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ABSTRACT

In recent years, motion generative models have undergone significant advancement,
yet pose challenges in aligning with downstream objectives. Recent studies have
shown that using differentiable rewards to directly align the preference of diffusion
models yields promising results. However, these methods suffer from (1) inefficient
and coarse-grained optimization with (2) high memory consumption. In this work,
we first theoretically and empirically identify the key reason of these limitations: the
recursive dependence between different steps in the denoising trajectory. Inspired
by this insight, we propose EasyTune, which fine-tunes diffusion at each denoising
step rather than over the entire trajectory. This decouples the recursive dependence,
allowing us to perform (1) a dense and fine-grained, and (2) memory-efficient
optimization. Furthermore, the scarcity of preference motion pairs restricts the
availability of motion reward model training. To this end, we further introduce a
Self-refinement Preference Learning (SPL) mechanism that dynamically identifies
preference pairs and conducts preference learning. Extensive experiments demon-
strate that EasyTune outperforms DRaFT-50 by 8.91% in alignment (MM-Dist)
improvement while requiring only 31.16% of its additional memory overhead.

1 INTRODUCTION

Text-to-motion generation aims to synthesize realistic and coherent human motions from natural
language, enabling applications in animation (Azadi et al., 2023), human-computer interaction (Peng
et al., 2024), and virtual reality (Tashakori et al., 2025). Recent advances are driven by diffusion
models (Ho et al., 2020; Song et al., 2020a), which capture complex distributions and synthesize high-
quality motions from text (Chen et al., 2023; Zhang et al., 2024a). However, their likelihood-based
training (Guo et al., 2022a) often misaligns with downstream goals such as semantic consistency
(Tan et al., 2025), motion plausibility (Wang et al., 2024), and user preference (Xu et al., 2023).

To bridge this gap, reinforcement learning from human feedback (RLHF) (Kirstain et al., 2023)
has been explored to fine-tune diffusion models toward human preferences and task-specific goals.
Existing approaches include differentiable reward methods (Clark et al., 2024), reinforcement learning
(Black et al., 2023), and direct preference optimization (DPO) (Wallace et al., 2024). Among these,
DPO provides a effective way to align models using preference pairs. However, acquiring large-scale,
high-quality preference pairs remains challenging due to the cost and difficulty of capturing nuanced
semantic and preference signals. A more efficient alternative is to fine-tune models using a reward
model that captures semantic alignment and task preference. Reinforcement learning methods, such
as DDPO (Black et al., 2023) and DPOK (Fan et al., 2023a), treat the denoising trajectory as a Markov
Decision Process, where intermediate motions are states and final motions are evaluated by a reward
model. Differentiable reward methods, including DRaFT (Clark et al., 2024) and DRTune (Wu et al.,
2025), directly backpropagate gradients from a differentiable rewardR(xθ) to optimize the model θ.

However, these methods still face several primary limitations that hinder their application to diffusion-
based motion generation: (1) Sparse and coarse-grained optimization: Most approaches only
optimize model parameters θ once after completing a multi-step denoising trajectory, resulting in
sparse optimization signals and slowing down convergence. (2) Excessive memory consumption:
These methods optimize the model θ by backpropagating the gradients of the reward value∇θR(xθ),
which is related to the overall denoising trajectory. Notably, this requires storing a large computation
graph of the entire trajectory, leading to excessive memory consumption. Beyond these computational
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Figure 1: Comparison of the training costs and generation performance on HumanML3D (Guo et al.,
2022a). (a) Performance comparison of different fine-tuning methods (Clark et al., 2024; Prabhudesai
et al., 2023; Wu et al., 2025). (b) Generalization performance across six pre-trained diffusion-based
models (Chen et al., 2023; Dai et al.; 2024; Tevet et al., 2023; Zhang et al., 2024a).

challenges, existing methods rely on intricate designs such as early stopping or partial gradient
blocking, increasing implementation complexity and limiting applicability. Moreover, research on
motion-specific reward models is limited, so current approaches (Tan et al., 2025) typically use
general-purpose retrieval models, which may inadequately capture motion preferences.

Contributions. In this work, we first theoretically (Corollary 1) and empirically (Fig. 6) identify a
key factor of the significant computational and memory overhead: the optimization is recursively
related to the multi-step denoising trajectory, causing the reward value of generated motions, R(xθ),
to be recursively depended on each denoised step throughout the overall trajectory. Specifically, each
denoised motion xθ

t is generated from the diffusion model, xθ
t ∼ ϵθ, and recursively dependent on

previous steps xθ
t ∼ xθ

t+1. Thus, computing the gradient ∇θx
θ
t requires solving for that of the prior

step, ∇θx
θ
1, which in turn depends on those of subsequent steps, ∇θx

θ
2 , ∇θx

θ
3 , ..., ∇θx

θ
T , leading to the

large significant computational and memory overhead. Building on this, we then theoretically analyze
and empirically validate (Fig.3) the primary limitation of existing methods: coarse-grained chain
optimization leads to vanishing gradients, hindering optimization of early denoising steps.

To address this, we introduce a simple and effective insight: perform optimization at each denoising
step, thereby decoupling gradients from the full reverse trajectory. By decoupling gradients from
the denoising trajectory, our EasyTune framework facilitates: (1) dense and fine-grained optimization
through clearing the computational graph after each denoising step, (2) avoiding storing them until
denoising completes, and thus (3) obviation of the need for complex memory-saving techniques.

Nevertheless, two critical challenges remain: the lack of a reliable motion reward model and reward
perception for intermediate denoising steps. The first issue stems from limited large-scale, high-
quality preference data, making it difficult to train a motion-specific reward model directly. To
overcome this, we propose a Self-refinement Preference Learning (SPL), which adapts a pre-trained
text-to-motion retrieval model for preference evaluation without human annotations. We dynamically
construct preference pairs from the retrieval datasets and fail-retrieved results, and fine-tune this
retrieval model to capture implicit preferences. For noisy intermediate steps, we employ single-step
prediction rewards for ODE-based models and noise-aware rewards for SDE-based models.

Finally, we evaluate EasyTune on HumanML3D (Guo et al., 2022a) and KIT-ML (Plappert et al., 2016)
with six pre-trained diffusion models. As shown in Fig.1, EasyTune achieves SoTA performance
(FID = 0.132, 72.1% better than MLD (Chen et al., 2023)), while cutting memory usage to 22.10 GB.
In summary, our contributions are as follows:

1. We theoretically and empirically identify the cost and performance limitations of existing
differentiable-reward methods, and propose EasyTune, a effective step-aware fine-tuning method.

2. To the best of our knowledge, this work is the first to explore fine-tuning motion diffusion models
by differentiable reward. To achieve this, we introduce the SPL mechanism to fine-tune pre-trained
retrieval models for preference evaluation, without any human-annotated preference data pairs.
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3. Extensive experiments demonstrate that EasyTune significantly outperforms existing methods in
terms of performance, optimization efficiency, and storage requirements.

2 RELATED WORKS

Text-to-Motion Generation. Text-to-motion generation (Chen et al., 2023; Guo et al., 2023) produces
human motion sequences from textual descriptions. Among these works, as a powerful generative
model, diffusion models (Chen et al., 2023; Tevet et al., 2023) iteratively denoise latent motions
under text guidance, offering higher quality and stability. Recent advances include transformer-based
diffusion with geometric losses (Tevet et al., 2023), few-step controllable inference (Dai et al., 2024),
and hybrid discrete–continuous modeling (Meng et al., 2025). However, these methods primarily
target the pretraining stage by aligning to fixed dataset distributions (Guo et al., 2022a), yet they
remain misaligned with semantic coherence (Tan et al., 2025) and physical reality.

Post-training in Motion Generation. To address the aforementioned issues, recent studies have
explored post-training along two primary strands: enhancing semantic coherence (Tan et al., 2025;
Pappa et al., 2024) and improving physical realism (Yuan et al., 2023; Han et al., 2025; Wang et al.,
2025). Specifically, Tan et al. (2025) constructs semi-online preference pairs (semantically aligned
vs. misaligned) and optimizes the model via a DPO-based approach; Motioncritic (Wang et al., 2025)
curates a human-preference dataset and employs PPO to bolster realism; and (Han et al., 2025) adopts
rule-based reward. However, these methods typically optimize within the pretraining reward domain,
whereas the reward model operates in a separate, often black-box space (Janner et al., 2019; Yao
et al., 2022; 2024), resulting in limited and potentially insufficient feedback (Wang et al., 2025).
Moreover, these approaches exhibit substantial data dependence (Tan et al., 2025; Pappa et al., 2024).
By contrast, we improve semantic alignment in text-to-motion generation using a differentiable
reward model and a lightweight, efficient RL algorithm. Accordingly, we focus on text-to-motion,
where semantic alignment generally takes precedence over physical realism.

Differentiable Reward Fine-Tuning for Diffusion Models. Fine-tuning pre-trained diffusion
models (Clark et al., 2024; Prabhudesai et al., 2023; Wu et al., 2025) with differentiable reward
models is a key strategy for aligning models to downstream tasks. However, as discussed in Sec.3,
these approaches are limited by sparse gradients, slow convergence, and high memory costs.

3 MOTIVATION: RETHINKING DIFFERENTIABLE REWARD-BASED METHODS

Preliminaries. As illustrated in Fig. 2, existing methods fine-tune a pre-trained motion diffusion
model by maximizing the reward valueRϕ(x

θ
0, c) of the motion xθ

0 generated via a T -step reverse pro-
cess. Notably, this generated motion xθ

t requires retaining gradients throughout the entire denoising
trajectory xθ

t , and thus the model can be optimized via maximizing its reward value ∇θRϕ(x
θ
0, c).

Given a pre-trained motion diffusion model parameterized by ϵθ, the optimization objective is to
fine-tune θ to maximize the reward valueRϕ(x

θ
0, c), with the loss defined as:

L(θ) = −Ec∼DT,xθ
0∼πθ(·|c)

[
Rϕ(x

θ
0, c)

]
, (1)

where c is a text condition from the training set DT, and xθ
0 is the motion generated from noise

xT ∼ N (0, I) via a T -step reverse process πθ. The t-th step of the reverse process is denoted as:

xθ
t−1 = πθ(x

θ
t , t, c) :=

1√
αt

(
xθ
t −

βt√
1− ᾱt

ϵθ(x
θ
t , t, c)

)
, (2)

where xθ
t−1 is the denoised motion at step t− 1, and αt, βt are noise schedule parameters.

Gradient Analysis. To optimize the loss in Eq. (1), we further analyze the gradient computation,
where the gradient of L(θ) w.r.t. the model parameters θ is computed via the chain rule:

∂L(θ)
∂θ

= −Ec∼DT,xθ
0∼πθ(·|c)

[
∂Rϕ(x

θ
0, c)

∂xθ
0

· ∂x
θ
0

∂θ

]
. (3)

Here, ∂Rϕ(x
θ
0,c)

∂xθ
0

represents the gradient of the reward model w.r.t. the generated motion, and ∂xθ
0

∂θ

captures the dependence of the generated motion xθ
t on the model θ through the reverse trajectory.
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Figure 2: The framework of existing differentiable reward-based methods (left) and our proposed
EasyTune (right). Existing methods backpropagate the gradients of the reward model through the
overall denoising process, resulting in (1) excessive memory, (2) inefficient, and (3) coarse-grained
optimization. In contrast, EasyTune optimizes the diffusion model by directly backpropagating the
gradients at each denoising step, overcoming these issues.

Eq. (3) indicates that the gradient of loss function can be divided into two terms: ∂Rϕ(x
θ
0, c)/∂x

θ
0,

which can be directly computed from the reward model, and ∂xθ
0/∂θ, which depends on the denoising

trajectory πθ. Here, we introduce Corollary 1 to analyze this gradient (See the proof in App. C.1).
Corollary 1. Given the reverse process in Eq. (2), xθ

t−1 = πθ(x
θ
t , t, c), the gradient w.r.t diffusion

model θ, denoted as ∂xθ
t−1

∂θ , can be expressed as:

∂xθ
t−1

∂θ
=

∂πθ(x
θ
t , t, c)

∂θ
+

∂πθ(x
θ
t , t, c)

∂xθ
t

· ∂x
θ
t

∂θ
. (4)

Corollary 1 shows that the computation involves two parts: (1) a direct term (in blue) from the
dependence of the diffusion model πθ on θ, and (2) an indirect term (in red) that depends on the
t-th step generated motion xθ

t . However, the reverse process in diffusion models is inherently
recursive, where the denoised motion xt−1 is relied on xt, which in turn depends on xt+1, resulting
in substantial computational complexity for T time steps intermediate variables.

To compute the full gradient ∂L(θ)/∂θ, we unroll the ∂xθ
0/∂θ using Corollary 1 and substitute it

into Eq. (3) resulting in (see proof in App. C.3):

∂L(θ)
∂θ

= −Ec∼DT,xθ
0∼πθ(·|c)

[
∂Rϕ(x

θ
0)

∂xθ
0

·
T∑

t=1

(
t−1∏
s=1

∂πθ(x
θ
s, s, c)

∂xθ
s

)
︸ ︷︷ ︸

tend to 0 when t is larger

(
∂πθ(x

θ
t , t, c)

∂θ

)
︸ ︷︷ ︸

optimizing t-th step

]
. (5)
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Figure 3: Gradient norm with respect to
denoising steps.. Here, dim(·) denotes
the gradient dimension. Detailed set-
tings are provided in App. A.2.

