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Abstract

The human visual system uses two parallel pathways for spatial processing and
object recognition. In contrast, computer vision systems tend to use a single feed-
forward pathway, rendering them less robust, adaptive, or efficient than human
vision. To bridge this gap, we developed a dual-stream vision model inspired by the
human eyes and brain. At the input level, the model samples two complementary
visual patterns to mimic how the human eyes use magnocellular and parvocellular
retinal ganglion cells to separate retinal inputs to the brain. At the backend, the
model processes the separate input patterns through two branches of convolutional
neural networks (CNN) to mimic how the human brain uses the dorsal and ventral
cortical pathways for parallel visual processing. The first branch (WhereCNN)
samples a global view to learn spatial attention and control eye movements. The
second branch (WhatCNN) samples a local view to represent the object around the
fixation. Over time, the two branches interact recurrently to build a scene repre-
sentation from moving fixations. We compared this model with the human brains
processing the same movie and evaluated their functional alignment by linear trans-
formation. The WhereCNN and WhatCNN branches were found to differentially
match the dorsal and ventral pathways of the visual cortex, respectively, primarily
due to their different learning objectives, rather than their distinctions in retinal
sampling or sensitivity to attention-driven eye movements. These model-based
results lead us to speculate that the distinct responses and representations of the
ventral and dorsal streams are more influenced by their distinct goals in visual
attention and object recognition than by their specific bias or selectivity in retinal
inputs. This dual-stream model takes a further step in brain-inspired computer
vision, enabling parallel neural networks to actively explore and understand the
visual surroundings.

1 Introduction

The human visual system comprises two parallel and segregated streams of neural networks: the
"where" stream and the "what" stream [1]. The "where" stream originates from magnocellular
retinal ganglion cells and extends along the dorsal visual cortex. The "what" stream originates from
parvocellular retinal ganglion cells and extends along the ventral visual cortex [2]. The two streams
exhibit selective responses to different aspects of visual stimuli [3]. The "where" stream is tuned to
coarse but fast information from a wide view, while the "what" stream is selective to fine but slow
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Figure 1: Brain-inspired dual-stream vision model. The top illustrates the subcortical (dashed
arrows) and cortical (solid arrows) pathways for parallel visual processing in the brain. Given a
scene (e.g., "two foxes on the lawn"), the retina samples incoming light relative to the fixation of
the eyes (shown as the cross). Magnocellular (orange) and parvocellular (blue) retinal ganglion
cells encode complementary visual information into two sets of retinal inputs relayed onto separate
layers in the lateral geniculate nuclei (LGN) and further onto different neurons in the primary visual
cortex (V1). Within V1, the relative ratio of magnocellular vs. parvocellular projections is higher for
the periphery and lower for the fovea. Beyond V1, the magnocellular pathway continues along the
dorsal visual cortex towards the intraparietal areas and further onto the frontal eye field (FEF) for
oculomotor control, while the parvocellular pathway continues along the ventral visual cortex towards
the inferior temporal cortex and further onto the superior temporal areas for semantic cognition.
The bottom illustrates our model architecture including WhereCNN and WhatCNN. The model’s
frontend mimics the human retina and generates two separate input patterns relative to the fixation.
One pattern is wider but coarser while the other is narrower but finer, providing the respective inputs
to WhereCNN and WhatCNN. With the wide-view input, WhereCNN generates a probability map of
saliency from which the next fixation is sampled. With a narrow-view input, WhatCNN generates an
object representation per each fixation and constructs a scene representation recurrently from multiple
fixations.

information from a narrow view [2, 4]. The two streams are thought to serve different purposes.
The "where" stream zooms out for spatial analysis [5], visual attention [6, 7, 8], and guiding actions
[9] such as eye movements [10], while the "what" stream zooms in to recognize the object around
the fixation [11]. While being largely parallel, the two streams interact with each other [12]. In
one way of their interaction, the "where" stream decides where to look next and guides the "what"
stream to focus on a salient location for visual perception. As the eyes move around the visual
environment, the interaction between the "where" and "what" streams builds a scene representation
by accumulating object representations over time and space. This dual-stream architecture allows the
brain to efficiently process visual information and support dynamic visual behaviors [13].

