 1157 generation quality (Xie & Gong, 2025). We further observe that existing trajectory-level optimization
 1158 methods frequently under-optimize these early steps, as discussed in Sec. 3. To systematically
 1159 examine the effect of fine-tuning different subsets of steps, we evaluate four alternative reweighting
 1160 strategies: (1) optimizing only the final 20 steps; (2) optimizing only the initial 20 steps; (3) linear
 1161 increasing reweighting with $w_t = \frac{T-t}{T} + 0.5$ at each step; and (4) linear decreasing reweighting with
 1162 $w_t = -\frac{T-t}{T} + 1.5$ at each step. Results are summarized in Tab. S4.

1163 The experimental results in Tab. S4 highlight the critical role of appropriately weighting different
 1164 denoising steps. Strategy (1), which optimizes only the final 20 steps, yields clearly inferior
 1165 performance (R@1: 0.546, FID: 0.184) compared to EasyTune (Full), indicating that restricting
 1166 optimization to late steps is insufficient to fully exploit the potential of the diffusion process. This
 1167 result is also comparable to that of DRaFT-50 (R@1: 0.528, FID: 0.197), suggesting that DRaFT-50’s
 1168 suboptimal performance likely stems from gradient vanishing, which effectively causes the method to
 1169 under-optimize early denoising steps. Strategy (2), which optimizes only the initial 20 steps, achieves
 1170 somewhat better performance (R@1: 0.567, FID: 0.158) than Strategy (1), but still falls short of
 1171 EasyTune (Full), showing that early-step optimization alone is also not sufficient.

1172 For the linearly increasing reweighting scheme (Strategy (3), $w_t = \frac{T-t}{T} + 0.5$), which places
 1173 larger weights on later steps. In contrast, the linearly decreasing reweighting scheme (Strategy (4),
 1174 $w_t = -\frac{T-t}{T} + 1.5$), which emphasizes earlier steps, achieves the best overall performance among
 1175 the reweighted variants (R@1: 0.584, FID: 0.136, MM Dist: 2.631). Notably, its performance is on
 1176 par with DRaFT-50 (R@1: 0.528, FID: 0.197), demonstrating that our method can achieve
 1177 comparable performance to state-of-the-art methods with a much simpler and more efficient
 1178 optimization scheme.

1179 **Table S4: Ablation study on step-level reward reweighting strategies for EasyTune.**

Method	R Precision \uparrow			FID \downarrow	MM Dist \downarrow	Diversity \rightarrow	Memory (GB) \downarrow
	Top 1	Top 2	Top 3				
Real	0.511	0.703	0.797	0.002	2.974	9.503	-
MLD (Chen et al., 2023) (Baseline)	0.481	0.673	0.772	0.473	3.196	9.724	15.21
w/ DRaFT-50 (Clark et al., 2024)	0.528	0.724	0.819	0.197	2.872	9.641	37.32
w/ EasyTune (Full)	0.581	0.769	0.855	0.132	2.637	9.465	22.10
EasyTune + (1)	0.546	0.735	0.804	0.184	2.815	9.682	22.10
EasyTune + (2)	0.567	0.759	0.842	0.158	2.673	9.430	22.10
EasyTune + (3)	0.556	0.748	0.838	0.147	2.652	9.421	22.10
EasyTune + (4)	0.584	0.773	0.859	0.136	2.631	9.521	22.10

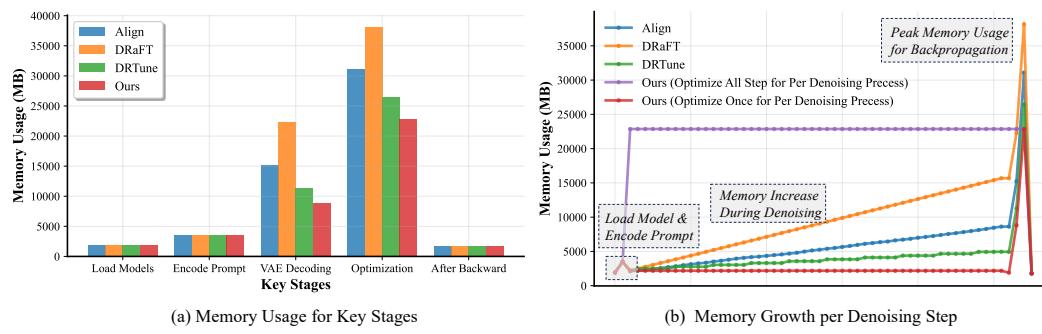


Figure S8: **Comprehensive memory analysis of EasyTune and existing fine-tuning methods.** We report the memory usage of key stages (model loading, prompt encoding, denoising, VAE-based motion decoding, and reward computation with backpropagation), as well as the full memory trajectory during optimization. EasyTune achieves lower peak memory while maintaining high utilization, benefiting from the $\mathcal{O}(1)$ memory growth of the denoising process.

par with, or slightly better than, EasyTune (Full) in terms of alignment (R@1: 0.584 vs. 0.581) while maintaining comparable generation quality. Taken together, these results provide strong empirical evidence that properly optimizing early denoising steps is crucial for downstream performance.

A.9 COMPREHENSIVE STATISTICS ON OVERHEAD

A.9.1 MEMORY OVERHEAD

In this part, we provide a detailed comparison of the memory consumption of existing fine-tuning methods and our EasyTune framework. Our pipeline consists of several key stages, including loading the model, encoding text prompts, denoising in the latent space, decoding motions via the VAE, and computing rewards followed by backpropagation. As illustrated in Fig. S8, we report both (a) the memory usage of each individual stage and (b) the overall memory trajectory throughout the full optimization process. All experiments are conducted on a single NVIDIA RTX A6000 GPU, with Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz.

It is worth noting that our method performs multiple optimization steps within a single denoising trajectory, which leads to relatively high average memory utilization. However, the peak memory consumption of EasyTune is significantly lower than that of existing methods. In practice, higher utilization indicates more efficient use of available GPU resources, while a lower peak memory footprint reflects reduced hardware requirements. The results further demonstrate that the memory savings of our method mainly stem from the $\mathcal{O}(1)$ memory growth of the denoising process.

A.9.2 COMPUTATIONAL OVERHEAD

In this part, we benchmark the training-time and computational overhead of EasyTune against existing fine-tuning methods. Following the setup used in our main experiments, we measure the training time and total TFLOPs required to reach convergence. Additionally, all methods share the same sampling procedure as their corresponding base diffusion models, and thus incur no additional overhead during inference.

As shown in Tab. S5, EasyTune is consistently more training-efficient than prior differentiable reward-based methods. It achieves the lowest per-step optimization cost (1.47 seconds per update vs roughly 4.7–5.6 seconds for other methods), and to reach a reward score of 0.70 it needs only 263.36 seconds and 10191 TFLOPs, compared to 466.27 seconds and 18044 TFLOPs for DRaFT. For a reward score of 0.75, EasyTune converges in 358.17 seconds (13861 TFLOPs), while DRaFT requires 2616.54 seconds (101260 TFLOPs), yielding a **7.3x speedup** under a much smaller compute budget. Moreover, EasyTune is the only method that successfully reaches reward scores of 0.80 and 0.85 within the given budget, highlighting its stronger optimization capacity. Together with the memory efficiency analysis in Fig. S8, these results show that EasyTune offers a substantially more efficient and practical fine-tuning strategy than existing differentiable reward-based approaches.

1242
1243 **Table S5: Computational overhead comparison.** We report the training time and TFLOPs required
1244 to reach different reward scores. Total time is measured in seconds on a single NVIDIA RTX A6000
1245 GPU. “-” indicates the method could not reach that reward level within a reasonable training budget.