Limitations. Eq. (5) reveals the core optimization mech-
anism of existing methods: the motions xθ

0 are gener-
ated via the reverse process πθ, with the full computation
graph preserved to enable the maximization of the reward
Rϕ(x

θ
0, c). However, as shown in Fig. 2, this optimization

incurs severe limitations:
(1) Memory-intensive and sparse optimization: Gradient

computation over T reverse steps demands storing the
entire trajectory xθ

t
T

t=1 and corresponding Jacobians,
leading to high memory consumption and inefficient,
sparse optimization compared to the sampling process.

(2) Vanishing gradient due to coarse-grained optimiza-
tion: Eq. (5) indicates that the optimization of t-th
noisy step relies on the gradient ∂πθ(x

θ
t ,t,c)

∂θ with a coefficient
∏t−1

s=1
∂πθ(x

θ
s,s,c)

∂xθ
s

. However, during
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optimization, the term ∂πθ(x
θ
t ,t,c)

∂xθ
t

tends to converge to 0 (see the blue line in Fig. 3), causing

the coefficient
∏t−1

s=1
∂πθ(x

θ
s,s,c)

∂xθ
s

to also approach 0 (see the orange line in Fig. 3). Consequently,

the optimization process tends to neglect the contribution of ∂πθ(x
θ
t ,t,c)

∂θ . More importantly, the
ignored optimization at these early noise steps may be more crucial than at later ones (Xie &
Gong, 2025).

Motivation. To address the aforementioned limitations, we argue that the key issue lies in Corollary
1: the computation of ∂xθ

t /∂θ recursively depends on ∂xθ
t+1/∂θ, making the computation of ∂xθ

0/∂θ
reliant on the entire T-step reverse process. This dependency necessitates storing a large computation
graph, resulting in substantial memory consumption and delayed optimization. To overcome this,
an intuitive insight is introduced: optimizing the gradient step-by-step during the reverse process.
As illustrated in Fig. 2, step-by-step optimization offers several advantages: (1) Lower memory
consumption and dense optimization: each update only requires the computation graph of the current
step, allowing gradients to be computed and applied immediately instead of waiting until the end of the
T -step reverse process. (2) Fine-grained optimization: each step is optimized independently, so that
the update of the t-th step does not depend on the vanishing product of coefficients

∏t−1
s=1

∂πθ(x
θ
s,s,c)

∂xθ
s

.
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Figure 4: Similarity between t-th
step noised and clean motion.

However, in domains such as image generation, reward are
predominantly output-level (Xu et al., 2023) rather than step-
aware, since noised states with complex semantics are difficult
to interpret. In contrast, motion representations exhibit simpler
and more interpretable semantics, thereby making step-aware
motion reward viable (Fig. 4; see further details in App. A.6).

Inspired by the above discussion, we propose EasyTune, a step-
aware differentiable reward-based fine-tuning framework for
diffusion models, introduced in Sec.4.1. Specifically, EasyTune
employs a step-aware differentiable reward model designed to
evaluate noised, rather than clean, motion data, allowing us to perform optimization at each step
without storing multi-steps computation graph. Nevertheless, due to the scarcity of human-annotated
motion pairs, the primary challenge lies in training such a reward model without any paired data. To
address this issue, we present a self-refinement preference learning mechanism, in Sec.4.2, to identify
preference data pairs specifically targeting the weaknesses of the pre-trained model, facilitating the
acquisition of a reward model.

4 METHOD

4.1 EFFICIENT STEP-AWARE FINE-TUNING FOR MOTION DIFFUSION

Assuming the reward model for evaluating noisy motion, we aim to propose a step-aware fine-tuning
method that reduces the excessive memory usage and performs efficient and fine-grained optimization.
As discussed in Sec. 3, limitations of existing methods (Clark et al., 2024; Wu et al., 2025) stem from
the recursive gradients computation. To address these issues, we introduce EasyTune, a simple yet
effective method for fine-tuning motion diffusion models. The key idea is to maximize the reward
value at each step, allowing the parameter to be optimized at each step without storing the full
trajectory, as shown in Fig. 5. Specifically, the training objective function is defined as:

LEasyTune(θ) = −Ec∼DT,xθ
t∼πθ(·|c),t∼U(0,T )

[
Rϕ(x

θ
t , t, c)

]
, (6)

where Rϕ(x
θ
t , t, c) is the reward value of the stop gradient noised motion xθ

t at time step t, and
U(0, T ) is a uniform distribution over the time steps. Here, the stop gradient noised motion xθ

t and
its gradient w.r.t. the diffusion parameter θ are represents as:

xθ
t−1 = πθ

(
sg(xθ

t ), t, c
)
:=

1√
αt

(
sg(xθ

t )−
βt√
1− ᾱt

ϵθ
(
sg(xθ

t ), t, c
))

, (7)

where sg(·) denotes the stop gradient operations. Eq. (6) and Eq. (7) indicate that EasyTune aims to
optimize the diffusion model by maximizing the reward value of the noised motion xθ

t at each step t.
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Figure 5: Core insight of EasyTune. By replacing the recursive gradient in Eq.(4) with step-level
ones in Eq.(7), EasyTune removes recursive dependencies, enabling (1) step-wise graph storage, (2)
efficiency, and (3) fine-grained optimization. See App. B for pseudocode and discussion.

Corollary 2. Given the reverse process in Eq. (7), the gradient w.r.t. diffusion model θ is denoted as:

∂xθ
t−1

∂θ
=

∂πθ

(
sg(xθ

t ), t, c
)

∂θ
. (8)

Corollary 2 shows that EasyTune overcomes the recursive gradient issue, enabling efficient, fine-
grained updates with substantially reduced memory. As Fig. 6 illustrates, while prior methods incur
O(T ) memory by storing the multi-steps trajectory, EasyTune maintains a constant O(1) memory.
Guided by Corollary 2, we optimize the loss function LEasyTune(θ) as follows:

LEasyTune(θ) = −Ec∼DT,xθ
t∼πθ(·|c),t∼U(0,T )

∂R(xθ
t , t, c)

∂xθ
t−1

·
∂πθ

(
sg(xθ

t ), t, c
)

∂θ
. (9)
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Figure 6: Memory usage comparison.
Here, “w/o BP” indicates memory mea-
sured without backpropagation. Com-
prehensive analysis are in App. A.9.

Discussion of Existing Methods. Unlike prior methods
(Eq. (5)), EasyTune updates the diffusion model θ using
Eq. (6), computing the gradient ∂πθ(sg(x

θ
t ),t,c)

∂θ at each step
t without storing the full O(T )-step computation graph.
Among related works, the closest is DRTune (Wu et al.,
2025), which also uses stop-gradient operations sg(·) to
solve the limitations of previous methods:

x
θ
t−1 =

1
√
αt

(
x
θ
t −

βt√
1 − ᾱt

ϵθ
(
sg(x

θ
t ), t, c

))
,

∂xθ
t−1

∂θ
=

1
√
αt

(
∂xθ

t

∂θ
−

βt√
1 − ᾱt

∂ϵθ
(
sg(xθ

t ), t, c
)

∂θ

)
.

(10)

However, recursive gradient computation remains an issue
in existing methods (Eq. (10)). As shown in Fig. 6, their
memory usage grows linearly with the number of denois-
ing steps (O(T )), while EasyTune maintains a constant memory footprint (O(1)). These analyses
and experiments highlight the efficiency of our method and details discussion are provided in App. B.

4.2 SELF-REFINING PREFERENCE LEARNING FOR REWARD MODEL

Our goal is to develop a reward model without the requirement of human-labeled data. Existing
works (Tan et al., 2025) often repurpose pre-trained text-to-motion retrieval models (Petrovich
et al., 2023) to score text-motion alignment. However, this is suboptimal: retrieval models focus
on matching positive pairs in a shared embedding space, whereas reward models must distinguish
between preferred and non-preferred motions. Given their shared architecture, retrieval models can
be fine-tuned for preference learning. The challenge, however, lies in the scarcity of such preference
data in the motion domain. To this end, we propose Self-refining Preference Learning (SPL),
which leverages a retrieval-based auxiliary task to construct preference pairs for reward learning. SPL
involves two steps: (1) Preference Pair Mining: retrieve motions for each text; treat the ground-truth
as preferred and top incorrect retrieval as non-preferred if it’s not retrieved; (2) Preference Fine-tuning:
updating the encoders to assign higher scores to preferred motions.
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Reward Model. Given a motion x and a text description c, the reward value is computed based on
the similarity between the motion features x and text features c, denoted as:

Rϕ(x, c) = EM(x) · ET(c) · τ, (11)

where EM and ET are the motion and text encoders from the pre-trained retrieval model (Weng et al.,
2025), and τ is a trainable temperature parameter.

Additionally, dealing with noisy motions remains a key challenge in step-level optimization. Current
diffusion-based models can be divided into SDE-based (Song et al., 2020b) and ODE-based (Lu et al.,
2022) models. For ODE-based settings (Dai et al.), thanks to their deterministic sampling, we use
the reward value of the coarse clean motion x̂0 predicted by one-step prediction x̂0 = π′

θ(xt, t, c)
as the final reward value. For both SDE- and ODE-based settings (Tevet et al., 2023), we adopt a
noise-aware reward model to accurately calculate their reward values:

Rϕ(xt, t, c) =

{
Rϕ(x̂0, 0, c), Only for ODE-based settings,
Rϕ(xt, t, c), For SDE- and ODE-based settings.

(12)

Preference Data Mining To identify non-preferred motions often incorrectly retrieved, we retrieve
the top-k motions DR from the training set or subset DT given a text condition c:

DR = topk argmax
x∈DT

Rϕ(x, c) = argmax
DR⊂DT,|DR|=k

∑
x∈DR

Rϕ(x, c). (13)

where topk argmaxx∈DT
Rϕ(x, c) denotes the top-k motion with the largest reward value.

Given a ground-truth motion xgt and its text condition c, we retrieve the top-k motions DR based
on reward scores. If xgt /∈ DR, we treat it as the preferred motion and the highest-scoring retrieved
motion as the non-preferred one. Otherwise, both are set to xgt, and optimization is skipped:

xw = xgt, xl =

{
argmaxx∈DR Rϕ(x, c), if xgt /∈ DR,

xgt, otherwise.
(14)

Preference Fine-tuning. Given a preference pair consisting of a preferred motion xw and a non-
preferred motion xl, we compute their reward scores and convert them into softmax probabilities:

P =
(
P(xw, c),P(xl, c)

)
= Softmax

(
Rϕ(x

w, c),Rϕ(x
l, c)
)
. (15)

Following Pick-a-pic (Kirstain et al., 2023), we optimize model by aligning the predicted softmax
distribution P with a target distributionQ, which reflects the ground-true preference between xw and
xl, defined as:

Q =

{
(1.0, 0.0), if xw is preferred over xl,

(0.5, 0.5), if xw = xl.
(16)

Formally, the target distribution Q encodes the preference between a preferred motion xw and a
non-preferred motion xl. If xw is preferred, we set Q = (1.0, 0.0), encouraging P(xw, c)→ 1 and
P(xl, c)→ 0. If the two are identical (xw = xl), we set Q = (0.5, 0.5), indicating no preference.

To optimize the reward model ϕ, we minimize the KL divergence between them:

LSPL(ϕ) = DKL(Q ∥ P) =
∑

x∈{xw,xl}

Q(x, c) log
Q(x, c)

P(x, c)
. (17)

where Q and P are the target and reward distribution. By mining preference motion pairs by
preference data mining, we can fine-tune pre-trained retrieval models by Eq. (17), to obtain reward
modesl without human-annotated data. More details are provided in App. B.4.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets & Evaluation. We conduct experiments on HumanML3D (Guo et al., 2022a) and KIT-
ML (Plappert et al., 2016). Following standard practice (Guo et al., 2023; Li et al., 2025), we report
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Table 1: Comparison of SoTA fine-tuning methods on HumanML3D dataset. The arrows ↑, ↓, and
→ indicate higher, lower, and closer-to-real-motion values are better, respectively. Bold and underline
highlights the best and second-best results. Percentages in subscripts indicate improvements.

Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→ Memory (GB) ↓
Top 1 Top 2 Top 3

Real 0.511 0.703 0.797 0.002 2.974 9.503 -
MLD (Chen et al., 2023) (Baseline) 0.481 0.673 0.772 0.473 3.196 9.724 15.21

w/ ReFL-10 (Clark et al., 2024) 0.533+10.8% 0.720+7.0% 0.821+6.4% 0.207+56.2% 2.852+10.7% 10.129-0.405 22.10+6.89
w/ ReFL-20 (Clark et al., 2024) 0.528+9.8% 0.718+6.7% 0.813+5.3% 0.241+49.0% 2.883+9.8% 10.189-0.465 22.10+6.89
w/ DRaFT-10 (Clark et al., 2024) 0.565+17.5% 0.757+12.5% 0.846+9.6% 0.195+58.8% 2.703+15.4% 9.851-0.127 26.56+11.35
w/ DRaFT-50 (Clark et al., 2024) 0.528+9.8% 0.724+7.6% 0.819+6.1% 0.197+58.4% 2.872+10.1% 9.641+0.083 37.32+22.11
w/ AlignProp (Prabhudesai et al., 2023) 0.560+16.4% 0.753+11.9% 0.841+8.9% 0.266+43.8% 2.739+14.3% 9.877-0.153 30.40+15.19
w/ DRTune (Wu et al., 2025) 0.549+14.1% 0.746+10.8% 0.836+8.3% 0.313+33.8% 2.795+12.5% 9.930-0.206 27.01+11.80
w/ EasyTune (Ours, Step Optimization) 0.581+20.8% 0.769+14.3% 0.855+10.8% 0.132+72.1% 2.637+17.5% 9.465+0.183 22.10+6.89
w/ EasyTune (Ours, Chain Optimization) 0.574+19.3% 0.766+13.8% 0.854+10.6% 0.172+63.6% 2.614+18.2% 9.348+0.066 24.21+9.00

R-Precision@k, Fréchet Inception Distance (FID), Multi-Modal Distance (MM Dist), and Diversity.
We also measure peak memory usage to assess efficiency. Additionally, our SPL mechanism is
evaluated using R-Precision@k under the previous setup (Li et al., 2025).