In contrast, computer vision systems tend to use a single stream of feedforward processing, acting
as passive observers that sample visual information all at once with fixed and uniform patterns
[14, 15, 16]. Compared to human vision, this processing is less robust, especially given adversarial
attacks [17, 18]; it is less efficient since it samples visual information equally regardless of salience
or nuisance [19]; it is less adaptive, lacking spatial attention for active sensing [20, 21]. These
distinctions define a major gap between human and computer vision. Many visual tasks that are
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straightforward for humans are still challenging for machines [22, 23]. Therefore, computer vision
may benefit from taking further inspiration from the brain by using a dual-stream architecture to learn
adaptive and robust visual behaviors.

To gain insights into the computational mechanisms of human vision, researchers have devel-
oped image-computable models by utilizing goal-driven deep neural networks that simulate hu-
man perceptual behavior. In particular, convolutional neural networks (CNNs) are leading models
of visual perception, capturing the hierarchical processing by the brain’s ventral visual stream
[24, 25, 26, 27, 28]. Previous models of this nature commonly utilize CNNs trained through super-
vised learning [24, 27, 25, 29, 26, 30], adversarial training [31, 32], unsupervised learning [33, 34],
or self-supervised learning [35, 36, 37]. However, models of the dorsal stream remain relatively
under-explored, despite few studies [38, 39, 40, 41]. Existing testing of these models has primarily
focused on static images presented briefly to the fovea, thus limiting their assessment to a narrow
range of visual behaviors and processes [42]. A more comprehensive approach is needed to develop
models that incorporate both dorsal and ventral stream processing and to assess those models against
brain responses when humans engage both the dorsal and ventral streams to freely explore complex
and dynamic visual environments, which may be simulated in experimental settings [43].

To meet this need, we have developed a dual-stream model to mimic the parallel ventral and dorsal
streams in the human brain [1, 2, 3, 9]. The model includes two branches of convolutional neural
networks: WhereCNN and WhatCNN, which share the same architecture but receive distinct visual
inputs and generate different outputs. WhereCNN samples a wide view to learn spatial attention
and where to direct the subsequent gaze, while WhatCNN samples a narrow view to learn object
representations. By taking multiple gazes at a given scene, the model sequentially samples the
salient locations and progressively constructs a scene representation over both space and time. To
evaluate this dual-stream model as a model of the human visual system, we have tested its ability
to reproduce human gaze behavior and predict functional brain scans from humans watching a
movie with unconstrained eye movements. Our hypothesis is that the model’s WhereCNN and
WhatCNN branches can effectively predict the brain responses along the brain’s dorsal and ventral
visual pathways, respectively. In addition, we have also conducted experiments to evaluate the
underlying factors contributing to the functional segregation of the brain’s dorsal and ventral visual
streams. Of particular interest were the relative contributions of retinal sampling, spatial attention,
and attention-guided eye movement in shaping the function of the dorsal stream and its interplay with
the ventral stream during dynamic natural vision.

2 Related Works

2.1 Dorsal-stream vision

Image-computable models of the brain’s dorsal stream have been relatively limited compared to
models of the ventral stream. Previous work has attempted to model the dorsal stream by training
deep neural networks to detect motion [38] or classify actions [40] using video inputs. However, these
models do not fully capture the neuroscientific understanding that the dorsal stream is involved in
locating objects and guiding actions, leading to its designation as the "where" or "how" visual pathway.
More recent work by Mineault et al. focused on training a dorsal-stream model to emulate human
head movements during visual exploration [39]. Additionally, Bakhtiari et al. utilized predictive
learning to train parallel pathways and observed the ventral-like and dorsal-like representations as an
emergent consequence of structural segregation [41]. However, no prior work has explored neural
network models that emulate how the dorsal stream learns spatial attention and guides eye movements
for visual navigation.