	DRaFT	AlignProp	DRTune	ReFL	EasyTune (Ours)
Time per Opt. (s)	5.61	5.17	4.90	4.72	1.47
<i>Reward Score = 0.70</i>					
Time (s)	466.27	271.99	554.77	820.29	263.36
TFLOPs	18044	10526	21469	31745	10191
<i>Reward Score = 0.75</i>					
Time (s)	2616.54	971.55	2009.59	-	358.17
TFLOPs	101260	37599	77771	-	13861
<i>Reward Score = 0.80</i>					
Time (s)	-	-	-	-	452.53
TFLOPs	-	-	-	-	17513
<i>Reward Score = 0.85</i>					
Time (s)	-	-	-	-	1025.17
TFLOPs	-	-	-	-	39674

1261 **Table S6: Performance of SPL mechanism for fine-tuning TMR.**

Methods	Text-Motion Retrieval↑					Motion-Text Retrieval↑				
	R@1	R@2	R@3	R@5	R@10	R@1	R@2	R@3	R@5	R@10
TMR	67.16	81.32	86.81	91.43	95.36	67.97	81.20	86.35	91.70	95.27
+SPL	68.76	82.36	87.99	92.06	96.47	69.03	82.87	87.84	92.56	96.45

1269

A.10 SENSITIVITY ANALYSIS

1270

A.10.1 SENSITIVITY ANALYSIS OF RETRIEVAL MODEL SELECTION

1273 **Effect on Settings.** We investigate the sensitivity of our SPL mechanism to different reward models
1274 and their impact on final fine-tuned generation results. A key observation is that weaker reward
1275 models, when trained using hyperparameter settings optimized for stronger models, can suffer from
1276 training collapse. This occurs because the core principle of SPL is to mine motion pairs and maximize
1277 the gap between preferred and non-preferred motions. In other words, the model must learn to
1278 produce preferred motions while forgetting non-preferred ones. However, forgetting is inherently
1279 simpler than learning, and weaker retrieval models are more prone to mining incorrect pairs during
1280 online sampling. To address this, we employ more relaxed candidate number K to increase the
1281 probability of successful pair mining, thereby strengthening learning signals and reducing erroneous
1282 unlearning.

1282 **Effect on Text-Motion Retrieval Task.** We demonstrate this using TMR, a moderately weaker
1283 retrieval model, where SPL consistently improves performance. As shown in Tab. S6, the motion-text
1284 retrieval R@1 improves from 67.16% to 68.76%, and motion-text retrieval R@1 improves from
1285 67.97% to 69.03%, confirming that our method generalizes effectively to weaker reward models with
1286 appropriate hyperparameter adjustments.

1287 **Effect on Text-to-Motion Generation Task.** We further explore whether step-aware fine-tuning
1288 generalizes to weaker pre-trained reward models. As shown in Tab. S7, even when using TMR, a less
1289 discriminative retrieval model compared to SPL, our step-aware optimization approach consistently
1290 improves generation quality. Specifically, when combined with EasyTune using TMR as the reward
1291 model, both the step-level and chain-of-thought variants achieve substantial gains: the step variant
1292 reaches R@1 of 0.573 (vs. baseline 0.481), and the chain variant reaches 0.567. They still represent
1293 significant improvements over the baseline. This finding suggests that the effectiveness of step-aware
1294 optimization is not solely dependent on using the strongest available reward model. Rather, the key
1295 insight is that even weaker but still discriminative reward models can provide effective supervision
signals, as their ranking capability, though inferior to stronger models, still exceeds that of the base

1296 generation model itself (Tan et al., 2025). This robustness to reward model choice broadens the
 1297 applicability of our approach.
 1298

1299 **A.10.2 ANALYSIS OF CANDIDATE NUMBER K SELECTION & RETRIEVAL POOL**
 1300

1301 **Mechanism.** As discussed above, the core mechanism of our SPL is to mine preference motion pairs
 1302 online and to maximize the learning signal by enlarging the gap between preferred and non-preferred
 1303 pairs. In essence, SPL is designed to forget incorrectly generated motions while retaining correct
 1304 ones. However, this task is inherently asymmetric: forgetting is much easier than remembering,
 1305 making it crucial to carefully control the frequency at which negative samples are forgotten. In
 1306 our implementation, both the candidate number K and the retrieval pool configuration substantially
 1307 affect this behavior. Specifically, when retrieval fails, SPL jointly learns to memorize correct samples
 1308 and forget incorrect ones; otherwise, the model simply optimizes the original pre-training objective.
 1309 A larger K and a smaller retrieval pool generally increase the retrieval success rate. **Intuitively,**
 1310 **we should therefore choose K and the retrieval pool such that successful retrievals occur**
 1311 **substantially more often than failures.**

1312 **Experimental Settings.** Fortunately, Petrovich et al. (2023) has discussed similar retrieval settings.
 1313 Specifically, four retrieval pool settings are considered: (a) *All*: Using the entire test set without
 1314 modification, though this can be problematic due to repetitive or subtly different text descriptions
 1315 (e.g., “person” vs. “human”, “walk” vs. “walking”). (b) *All with threshold*: Searching over the entire
 1316 test set but accepting a retrieval as correct only if the text similarity exceeds a threshold (set to
 1317 0.95 on a $[0, 1]$ scale). This approach is more principled, distinguishing between genuine matches
 1318 and superficially similar pairs like “A human walks forward” vs. “Someone is walking forward”.
 1319 (c) *Dissimilar subset*: Sampling 100 motion-text pairs with maximally dissimilar texts (via quadratic
 1320 knapsack approximation). This provides a cleaner but easier evaluation setting. (d) *Small batches*:
 1321 Randomly sampling batches of 32 motion-text pairs and reporting average performance, providing a
 1322 more realistic in-the-wild scenario.

1323 Among these four configurations, settings (a) and (b) yield low retrieval success rates and are
 1324 computationally expensive. Their success rates are often even lower than the failure rates, which
 1325 substantially hinders the practical deployment of SPL. By contrast, configurations (c) and (d) achieve
 1326 much higher retrieval success rates. In our main experiments, we therefore adopt setting (d). With
 1327 $K = 10$, configuration (d) attains a retrieval failure ratio of approximately 1:20. This ratio empirically
 1328 leads to stable optimization. In comparison, configuration (c) exhibits a failure ratio of about 1:6 at
 1329 $K = 10$, which tends to result in less stable performance due to the higher frequency of retrieval
 1330 failures.

1331 **Results & Discussion.** Based on configurations (c) and (d), we systematically study how different
 1332 choices of K and retrieval pool settings influence generation performance. Specifically, we evaluate
 1333 $K \in \{10, 15, 20\}$ for both settings, and report the results in Tab. S8.

1334 In practice, we recommend conducting a similar sensitivity analysis under limited computational
 1335 resources (e.g., 10 minutes on a single GPU) to determine appropriate values of K and the retrieval
 1336 pool for a given application. A retrieval failure ratio of approximately 1:20 typically leads to stable
 1337 and robust optimization across different scenarios.

1338 **A.10.3 AVAILABILITY OF NOISE-AWARE REWARD**
 1339

1340 **Experimental Setting.** In this experiment, we assess the noise-aware availability of our reward model,
 1341 i.e., how well the underlying retrieval models can operate under noisy motion inputs. Specifically,

1343 **Table S7: Fine-Tuning Performance using TMR as reward model.**

Method	R Precision \uparrow			FID \downarrow	MM Dist \downarrow	Diversity \rightarrow
	Top 1	Top 2	Top 3			
Real	0.511	0.703	0.797	0.002	2.974	9.503
MLD (Chen et al., 2023) (Baseline)	0.481	0.673	0.772	0.473	3.196	9.724
+TMR (w/ SPL, Step)	0.573	0.760	0.843	0.173	2.682	9.942
+TMR (w/ SPL, Chain)	0.567	0.753	0.836	0.158	2.698	9.874

1350 Table S8: **Sensitivity analysis of the number of candidate motions K and retrieval pool settings.**

Method	R Precision \uparrow			FID \downarrow	MM Dist \downarrow	Diversity \rightarrow
	Top 1	Top 2	Top 3			
Real	0.511	0.703	0.797	0.002	2.974	9.503
MLD (Chen et al., 2023) (Baseline)	0.481	0.673	0.772	0.473	3.196	9.724
$K = 10 + (d)$	0.581	0.769	0.855	0.132	2.637	9.465
$K = 15 + (d)$	0.571	0.758	0.843	0.142	2.668	9.486
$K = 20 + (d)$	0.564	0.747	0.830	0.184	2.704	9.629
$K = 10 + (c)$	-	-	-	-	-	-
$K = 15 + (c)$	0.585	0.773	0.859	0.155	2.626	9.428
$K = 20 + (c)$	0.574	0.759	0.844	0.149	2.653	9.495