Implementation. Our method consists of two components: fine-tuning the diffusion model with
EasyTune and fine-tuning a pretrained retrieval model to obtain the reward model. For EasyTune, we
evaluate pretrained backbones—MLD (Chen et al., 2023), MLD++ (Dai et al.), MotionLCM (Dai
et al., 2024), and MDM (Tevet et al., 2023)—with hyperparameters: a learning rate of 1× 10−5 and
a batch size of 256. EasyTune is benchmarked against differentiable reward-based baselines with
their official hyperparameters, detailed in App.A.2. We fine-tune the reward model initialized with
ReAlign (Weng et al., 2025) using our SPL with top-K samples (K = 10). Then, the reward model
is frozen and provides supervision for optimizing the diffusion model. The experimental results for
the ODE-based model, using both reward computation methods from Eq. (12), are provided. Results
corresponding to the first and second terms are presented in Tab. 1 and 3, and Tab. 2, respectively.
Experiments are conducted on a single NVIDIA RTX A6000 GPU with 48GB memory, detailed
overhead is provided in App. A.9.

5.2 EVALUATION ON MOTION DIFFUSION FINE-TUNING

Comparison with SoTA Fine-Tuning Methods. To assess the effectiveness and efficiency of Easy-
Tune, we compare it with recent state-of-the-art fine-tuning methods, including DRaFT, AlignProp,
and DRTune, as shown in Tab. 1. EasyTune consistently achieves the best overall performance across
key metrics, including R-Precision, FID (0.132, +72.1%), MM Dist (2.637, +17.5%), and Diversity,
while also requiring the least GPU memory (22.10 GB). We attribute these gains to two core designs:
optimizing rewards at each denoising step for finer supervision, and discarding redundant computation
graphs to reduce memory usage.

Table 2: Performance enhancement of diffusion-based
motion generation methods. For ODE samplings (MLD,
MLD++, MLCM), we adopt the one-step prediction reward.

Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→
Top 1 Top 2 Top 3

Real 0.511 0.703 0.797 0.002 2.974 9.503

MLD (Chen et al., 2023) 0.481 0.673 0.772 0.473 3.196 9.724
w/ EasyTune 0.568+18.1%0.754+12.0%0.846+9.6%0.194+59.0%2.672+16.4%9.368+0.09

MLD++ (Dai et al.) 0.548 0.738 0.829 0.073 2.810 9.658
w/ EasyTune 0.581+6.0% 0.762+3,3% 0.849+2.4%0.073+0.0% 2.603+7.4% 9.719−0.06

MLCM1S (Dai et al., 2024) 0.502 0.701 0.803 0.467 3.052 9.631
w/ EasyTune 0.571+13.7%0.766+9.3% 0.854+6.4%0.188+59.7%2.647+13.3%9.692−0.06

MLCM4S (Dai et al., 2024) 0.502 0.698 0.798 0.304 3.012 9.607
w/ EasyTune 0.565+12.5%0.760+8.8% 0.848+6.3%0.200+34.2%2.691+10.7%9.812−0.20

MDM50S (Tevet et al., 2023) 0.455 0.645 0.749 0.489 3.330 9.920
w/ EasyTune 0.472+3.7% 0.679+5.3% 0.787+5.1%0.411+16.0%3.117+6.4% 9.239+0.15

Mo.Diffuse (Zhang et al., 2024a) 0.491 0.681 0.775 0.630 3.113 9.410
w/ EasyTune 0.488−0.6% 0.686+0.7% 0.788+1.7%0.556+11.7%3.068+1.4% 9.215−0.20

Efficiency of the Optimization. To
assess convergence efficiency, we
compare optimization curves of fine-
tuning methods in Fig. S1 (in App.
A). EasyTune converges faster and
achieves consistently lower loss, sug-
gesting better local optima with higher
reward values. This improvement
stems from its fine-grained, step-wise
optimization, in contrast to the sparser,
trajectory-level updates used in prior
work (Clark et al., 2024), enabling
more precise gradient signals and ac-
celerated training.
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Table 3: Comparison of text-to-motion generation performance on the HumanML3D dataset.

Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→
Top 1 Top 2 Top 3

Real 0.511 0.703 0.797 0.002 2.974 9.503

TM2T (Guo et al., 2022b) 0.424±0.003 0.618±0.003 0.729±0.002 1.501±0.017 - 8.589±0.076

T2M (Guo et al., 2022a) 0.455±0.002 0.636±0.003 0.736±0.003 1.087±0.002 3.347±0.008 9.175±0.002

MDM (Tevet et al., 2023) 0.455±0.006 0.645±0.007 0.749±0.006 0.489±0.047 3.330±0.25 9.920±0.083

M2DM (Kong et al., 2023) 0.497±0.003 0.682±0.002 0.763±0.003 0.352±0.005 - 9.926±0.073

T2M-GPT (Zhang et al., 2023a) 0.492±0.003 0.679±0.002 0.775±0.002 0.141±0.005 3.121±0.009 9.722±0.082

Fg-T2M (Wang et al., 2023) 0.492±0.002 0.683±0.003 0.783±0.002 0.243±0.019 - 9.278±0.072

ReMoDiffuse (Zhang et al., 2023b) 0.510±0.005 0.698±0.006 0.795±0.004 0.103±0.004 - 9.018±0.075

AttT2M (Zhong et al., 2023) 0.499±0.003 0.690±0.002 0.786±0.002 0.112±0.006 3.038±0.007 9.700±0.090

MotionDiffuse (Zhang et al., 2024a) 0.491±0.001 0.681±0.001 0.775±0.001 0.630±0.001 3.113±0.001 9.410±0.049

OMG (Liang et al., 2024) - - 0.784±0.002 0.381±0.008 - 9.657±0.085

MotionLCM (Dai et al., 2024) 0.502±0.003 0.698±0.002 0.798±0.002 0.304±0.012 3.012±0.007 9.607±0.066

MotionMamba (Zhang et al., 2024b) 0.502±0.003 0.693±0.002 0.792±0.002 0.281±0.011 3.060±0.000 9.871±0.084

CoMo (Huang et al., 2024) 0.502±0.002 0.692±0.007 0.790±0.002 0.262±0.004 3.032±0.015 9.936±0.066

ParCo (Zou et al., 2024) 0.515±0.003 0.706±0.003 0.801±0.002 0.109±0.005 2.927±0.008 9.576±0.088

SiT (Meng et al., 2025) 0.500±0.004 0.695±0.003 0.795±0.003 0.114±0.007 - -
SoPo (Tan et al., 2025) 0.528±0.005 0.722±0.004 0.827±0.004 0.174±0.005 2.939±0.011 9.584±0.074

MLD (Chen et al., 2023) (Baseline) 0.481±0.003 0.673±0.003 0.772±0.002 0.473±0.013 3.196±0.010 9.724±0.082

w/ EasyTune (Ours) 0.581±0.003
+20.7% 0.769±0.002

+14.3% 0.855±0.002
+10.8% 0.132±0.005

+72.1% 2.637±0.007
+17.5% 9.465±0.075

+0.26

MLD++ (Dai et al.) (Baseline) 0.548±0.003 0.738±0.003 0.829±0.002 0.073±0.003 2.810±0.008 9.658±0.089

w/ EasyTune (Ours) 0.591±0.004
+7.8% 0.777±0.002

+5.3% 0.859±0.002
+3.6% 0.069±0.003

+6.8% 2.592±0.008
+7.8% 9.705±0.086

-0.06

Table 4: Evaluation on text-motion retrieval benchmark, HumanML3D and KIT-ML. The
column “Noise” indicates whether the method can handle noisy motion from the denoised process.

Methods Noise Text-Motion Retrieval↑ Motion-Text Retrieval↑
R@1 R@2 R@3 R@5 R@10 R@1 R@2 R@3 R@5 R@10

H
um

an
M

L
3D

TEMOS (Petrovich et al., 2022) ✗ 40.49 53.52 61.14 70.96 84.15 39.96 53.49 61.79 72.40 85.89
T2M (Guo et al., 2022a) ✗ 52.48 71.05 80.65 89.66 96.58 52.00 71.21 81.11 89.87 96.78
TMR (Petrovich et al., 2023) ✗ 67.16 81.32 86.81 91.43 95.36 67.97 81.20 86.35 91.70 95.27
LaMP (Li et al., 2025) ✗ 67.18 81.90 87.04 92.00 95.73 68.02 82.10 87.50 92.20 96.90
ReAlign (Weng et al., 2025) (Baseline) ✓ 67.59 82.24 87.44 91.97 96.28 68.94 82.86 87.95 92.44 96.28
w/ SPL(Ours) ✓ 69.31 83.71 88.66 92.81 96.75 70.23 83.41 88.72 93.07 97.04

K
IT

-M
L

T2MOS (Petrovich et al., 2022) ✗ 43.88 58.25 67.00 74.00 84.75 41.88 55.88 65.62 75.25 85.75
T2M (Guo et al., 2022a) ✗ 42.25 62.62 75.12 87.50 96.12 39.75 62.75 73.62 86.88 95.88
TMR (Petrovich et al., 2023) ✗ 49.25 69.75 78.25 87.88 95.00 50.12 67.12 76.88 88.88 94.75
LaMP (Li et al., 2025) ✗ 52.50 74.80 84.70 92.70 97.60 54.00 75.30 84.40 92.20 97.60
ReAlign (Weng et al., 2025) (Baseline) ✓ 52.84 71.66 82.96 91.19 97.59 52.98 72.87 84.38 92.61 96.87
w/ SPL(Ours) ✓ 53.27 73.58 84.52 93.18 97.73 55.11 75.28 86.36 93.18 97.44

5.3 EVALUATION ON TEXT-TO-MOTION GENERATION

Comparison with SoTA Text-to-Motion Methods. We evaluate EasyTune on text-to-motion
generation using MLD (Chen et al., 2023) and MLD++ (Dai et al.) as base models, comparing with
state-of-the-art methods on the HumanML3D (Guo et al., 2022a) and KIT-ML (Plappert et al., 2016)
datasets, as shown in Tab. 3 and S3 (in App. A.4). On HumanML3D, EasyTune improves the R-P@1
of MLD from 0.481 to 0.581 and MLD++ from 0.548 to 0.591, surpassing baselines like ParCo (Zou
et al., 2024) (0.515) and ReMoDiffuse (Zhang et al., 2023b) (0.510). It also achieves the best MM
Dist (2.637 and 2.592) and competitive FID (0.132 and 0.069).

Generalization across Different Pre-trained Models. To evaluate the generalization of EasyTune
across pre-trained text-to-motion models, we applied it to MLD (Chen et al., 2023), MLD++ (Dai
et al.), MLCM1S (Dai et al., 2024), and MDM50S (Tevet et al., 2023). As shown in Tab. 2, EasyTune
consistently improved performance. For instance, MLD saw an 18.1% increase in R-P@1 (0.568)
and a 58.0% reduction in FID (0.194). MLD++ achieved a 6.0% gain in R-Precision@1 (0.581) and
a 7.4% improvement in MM Dist (2.603). MLCM1S and MDM50S also showed significant FID
reductions of 59.7% and 16.0%, respectively. These results highlight the generalization of EasyTune
across various diffusion-based architectures.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Preference Rate (%)

Coherence

and Fluency

Physical

Fidelity

Motion-Text

Alignment

23% 36% 41%

16% 40% 44%

9% 18% 73%

Base Model Preferred Same RLHF Model Preferred

Figure 7: User study on HumanML3D test set.
We use MLD model as base model.

0 20 40 60 80 100
Winning Rate (%)

R-P Top
 1R-P Top
 2R-P Top
 3

FID

42.68% 57.32%

45.97% 54.03%

44.87% 55.13%

32.55% 67.45%

w/o SPL w/ SPL

Figure 8: Comparison of models fine-tuned with
and without SPL.

5.4 ABLATION STUDY, USER STUDY & VISUALIZATION

Self-refinement Preference Learning for Reward Model Training. We evaluate SPL on text-
motion retrieval, comparing it with ReAlign and state-of-the-art methods. As shown in Tab. 4, SPL
boosts ReAlign (Weng et al., 2025) on HumanML3D (R@1: 69.31, +2.5%; R@3: 88.66, +1.4%;
motion-to-text R@1: 70.23, +1.9%), outperforming LaMP (Li et al., 2025) and TMR (Petrovich
et al., 2023). On KIT-ML, SPL achieves R@5 of 93.18 (+2.2%), and motion-to-text R@3 of 86.36
(+2.3%), consistently surpassing baselines.