2.2 Spatial attention and eye movement

Prior research in the field of computer vision has attempted to train models to attend to and selectively
focus on salient objects within a scene [21, 44, 45], rather than processing the entire scene as a whole.
This approach aligns with the brain’s mechanism of spatial attention, where the dorsal stream acts as
a global navigator, and the ventral stream functions as a local perceiver. In line with this mechanism,
previous studies have employed dual-stream neural networks that process global and local features in
parallel, aiming to achieve enhanced computational efficiency as a unified system [46, 44, 47, 48, 49].
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However, these models do not fully replicate the way human eyes sample visual inputs during active
exploration of the scene and thus still fall short in biological relevance.

2.3 Foveated vision and retinal transformation

The human retina functions as a sophisticated camera that intelligently samples and transmits visual
information. It exhibits the highest visual acuity in the central region of the visual field, a phenomenon
referred to as foveated vision [50, 51, 52]. In contrast, peripheral vision uses lower spatial acuity but
higher temporal sensitivity, making it better suited for detecting motion. These properties of retinal
sampling are potentially useful for training neural networks to enhance performance [53, 54, 55, 56] or
robustness [57, 58, 19], augment data or synthesize images [59]. The retina also transmits information
to the brain using distinct types of cells. The magnocellular and parvocellular retinal ganglion cells
have different distributions, selectivity, and relay information through largely separate pathways.
Taken together, the retina transforms visual information into segregated inputs for parallel visual
processing. This biological mechanism has not been systematically investigated.

Unlike the above prior works, our work combines multiple biologically inspired mechanisms into an
integral learnable model. It uses a frontend inspired by the human retina and applies complementary
retinal sampling and transformation. It uses two parallel pathways inspired by the human dorsal and
ventral streams. It uses spatial attention and object recognition as the distinct learning objectives for
training the two pathways. It further uses the attention to move fixations and thus allows the two
pathways to interact for active sensing. Although these mechanisms have been explored separately
in prior studies, their combination is novel and motivates our work to build and test such a model
against the human brain and behavior in a naturalistic condition of freely watching a movie.

3 Methods

In our model, WhereCNN and WhatCNN serve distinct functions in processing objects within a
scene. WhereCNN identifies the spatial location of an object, determining "where" it is situated,
while WhatCNN focuses on recognizing the identity of the object, determining "what" it is. When
multiple objects are present in a scene, WhereCNN learns spatial attention and "how" to sequentially
locate and fixate on each object. This allows the model to selectively attend to different objects in a
sequence, mirroring the dynamic nature of human eye movements during visual exploration. Fig.1
illustrates and describes the human visual system that inspires us to design our model.

3.1 Model design and training

Akin to the human eyes [60, 61], our model uses retinal transformation [62] to generate separate inputs
to WhereCNN and WhatCNN. For both, the retinal input consists of 64× 64 samples non-uniformly
distributed around the fixation. When describing a point in the retinal image and its corresponding
point in the visual world in terms of the radial distance and the polar angle with respect to the fixation,
their polar angles are the same while their radial distances are related by Eq. 1.

r = g(r′) =
b√
π

1− exp(ln(a)r′/2)

1− exp(ln(a)/2)
(1)

where r′ and r are the radial distances in the retinal and original images, respectively, b is a constant
that ensures rmax/g(r

′
max) = 1, and a controls the degree of center-concentration. Given a larger a,

more retinal samples are closer to the fovea relatively to the periphery. We set a = 15 for WhatCNN
and a = 2.5 for WhereCNN. In this setting, WhereCNN is more selective to global features, while
WhatCNN is more selective to local features, mirroring the sampling bias of magnocellular and
parvocellular retinal ganglion cells, as illustrated in Fig.1.