1361 Table S9: **Experimental results of Noise-Aware Text-Motion Retrieval.**

Methods	Input Data	Text-Motion Retrieval \uparrow					Motion-Text Retrieval \uparrow				
		R@1	R@2	R@3	R@5	R@10	R@1	R@2	R@3	R@5	R@10
ReAlign	Clean Data	67.59	82.24	87.44	91.97	96.28	68.94	82.86	87.95	92.44	96.28
ReAlign	Noisy Data	67.20	81.46	87.11	91.39	95.67	68.02	81.84	87.56	91.39	95.69
ReAlign	Predicted Clean Data	67.80	82.38	87.86	92.27	96.61	68.04	82.47	87.97	92.10	96.34
SPL	Clean Data	69.31	83.71	88.66	92.81	96.75	70.23	83.41	88.72	93.07	97.04
SPL	Noisy Data	69.36	83.63	88.53	92.83	96.76	70.34	83.41	88.66	93.04	96.93
SPL	Predicted Clean Data	68.39	83.31	88.59	93.11	96.73	68.60	82.35	88.06	92.79	96.53
TMR	Clean Data	67.16	81.32	86.81	91.43	95.36	67.97	81.20	86.35	91.70	95.27
TMR	Predicted Clean Data	66.98	81.04	87.09	92.11	95.74	68.32	80.69	86.43	92.13	95.84

1374 based on the HumanML3D dataset, we construct noisy test samples \mathbf{x}_t by running the forward
1375 diffusion process of MLD. For noise-aware reward models, we directly evaluate on \mathbf{x}_t . For output-
1376 aware models (TMR (Petrovich et al., 2023)), we instead apply an ODE-based denoising process to
1377 \mathbf{x}_t and use the resulting predicted clean samples $\hat{\mathbf{x}}_0$ as inputs.

1378 **Results & Discussion.** As shown in Tab. S9, both noise-aware models (ReAlign and SPL) demon-
1379 strate remarkable stability across conditions, with SPL achieving virtually identical performance on
1380 noisy data (69.36% R@1) versus clean data (69.31% R@1), while output-aware models like TMR
1381 can be effectively adapted via ODE-based denoising (66.98% recovery from clean baseline 67.16%),
1382 collectively validating that modern retrieval models reliably perceive intermediate denoising states
1383 and can serve as robust reward models for diffusion-based optimization.

1384 A.10.4 SENSITIVITY ANALYSIS ON LEARNING RATE

1385 To further assess the robustness of our approach, we examine the sensitivity of EasyTune to the
1386 learning rate hyperparameter. Across a reasonable range of learning rates (from 10^{-5} to 2×10^{-4}),
1387 our method exhibits only minor performance variation, indicating strong robustness to this critical
1388 hyperparameter. The corresponding results are shown in Fig. S9.

1391 A.11 EVALUATION ON PHYSICAL PERCEPTION ABILITY OF REWARD MODEL.

1392 To investigate the physical perception capabilities
1393 of our reward model, we conducted an experiment
1394 to assess its ability to distinguish between real and
1395 generated motions. We selected 50 prompts and their
1396 corresponding ground-truth motions (\mathbf{x}_{gt}) from the
1397 HumanML3D test set. For each prompt, we also
1398 generated a motion (\mathbf{x}_{gen}) using the pretrained MLD
1399 model. We then evaluated both the ground-truth and
1400 generated motions using our reward model with an empty text condition ($c = ''$), obtaining reward
1401 scores $r(\mathbf{x}_{gt}, c)$ and $r(\mathbf{x}_{gen}, c)$.

1402 Our findings are summarized in Tab. S10. The reward for the ground-truth motion was higher than
1403 for the generated motion in 48 out of 50 cases (96%). **This result strongly suggests that the**

1392 Table S10: **Physical perception evaluation of the reward model.**

Comparison Result	Count
$r(\mathbf{x}_{gt}, c) > r(\mathbf{x}_{gen}, c)$	48
$r(\mathbf{x}_{gt}, c) \leq r(\mathbf{x}_{gen}, c)$	2
Total	50

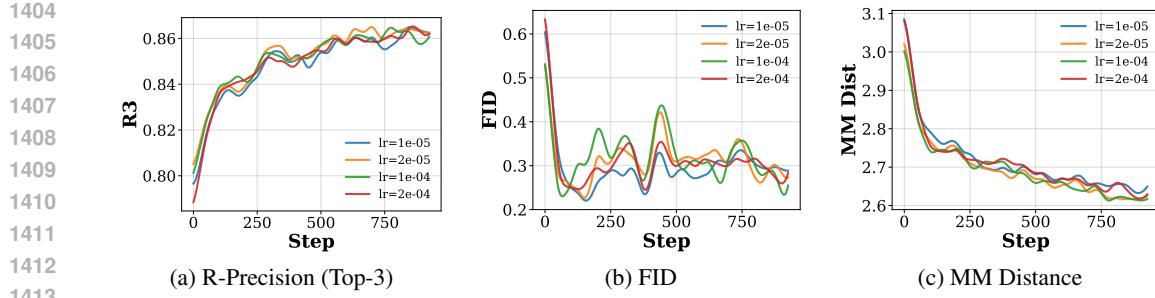


Figure S9: **Learning rate sensitivity analysis on validation set.** Performance metrics remain stable across the learning rate range (spanning from 2×10^{-4} to 10^{-5}), demonstrating the robustness of EasyTune to this hyperparameter. (a) R-Precision at Top-3; (b) Frechet Inception Distance; (c) Multi-Modal Distance.

reward model possesses a significant degree of physical perception. This capability likely arises because the reward model is trained on real-world motion data, treating it as in-distribution, while viewing synthetically generated data as out-of-distribution. Such a distinction enables the model to develop a sensitivity to physical plausibility, a phenomenon similarly observed in anomaly detection literature (Flaborea et al., 2023).

B MORE TECHNICAL DISCUSSIONS

B.1 DISCUSSION ON STEP OPTIMIZATION AND POLICY GRADIENT METHODS

In the field of diffusion posting-training, beyond mentions differentiable-reward approaches, another major line of work is policy-gradient methods, such as GRPO (Xue et al., 2025; Liu et al., 2025), PPO (Ren et al., 2024), and DDPO (Black et al., 2023). In this section, we point out that, **both our approach and these policy-gradient methods truncate the gradient along the diffusion chain, and in practice, they have not been observed to suffer from global inconsistency issues.** As a result, our method inherits a widely accepted and principled design, and does not suffer from undesirable behaviors caused by breaking the differentiable chain structure. Here, we briefly discuss the connections between our method and existing policy-gradient methods.