Self-refinement Preference Learning for Fine-Tuning. To evaluate the effect of SPL, we fine-tune
MLD (Chen et al., 2023) using reward models trained with and without SPL, and compare their win
rates across epochs, as shown in Fig. 8. The model with SPL consistently outperforms the baseline,
achieving win rates of 57.32%, 54.03%, 55.13%, and 67.45% on R-P Top 1, Top 2, Top 3, and FID,
respectively. This shows that SPL can improve motion generation by enhancing the reward model.

Human Evaluation. To assess whether our fine-tuned model exhibits reward hacking, we conducted
a user study and visualized the corresponding motions. These visualizations are presented in Fig. 7,
with additional visualization in Fig. S3 (App. A.5). Results shows that our method enhance the
alignment, fidelity, and coherence of generated motions. A more detailed discussion and further
experimental results are provided in App. A.3.

6 CONCLUSION

In this work, we theoretically identify recursive dependence in denoising trajectories as the key
limitation in aligning motion generative models. Our proposed EasyTune method decouples this
dependence, enabling denser, more memory-efficient, and fine-grained optimization. Combined with
the SPL mechanism to dynamically generate preference pairs, experimental results demonstrate that
EasyTune significantly outperforms existing methods while requiring less memory overhead.

Limitation. In this work, we focus on enhancing the semantics alignment of generated motions,
a key issue of text-to-motion generation. Due to the scarcity of preference data, SPL depends on
retrieval-based mining, which may introduce noisy or ambiguous pairs and lack physical grounding
in the reward design. Fortunately, we observe that this semantics reward still exhibits an implicit
ability to distinguish real motions from generated ones, as discussed in App. A.11. Nevertheless, a
unified and comprehensive reward model that explicitly accounts for both physical plausibility and
semantic alignment is still worth exploring. Developing such a reward model that can simultaneously
enhance both physical and semantic signals remains an important direction for future work.
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ETHICS STATEMENT

Our work on EasyTune, a method for fine-tuning motion generative models, introduces several ethical
considerations that warrant careful discussion. As our method is designed to align existing generative
diffusion models, it inherits the potential biases and limitations of these foundational models. The
large-scale motion datasets used to train these base models may contain demographic biases (e.g.,
representation of age, gender, or physical ability) or may underrepresent certain types of human
movement.

Furthermore, like other generative technologies, motion generation models could be misused by
malicious actors. The ability to create realistic human motions could be exploited to generate
convincing deepfakes or synthetic media for the purpose of disinformation, harassment, or creating
non-consensual content. As EasyTune makes the process of aligning models to specific objectives
more efficient, it could inadvertently lower the barrier for adapting these models to generate harmful
or undesirable motions.

Finally, the advancement of motion generation technology may have a significant socio-economic
impact. On one hand, such tools could automate tasks traditionally performed by animators, choreog-
raphers, and motion capture actors, potentially displacing jobs in creative industries. On the other
hand, EasyTune could also serve as a powerful creative tool, democratizing animation and enabling
new forms of artistic expression for independent creators and small studios. It also holds potential for
positive applications in fields like robotics, virtual reality, and physical rehabilitation. We believe that
continued research and community dialogue are essential to mitigate the risks while harnessing the
benefits of this technology.

REPRODUCIBILITY STATEMENT

We commit to releasing all code, model weights, and baseline implementations upon acceptance. To
ensure the reproducibility of our experiments, we put the key parts in Appendix A.2. For datasets, we
use open source datasets described in Sec. 5.1. For generated results, we upload generated videos to
the supplementary material.

LARGE LANGUAGE MODELS USAGE STATEMENT

We used Large Language Models (LLMs) as auxiliary tools during the preparation of this manuscript.
In particular, LLMs were employed to polish the language, improve grammar, and enhance readability
of the text. All conceptual ideas, technical contributions, analyses, and conclusions presented in
this work are entirely our own and were developed independently of LLM assistance. The models
were not used to generate novel scientific content, perform data analysis, or contribute to the design
of experiments. We have carefully verified all statements and ensured that the final version of the
manuscript accurately reflects our intended meaning and contributions.
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EasyTune: Efficient Step-Aware Fine-Tuning for Diffusion-Based
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This supplementary document provides additional experimental results, technical discussions, and
theoretical analysis. It is organized as follows: Sec. A presents extended experimental results,
including results about reward hacking, user study, text-to-motion generation performance on the
KIT-ML dataset, and qualitative visualizations. Sec. B offers in-depth discussions on existing fine-
tuning methods and our proposed SPL mechanism. Sec. C contains theoretical proofs, including
Theorem 1 and the derivation of Eq. (5).

A MORE EXPERIMENTAL RESULTS

A.1 EXPERIMENTAL DETAILS AND DISCUSSION OF GRADIENT ANALYSIS

Given a diffusion model ϵθ, we first sample a latent variable xT ∼ N (0, I). Starting from xT , we
apply T −t denoising steps to obtain xt, while retaining the computational graph for gradient analysis.
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Table S1: Hyperparameters for EasyTune and baseline methods.
MLD AlignProp ReFL-10 ReFL-20 DRaFT-10 DRaFT-50 DRTune EasyTune (Ours) Meaning

Random seed 1234 1234 1234 1234 1234 1234 1234 1234 Seed for reproducibility
Batch size 256 256 256 256 256 256 256 256 Training examples per step
CLIP Range - 1e0 1e0 1e0 1e0 1e0 1e0 1e0 Grad clipping range
Ckpt steps - 1000 1000 1000 1000 1000 1000 1000 Steps between checkpoints
Reward Weight - 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1 1e-1 Reward/alignment loss weight
Learning Rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 Optimizer learning rate
K - - 10 20 [40,50] [0,50] [40,50] [0,50] Denoising timestep range for fine-tuning
T 50 50 50 50 50 50 50 50 The number of denoise scheduler steps
M - - - - - - [40,50] - Range of early-stop timestep
P - 25 - - - - - - Length of truncated backpropagation through time

At step t, we consider the Jacobian of the diffusion prediction with respect to its input,

∂πθ(x
θ
t )

∂xθ
t

, (S1)

and its sequential product across denoising steps,
t∏

s=1

∂πθ(x
θ
s)

∂xθ
s

. (S2)

This quantity can be interpreted as the gradient of the noisy sample xθ
t with respect to the predicted

clean sample xθ
0, i.e., the effective coefficient governing optimization at step t. Consequently, the

gradient of the training objective takes the form

∂L(θ)
∂θ

= −Ec∼DT,xθ
0∼πθ(·|c)

[
∂Rϕ(x

θ
0)

∂xθ
0

·
T∑

t=1

(
t−1∏

s=1

∂πθ(x
θ
s, s, c)

∂xθ
s

)

︸ ︷︷ ︸
tends to 0 as t increases

(
∂πθ(x

θ
t , t, c)

∂θ

)

︸ ︷︷ ︸
optimizing t-th step

]
. (S3)

Importantly, during optimization, especially when t is large, these coefficients rapidly decay toward 0
(as shown in Fig. 3), i.e.,

t∏

s=1

∂πθ(x
θ
s)

∂xθ
s

→ 0. (S4)

Thus, for large noise steps, which often determine the final generation quality (Xie & Gong, 2025),
this vanishing effect implies that existing methods tend to under-optimize such steps, thereby leading
to coarse or suboptimal results.

A.2 EXPERIMENTAL SETTING FOR BASELINE

The hyperparameter configurations for our EasyTune method and the baseline are provided, with the
majority of the settings following the official settings, as presented in Tab. S1.

A.3 EXPERIMENTAL RESULTS AND DISCUSSION ABOUT REWARD HACKING

Discussion about Reward Hacking. Previous studies have discussed reward-based differentiable
approaches to mitigating reward hacking. Specifically, the proposed strategies include early stopping
on a validation set, fine-tuning with LoRA instead of full-parameter tuning, and incorporating KL-
divergence regularization. Importantly, our method can be seamlessly combined with these strategies.
In our implementation, we provide support for early stopping on a validation set as well as fine-tuning
using LoRA.

Additionally, EasyTune is compatible with established techniques like KL regularization and multi-
aspect rewards, which effectively mitigate overfitting, as shown in prior work (D-RaFT, AlignProp,
DTune). Following these methods, we omitted KL regularization in our main loss:

LKL
EasyTune(θ) = −Ec∼DT,xθ

t∼πθ(·|c),t∼U(0,T )

[
Rϕ(x

θ
t , t, c) + DKL(x

θ
t |xθ′

t )
]
, (S5)

Experimental Results about Reward Hacking. Quantitative analysis (Fig.S3) confirms that our
method is free from reward hacking. To further investigate this behavior, we conducted a user study
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Efficient optimization

Fastest decrease

Better local optimum

Lowest loss value

Figure S1: Loss curves for EasyTune and exist-
ing fine-tuning methods. Here, the x-axis repre-
sents the number of generated motion batches.

0 20 40 60 80 100
Preference Rate (%)

Coherence

and Fluency

Physical

Fidelity

Motion-Text

Alignment

20% 25% 55%

18% 43% 39%

12% 36% 52%

Base Model Preferred Same RLHF Model Preferred

Figure S2: User study on HumanML3D test
set. We use MDM model as base model.

adn compare the baseline method with a variant of our approach that incorporates KL-divergence
regularization. Specifically, we generated motions for the first 100 prompts in the HumanML3D
test set using both the pre- and post-finetuned models. Each generated motion was independently
evaluated by five participants. Using MDM and MLD as base models, the results—presented in
Fig. S2 and Fig. 7, respectively—show that our method consistently outperforms the baseline models
in human evaluations without exhibiting signs of reward hacking.

Additionally, Tab. S2 provides a detailed comparison between the baseline and the KL-regularized
variants. Results shows that KL regularization helps mitigate overfitting and improves diversity,
although at a slight cost in generation quality.

A.4 TEXT-TO-MOTION GENERATION EVALUATION ON KIT-ML DATASET

Tab. S3 presents the quantitative performance of text-to-motion generation models on the KIT-
ML dataset, evaluated across multiple metrics: R-Precision (Top-1, Top-2, Top-3) for text-motion
alignment, Frechet Inception Distance (FID) for motion quality, Multi-Modal Distance (MM Dist)
for semantic relevance, and Diversity for motion variety. The analysis compares models enhanced
with EasyTune against a comprehensive set of baselines.

The results reveal significant improvements in models enhanced with EasyTune. For MDM (Chen
et al., 2023), Top-1 R-Precision increases from 0.403 to 0.442 (a 9.7% gain), Top-2 R-Precision
from 0.606 to 0.655 (8.1% gain), and Top-3 R-Precision from 0.731 to 0.773 (5.7% gain). FID
of MDM decreases substantially from 0.497 to 0.284 (42.9% improvement), indicating enhanced
motion quality. MM Dist of MDM improves from 3.096 to 2.755 (11.0% reduction), reflecting
stronger semantic alignment, while Diversity of MDM slightly rises from 10.76 to 11.27, suggesting
maintained motion variety. Similarly, for MoDiffuse (Zhang et al., 2024a), Top-1 R-Precision
improves from 0.417 to 0.438 (5.0% gain), Top-2 R-Precision from 0.621 to 0.649 (4.5% gain), and
Top-3 R-Precision from 0.739 to 0.777 (5.1% gain). FID of MoDiffuse decreases from 1.954 to 1.719
(12.0% improvement), and MM Dist of MoDiffuse reduces from 2.958 to 2.892 (2.2% improvement).
However, Diversity of MoDiffuse slightly declines from 11.10 to 10.63, indicating a minor trade-off
in variety for improved alignment and quality. Compared to baselines, EasyTune-enhanced models
achieve superior performance. Top-1 R-Precision of MDM with EasyTune (0.442) surpasses that of
ParCo (0.430) and MotionMamba (0.419), while FID of MDM with EasyTune (0.284) is competitive
with SiT (0.242). MM Dist of MDM with EasyTune (2.755) outperforms most baselines, approaching
the real data’s 2.788. These results establish EasyTune-enhanced models as new state-of-the-art on
KIT-ML, highlighting their ability to improve text-motion alignment, motion quality, and semantic
relevance.

Table S2: Performance comparison between EasyTune with/without KL-regularized.

Method R@P1 R@P2 R@P3 FID ↓ MM-Dist ↓ Div. ↑ Memory ↓
EasyTune 0.581 0.769 0.855 0.132 2.637 9.465 22.10
EasyTune+KL 0.575 0.763 0.846 0.172 2.674 9.482 29.70
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Table S3: Comparison of text-to-motion generation performance on the KIT-ML dataset.

Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→
Top 1 Top 2 Top 3

Real 0.424 0.649 0.779 0.031 2.788 11.08

TM2T (Guo et al., 2022b) 0.280 0.463 0.587 3.599 4.591 9.473
T2M (Guo et al., 2022a) 0.361 0.559 0.681 3.022 2.052 10.72
M2DM (Kong et al., 2023) 0.416 0.628 0.743 0.515 3.015 11.42
T2M-GPT (Zhang et al., 2023a) 0.416 0.627 0.745 0.514 3.007 10.86
Fg-T2M (Wang et al., 2023) 0.418 0.626 0.745 0.571 3.114 10.93
AttT2M (Zhong et al., 2023) 0.413 0.632 0.751 0.870 3.039 10.96
MotionMamba (Zhang et al., 2024b) 0.419 0.645 0.765 0.307 3.021 11.02
CoMo (Huang et al., 2024) 0.422 0.638 0.765 0.332 2.873 10.95
ParCo (Zou et al., 2024) 0.430 0.649 0.772 0.453 2.820 10.95
SiT (Meng et al., 2025) 0.387 0.610 0.749 0.242 - -

MDM (Chen et al., 2023) 0.403 0.606 0.731 0.497 3.096 10.76
w/ EasyTune (ours) 0.442+9.7% 0.655+8.1% 0.773+5.7% 0.284+42.9% 2.755+11.0% 11.27+0.13
MoDiffuse (Zhang et al., 2024a) 0.417 0.621 0.739 1.954 2.958 11.10
w/ EasyTune (ours) 0.438+5.0% 0.649+4.5% 0.777+5.1% 1.719+12.0% 2.892+2.2% 10.63-0.43

(a) Person moves their body and 
kicks with left foot forward

(b) Person sits down in a chair of 
sorts and then gets back up

(j) A person walks forward then stops 
and waves his left hand in circles

(d) A person balances on one leg

(c) A person side steps to the 
left and then stands up straight

(h) A person walks over a beam

(e) A person squats down

(i) The man is marching like a soldier

(f) Person bent over the front

(g) Walking in a circle with hands up

w/o EasyTune w/ EasyTune w/o EasyTune w/ EasyTune w/o EasyTune w/ EasyTune

w/o EasyTune w/ EasyTune w/o EasyTune w/ EasyTune w/o EasyTune w/ EasyTune

w/o EasyTune w/ EasyTune w/o EasyTune w/ EasyTune

w/o EasyTune w/ EasyTune w/o EasyTune w/ EasyTune

Figure S3: Visual results on HumanML3D dataset. “w/o EasyTune” refers to motions generated by
the original MLD model (Chen et al., 2023), while “w/ EasyTune” indicates motions generated by
the MLD model fine-tuned using our proposed EasyTune.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Noised Image v.s. Predicted Image (b) Noised Motion v.s. Predicted Motion (c) Predicted Image v.s. Predicted Motion

Figure S4: Noise-perception comparison between images and motions. We report the cosine
similarity between noisy states and their ODE-based predictions etween ODE-based predictions and
trajectory-level rewards, across denoising steps for both the image (FLUX.1 dev) and motion (MLD)
domains.

A.5 VISUALIZATIONS

We visualize motions generated by the original MLD (Chen et al., 2023) and by MLD fine-tuned
with our EasyTune, as shown in Fig. S3. Our proposed EasyTune substantially improves the capacity
of text-to-motion models to comprehend textual semantics. For example, in Fig. S3(j), the model
fine-tuned with our proposed EasyTune effectively generates a motion that accurately reflects the
semantic intent of the description “The man is marching like a soldier,” whereas the original model
fails to capture this nuanced behavior.

A.6 NOISE-PERCEPTION ANALYSIS OF IMAGE AND MOTION

Experimental Settings. To quantify the perceptibility and sensitivity of noisy states, we perform a
unified study on both image and motion generation. For the image domain, we select 50 prompts
from HPDv2 (Wu et al., 2023) and use FLUX.1 dev (Labs, 2024) as the base model. For each prompt,
we generate 12 images with 16 denoising steps, a guidance scale of 3.5, and a resolution of 720×720.
At each of the 16 steps, we store both the noisy image and its ODE-based prediction, and compute
their cosine similarity using CLIP ViT-L/14 features (Radford et al., 2021). To ensure statistical
significance and robustness, all experiments are repeated 50 times per prompt over 50 prompts, and
we report the mean.

For the motion domain, we follow a similar protocol using MLD as the base model and TMR as the
feature extractor. We randomly sample 50 text prompts from HumanML3D and, for each prompt,
generate 12 motion samples along the full denoising trajectory. At each step, we compute the cosine
similarity between the noisy motion and its ODE-based prediction in the TMR feature space.

Results and Discussion. As summarized in Fig. S4, both image and motion models exhibit increas-
ing similarity between noisy states and ODE-based predictions as the denoising process proceeds.
However, the image final results consistently shows weaker similarity with noised state, especially at
high-noise steps. This indicates that image generation results have a poorer perception of early noise
states compared to motion generation, making it harder for directly fine-tuning models by step-level
optimization. Fortunately, their ODE-based prediction results show comparable performance, indicat-
ing that their step-aware optimization can still be performed by ODE-based prediction. Additionally,
visual examples of noisy states and their ODE-based predictions are presented in Fig. S5 and Fig. S6,
showing the perceptual differences across denoising steps for both domains.

A.7 FAILURE CASE ANALYSIS: REWARD HACKING.

As a well-known challenge in reinforcement learning (Clark et al., 2024), reward hacking can emerge
during model fine-tuning, where continued optimization after convergence may degrade generation
quality.

As illustrated in Fig. S7, models may over-fit to semantic alignment while neglecting realistic motion
dynamics. For example, given the prompt “A person stands up from the ground, lifts their right foot,
and sets it back down,” a model suffering from reward hacking might generate a person continuously
lifting their foot to over-fit to the “lifts their right foot” action. Similarly, for “A person squats down,
then stands up and moves forward,” the model might misinterpret this as “A person squats down
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t=15 t=14 t=13 t=12 t=11 t=10 t=9 t=8

t=3 t=2 t=1 t=0t=7 t=6 t=5 t=4
(a) Noised Images 𝒙𝒕

t=15 t=14 t=13 t=12 t=11 t=10 t=9 t=8

t=3 t=2 t=1 t=0t=7 t=6 t=5 t=4
(b)Predicted Image 𝒙"𝒕 via ODE

Figure S5: Noisy states and ODE-based predictions for images across denoising steps. Visualiza-
tion of intermediate noisy images and their corresponding ODE-based predictions at different steps
of the denoising process using FLUX.1 dev.

t=15 t=14 t=13 t=12 t=11 t=10 t=9 t=8 t=3 t=2 t=1 t=0t=7 t=6 t=5 t=4
(a) Noised Motion 𝒙𝒕

(b)Predicted Motion 𝒙"𝒕 via ODE
t=15 t=14 t=13 t=12 t=11 t=10 t=9 t=8 t=3 t=2 t=1 t=0t=7 t=6 t=5 t=4

Figure S6: Noisy states and ODE-based predictions for motions across denoising steps. Visual-
ization of intermediate noisy motions and their corresponding ODE-based predictions at different
steps of the denoising process using MLD.
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Prompt: A person stands up from the ground, lifts their 
right foot, and sets it back down.

Prompt: A person squats down, then stands up and moves forward.

Reward Hacking w/ KL Reward Hacking w/ KL

Figure S7: Illustration of reward hacking in motion generation. Examples demonstrating that
over-fitting to reward signals may lead to semantically aligned but physically unrealistic motions. For
better visualization, corresponding videos are provided in the supplementary materials.

while moving forward.” Fortunately, our method combined with KL-divergence regularization (as
discussed in Sec. A.3) can effectively mitigate this phenomenon. We recommend early stopping
after initial convergence, with the stopping point determined by validation set performance, which
provides an effective strategy to alleviate reward hacking issues.

A.8 QUANTITATIVE RESULTS ON STEP-LEVEL REWARD REWEIGHTING

Prior work has demonstrated that early denoising steps exert a substantial influence on the final
generation quality (Xie & Gong, 2025). We further observe that existing trajectory-level optimization
methods frequently under-optimize these early steps, as discussed in Sec. 3. To systematically
examine the effect of fine-tuning different subsets of steps, we evaluate four alternative reweighting
strategies: (1) optimizing only the final 20 steps; (2) optimizing only the initial 20 steps; (3) linear
increasing reweighting with wt =

T−t
T + 0.5 at each step; and (4) linear decreasing reweighting with

wt = −T−t
T + 1.5 at each step. Results are summarized in Tab. S4.

The experimental results in Tab. S4 highlight the critical role of appropriately weighting differ-
ent denoising steps. Strategy (1), which optimizes only the final 20 steps, yields clearly inferior
performance (R@1: 0.546, FID: 0.184) compared to EasyTune (Full), indicating that restricting
optimization to late steps is insufficient to fully exploit the potential of the diffusion process. This
result is also comparable to that of DRaFT-50 (R@1: 0.528, FID: 0.197), suggesting that DRaFT-50’s
suboptimal performance likely stems from gradient vanishing, which effectively causes the method to
under-optimize early denoising steps. Strategy (2), which optimizes only the initial 20 steps, achieves
somewhat better performance (R@1: 0.567, FID: 0.158) than Strategy (1), but still falls short of
EasyTune (Full), showing that early-step optimization alone is also not sufficient.

For the linearly increasing reweighting scheme (Strategy (3), wt = T−t
T + 0.5), which places

larger weights on later steps. In contrast, the linearly decreasing reweighting scheme (Strategy (4),
wt = −T−t

T + 1.5), which emphasizes earlier steps, achieves the best overall performance among
the reweighted variants (R@1: 0.584, FID: 0.136, MM Dist: 2.631). Notably, its performance is on

Table S4: Ablation study on step-level reward reweighting strategies for EasyTune.

Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→ Memory (GB) ↓
Top 1 Top 2 Top 3

Real 0.511 0.703 0.797 0.002 2.974 9.503 -
MLD (Chen et al., 2023) (Baseline) 0.481 0.673 0.772 0.473 3.196 9.724 15.21

w/ DRaFT-50 (Clark et al., 2024) 0.528 0.724 0.819 0.197 2.872 9.641 37.32
w/ EasyTune (Full) 0.581 0.769 0.855 0.132 2.637 9.465 22.10

EasyTune + (1) 0.546 0.735 0.804 0.184 2.815 9.682 22.10
EasyTune + (2) 0.567 0.759 0.842 0.158 2.673 9.430 22.10
EasyTune + (3) 0.556 0.748 0.838 0.147 2.652 9.421 22.10
EasyTune + (4) 0.584 0.773 0.859 0.136 2.631 9.521 22.10
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Load Model & 
Encode Prompt

Memory Increase 
During Denoising

Peak Memory Usage 
for Backpropagation

(a) Memory Usage for Key Stages (b) Memory Growth per Denoising Step

Figure S8: Comprehensive memory analysis of EasyTune and existing fine-tuning methods.
We report the memory usage of key stages (model loading, prompt encoding, denoising, VAE-
based motion decoding, and reward computation with backpropagation), as well as the full memory
trajectory during optimization. EasyTune achieves lower peak memory while maintaining high
utilization, benefiting from the O(1) memory growth of the denoising process.

par with, or slightly better than, EasyTune (Full) in terms of alignment (R@1: 0.584 vs. 0.581) while
maintaining comparable generation quality. Taken together, these results provide strong empirical
evidence that properly optimizing early denoising steps is crucial for downstream performance.

A.9 COMPREHENSIVE STATISTICS ON OVERHEAD

A.9.1 MEMORY OVERHEAD

In this part, we provide a detailed comparison of the memory consumption of existing fine-tuning
methods and our EasyTune framework. Our pipeline consists of several key stages, including loading
the model, encoding text prompts, denoising in the latent space, decoding motions via the VAE, and
computing rewards followed by backpropagation. As illustrated in Fig. S8, we report both (a) the
memory usage of each individual stage and (b) the overall memory trajectory throughout the full
optimization process. All experiments are conducted on a single NVIDIA RTX A6000 GPU, with
Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz.

It is worth noting that our method performs multiple optimization steps within a single denoising
trajectory, which leads to relatively high average memory utilization. However, the peak memory
consumption of EasyTune is significantly lower than that of existing methods. In practice, higher
utilization indicates more efficient use of available GPU resources, while a lower peak memory
footprint reflects reduced hardware requirements. The results further demonstrate that the memory
savings of our method mainly stem from the O(1) memory growth of the denoising process.

A.9.2 COMPUTATIONAL OVERHEAD

In this part, we benchmark the training-time and computational overhead of EasyTune against existing
fine-tuning methods. Following the setup used in our main experiments, we measure the training time
and total TFLOPs required to reach convergence. Additionally, all methods share the same sampling
procedure as their corresponding base diffusion models, and thus incur no additional overhead during
inference.

As shown in Tab. S5, EasyTune is consistently more training-efficient than prior differentiable
reward-based methods. It achieves the lowest per-step optimization cost (1.47 seconds per update
vs roughly 4.7–5.6 seconds for other methods), and to reach a reward score of 0.70 it needs only
263.36 seconds and 10191 TFLOPs, compared to 466.27 seconds and 18044 TFLOPs for DRaFT.
For a reward score of 0.75, EasyTune converges in 358.17 seconds (13861 TFLOPs), while DRaFT
requires 2616.54 seconds (101260 TFLOPs), yielding a 7.3x speedup under a much smaller compute
budget. Moreover, EasyTune is the only method that successfully reaches reward scores of 0.80
and 0.85 within the given budget, highlighting its stronger optimization capacity. Together with the
memory efficiency analysis in Fig. S8, these results show that EasyTune offers a substantially more
efficient and practical fine-tuning strategy than existing differentiable reward-based approaches.
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Table S5: Computational overhead comparison. We report the training time and TFLOPs required
to reach different reward scores. Total time is measured in seconds on a single NVIDIA RTX A6000
GPU. “-” indicates the method could not reach that reward level within a reasonable training budget.