Both WhereCNN and WhatCNN use similar backbone architectures. The backbone consists of four
blocks of convolutional layers. Each block includes two Conv2D layers (kernel size 3× 3) followed
by ReLU and BatchNorm. Applying 2× 2 MaxPool between adjacent blocks progressively reduces
the spatial dimension. The feature dimension following each block is 64, 128, 256, or 512. Atop
this backbone CNN, both WhereCNN and WhatCNN use additional components to support different
goals. For WhereCNN, the feature maps from the 3rd and 4th convolutional blocks are resized to
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16× 16 and concatenated, providing the input to an additional convolutional block. Its output feature
map is subject to SoftMax to generate a probability map of visual saliency. By random sampling
by the probability of saliency, WhereCNN decides a single location for the next fixation. To avoid
future fixations to revisit previously attended areas, inhibition of return (IOR) [63] is used. IOR keeps
records of locations of prior visits as defined in Eq.2.

IOR(t) = ReLU
(
1−

t∑
τ=1

G(µ = lτ ,Σ = σ2I)
)

(2)

where G(µ,Σ) is a 2D Gaussian function centered at lτ (prior fixations) with a standard deviation σ
at the τ -th step. Its values are normalized so that its maximum equals 1. By applying the IOR to the
predicted saliency map using an element-wise multiplication, the future fixations would not revisit
the areas already explored.

For WhatCNN, the output feature map from the 4th convolutional block, after global average pooling,
is given as the input to an additional layer of Gated Recurrent Units (GRU) [64], which recurrently
update the representation from a sequence of fixations to construct a cumulative representation
following another fully-connected layer.

We first pre-train each stream separately and then fine-tune them together through three stages.

Stage 1 - WhereCNN. We first train WhereCNN for image recognition using ILSVRC2012 [65] for
object recognition and then fine-tune it for generating the saliency map to match human attention
using SALICON dataset [66]. In this stage, we use random fixations to generate the retinal inputs to
WhereCNN. Adam optimizer [67] (lr=0.002, β1=0.9, β2=0.99) is used with 25 epochs for SALICON
training. At this stage, WhereCNN learns spatial attention from humans.

Stage 2 - WhatCNN. We first train WhatCNN for single-object recognition using ILSVRC2012
[65] and then fine-tune it for multi-object recognition using MSCOCO [68]. In this stage, we use the
pre-trained WhereCNN to generate a sequence of eight fixations and accordingly apply the retinal
transformation to generate a sequence of retinal inputs to WhatCNN for recurrent object recognition.
Note that the training in Stage 2 is confined to WhatCNN, while leaving WhereCNN as pre-trained in
Stage 1. Adam optimizer (lr=0.002, β1=0.9, β2=0.99) is used with 40 epochs for MSCOCO training.

Stage 3 - WhereCNN & WhatCNN. Lastly, we equally combine the two learning objectives to train
both WhereCNN and WhatCNN altogether and end-to-end using eight fixations. Adam optimizer
(lr=0.0002, β1=0.9, β2=0.99) is used with 25 epochs for training. In this stage, SALICON, which
contain labels for both saliency prediction and object recognition, is used for training. More details
can be found at Appendix B 1.

3.2 Model evaluation with human gaze behavior and fMRI responses

We use two criteria to evaluate how well a model matches the brain given naturalistic and dynamic
visual stimuli. First, the model should generate similar human visual behaviors, such as visual
perception and gaze behavior. Second, the model’s internal responses to the stimuli should predict the
brain’s responses to the same stimuli through linear projection implemented as linear encoding models
[69]. For our dual-stream model, we hypothesize that WhereCNN better predicts dorsal-stream voxels
and WhatCNN better predicts ventral-stream voxels.