GRPO. DanceGRPO (Xue et al., 2025) can be viewed as instantiating GRPO (Guo et al., 2025) in the diffusion setting, where each denoising trajectory sampled under a condition c is treated as a rollout generated by the policy p_θ . For every prompt c , a group $\mathcal{G} = \{\mathbf{x}^{1:K}\}$ of K trajectories is drawn from the current policy, and a group-wise relative advantage is computed to compare their rewards. By estimating advantages \mathcal{A}^k from this group of K rollouts, GRPO (Xue et al., 2025) optimizes a PPO-style clipped surrogate objective:

$$\mathcal{J}_{\text{GRPO}}(\theta, \mathcal{G}) = \mathbb{E}_{c \sim \mathcal{D}, \mathbf{x}^{1:K}, t \sim \mathcal{U}(0, T), k \sim \mathcal{U}(1, K)} \left[\min(\rho_\theta^{k,t} \mathcal{A}^k, \text{clip}(\rho_\theta^{k,t}, 1 - \varepsilon, 1 + \varepsilon) \mathcal{A}^k) \right], \quad (\text{S6})$$

where advantages \mathcal{A}^k and probability ratios $\rho_\theta^{k,t}$ are computed as follows:

$$\mathcal{A}^k = \frac{r(\mathbf{x}_0^k, c) - \mu(r(\mathbf{x}^{1:K}, c))}{\sigma(r(\mathbf{x}^{1:K}, c))}, \quad \rho_\theta^{k,t} = \frac{p_\theta(\mathbf{x}_t^k | \mathbf{x}_{t-1}^k, c)}{p_{\theta_{\text{old}}}(\mathbf{x}_t^k | \mathbf{x}_{t-1}^k, c)}, \quad (\text{S7})$$

where $r(\mathbf{x}_0^k, c)$ is the scalar reward assigned to the final sample in the k -th rollout, and $\mu(r(\mathbf{x}^{1:K}, c))$ and $\sigma(r(\mathbf{x}^{1:K}, c))$ denote the mean and standard deviation of rewards within the group $\mathbf{x}^{1:K}$. This group-wise normalization makes \mathcal{A}^k a relative score that measures how much better (or worse) a sample is compared to its peers under the same condition c , which stabilizes training and mitigates scale mismatch across prompts.

DDPO. As a classical RL method, DDPO (Black et al., 2023; Fan et al., 2023b) optimizes the generative diffusion model via policy gradients using K rollouts. Its objective is written as:

$$\nabla_\theta \mathcal{J}_{\text{DDPO}}(\theta, \mathcal{G}) = \mathbb{E}_{c \sim \mathcal{D}, \mathbf{x}^{1:K}, t \sim \mathcal{U}(0, T), k \sim \mathcal{U}(1, K)} [r(\mathbf{x}_0^k, c) \cdot \nabla_\theta \log p_\theta(\mathbf{x}_t^k | \mathbf{x}_{t-1}^k, c)]. \quad (\text{S8})$$

1458 Here $r(\mathbf{x}_0^k, c)$ again denotes the scalar reward assigned to the final denoised sample in the k -th rollout,
 1459 while $\log p_\theta(\mathbf{x}_t^k | \mathbf{x}_{t-1}^k, c)$ is the log-probability at step t .
 1460

1461 **Discussion.** By examining Eq. (S7) and Eq. (S8), we identify a key observation: both GRPO and
 1462 DDPO treat this optimization as multiple pre-step optimization (in the form of $\log p_\theta(\mathbf{x}_t^k | \mathbf{x}_{t-1}^k, c)$),
 1463 rather than optimizing the entire denoising process in a single optimization pass. Specifically, GRPO
 1464 and DDPO first sample K trajectories of length T under each condition. Subsequently, they assign
 1465 a scalar reward to each trajectory and use this reward as a weight to progressively imitate these
 1466 trajectories step by step.

1467 However, we observe a fundamental inconsistency in existing differentiable-reward methods:
 1468 **differentiable-reward methods recursively decompose the optimization process as the optimi-
 1469 zation of multiple sub-chains, rather than as the optimization of independent steps.** This
 1470 design choice introduces the challenges discussed in the Sec. 3, particularly the vanishing gradient and
 1471 memory problem illustrated in Fig. 6 and 3. In contrast, our EasyTune solve this issue by step-aware
 1472 optimization, and its objective is:

$$\mathcal{L}_{\text{EasyTune}}(\theta) = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_t^\theta \sim \pi_\theta(\cdot | c), t \sim \mathcal{U}(0, T)} [\mathcal{R}_\phi(\mathbf{x}_t^\theta, t, c)], \quad (\text{S9})$$

1475 where $\mathcal{R}_\phi(\mathbf{x}_t^\theta, t, c)$ denotes the reward directly assigned to the intermediate denoised sample at step t ,
 1476 rather than a single trajectory-level scalar. Crucially, our approach evaluates and optimizes at each
 1477 timestep independently, with t uniformly sampled from $\{0, \dots, T\}$. Therefore, compared to the
 1478 chain optimization as shown in Eq. (S3), our method is more aligned with the principled design of
 1479 policy-gradient methods, while maintaining a step-wise optimization structure that avoids long-chain
 1480 backpropagation and achieves better results.

1481 B.2 DISCUSSION ON THE CHAIN AND STEP OPTIMIZATION

1483 The distinction between Chain Optimization and Step Optimization lies in their update strategies.
 1484 Chain Optimization accumulates gradients throughout the sampling process and updates the model
 1485 parameters after completing the sampling trajectory. In contrast, Step Optimization incrementally
 1486 updates the model at each denoising step.

1487 **Step Optimization.** Given a diffusion model with parameters θ and a reward model \mathcal{R} . Let π_θ
 1488 represent the denoising process. At each step, the model predicts the sample at time step t based on
 1489 \mathbf{x}_{t+1} , then updates the model parameters using the reward evaluated on the predicted sample:

$$\mathbf{x}_t = \pi_\theta(\mathbf{x}_{t+1}, c, t), \quad \theta' = \theta + l_r \cdot \nabla_\theta \mathcal{R}(\mathbf{x}_t, c), \quad (\text{S10})$$

1492 where \mathcal{R} denotes the reward model, θ represents the parameters of the diffusion model, and l_r is the
 1493 learning rate.

1495 The updated model $\pi_{\theta'}$ is used to predict the next sample \mathbf{x}_{t-1} at step $t-1$:

$$\mathbf{x}_{t-1} = \pi_{\theta'}(\mathbf{x}_t, c, t-1). \quad (\text{S11})$$

1498 **Key Questions.** We explore the following questions: *What does \mathbf{x}_{t-1} represent, and what are the
 1499 implications of performing updates at every step?*

1501 We argue that this procedure is approximately equivalent to reward-guided sampling, where the
 1502 reward model \mathcal{R} serves as a guidance function. Specifically, we define a guided sample as:

$$\mathbf{x}_{t-1}^g = \pi_\theta(\mathbf{x}_t, c, t-1) + l_r \cdot \nabla_{\mathbf{x}_t} \mathcal{R}(\mathbf{x}_t, c). \quad (\text{S12})$$

1505 **Analysis.** We discuss this question begin by **Corollary S1** as below.

1507 **Corollary S1.** *Given two generated samples \mathbf{x}_{t-1} and \mathbf{x}_{t-1}^g obtained via Eq. (S10) and the guided
 1508 sampling equation, respectively, they satisfy:*

$$\mathbf{x}_{t-1} = \mathbf{x}_{t-1}^g + \mathcal{O}(\|\nabla_\theta \mathcal{R}\|^2), \quad (\text{S13})$$

1511 where \mathcal{R} denotes the reward function, $\nabla_\theta \mathcal{R}$ its gradient with respect to the model parameters θ , and
 $\mathcal{O}(\cdot)$ follows standard Landau notation.