DRaFT AlignProp DRTune ReFL EasyTune (Ours)
Time per Opt. (s) 5.61 5.17 4.90 4.72 1.47

Reward Score = 0.70

Time (s) 466.27 271.99 554.77 820.29 263.36
TFLOPs 18044 10526 21469 31745 10191

Reward Score = 0.75

Time (s) 2616.54 971.55 2009.59 - 358.17
TFLOPs 101260 37599 77771 - 13861

Reward Score = 0.80

Time (s) - - - - 452.53
TFLOPs - - - - 17513

Reward Score = 0.85

Time (s) - - - - 1025.17
TFLOPs - - - - 39674

Table S6: Performance of SPL mechanism for fine-tuning TMR.

Methods Text-Motion Retrieval↑ Motion-Text Retrieval↑
R@1 R@2 R@3 R@5 R@10 R@1 R@2 R@3 R@5 R@10

TMR 67.16 81.32 86.81 91.43 95.36 67.97 81.20 86.35 91.70 95.27
+SPL 68.76 82.36 87.99 92.06 96.47 69.03 82.87 87.84 92.56 96.45

A.10 SENSITIVITY ANALYSIS

A.10.1 SENSITIVITY ANALYSIS OF RETRIEVAL MODEL SELECTION

Effect on Settings. We investigate the sensitivity of our SPL mechanism to different reward models
and their impact on final fine-tuned generation results. A key observation is that weaker reward
models, when trained using hyperparameter settings optimized for stronger models, can suffer from
training collapse. This occurs because the core principle of SPL is to mine motion pairs and maximize
the gap between preferred and non-preferred motions. In other words, the model must learn to
produce preferred motions while forgetting non-preferred ones. However, forgetting is inherently
simpler than learning, and weaker retrieval models are more prone to mining incorrect pairs during
online sampling. To address this, we employ more relaxed candidate number K to increase the
probability of successful pair mining, thereby strengthening learning signals and reducing erroneous
unlearning.

Effect on Text-Motion Retrieval Task. We demonstrate this using TMR, a moderately weaker
retrieval model, where SPL consistently improves performance. As shown in Tab. S6, the motion-text
retrieval R@1 improves from 67.16% to 68.76%, and motion-text retrieval R@1 improves from
67.97% to 69.03%, confirming that our method generalizes effectively to weaker reward models with
appropriate hyperparameter adjustments.

Effect on Text-to-Motion Generation Task. We further explore whether step-aware fine-tuning
generalizes to weaker pre-trained reward models. As shown in Tab. S7, even when using TMR, a less
discriminative retrieval model compared to SPL, our step-aware optimization approach consistently
improves generation quality. Specifically, when combined with EasyTune using TMR as the reward
model, both the step-level and chain-of-thought variants achieve substantial gains: the step variant
reaches R@1 of 0.573 (vs. baseline 0.481), and the chain variant reaches 0.567. They still represent
significant improvements over the baseline. This finding suggests that the effectiveness of step-aware
optimization is not solely dependent on using the strongest available reward model. Rather, the key
insight is that even weaker but still discriminative reward models can provide effective supervision
signals, as their ranking capability, though inferior to stronger models, still exceeds that of the base
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generation model itself (Tan et al., 2025). This robustness to reward model choice broadens the
applicability of our approach.

A.10.2 ANALYSIS OF CANDIDATE NUMBER K SELECTION & RETRIEVAL POOL

Mechanism. As discussed above, the core mechanism of our SPL is to mine preference motion pairs
online and to maximize the learning signal by enlarging the gap between preferred and non-preferred
pairs. In essence, SPL is designed to forget incorrectly generated motions while retaining correct
ones. However, this task is inherently asymmetric: forgetting is much easier than remembering,
making it crucial to carefully control the frequency at which negative samples are forgotten. In
our implementation, both the candidate number K and the retrieval pool configuration substantially
affect this behavior. Specifically, when retrieval fails, SPL jointly learns to memorize correct samples
and forget incorrect ones; otherwise, the model simply optimizes the original pre-training objective.
A larger K and a smaller retrieval pool generally increase the retrieval success rate. Intuitively,
we should therefore choose K and the retrieval pool such that successful retrievals occur
substantially more often than failures.

Experimental Settings. Fortunately, Petrovich et al. (2023) has discussed similar retrieval settings.
Specifically, four retrieval pool settings are considered: (a) All: Using the entire test set without
modification, though this can be problematic due to repetitive or subtly different text descriptions
(e.g., “person” vs. “human”, “walk” vs. “walking”). (b) All with threshold: Searching over the entire
test set but accepting a retrieval as correct only if the text similarity exceeds a threshold (set to
0.95 on a [0, 1] scale). This approach is more principled, distinguishing between genuine matches
and superficially similar pairs like “A human walks forward” vs. “Someone is walking forward”.
(c) Dissimilar subset: Sampling 100 motion-text pairs with maximally dissimilar texts (via quadratic
knapsack approximation). This provides a cleaner but easier evaluation setting. (d) Small batches:
Randomly sampling batches of 32 motion-text pairs and reporting average performance, providing a
more realistic in-the-wild scenario.

Among these four configurations, settings (a) and (b) yield low retrieval success rates and are
computationally expensive. Their success rates are often even lower than the failure rates, which
substantially hinders the practical deployment of SPL. By contrast, configurations (c) and (d) achieve
much higher retrieval success rates. In our main experiments, we therefore adopt setting (d). With
K = 10, configuration (d) attains a retrieval failure ratio of approximately 1:20. This ratio empirically
leads to stable optimization. In comparison, configuration (c) exhibits a failure ratio of about 1:6 at
K = 10, which tends to result in less stable performance due to the higher frequency of retrieval
failures.

Results & Discussion. Based on configurations (c) and (d), we systematically study how different
choices of K and retrieval pool settings influence generation performance. Specifically, we evaluate
K ∈ {10, 15, 20} for both settings, and report the results in Tab. S8.

In practice, we recommend conducting a similar sensitivity analysis under limited computational
resources (e.g., 10 minutes on a single GPU) to determine appropriate values of K and the retrieval
pool for a given application. A retrieval failure ratio of approximately 1:20 typically leads to stable
and robust optimization across different scenarios.

A.10.3 AVAILABILITY OF NOISE-AWARE REWARD

Experimental Setting. In this experiment, we assess the noise-aware availability of our reward model,
i.e., how well the underlying retrieval models can operate under noisy motion inputs. Specificallly,

Table S7: Fine-Tuning Performance using TMR as reward model.

Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→
Top 1 Top 2 Top 3

Real 0.511 0.703 0.797 0.002 2.974 9.503
MLD (Chen et al., 2023) (Baseline) 0.481 0.673 0.772 0.473 3.196 9.724

+TMR (w/ SPL, Step) 0.573 0.760 0.843 0.173 2.682 9.942
+TMR (w/ SPL, Chain) 0.567 0.753 0.836 0.158 2.698 9.874
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Table S8: Sensitivity analysis of the number of candidate motions K and retrieval pool settings.

Method R Precision ↑ FID ↓ MM Dist ↓ Diversity→
Top 1 Top 2 Top 3

Real 0.511 0.703 0.797 0.002 2.974 9.503
MLD (Chen et al., 2023) (Baseline) 0.481 0.673 0.772 0.473 3.196 9.724

K = 10 + (d) 0.581 0.769 0.855 0.132 2.637 9.465
K = 15 + (d) 0.571 0.758 0.843 0.142 2.668 9.486
K = 20 + (d) 0.564 0.747 0.830 0.184 2.704 9.629
K = 10 + (c) - - - - - -
K = 15 + (c) 0.585 0.773 0.859 0.155 2.626 9.428
K = 20 + (c) 0.574 0.759 0.844 0.149 2.653 9.495

Table S9: Experimental results of Noise-Aware Text-Motion Retrieval.

Methods Input Data Text-Motion Retrieval↑ Motion-Text Retrieval↑
R@1 R@2 R@3 R@5 R@10 R@1 R@2 R@3 R@5 R@10

ReAlign Clean Data 67.59 82.24 87.44 91.97 96.28 68.94 82.86 87.95 92.44 96.28
ReAlign Noisy Data 67.20 81.46 87.11 91.39 95.67 68.02 81.84 87.56 91.39 95.69
ReAlign Predicted Clean Data 67.80 82.38 87.86 92.27 96.61 68.04 82.47 87.97 92.10 96.34

SPL Clean Data 69.31 83.71 88.66 92.81 96.75 70.23 83.41 88.72 93.07 97.04
SPL Noisy Data 69.36 83.63 88.53 92.83 96.76 70.34 83.41 88.66 93.04 96.93
SPL Predicted Clean Data 68.39 83.31 88.59 93.11 96.73 68.60 82.35 88.06 92.79 96.53

TMR Clean Data 67.16 81.32 86.81 91.43 95.36 67.97 81.20 86.35 91.70 95.27
TMR Predicted Clean Data 66.98 81.04 87.09 92.11 95.74 68.32 80.69 86.43 92.13 95.84

based on the HumanML3D dataset, we construct noisy test samples xt by running the forward
diffusion process of MLD. For noise-aware reward models, we directly evaluate on xt. For output-
aware models (TMR (Petrovich et al., 2023)), we instead apply an ODE-based denoising process to
xt and use the resulting predicted clean samples x̂0 as inputs.

Results & Discussion. As shown in Tab. S9, both noise-aware models (ReAlign and SPL) demon-
strate remarkable stability across conditions, with SPL achieving virtually identical performance on
noisy data (69.36% R@1) versus clean data (69.31% R@1), while output-aware models like TMR
can be effectively adapted via ODE-based denoising (66.98% recovery from clean baseline 67.16%),
collectively validating that modern retrieval models reliably perceive intermediate denoising states
and can serve as robust reward models for diffusion-based optimization.

A.10.4 SENSITIVITY ANALYSIS ON LEARNING RATE

To further assess the robustness of our approach, we examine the sensitivity of EasyTune to the
learning rate hyperparameter. Across a reasonable range of learning rates (from 10−5 to 2× 10−4),
our method exhibits only minor performance variation, indicating strong robustness to this critical
hyperparameter. The corresponding results are shown in Fig. S9.

A.11 EVALUATION ON PHYSICAL PERCEPTION ABILITY OF REWARD MODEL.

Table S10: Physical perception evaluation
of the reward model.

Comparison Result Count

r(xgt, c) > r(xgen, c) 48
r(xgt, c) ≤ r(xgen, c) 2

Total 50

To investigate the physical perception capabilities
of our reward model, we conducted an experiment
to assess its ability to distinguish between real and
generated motions. We selected 50 prompts and their
corresponding ground-truth motions (xgt) from the
HumanML3D test set. For each prompt, we also
generated a motion (xgen) using the pretrained MLD
model. We then evaluated both the ground-truth and
generated motions using our reward model with an empty text condition (c = ‘’), obtaining reward
scores r(xgt, c) and r(xgen, c).

Our findings are summarized in Tab. S10. The reward for the ground-truth motion was higher than
for the generated motion in 48 out of 50 cases (96%). This result strongly suggests that the
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Figure S9: Learning rate sensitivity analysis on validation set. Performance metrics remain stable
across the learning rate range (spanning from 2× 10−4 to 10−5), demonstrating the robustness of
EasyTune to this hyperparameter. (a) R-Precision at Top-3; (b) Frechet Inception Distance; (c) Multi-
Modal Distance.

reward model possesses a significant degree of physical perception. This capability likely arises
because the reward model is trained on real-world motion data, treating it as in-distribution, while
viewing synthetically generated data as out-of-distribution. Such a distinction enables the model to
develop a sensitivity to physical plausibility, a phenomenon similarly observed in anomaly detection
literature (Flaborea et al., 2023).

B MORE TECHNICAL DISCUSSIONS

B.1 DISCUSSION ON STEP OPTIMIZATION AND POLICY GRADIENT METHODS

In the field of diffusion posting-training, beyond mentions differentiable-reward approaches, another
major line of work is policy-gradient methods, such as GRPO (Xue et al., 2025; Liu et al., 2025),
PPO (Ren et al., 2024), and DDPO (Black et al., 2023). In this section, we point out that, both our
approach and these policy-gradient methods truncate the gradient along the diffusion chain,
and in practice, they have not been observed to suffer from global inconsistency issues. As
a result, our method inherits a widely accepted and principled design, and does not suffer from
undesirable behaviors caused by breaking the differentiable chain structure. Here, we briefly discuss
the connections between our method and existing policy-gradient methods.

GRPO. DanceGRPO (Xue et al., 2025) can be viewed as instantiating GRPO (Guo et al., 2025) in the
diffusion setting, where each denoising trajectory sampled under a condition c is treated as a rollout
generated by the policy pθ. For every prompt c, a group G = {x1:K} of K trajectories is drawn
from the current policy, and a group-wise relative advantage is computed to compare their rewards.
By estimating advantages Ak from this group of K rollouts, GRPO (Xue et al., 2025) optimizes a
PPO-style clipped surrogate objective:

JGRPO(θ,G) = Ec∼D,x1:K ,t∼U(0,T ), k∼U(1,K)

[
min

(
ρk,tθ Ak, clip(ρk,tθ , 1− ε, 1 + ε)Ak

)]
,

(S6)
where advantages Ak and probability ratios ρk,tθ are computed as follows:

Ak =
r(xk

0 , c)− µ(r(x1:K , c))

σ(r(x1:K , c))
, ρk,tθ =

pθ(x
k
t | xk

t−1, c)

pθold(x
k
t | xk

t−1, c)
, (S7)

where r(xk
0 , c) is the scalar reward assigned to the final sample in the k-th rollout, and µ(r(x1:K , c))

and σ(r(x1:K , c)) denote the mean and standard deviation of rewards within the group x1:K . This
group-wise normalization makes Ak a relative score that measures how much better (or worse) a
sample is compared to its peers under the same condition c, which stabilizes training and mitigates
scale mismatch across prompts.