For this purpose, we use a publicly available fMRI dataset from a prior study [70], in which a total
of 11 human subjects (4 females) were instructed to watch the movie Raiders of the Lost Ark (115
minutes) with unconstrained eye movements. The movie was displayed on an LCD projector with
a visual angle of 17◦ × 22.7◦. Whole-brain fMRI data was acquired in a 3-T MRI system with
a gradient-recalled echo planar imaging sequence (TR/TE = 2.5s/35ms, flip angle = 90◦, nominal
resolution = 3mm × 3mm × 3mm). We preprocess the data by using the minimal preprocessing
pipeline released by the Human Connectome Project (HCP) [71]

We test how well the model can predict the voxel-wise fMRI response to the movie stimuli through
a learnable linear projection of artificial units in the model. To evaluate whether and how the two
branches in the model differentially predict the two streams in the brain, we define two encoding

1The code is available at https://github.com/minkyu-choi04/DualStreamBrains/
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models for each voxel: one based on WhereCNN and the other based on WhatCNN. We train and
test the encoding models with data during different segments of the movie. To avoid overfitting, we
apply dimension reduction to the internal responses in either WhereCNN or WhatCNN by applying
principal component analysis (PCA) first to each layer and then to all layers while retaining 99%
of the variance [30, 33]. We further convolve the resulting principal components with a canonical
hemodynamic response function (HRF) that peaks at 5 seconds, down-sample them to match the
sampling rate of fMRI, generating the linear regressors used in the encoding model. Using the training
data (81% of the total data), we estimate the encoding parameters using L2-regularized least squares
estimation. Using the held-out testing data (19%), we test the encoding models for their ability
predicting the fMRI responses observed at each voxel and measure the accuracy of prediction as the
correlation between the predicted and measured fMRI responses, denoted as rwhere and rwhat for
the encoding models based on WhereCNN and WhatCNN. We test the significance of the prediction
using a block permutation test [72] with a block size of 20-seconds and 100, 000 permutations and
apply the false discovery rate (FDR) (p < 0.05). We further differentiate the relative roles of the
brain’s WhereCNN vs. WhatCNN in predicting the brain’s dorsal and ventral streams for single
voxels as well as regions of interest. For this, we define a relative performance (Eq.3).

pwhere =
r2where

r2where + r2what

(3)

In the range from 0 to 1, pwhere > 0.5 indicates better predictive performance by WhereCNN, while
pwhere < 0.5 indicates better predictive performance by WhatCNN.

3.3 Alternative models and control experiments

By design, the WhereCNN and WhatCNN branches within our model exhibit two key distinctions.
WhereCNN is specifically trained to learn spatial attention by utilizing wider views, while WhatCNN
focuses on object recognition through the use of local views. To explore the impact of input views
and learning objectives on the model’s capacity to predict brain responses, we introduce two modified
control streams: ControlCNN-a and ControlCNN-b, designed as hybrid variants encapsulating diverse
input views and learning objectives. ControlCNN-a receives a narrower view as its input and is trained
for saliency prediction. Conversely, ControlCNN-b is curated to accommodate a broader view and
primarily focuses its training on object recognition. These adjustments yield a versatile examination
of their respective influences and functionalities. By combining WhereCNN or WhatCNN with
ControlCNN-a or ControlCNN-b, we create four alternative dual-stream models (illustrated in Fig.4)
and examine their abilities to explain the functional segregation of the brain’s dorsal and ventral
streams.

4 Results

4.1 WhereCNN learns attention and WhatCNN learns perception

The WhereCNN and WhatCNN branches in our model are specifically designed to fulfill different
objectives: predicting human visual saliency and recognizing visual objects, respectively. In Fig.2,
we present examples comparing human attention with the model’s attention based on the SALICON’s
validation set. WhereCNN can successfully identify salient locations where humans are more likely
to direct gaze. Additionally, WhereCNN can mimic human saccadic eye movements by generating
a sequence of fixations that navigate the model’s attention to those salient locations. In contrast,
WhatCNN can recognize either single or multiple objects (macro F1 score on MSCOCO’s validation
set: 61.0).