1512 *Proof.* Applying a first-order Taylor expansion of $\pi_{\theta'}(\mathbf{x}_t, c, t-1)$ around θ :

$$1514 \quad \pi_{\theta'}(\mathbf{x}_t, c, t-1) = \pi_{\theta}(\mathbf{x}_t, c, t-1) + \nabla_{\theta} \pi_{\theta}(\mathbf{x}_t, c, t-1) \cdot (\theta' - \theta) + \mathcal{O}(\|\theta' - \theta\|^2). \quad (S14)$$

1515 From Eq. (S10), $\theta' - \theta = l_r \cdot \nabla_{\theta} \mathcal{R}(\mathbf{x}_t, c)$. Substituting:

$$1517 \quad \mathbf{x}_{t-1} = \pi_{\theta}(\mathbf{x}_t, c, t-1) + \nabla_{\theta} \pi_{\theta}(\mathbf{x}_t, c, t-1) \cdot (l_r \cdot \nabla_{\theta} \mathcal{R}(\mathbf{x}_t, c)) + \mathcal{O}(\|\nabla_{\theta} \mathcal{R}\|^2). \quad (S15)$$

1518 Since $\nabla_{\theta} \pi_{\theta}(\mathbf{x}_t, c, t-1) \cdot \nabla_{\theta} \mathcal{R}(\mathbf{x}_t, c)$ lies in the sample space, the chain rule gives:

$$1520 \quad \nabla_{\mathbf{x}_t} \mathcal{R}(\mathbf{x}_t, c) = \nabla_{\theta} \mathcal{R}(\mathbf{x}_t, c)^{\top} \cdot \nabla_{\theta} \pi_{\theta}(\mathbf{x}_t, c, t-1). \quad (S16)$$

1522 Therefore:

$$1524 \quad \mathbf{x}_{t-1} = \pi_{\theta}(\mathbf{x}_t, c, t-1) + l_r \cdot \nabla_{\mathbf{x}_t} \mathcal{R}(\mathbf{x}_t, c) + \mathcal{O}(\|\nabla_{\theta} \mathcal{R}\|^2) = \mathbf{x}_{t-1}^g + \mathcal{O}(\|\nabla_{\theta} \mathcal{R}\|^2). \quad (S17)$$

1525 Hence, reward-based updates at each step are first-order equivalent to reward-guided sampling. \square

1527 B.3 DISCUSSIONS ON EXISTING FINE-TUNING METHODS

1529 We compare our proposed **EasyTune** method with existing direct reward fine-tuning approaches, including **DRaFT-K** (Clark et al., 2024), **AlignProp** (Prabhudesai et al., 2023), **ReFL** (Clark et al., 1530 2024), and **DRTune** (Wu et al., 2025). Their pseudocode is provided in Algorithm 1, and that of 1531 1532 EasyTune is detailed in Algorithm 2. By analyzing their optimization strategies and computational 1533 requirements, we highlight four key advantages of EasyTune:

1534 **(1) Higher Optimization Efficiency:** Existing methods, as shown in Algorithm 1, optimize model 1535 parameters after completing T or $T - t_{\text{stop}}$ reverse steps, resulting in infrequent updates (e.g., one 1536 update per T or $T - t_{\text{stop}}$ steps). In contrast, EasyTune optimizes at each denoising timestep, achieving 1537 one update per step. This significantly increases the frequency and effectiveness of parameter updates, 1538 enabling faster convergence and better alignment with reward objectives.

1539 **(2) Lower Storage Requirements:** Methods like DRaFT-K, AlignProp, ReFL, and DRTune rely on 1540 recursive gradient computations, requiring storage of intermediate states across multiple timesteps 1541 (e.g., gradients at step t depend on step $t+1$, as in Eq. (4) and Eq. (10)). This increases memory 1542 overhead. EasyTune, however, computes gradients solely for the current timestep (Eq. (7)), eliminating 1543 the need to store recursive states and substantially reducing memory usage.

1544 **(3) Fine-grained Optimization:** Existing methods optimize over coarse timestep ranges (e.g., 1545 $\{T, T-1, \dots, K_D\}$ for DRaFT-K or $\{1, 2, \dots, K_A\}$ for AlignProp, as in Algorithm 1) or rely 1546 on early stopping (ReFL, DRTune), which limits their ability to capture step-specific dynamics. 1547 EasyTune, as shown in Algorithm 2, performs optimization at each denoising step, allowing precise 1548 adjustments to the diffusion model based on the gradients from the reward model at individual 1549 timesteps. This fine-grained approach enhances the ability of model to align with complex motion 1550 generation objectives.

1551 **(4) Simpler and More Effective Pipeline:** Existing methods introduce complex designs to 1552 mitigate optimization and storage challenges, such as variable timestep sampling or early stopping 1553 mechanisms (Algorithm 1). These add computational overhead and reduce generality. EasyTune 1554 simplifies the process by performing step-wise optimization, as shown in Algorithm 2, making it 1555 more straightforward, robust, and applicable across diverse motion generation tasks.

1557 B.4 DETAILS ON SELF-REFINING PREFERENCE LEARNING

1559 The **Self-Refining Preference Learning (SPL)** mechanism constructs preference pairs for reward 1560 model fine-tuning without human annotations, using a retrieval-based auxiliary task. Algorithm 3 1561 outlines the process, which iterates over a training subset \mathcal{D}_T of motion-text pairs to refine text and 1562 motion encoders \mathcal{E}_T , \mathcal{E}_M , and a temperature parameter τ , collectively parameterized as ϕ .

1563 Algorithm 3 formalizes the process of SPL, which operates on a training subset \mathcal{D}_T containing 1564 motion-text pairs $(\mathbf{x}^{\text{gt}}, c)$, utilizing pre-trained text and motion encoders \mathcal{E}_T , \mathcal{E}_M , and a temperature 1565 parameter τ , collectively parameterized as ϕ . Overall, at each optimization iteration, SPL attempts 1566 to mine a preference pair consisting of a winning motion \mathbf{x}^w and a losing motion \mathbf{x}^l . If such a pair

1566

Algorithm 1 Existing Direct Reward Fine-tune Methods

Input: Pre-trained diffusion model ϵ_θ , training set \mathcal{D}_T , reward model R_ϕ , number of training timesteps K_D, K_A for **DRaFT-K** and **AlignProp**, early stop range m .

Output: Fine-tuned diffusion model ϵ_θ .

- 1: **For** each text condition $c \in \mathcal{D}_T$ and not converged **do**
- 2: **► Step 1: Training Setting**
- 3: Timesteps number for **AlignProp** $K_A \sim \mathcal{U}[1, T]$,
- 4: $t_{\text{train}} = \begin{cases} \{T, T-1, \dots, K_D\}, & \text{if DRaFT-K,} \\ \{1, 2, \dots, K_A\}, & \text{if AlignProp.} \end{cases}$
- 5: **if** **DRTune** **then**
- 6: Sample K_D continuous timesteps t_{train} from $[0, T]$.
- 7: **if** **ReFL** or **DRTune** **then** $t_{\text{stop}} = \mathcal{U}[1, m]$
- 8: **► Step 2: Reverse Process**
- 9: $\mathbf{x}_T^\theta \sim \mathcal{N}(0, \mathbf{I})$
- 10: **For** each timesteps $t = T, \dots, 1$ **do**
- 11: **if** **DRTune** **then**
- 12: $\epsilon = \epsilon_\theta(\text{sg}(\mathbf{x}_t^\theta), t, c)$
- 13: **else** $\epsilon = \epsilon_\theta(\mathbf{x}_t^\theta, t, c)$
- 14: **if** $t \notin t_{\text{train}}$ **then**
- 15: $\mathbf{x}_{t-1}^\theta = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t^\theta - \frac{\beta_t}{\sqrt{1-\alpha_t}} \text{sg}(\epsilon) \right)$
- 16: **if** $t = t_{\text{stop}}$ **then**
- 17: $\mathbf{x}_0^\theta \approx \frac{1}{\alpha_t} \mathbf{x}_t^\theta - \sigma_t \epsilon_\theta(\mathbf{x}_t^\theta, t, c)$; **break**
- 18: **► Step 3: Gradient Optimization**
- 19: Optimize: update diffusion model ϵ_θ by Eq. (1)

1591

Algorithm 2 EasyTune: Efficient Step-Aware Fine-Tuning

Input: Pre-trained diffusion model ϵ_θ , reward model R_ϕ .

Output: Fine-tuned diffusion model ϵ_θ .