DDPO. As a classical RL method, DDPO (Black et al., 2023; Fan et al., 2023b) optimizes the
generative diffusion model via policy gradients using K rollouts. Its objective is written as:

∇θJDDPO(θ,G) = Ec∼D, x1:K ,t∼U(0,T ), k∼U(1,K)

[
r(xk

0 , c) · ∇θ log pθ(x
k
t | xk

t−1, c)
]
. (S8)
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Here r(xk
0 , c) again denotes the scalar reward assigned to the final denoised sample in the k-th rollout,

while log pθ(x
k
t | xk

t−1, c) is the log-probability at step t.

Discussion. By examining Eq. (S7) and Eq. (S8), we identify a key observation: both GRPO and
DDPO treat this optimization as multiple pre-step optimization (in the form of log pθ(xk

t | xk
t−1, c)),

rather than optimizing the entire denoising process in a single optimization pass. Specifically, GRPO
and DDPO first sample K trajectories of length T under each condition. Subsequently, they assign
a scalar reward to each trajectory and use this reward as a weight to progressively imitate these
trajectories step by step.

However, we observe a fundamental inconsistency in existing differentiable-reward methods:
differentiable-reward methods recursively decompose the optimization process as the opti-
mization of multiple sub-chains, rather than as the optimization of independent steps. This
design choice introduces the challenges discussed in the Sec. 3, particularly the vanishing gradient and
memory problem illustrated in Fig. 6 and 3. In contrast, our EasyTune solve this issue by step-aware
optimization, and its objective is:

LEasyTune(θ) = −Ec∼DT,xθ
t∼πθ(·|c),t∼U(0,T )

[
Rϕ(x

θ
t , t, c)

]
, (S9)

whereRϕ(x
θ
t , t, c) denotes the reward directly assigned to the intermediate denoised sample at step t,

rather than a single trajectory-level scalar. Crucially, our approach evaluates and optimizes at each
timestep independently, with t uniformly sampled from {0, . . . , T}. Therefore, compared to the
chain optimization as shown in Eq. (S3), our method is more aligned with the principled design of
policy-gradient methods, while maintaining a step-wise optimization structure that avoids long-chain
backpropagation and achieves better results.

B.2 DISCUSSION ON THE CHAIN AND STEP OPTIMIZATION

The distinction between Chain Optimization and Step Optimization lies in their update strategies.
Chain Optimization accumulates gradients throughout the sampling process and updates the model
parameters after completing the sampling trajectory. In contrast, Step Optimization incrementally
updates the model at each denoising step.

Step Optimization. Given a diffusion model with parameters θ and a reward model R. Let πθ

represent the denoising process. At each step, the model predicts the sample at time step t based on
xt+1, then updates the model parameters using the reward evaluated on the predicted sample:

xt = πθ(xt+1, c, t), θ′ = θ + lr · ∇θR(xt, c), (S10)

whereR denotes the reward model, θ represents the parameters of the diffusion model, and lr is the
learning rate.

The updated model πθ′ is used to predict the next sample xt−1 at step t− 1:

xt−1 = πθ′(xt, c, t− 1). (S11)

Key Questions. We explore the following questions: What does xt−1 represent, and what are the
implications of performing updates at every step?

We argue that this procedure is approximately equivalent to reward-guided sampling, where the
reward modelR serves as a guidance function. Specifically, we define a guided sample as:

xg
t−1 = πθ(xt, c, t− 1) + lr · ∇xt

R(xt, c). (S12)

Analysis. We discuss this question begin by Corollary S1 as below.

Corollary S1. Given two generated samples xt−1 and xg
t−1 obtained via Eq. (S10) and the guided

sampling equation, respectively, they satisfy:

xt−1 = xg
t−1 +O(∥∇θR∥2), (S13)

whereR denotes the reward function, ∇θR its gradient with respect to the model parameters θ, and
O(·) follows standard Landau notation.
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Proof. Applying a first-order Taylor expansion of πθ′(xt, c, t− 1) around θ:

πθ′(xt, c, t− 1) = πθ(xt, c, t− 1) +∇θπθ(xt, c, t− 1) · (θ′ − θ) +O(∥θ′ − θ∥2). (S14)

From Eq. (S10), θ′ − θ = lr · ∇θR(xt, c). Substituting:

xt−1 = πθ(xt, c, t− 1) +∇θπθ(xt, c, t− 1) · (lr · ∇θR(xt, c)) +O(∥∇θR∥2). (S15)

Since ∇θπθ(xt, c, t− 1) · ∇θR(xt, c) lies in the sample space, the chain rule gives:

∇xtR(xt, c) = ∇θR(xt, c)
⊤ · ∇θπθ(xt, c, t− 1). (S16)

Therefore:

xt−1 = πθ(xt, c, t− 1) + lr · ∇xtR(xt, c) +O(∥∇θR∥2) = xg
t−1 +O(∥∇θR∥2). (S17)

Hence, reward-based updates at each step are first-order equivalent to reward-guided sampling.

B.3 DISCUSSIONS ON EXISTING FINE-TUNING METHODS

We compare our proposed EasyTune method with existing direct reward fine-tuning approaches,
including DRaFT-K (Clark et al., 2024), AlignProp (Prabhudesai et al., 2023), ReFL (Clark et al.,
2024), and DRTune (Wu et al., 2025). Their pseudocode is provided in Algorithm 1, and that of
EasyTune is detailed in Algorithm 2. By analyzing their optimization strategies and computational
requirements, we highlight four key advantages of EasyTune:

(1) Higher Optimization Efficiency: Existing methods, as shown in Algorithm 1, optimize model
parameters after completing T or T − tstop reverse steps, resulting in infrequent updates (e.g., one
update per T or T−tstop steps). In contrast, EasyTune optimizes at each denoising timestep, achieving
one update per step. This significantly increases the frequency and effectiveness of parameter updates,
enabling faster convergence and better alignment with reward objectives.

(2) Lower Storage Requirements: Methods like DRaFT-K, AlignProp, ReFL, and DRTune rely on
recursive gradient computations, requiring storage of intermediate states across multiple timesteps
(e.g., gradients at step t depend on step t+1, as in Eq. (4) and Eq. (10)). This increases memory over-
head. EasyTune, however, computes gradients solely for the current timestep (Eq. (7)), eliminating
the need to store recursive states and substantially reducing memory usage.

(3) Fine-grained Optimization: Existing methods optimize over coarse timestep ranges (e.g.,
{T, T − 1, . . . ,KD} for DRaFT-K or {1, 2, . . . ,KA} for AlignProp, as in Algorithm 1) or rely
on early stopping (ReFL, DRTune), which limits their ability to capture step-specific dynamics.
EasyTune, as shown in Algorithm 2, performs optimization at each denoising step, allowing precise
adjustments to the diffusion model based on the gradients from the reward model at individual
timesteps. This fine-grained approach enhances the ability of model to align with complex motion
generation objectives.

(4) Simpler and More Effective Pipeline: Existing methods introduce complex designs to mit-
igate optimization and storage challenges, such as variable timestep sampling or early stopping
mechanisms (Algorithm 1). These add computational overhead and reduce generality. EasyTune
simplifies the process by performing step-wise optimization, as shown in Algorithm 2, making it
more straightforward, robust, and applicable across diverse motion generation tasks.

B.4 DETAILS ON SELF-REFINING PREFERENCE LEARNING

The Self-Refining Preference Learning (SPL) mechanism constructs preference pairs for reward
model fine-tuning without human annotations, using a retrieval-based auxiliary task. Algorithm 3
outlines the process, which iterates over a training subset DT of motion-text pairs to refine text and
motion encoders ET, EM, and a temperature parameter τ , collectively parameterized as ϕ.

Algorithm 3 formalizes the process of SPL, which operates on a training subset DT containing
motion-text pairs (xgt, c), utilizing pre-trained text and motion encoders ET, EM, and a temperature
parameter τ , collectively parameterized as ϕ. Overall, at each optimization iteration, SPL attempts
to mine a preference pair consisting of a winning motion xw and a losing motion xl. If such a pair
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Algorithm 1 Existing Direct Reward Fine-tune Methods
Input: Pre-trained diffusion model ϵθ, training set DT, reward model Rϕ, number of training

timesteps KD, KA for DRaFT-K and AlignProp, early stop range m.
Output: Fine-tuned diffusion model ϵθ.

1: For each text condition c ∈ DT and not converged do
2: ▶ Step 1: Training Setting
3: Timesteps number for AlignProp KA ∼ U [1, T ],
4: ttrain =

{{T, T − 1, . . . ,KD}, if DRaFT-K,

{1, 2, . . . ,KA}, if AlignProp.
5: if DRTune then
6: Sample KD continuous timesteps ttrain from [0,T].
7: if ReFL or DRTune then tstop = U [1,m]
8: ▶ Step 2: Reverse Process
9: xθ

T ∼ N (0, I)
10: For each timesteps t = T, . . . , 1 do
11: if DRTune then
12: ϵ = ϵθ

(
sg(xθ

t ), t, c
)

13: else ϵ = ϵθ
(
xθ
t , t, c

)

14: if t /∈ ttrain then
15: xθ

t−1 = 1√
αt

(
xθ
t − βt√

1−ᾱt
sg(ϵ)

)

16: if t = tstop then
17: xθ

0 ≈ 1
αt
xθ
t − σtϵθ(x

θ
t , t, c); break

18: ▶ Step 3: Gradient Optimization
19: Optimize: update diffusion model ϵθ by Eq. (1)

Algorithm 2 EasyTune: Efficient Step-Aware Fine-Tuning
Input: Pre-trained diffusion model ϵθ, reward model Rϕ.
Output: Fine-tuned diffusion model ϵθ.

1: for each text condition c ∈ DT and not converged do
2: xT ∼ N (0, I)
3: if Chain Optimization then
4: Copy θ′ ← θ
5: end if
6: for t = T, ..., 1 do
7: Denoise by θ: xθ

t−1 = πθ(x
θ
t ) by xθ

t−1 = πθ

(
xθ
t , t, c

)
, Eq. (7)

8: if Chain Optimization then
9: Optimize: update diffusion model ϵθ′ by gradient from ϵθ: ∂LEasyTune(θ)

∂θ in Eq. (6)
10: else
11: Optimize: update diffusion model ϵθ by ∂LEasyTune(θ)

∂θ in Eq. (6)
12: end if
13: Stop Gradient: xθ

t−1 = sg(xθ
t−1)

14: end for
15: if Chain Optimization then
16: Assign θ ← θ′

17: end if
18: end for

is found (i.e., when retrieval fails), the model is optimized based on this pair; otherwise (i.e., when
retrieval succeeds), it falls back to the pretraining objective to reinforce the correct knowledge.The
algorithm executes two core steps: Preference Data Identification and Preference Fine-tuning. In the
first step (Lines 3–6), for each text condition c, reward scores are computed for all motions in DT

based on the similarity between motion and text features scaled by τ . The top-k motions are retrieved,
and the ground-truth motion xgt is designated as the preferred motion xw. If xgt is not among
the retrieved motions, the highest-scoring retrieved motion is set as the non-preferred motion xl;
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Algorithm 3 Self-Refining Preference Learning
Input: Training subset DT, text/motion encoders EM/ ET, temperature parameter τ , retrieval number

k.
Output: Fine-tuned reward model EM, ET, and τ .

1: Initialize: Parameters ϕ← {EM, ET, τ}
2: for each data pair (xgt, c) ∈ DT and not converged do
3: ▶ Step 1: Preference Data Mining
4: Compute reward scores for all x ∈ DT using Eq. (11)
5: Retrieve top-k motions DR using Eq. (13)
6: Set winning xw and losing motions xl using Eq. (14)
7: ▶ Step 2: Preference Fine-tuning
8: Compute softmax probabilities P using Eq. (15)
9: Define target distribution Q using Eq. (16)

10: Compute loss LSPL(ϕ) by Q and P using Eq. (17)
11: Update parameters ϕ by ∇ϕLSPL(ϕ)
12: end for

otherwise, xl is set to xgt, and optimization is skipped to avoid trivial updates. This retrieval-based
approach effectively mines preference pairs by identifying motions that are incorrectly favored by the
current model, thus providing a robust signal for refinement. In the second step (Lines 7–10), the
reward scores of the preference pair (xw,xl) are converted into softmax probabilities P , representing
the model’s predicted preference distribution. These are aligned with a target distribution Q, which
assigns a probability of 1.0 to xw and 0.0 to xl when a preference exists, or 0.5 to both when they
are identical. The model is optimized by minimizing the KL divergence between Q and P , with
the resulting loss used to update ϕ via gradient descent. This fine-tuning process iteratively refines
the encoders to assign higher scores to preferred motions, enhancing the reward model’s ability to
capture fine-grained preferences. The iteration continues until convergence, yielding a reward model
tailored for motion generation tasks.