4.2 WhereCNN and WhatCNN matches dorsal and ventral visual streams

By using linear encoding models, we use the WhereCNN and WhatCNN branches to predict fMRI
responses during the processing of identical movie stimuli by both the model and the brain. Together,
these two branches can predict responses across a wide range of cortical locations involved in
visual processing. However, they exhibit distinct predictive power in relation to the dorsal and
ventral streams. Generally, the WhereCNN branch exhibits superior predictive performance for the
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(a) Alternative inputs and objectives for WhereCNN and WhatCNN

(b) Brain response predictability by WhereCNN vs. WhatCNN
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Figure 4: Contributing factors of the dorsal-ventral functional segmentation. (a) Alternative
designs of the two-stream model for investigating the contributing factors of the functional seg-
regation of two streams in the proposed model. In addition to WhereCNN and WhatCNN in the
proposed model, we included ControlCNN-a (narrow input field of view for predicting location) and
ControlCNN-b (wide input field of view for predicting perception) for an ablation study. (b) The
predictive performances and functional segregations by the two streams are plotted for the dorsal (red
squares) vs. ventral (blue triangles) ROIs for each of the alternative models in (a), correspondingly.
The dashed diagonal lines represent equal predictive abilities of ventral and dorsal ROIs. (c) Quanti-
tative evaluation of the functional segregation of the dorsal and ventral ROIs relative to the dashed
line of equal predictability. Separability measures how far the predictions are away from the dashed
line. Assuming the coordinates of a certain ROI is (x, y), separability is calculated as the average of
|x− y| for all ROIs.

dorsal stream, while the WhatCNN branch performs better in predicting responses within the ventral
stream (Fig.3). For the early visual areas (V1, V2, V3), WhereCNN better predicts the peripheral
representations, while WhatCNN better predicts the foveal representations.

4.3 Factors underlying the functional segregation of the dorsal and ventral streams

We further investigate the underlying factors contributing to the model’s ability to explain the func-
tional segregation of the brain’s dorsal and ventral visual streams (as depicted in Fig.3). Specifically,
we examine the input sampling pattern and output learning objective, both of which are distinct for
the WhereCNN and WhatCNN branches in our dual-stream model.

To investigate the contributing factors of the functional segregation in predicting human ventral
and dorsal streams, we introduce four variations of the proposed model, where the two branches
either share their inputs or have the same learning objectives, and compare their abilities to account
for the functional segregation of the dorsal and ventral visual streams (as shown in Fig. 4). When
the two branches solely differ in their input sampling, they are unable to explain the dorsal-ventral
segregation (combination 1 and 2). However, when the two branches exclusively differ in their
learning objectives, the functional segregation is better explained (combination 3 and 4). Moreover,
when the two branches differ in both input sampling and learning objectives (combination 5), as
utilized in our proposed model, the functional segregation is even more pronounced. These ablation
experiments suggest that the distinct learning objectives of the brain’s dorsal and ventral streams is
the primary factor underlying their functional segregation.

4.4 Dual-stream: a better brain model than single-stream

We also compare our dual-stream model with single-stream alternatives. One of these alternatives
is a baseline CNN that shares the same backbone architecture as a single branch in our dual-stream
model. However, this baseline CNN is trained with original (224x224) images to recognize objects
in ImageNet [65] and MS-COCO [68]. Thus, it serves as a direct comparison with either the
WhereCNN or WhatCNN branch in our model. In addition, we also include AlexNet [14], ResNet18,
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shows the encoding performance of different models for ventral or dorsal visual areas. Each dot
within the box plot signifies the average prediction accuracy r within a respective ROI in the ventral
or dorsal region. Asterisk (*) represents a significant difference by the Wilcoxon signed-rank test
(α = 0.05).

Effect of Fixations (Learned vs Random)

Δ𝑟!"#$
0.2250-0.207

Δ𝑟!"%&%
0.2250-0.207

FEF

6r

AIP
LIPv/d

V6

V3A

LO

PIT

VMV
1,2,3

PHA
1,2,3

STS

TPOJ

MIP IPS1 V6AVIP

FEF

6r

AIP
LIPv/d

V6

V3A

LO

PIT

VMV
1,2,3PHA

1,2,3

STS

TPOJ

MIP IPS1 V6AVIP

Prediction By WhereCNN Prediction By WhatCNN
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with learned fixations, whereas those in cool colors signify better predictions with random fixations.