- 1: **for** each text condition $c \in \mathcal{D}_T$ **and** not converged **do**
- 2: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$
- 3: **if** *Chain Optimization* **then**
- 4: Copy $\theta' \leftarrow \theta$
- 5: **end if**
- 6: **for** $t = T, \dots, 1$ **do**
- 7: Denoise by θ : $\mathbf{x}_{t-1}^\theta = \pi_\theta(\mathbf{x}_t^\theta)$ by $\mathbf{x}_{t-1}^\theta = \pi_\theta(\mathbf{x}_t^\theta, t, c)$, Eq. (7)
- 8: **if** *Chain Optimization* **then**
- 9: Optimize: update diffusion model $\epsilon_{\theta'}$ by gradient from ϵ_θ : $\frac{\partial \mathcal{L}_{\text{EasyTune}}(\theta)}{\partial \theta}$ in Eq. (6)
- 10: **else**
- 11: Optimize: update diffusion model ϵ_θ by $\frac{\partial \mathcal{L}_{\text{EasyTune}}(\theta)}{\partial \theta}$ in Eq. (6)
- 12: **end if**
- 13: Stop Gradient: $\mathbf{x}_{t-1}^\theta = \text{sg}(\mathbf{x}_{t-1}^\theta)$
- 14: **end for**
- 15: **if** *Chain Optimization* **then**
- 16: Assign $\theta \leftarrow \theta'$
- 17: **end if**
- 18: **end for**

1612

1613

1614 is found (i.e., when retrieval fails), the model is optimized based on this pair; otherwise (i.e., when
1615 retrieval succeeds), it falls back to the pretraining objective to reinforce the correct knowledge. The
1616 algorithm executes two core steps: Preference Data Identification and Preference Fine-tuning. In the
1617 first step (Lines 3–6), for each text condition c , reward scores are computed for all motions in \mathcal{D}_T
1618 based on the similarity between motion and text features scaled by τ . The top- k motions are retrieved,
1619 and the ground-truth motion \mathbf{x}^{gt} is designated as the preferred motion \mathbf{x}^w . If \mathbf{x}^{gt} is not among
the retrieved motions, the highest-scoring retrieved motion is set as the non-preferred motion \mathbf{x}^l ;

1620 **Algorithm 3** Self-Refining Preference Learning

1621 **Input:** Training subset \mathcal{D}_T , text/motion encoders $\mathcal{E}_M / \mathcal{E}_T$, temperature parameter τ , retrieval number
1622 k .

1623 **Output:** Fine-tuned reward model \mathcal{E}_M , \mathcal{E}_T , and τ .

1624 1: **Initialize:** Parameters $\phi \leftarrow \{\mathcal{E}_M, \mathcal{E}_T, \tau\}$

1625 2: **for** each data pair $(\mathbf{x}^{gt}, c) \in \mathcal{D}_T$ and not converged **do**

1626 3: ▶ **Step 1: Preference Data Mining**

1627 4: Compute reward scores for all $\mathbf{x} \in \mathcal{D}_T$ using Eq. (11)

1628 5: Retrieve top- k motions \mathcal{D}_R using Eq. (13)

1629 6: Set winning \mathbf{x}^w and losing motions \mathbf{x}^l using Eq. (14)

1630 7: ▶ **Step 2: Preference Fine-tuning**

1631 8: Compute softmax probabilities \mathcal{P} using Eq. (15)

1632 9: Define target distribution \mathcal{Q} using Eq. (16)

1633 10: Compute loss $\mathcal{L}_{SPL}(\phi)$ by \mathcal{Q} and \mathcal{P} using Eq. (17)

1634 11: Update parameters ϕ by $\nabla_{\phi} \mathcal{L}_{SPL}(\phi)$

1635 12: **end for**

1636

1637 otherwise, \mathbf{x}^l is set to \mathbf{x}^{gt} , and optimization is skipped to avoid trivial updates. This retrieval-based
1638 approach effectively mines preference pairs by identifying motions that are incorrectly favored by the
1639 current model, thus providing a robust signal for refinement. In the second step (Lines 7–10), the
1640 reward scores of the preference pair $(\mathbf{x}^w, \mathbf{x}^l)$ are converted into softmax probabilities \mathcal{P} , representing
1641 the model’s predicted preference distribution. These are aligned with a target distribution \mathcal{Q} , which
1642 assigns a probability of 1.0 to \mathbf{x}^w and 0.0 to \mathbf{x}^l when a preference exists, or 0.5 to both when they
1643 are identical. The model is optimized by minimizing the KL divergence between \mathcal{Q} and \mathcal{P} , with
1644 the resulting loss used to update ϕ via gradient descent. This fine-tuning process iteratively refines
1645 the encoders to assign higher scores to preferred motions, enhancing the reward model’s ability to
1646 capture fine-grained preferences. The iteration continues until convergence, yielding a reward model
1647 tailored for motion generation tasks.

1648

1649

B.5 DISCUSSION ON NOISE-AWARE AND ONE-STEP REWARD

1650

1651

In Sec. 4.1, we introduced both the Noise-Aware reward for ODE and SDE sampling and the One-Step
1652 reward specifically for ODE sampling. Here, we provide recommendations for selecting between
1653 these strategies and briefly compare their performance.

1654

1655

Perceptual Difference Between Noisy and Predicted Data. As analyzed in App. A.6, the pre-
1656 dictability of noisy data in the motion domain is relatively strong compared to the image domain (see
1657 Fig. S4). Fig. S6 and Fig. S5 demonstrates that ODE-based strategy further enhances this predictabil-
1658 ity. *Consequently, both reward strategies can effectively perceive noisy data in motion generation.*
1659 For image generation, where noisy data is harder to interpret, we recommend the One-Step reward
1660 strategy for more accurate perception.

1661

1662

1663

Quantitative Analysis of Retrieval Results on Noisy Data. In App. A.10.3, we quantitatively
1664 analyze the performance difference between the two strategies on retrieval tasks using noisy data.
1665 The results in Tab. S9 demonstrate that *both strategies achieve robust performance on noisy data*
1666 *retrieval, comparable to results on clean data.*

1667

1668

1669

1670

1671

1672

1673

Quantitative Comparison of Generation Results. For ODE-based models, both strategies are
1674 applicable. In Tab. 3, we provided performance metrics for MLD and MLD++ under both strategies.
1675 We revisit and consolidate those results in Tab. S11. The results indicate that the Noise-Aware reward
1676 generally yields better performance. *Therefore, we recommend using the Noise-Aware strategy if the*
1677 *reward model possesses noise-perception capabilities. Otherwise, the One-Step reward can achieve*
1678 *comparable results.*

1674

1675

1676 Table S11: Comparison of Noise-Aware and One-Step Rewards on ODE-based models.

1677

1678

Model	Strategy	R-Precision \uparrow			FID \downarrow	MM-Dist \downarrow
		Top 1	Top 2	Top 3		
MLD	One-Step	0.568	0.754	0.846	0.194	2.672
	Noise-Aware	0.581	0.769	0.855	0.132	2.637
MLD++	One-Step	0.581	0.762	0.849	0.073	2.603
	Noise-Aware	0.591	0.777	0.859	0.069	2.592

1682

1683

1684 C PROOF

1685

1686 C.1 PROOF OF COROLLARY 1

1687

1688 Recall the Corollary 1.

1689

1690 **Corollary.** Given the reverse process in Eq. (2), $\mathbf{x}_{t-1}^\theta = \pi_\theta(\mathbf{x}_t^\theta, t, c)$, the gradient w.r.t diffusion
1691 model θ , denoted as $\frac{\partial \mathbf{x}_{t-1}^\theta}{\partial \theta}$, can be expressed as:

1692

1693

1694

$$\frac{\partial \mathbf{x}_{t-1}^\theta}{\partial \theta} = \frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \theta} + \frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \mathbf{x}_t^\theta} \cdot \frac{\partial \mathbf{x}_t^\theta}{\partial \theta}. \quad (\text{S18})$$

1695

1696

1697 *Proof.* Let $u = \mathbf{x}_t^\theta$, $v = \theta$, and $F(u, v) = \pi_v(u, t, c)$, we have:

1698

1699

$$\frac{\partial F(u, v)}{\partial \theta} = \frac{\partial F(u, v)}{\partial v} \cdot \frac{\partial v}{\partial \theta} + \frac{\partial F(u, v)}{\partial u} \cdot \frac{\partial u}{\partial \theta}. \quad (\text{S19})$$

1700

1701 The first term $\frac{\partial u}{\partial v}$ can be expressed as:

1702

$$\frac{\partial u}{\partial \theta} = \frac{\partial \mathbf{x}_t^\theta}{\partial \theta}, \quad (\text{S20})$$