B.5 DISCUSSION ON NOISE-AWARE AND ONE-STEP REWARD

In Sec. 4.1, we introduced both the Noise-Aware reward for ODE and SDE sampling and the One-Step
reward specifically for ODE sampling. Here, we provide recommendations for selecting between
these strategies and briefly compare their performance.

Perceptual Difference Between Noisy and Predicted Data. As analyzed in App. A.6, the pre-
dictability of noisy data in the motion domain is relatively strong compared to the image domain (see
Fig. S4). Fig. S6 and Fig. S5 demonstrates that ODE-based strategy further enhances this predictabil-
ity. Consequently, both reward strategies can effectively perceive noisy data in motion generation.
For image generation, where noisy data is harder to interpret, we recommend the One-Step reward
strategy for more accurate perception.

Quantitative Analysis of Retrieval Results on Noisy Data. In App. A.10.3, we quantitatively
analyze the performance difference between the two strategies on retrieval tasks using noisy data.
The results in Tab. S9 demonstrate that both strategies achieve robust performance on noisy data
retrieval, comparable to results on clean data.

Quantitative Comparison of Generation Results. For ODE-based models, both strategies are
applicable. In Tab. 3, we provided performance metrics for MLD and MLD++ under both strategies.
We revisit and consolidate those results in Tab. S11. The results indicate that the Noise-Aware reward
generally yields better performance. Therefore, we recommend using the Noise-Aware strategy if the
reward model possesses noise-perception capabilities. Otherwise, the One-Step reward can achieve
comparable results.
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Table S11: Comparison of Noise-Aware and One-Step Rewards on ODE-based models.

Model Strategy R-Precision ↑ FID ↓ MM-Dist ↓
Top 1 Top 2 Top 3

MLD One-Step 0.568 0.754 0.846 0.194 2.672
Noise-Aware 0.581 0.769 0.855 0.132 2.637

MLD++ One-Step 0.581 0.762 0.849 0.073 2.603
Noise-Aware 0.591 0.777 0.859 0.069 2.592

C PROOF

C.1 PROOF OF COROLLARY 1

Recall the Corollary 1.

Corollary. Given the reverse process in Eq. (2), xθ
t−1 = πθ(x

θ
t , t, c), the gradient w.r.t diffusion

model θ, denoted as ∂xθ
t−1

∂θ , can be expressed as:

∂xθ
t−1

∂θ
=

∂πθ(x
θ
t , t, c)

∂θ
+

∂πθ(x
θ
t , t, c)

∂xθ
t

· ∂x
θ
t

∂θ
. (S18)

Proof. Let u = xθ
t , v = θ, and F (u, v) = πv(u, t, c), we have:

∂F (u, v)

∂θ
=

∂F (u, v)

∂v
· ∂v
∂θ

+
∂F (u, v)

∂u
· ∂u
∂θ

. (S19)

The first term ∂u
∂v can be expressed as:

∂u

∂θ
=

∂xθ
t

∂θ
, (S20)

and the second term ∂v
∂θ can be expressed as:

∂v

∂θ
=

∂θ

∂θ
= 1. (S21)

Hence, we can rewrite the equation as:

∂F (u, v)

∂θ
=

∂F (u, v)

∂θ
+

∂F (u, v)

∂xθ
t

· ∂x
θ
t

∂θ
. (S22)

Furthermore, we substitute F (u, v) with πθ(x
θ
t , t, c), and thus the relationship described in Eq. (S18)

holds:
∂xθ

t−1

∂θ
=

∂πθ(x
θ
t , t, c)

∂θ
=

∂πθ(x
θ
t , t, c)

∂θ
+

∂πθ(x
θ
t , t, c)

∂xθ
t

· ∂x
θ
t

∂θ
. (S23)

The proof is completed.

C.2 CONVERGENCE ANALYSIS

We now provide a convergence guarantee for EasyTune. For clarity, we write its update rule in the
generic stochastic-gradient form

θk+1 = θk − ηkgk, (S24)

where gk is the stochastic gradient computed from a minibatch of noisy motions at a randomly sampled
denoising step, following the EasyTune objective in Eq. (6). Let L(θ) denote the corresponding
expected training objective.

We make the following assumptions on the EasyTune update:
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(A1) (Lower bounded and smooth objective) L(θ) is lower bounded by some Linf > −∞ and has
L-Lipschitz continuous gradient (i.e., L-smooth), meaning ∥∇L(θ)−∇L(θ′)∥ ≤ L∥θ−θ′∥
for all θ, θ′.

(A2) (Bounded second moment of stochastic gradient) The stochastic gradient gk satisfies
E[∥gk∥2 | θk] ≤ G2 for some constant G > 0.

(A3) (Controlled bias from stop-gradient) The bias induced by the stop-gradient operation is
uniformly bounded and proportional to the step size, i.e., ∥E[gk | θk]−∇L(θk)∥ ≤ b ηk for
some constant b ≥ 0.

These assumptions are standard in the analysis of non-convex stochastic gradient methods and, in our
diffusion-based motion tuning setting, (A2) captures the bounded variance of the minibatch gradient
obtained by sampling noisy motions and timesteps, while (A3) models the O(ηk) bias introduced by
the stop-gradient design.
Theorem S1 (Convergence of EasyTune). Under the above conditions, the sequence {θk} generated
by EasyTune satisfies the following properties:

E[L(θk+1)] ≤ E[L(θk)]− c1 ηk E
[
∥∇L(θk)∥2

]
+ c2 η

2
k, (S25)

Proof. The proof follows the standard template for non-convex stochastic gradient descent, adapted
to the EasyTune update.

By L-smoothness of L (Assumption (A1)), for any k we have

L(θk+1) ≤ L(θk) +∇L(θk)T (θk+1 − θk) +
L
2 ∥θk+1 − θk∥2. (S26)

Substituting θk+1 − θk = −ηkgk gives

L(θk+1) ≤ L(θk)− ηk∇L(θk)T gk + L
2 η2k ∥gk∥2. (S27)

Taking conditional expectation given θk and using the tower property of expectation, we obtain

E[L(θk+1) | θk] ≤ L(θk)− ηk∇L(θk)T E[gk | θk] + L
2 η2k E[∥gk∥2 | θk]. (S28)

By Assumption (A2), E[∥gk∥2 | θk] ≤ G2, so

E[L(θk+1) | θk] ≤ L(θk)− ηk∇L(θk)T E[gk | θk] + L
2 η2k G

2. (S29)

Next we control the inner product term using Assumption (A3). Let mk := E[gk | θk] and write

∇L(θk)Tmk = ∇L(θk)T∇L(θk) +∇L(θk)T (mk −∇L(θk)) (S30)

≥ ∥∇L(θk)∥2 − ∥∇L(θk)∥ ∥mk −∇L(θk)∥ (S31)

≥ ∥∇L(θk)∥2 − b ηk ∥∇L(θk)∥, (S32)

where we used Cauchy–Schwarz and (A3) in the last inequality. Hence

−ηk∇L(θk)Tmk ≤ −ηk ∥∇L(θk)∥2 + b η2k ∥∇L(θk)∥. (S33)

Applying Young’s inequality 2ab ≤ a2 + b2 with a =
√
ηk ∥∇L(θk)∥ and b = b η

3/2
k , we get

b η2k ∥∇L(θk)∥ ≤ 1
2 ηk ∥∇L(θk)∥2 + 1

2b
2 η3k. (S34)

Therefore
−ηk∇L(θk)Tmk ≤ − 1

2 ηk ∥∇L(θk)∥2 + 1
2b

2 η3k. (S35)
Combining the above bounds yields

E[L(θk+1) | θk] ≤ L(θk)− c1 ηk ∥∇L(θk)∥2 + C1 η
2
k, (S36)

for some positive constants c1, C1 depending only on L, G, and b (we absorb the O(η3k) term into the
O(η2k) term). Taking full expectation over θk then gives

E[L(θk+1)] ≤ E[L(θk)]− c1 ηk E
[
∥∇L(θk)∥2

]
+ c2 η

2
k, (S37)

where we set c2 := C1. This proves the claimed one-step descent inequality.
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Building on this classical descent inequality and following standard non-convex SGD theory, we can
derive a global convergence consequence for EasyTune.

Corollary S2 (Asymptotic stationarity of EasyTune). Suppose Assumptions (A1)–(A3) hold and that
the step sizes satisfy ηk > 0,

∑∞
k=0 ηk =∞ and

∑∞
k=0 η

2
k <∞. Then the EasyTune iterates satisfy

lim inf
K→∞

∑K−1
k=0 ηk E

[
∥∇L(θk)∥2

]
∑K−1

k=0 ηk
= 0, (S38)

and in particular
lim inf
k→∞

E
[
∥∇L(θk)∥2

]
= 0. (S39)

That is, EasyTune converges to first-order critical points in the standard non-convex sense.

Proof. From Theorem S1 we have, for all k ≥ 0,

E[L(θk+1)] ≤ E[L(θk)]− c1 ηk E
[
∥∇L(θk)∥2

]
+ c2 η

2
k. (S40)

Summing this inequality over k = 0, . . . ,K − 1 and using telescoping of the left-hand side gives

E[L(θK)] ≤ E[L(θ0)]− c1

K−1∑

k=0

ηk E
[
∥∇L(θk)∥2

]
+ c2

K−1∑

k=0

η2k. (S41)

Rearranging the previous inequality to move the gradient term to the left-hand side, and then
applying that L is bounded below by Linf (Assumption (A1)) together with E[L(θK)] ≥ Linf and
the monotonicity

∑K−1
k=0 η2k ≤

∑∞
k=0 η

2
k, we obtain

c1

K−1∑

k=0

ηk E
[
∥∇L(θk)∥2

]
≤ E[L(θ0)]− E[L(θK)] + c2

K−1∑

k=0

η2k ≤ E[L(θ0)]− Linf + c2

∞∑

k=0

η2k.

(S42)
The right-hand side is finite by the assumptions on {ηk}, so letting

C0 :=
E[L(θ0)]− Linf

c1
+

c2
c1

∞∑

k=0

η2k <∞, (S43)

we deduce
∞∑

k=0

ηk E
[
∥∇L(θk)∥2

]
≤ C0. (S44)

Dividing both sides by
∑K−1

k=0 ηk and letting K →∞ yields

0 ≤
∑K−1

k=0 ηk E
[
∥∇L(θk)∥2

]
∑K−1

k=0 ηk
≤ C0∑K−1

k=0 ηk
−−−−→
K→∞

0, (S45)

where we used
∑

k ηk = ∞ in the last step. This proves the weighted-average statement. The
liminf statement then follows: if there existed an ε > 0 and K0 such that E[∥∇L(θk)∥2] ≥ ε for all
k ≥ K0, the weighted average would be bounded below by ε, contradicting the previous limit. Hence
lim infk→∞ E[∥∇L(θk)∥2] = 0.

This corollary is a direct application of classical convergence theory for non-convex stochastic
gradient methods; we include the standard argument above for completeness.

Discussion. Theorem S1 provides a one-step descent inequality showing that each EasyTune update
decreases the expected training objective up to a small quadratic term in the step size. The corollary
then instantiates the standard non-convex SGD theory in our diffusion-based motion tuning setting,
proving that, under mild step-size conditions, the EasyTune iterates converge to first-order critical
points in expectation. In other words, despite the stop-gradient design and step-aware sampling
in Eq. (S9), EasyTune enjoys the same asymptotic convergence guarantees as classical stochastic
gradient methods.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

C.3 PROOF OF EQ. (5)

Proof. Given a diffusion model ϵθ, and a reward model Rϕ, the diffusion model is fine-tuned by
maximizing the differentiable reward value:

∂L(θ)
∂θ

= −Ec∼DT,xθ
0∼πθ(·|c)

[
∂Rϕ(x

θ
0, c)

∂xθ
0

· ∂x
θ
0

∂θ

]
. (S46)

where πθ denotes the reverse process defined in Eq. (2).

Here, we introduce Theorem 1 to compute ∂xθ
0

∂θ , and thus we have:

∂L(θ)
∂θ

= −Ec∼DT,xθ
0∼πθ(·|c)

∂Rϕ(x
θ
0, c)

∂xθ
0

· ∂x
θ
0

∂θ

= −Ec∼DT,xθ
0∼πθ(·|c)

∂Rϕ(x
θ
0, c)

∂xθ
0

·
(
∂πθ(x

θ
1)

∂θ
+

∂πθ(x
θ
1)

∂xθ
1

· ∂x
θ
1

∂θ

)

= −Ec∼DT,xθ
0∼πθ(·|c)

∂Rϕ(x
θ
0, c)

∂xθ
0

·
(
∂πθ(x

θ
1)

∂θ
+

∂πθ(x
θ
1)

∂xθ
1

· ∂πθ(x
θ
2)

∂θ
+

∂πθ(x
θ
1)

∂xθ
1

· ∂πθ(x
θ
2)

∂xθ
2

· ∂x
θ
2

∂θ

)

= · · ·

= −Ec∼DT,xθ
0∼πθ(·|c)

∂Rϕ(x
θ
0, c)

∂xθ
0

·
(

N∑

T=1

(
T−1∏

t=1

∂πθ(x
θ
t )

∂xθ
t

)
· ∂πθ(x

θ
T )

∂θ

)
.

(S47)
The proof is completed.
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