1703

1704 and the second term $\frac{\partial v}{\partial \theta}$ can be expressed as:

1705

1706

$$\frac{\partial v}{\partial \theta} = \frac{\partial \theta}{\partial \theta} = 1. \quad (\text{S21})$$

1707

1708

1709 Hence, we can rewrite the equation as:

1710

1711

$$\frac{\partial F(u, v)}{\partial \theta} = \frac{\partial F(u, v)}{\partial \theta} + \frac{\partial F(u, v)}{\partial \mathbf{x}_t^\theta} \cdot \frac{\partial \mathbf{x}_t^\theta}{\partial \theta}. \quad (\text{S22})$$

1712

1713 Furthermore, we substitute $F(u, v)$ with $\pi_\theta(\mathbf{x}_t^\theta, t, c)$, and thus the relationship described in Eq. (S18)
1714 holds:

1715

$$\frac{\partial \mathbf{x}_{t-1}^\theta}{\partial \theta} = \frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \theta} = \frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \theta} + \frac{\partial \pi_\theta(\mathbf{x}_t^\theta, t, c)}{\partial \mathbf{x}_t^\theta} \cdot \frac{\partial \mathbf{x}_t^\theta}{\partial \theta}. \quad (\text{S23})$$

1716

1717

1718 The proof is completed. \square

1719

1720

1721 C.2 CONVERGENCE ANALYSIS

1722

1723 We now provide a convergence guarantee for EasyTune. For clarity, we write its update rule in the
1724 generic stochastic-gradient form

1725

1726

$$\theta_{k+1} = \theta_k - \eta_k g_k, \quad (\text{S24})$$

1727

1728 where g_k is the stochastic gradient computed from a minibatch of noisy motions at a randomly sampled
1729 denoising step, following the EasyTune objective in Eq. (6). Let $\mathcal{L}(\theta)$ denote the corresponding
1730 expected training objective.

1731

1732 We make the following assumptions on the EasyTune update:

1728 (A1) (Lower bounded and smooth objective) $\mathcal{L}(\theta)$ is lower bounded by some $\mathcal{L}_{\inf} > -\infty$ and has
 1729 L -Lipschitz continuous gradient (i.e., L -smooth), meaning $\|\nabla \mathcal{L}(\theta) - \nabla \mathcal{L}(\theta')\| \leq L\|\theta - \theta'\|$
 1730 for all θ, θ' .
 1731 (A2) (Bounded second moment of stochastic gradient) The stochastic gradient g_k satisfies
 1732 $\mathbb{E}[\|g_k\|^2 | \theta_k] \leq G^2$ for some constant $G > 0$.
 1733 (A3) (Controlled bias from stop-gradient) The bias induced by the stop-gradient operation is
 1734 uniformly bounded and proportional to the step size, i.e., $\|\mathbb{E}[g_k | \theta_k] - \nabla \mathcal{L}(\theta_k)\| \leq b\eta_k$ for
 1735 some constant $b \geq 0$.
 1736

1737 These assumptions are standard in the analysis of non-convex stochastic gradient methods and, in our
 1738 diffusion-based motion tuning setting, (A2) captures the bounded variance of the minibatch gradient
 1739 obtained by sampling noisy motions and timesteps, while (A3) models the $\mathcal{O}(\eta_k)$ bias introduced by
 1740 the stop-gradient design.

1741 **Theorem S1** (Convergence of EasyTune). *Under the above conditions, the sequence $\{\theta_k\}$ generated
 1742 by EasyTune satisfies the following properties:*

$$\mathbb{E}[\mathcal{L}(\theta_{k+1})] \leq \mathbb{E}[\mathcal{L}(\theta_k)] - c_1 \eta_k \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] + c_2 \eta_k^2, \quad (\text{S25})$$

1743 *Proof.* The proof follows the standard template for non-convex stochastic gradient descent, adapted
 1744 to the EasyTune update.

1745 By L -smoothness of \mathcal{L} (Assumption (A1)), for any k we have
 1746

$$\mathcal{L}(\theta_{k+1}) \leq \mathcal{L}(\theta_k) + \nabla \mathcal{L}(\theta_k)^T(\theta_{k+1} - \theta_k) + \frac{L}{2}\|\theta_{k+1} - \theta_k\|^2. \quad (\text{S26})$$

1747 Substituting $\theta_{k+1} - \theta_k = -\eta_k g_k$ gives
 1748

$$\mathcal{L}(\theta_{k+1}) \leq \mathcal{L}(\theta_k) - \eta_k \nabla \mathcal{L}(\theta_k)^T g_k + \frac{L}{2} \eta_k^2 \|g_k\|^2. \quad (\text{S27})$$

1749 Taking conditional expectation given θ_k and using the tower property of expectation, we obtain
 1750

$$\mathbb{E}[\mathcal{L}(\theta_{k+1}) | \theta_k] \leq \mathcal{L}(\theta_k) - \eta_k \nabla \mathcal{L}(\theta_k)^T \mathbb{E}[g_k | \theta_k] + \frac{L}{2} \eta_k^2 \mathbb{E}[\|g_k\|^2 | \theta_k]. \quad (\text{S28})$$

1751 By Assumption (A2), $\mathbb{E}[\|g_k\|^2 | \theta_k] \leq G^2$, so
 1752

$$\mathbb{E}[\mathcal{L}(\theta_{k+1}) | \theta_k] \leq \mathcal{L}(\theta_k) - \eta_k \nabla \mathcal{L}(\theta_k)^T \mathbb{E}[g_k | \theta_k] + \frac{L}{2} \eta_k^2 G^2. \quad (\text{S29})$$

1753 Next we control the inner product term using Assumption (A3). Let $m_k := \mathbb{E}[g_k | \theta_k]$ and write
 1754

$$\nabla \mathcal{L}(\theta_k)^T m_k = \nabla \mathcal{L}(\theta_k)^T \nabla \mathcal{L}(\theta_k) + \nabla \mathcal{L}(\theta_k)^T (m_k - \nabla \mathcal{L}(\theta_k)) \quad (\text{S30})$$

$$\geq \|\nabla \mathcal{L}(\theta_k)\|^2 - \|\nabla \mathcal{L}(\theta_k)\| \|m_k - \nabla \mathcal{L}(\theta_k)\| \quad (\text{S31})$$

$$\geq \|\nabla \mathcal{L}(\theta_k)\|^2 - b\eta_k \|\nabla \mathcal{L}(\theta_k)\|, \quad (\text{S32})$$

1755 where we used Cauchy–Schwarz and (A3) in the last inequality. Hence
 1756

$$-\eta_k \nabla \mathcal{L}(\theta_k)^T m_k \leq -\eta_k \|\nabla \mathcal{L}(\theta_k)\|^2 + b\eta_k^2 \|\nabla \mathcal{L}(\theta_k)\|. \quad (\text{S33})$$

1757 Applying Young’s inequality $2ab \leq a^2 + b^2$ with $a = \sqrt{\eta_k} \|\nabla \mathcal{L}(\theta_k)\|$ and $b = b\eta_k^{3/2}$, we get
 1758

$$b\eta_k^2 \|\nabla \mathcal{L}(\theta_k)\| \leq \frac{1}{2}\eta_k \|\nabla \mathcal{L}(\theta_k)\|^2 + \frac{1}{2}b^2 \eta_k^3. \quad (\text{S34})$$

1759 Therefore

$$-\eta_k \nabla \mathcal{L}(\theta_k)^T m_k \leq -\frac{1}{2}\eta_k \|\nabla \mathcal{L}(\theta_k)\|^2 + \frac{1}{2}b^2 \eta_k^3. \quad (\text{S35})$$

1760 Combining the above bounds yields
 1761

$$\mathbb{E}[\mathcal{L}(\theta_{k+1}) | \theta_k] \leq \mathcal{L}(\theta_k) - c_1 \eta_k \|\nabla \mathcal{L}(\theta_k)\|^2 + C_1 \eta_k^2, \quad (\text{S36})$$

1762 for some positive constants c_1, C_1 depending only on L, G , and b (we absorb the $\mathcal{O}(\eta_k^3)$ term into the
 1763 $\mathcal{O}(\eta_k^2)$ term). Taking full expectation over θ_k then gives
 1764

$$\mathbb{E}[\mathcal{L}(\theta_{k+1})] \leq \mathbb{E}[\mathcal{L}(\theta_k)] - c_1 \eta_k \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] + c_2 \eta_k^2, \quad (\text{S37})$$

1765 where we set $c_2 := C_1$. This proves the claimed one-step descent inequality. \square
 1766

Building on this classical descent inequality and following standard non-convex SGD theory, we can derive a global convergence consequence for EasyTune.

Corollary S2 (Asymptotic stationarity of EasyTune). *Suppose Assumptions (A1)–(A3) hold and that the step sizes satisfy $\eta_k > 0$, $\sum_{k=0}^{\infty} \eta_k = \infty$ and $\sum_{k=0}^{\infty} \eta_k^2 < \infty$. Then the EasyTune iterates satisfy*

$$\liminf_{K \rightarrow \infty} \frac{\sum_{k=0}^{K-1} \eta_k \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2]}{\sum_{k=0}^{K-1} \eta_k} = 0, \quad (\text{S38})$$

and in particular

$$\liminf_{k \rightarrow \infty} \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] = 0. \quad (\text{S39})$$

That is, EasyTune converges to first-order critical points in the standard non-convex sense.

Proof. From Theorem S1 we have, for all $k \geq 0$,

$$\mathbb{E}[\mathcal{L}(\theta_{k+1})] \leq \mathbb{E}[\mathcal{L}(\theta_k)] - c_1 \eta_k \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] + c_2 \eta_k^2. \quad (\text{S40})$$

Summing this inequality over $k = 0, \dots, K-1$ and using telescoping of the left-hand side gives

$$\mathbb{E}[\mathcal{L}(\theta_K)] \leq \mathbb{E}[\mathcal{L}(\theta_0)] - c_1 \sum_{k=0}^{K-1} \eta_k \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] + c_2 \sum_{k=0}^{K-1} \eta_k^2. \quad (\text{S41})$$

Rearranging the previous inequality to move the gradient term to the left-hand side, and then applying that \mathcal{L} is bounded below by \mathcal{L}_{\inf} (Assumption (A1)) together with $\mathbb{E}[\mathcal{L}(\theta_K)] \geq \mathcal{L}_{\inf}$ and the monotonicity $\sum_{k=0}^{K-1} \eta_k^2 \leq \sum_{k=0}^{\infty} \eta_k^2$, we obtain

$$c_1 \sum_{k=0}^{K-1} \eta_k \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] \leq \mathbb{E}[\mathcal{L}(\theta_0)] - \mathbb{E}[\mathcal{L}(\theta_K)] + c_2 \sum_{k=0}^{K-1} \eta_k^2 \leq \mathbb{E}[\mathcal{L}(\theta_0)] - \mathcal{L}_{\inf} + c_2 \sum_{k=0}^{\infty} \eta_k^2. \quad (\text{S42})$$

The right-hand side is finite by the assumptions on $\{\eta_k\}$, so letting

$$C_0 := \frac{\mathbb{E}[\mathcal{L}(\theta_0)] - \mathcal{L}_{\inf}}{c_1} + \frac{c_2}{c_1} \sum_{k=0}^{\infty} \eta_k^2 < \infty, \quad (\text{S43})$$

we deduce

$$\sum_{k=0}^{\infty} \eta_k \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] \leq C_0. \quad (\text{S44})$$

Dividing both sides by $\sum_{k=0}^{K-1} \eta_k$ and letting $K \rightarrow \infty$ yields

$$0 \leq \frac{\sum_{k=0}^{K-1} \eta_k \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2]}{\sum_{k=0}^{K-1} \eta_k} \leq \frac{C_0}{\sum_{k=0}^{K-1} \eta_k} \xrightarrow[K \rightarrow \infty]{} 0, \quad (\text{S45})$$

where we used $\sum_k \eta_k = \infty$ in the last step. This proves the weighted-average statement. The liminf statement then follows: if there existed an $\varepsilon > 0$ and K_0 such that $\mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] \geq \varepsilon$ for all $k \geq K_0$, the weighted average would be bounded below by ε , contradicting the previous limit. Hence $\liminf_{k \rightarrow \infty} \mathbb{E}[\|\nabla \mathcal{L}(\theta_k)\|^2] = 0$. \square

This corollary is a direct application of classical convergence theory for non-convex stochastic gradient methods; we include the standard argument above for completeness.

Discussion. Theorem S1 provides a one-step descent inequality showing that each EasyTune update decreases the expected training objective up to a small quadratic term in the step size. The corollary then instantiates the standard non-convex SGD theory in our diffusion-based motion tuning setting, proving that, under mild step-size conditions, the EasyTune iterates converge to first-order critical points in expectation. In other words, despite the stop-gradient design and step-aware sampling in Eq. (S9), EasyTune enjoys the same asymptotic convergence guarantees as classical stochastic gradient methods.

1836 C.3 PROOF OF EQ. (5)
18371838 *Proof.* Given a diffusion model ϵ_θ , and a reward model \mathcal{R}_ϕ , the diffusion model is fine-tuned by
1839 maximizing the differentiable reward value:

1840
1841
$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot|c)} \left[\frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta, c)}{\partial \mathbf{x}_0^\theta} \cdot \frac{\partial \mathbf{x}_0^\theta}{\partial \theta} \right]. \quad (\text{S46})$$

1842

1843 where π_θ denotes the reverse process defined in Eq. (2).1844 Here, we introduce Theorem 1 to compute $\frac{\partial \mathbf{x}_0^\theta}{\partial \theta}$, and thus we have:

1845
1846
$$\begin{aligned} \frac{\partial \mathcal{L}(\theta)}{\partial \theta} &= -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot|c)} \frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta, c)}{\partial \mathbf{x}_0^\theta} \cdot \frac{\partial \mathbf{x}_0^\theta}{\partial \theta} \\ &= -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot|c)} \frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta, c)}{\partial \mathbf{x}_0^\theta} \cdot \left(\frac{\partial \pi_\theta(\mathbf{x}_1^\theta)}{\partial \theta} + \frac{\partial \pi_\theta(\mathbf{x}_1^\theta)}{\partial \mathbf{x}_1^\theta} \cdot \frac{\partial \mathbf{x}_1^\theta}{\partial \theta} \right) \\ &= -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot|c)} \frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta, c)}{\partial \mathbf{x}_0^\theta} \cdot \left(\frac{\partial \pi_\theta(\mathbf{x}_1^\theta)}{\partial \theta} + \frac{\partial \pi_\theta(\mathbf{x}_1^\theta)}{\partial \mathbf{x}_1^\theta} \cdot \frac{\partial \pi_\theta(\mathbf{x}_2^\theta)}{\partial \theta} + \frac{\partial \pi_\theta(\mathbf{x}_1^\theta)}{\partial \mathbf{x}_1^\theta} \cdot \frac{\partial \pi_\theta(\mathbf{x}_2^\theta)}{\partial \mathbf{x}_2^\theta} \cdot \frac{\partial \mathbf{x}_2^\theta}{\partial \theta} \right) \\ &= \dots \\ &= -\mathbb{E}_{c \sim \mathcal{D}_T, \mathbf{x}_0^\theta \sim \pi_\theta(\cdot|c)} \frac{\partial \mathcal{R}_\phi(\mathbf{x}_0^\theta, c)}{\partial \mathbf{x}_0^\theta} \cdot \left(\sum_{T=1}^N \left(\prod_{t=1}^{T-1} \frac{\partial \pi_\theta(\mathbf{x}_t^\theta)}{\partial \mathbf{x}_t^\theta} \right) \cdot \frac{\partial \pi_\theta(\mathbf{x}_T^\theta)}{\partial \theta} \right). \end{aligned} \quad (\text{S47})$$

1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857

1858 The proof is completed. □
18591860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889