and ResNet34 [15] as additional alternatives, which have been previously evaluated in relation to
brain responses [30, 74]. We compare these single-stream alternatives with either branch in our model
in terms of their ability to predict brain responses within dorsal or ventral visual areas (Fig.5). Despite
their use of the same backbone architecture, the baseline under-performs WhatCNN in predicting
responses in ventral visual areas, and under-performs WhereCNN in predicting responses in dorsal
visual areas. This result suggests that the interactive and parallel nature of the dual-stream model
renders each stream more akin to the functioning of the human brain, surpassing the performance of
isolating a single stream. Moreover, WhatCNN or WhereCNN also performs better than AlexNet and
comparably with ResNet18 and ResNet34, which are deeper than the architecture of our model.

4.5 Attention-driven eye movements improve encoding

Similar to human gaze behavior towards salient objects, our model learns spatial attention to guide
fixations for parallel visual processing. In this study, we investigate whether and how the model’s
ability to predict brain responses depends on its utilization of attention-driven fixations. To examine
this, we conduct experiments where the model is allowed to use either attention-driven fixations or
random fixations to collect retinal samples, and we evaluate how this choice impacts the model’s
capability to predict brain responses by calculating ∆r = rlearned − rrandom for all voxels, where
rlearned and rrandom are encoding performances of each voxel using learned or random fixations
respectively. As depicted in Fig.6, employing attention-driven fixations leads to higher encoding
accuracy by both WhereCNN and WhatCNN compared to the use of random fixations for a majority
of visual cortical locations within both the dorsal and ventral streams.
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5 Discussion

In summary, we introduce a new dual-stream neural network that incorporates the brain’s mecha-
nisms for parallel visual processing. The defining features of our model include 1) using retinal
transformation to separate complementary inputs to each stream, 2) using different learning objec-
tives to train each stream to learn either spatial attention or object recognition, and 3) controlling
sequential fixations for active and interactive visual sensing and processing. We demonstrate that the
combination of these features renders the model more akin to the human brain and better predictive
of brain responses in humans freely engaged in naturalistic visual environments. Importantly, the
two streams in our model differentially explain the two streams in the brain, contributing to the
computational understanding as to how and why the brain exhibits and organizes distinct responses
and processes along the structurally segregated dorsal and ventral visual pathways. Our findings
suggest that the primary factor contributing to the dorsal-ventral functional segregation is the different
goals of the dorsal and ventral pathways. That is, the dorsal pathway learns spatial attention to control
eye movements [75, 7, 76, 77], while the ventral stream learns object recognition.

Although our model demonstrates initial steps to model parallel visual processing in the brain, it has
limitations that remain to be addressed in future studies. For one limitation, the model uses different
spatial sampling to generate the retinal inputs to the two streams but does not consider different
temporal sampling that makes the dorsal stream more sensitive to motion than the ventral stream
[38, 40, 39, 41]. For another limitation, the interaction between the two streams is limited to the
common fixation that determines the complementary retinal input to each stream. Although attention-
driven eye movement is an important aspect of human visual behavior shaping brain responses for
both dorsal and ventral streams, the two streams also interact and exchange information at higher
levels. The precise mechanisms for dorsal-ventral interactions remain unclear but may be important
to understanding human vision or improving brain-inspired computer vision.

6 Acknowledgements

This research is supported by the Collaborative Research in Computational Neuroscience (CRCNS)
program from National Science Foundation (Award#: IIS 2112773) and the University of Michigan.

References
[1] Mortimer Mishkin, Leslie G Ungerleider, and Kathleen A Macko. Object vision and spatial

vision: two cortical pathways. Trends in neurosciences, 6:414–417, 1983.

[2] William H Merigan and John HR Maunsell. How parallel are the primate visual pathways?
Annual review of neuroscience, 16(1):369–402, 1993.

[3] Jonathan J Nassi and Edward M Callaway. Parallel processing strategies of the primate visual
system. Nature reviews neuroscience, 10(5):360–372, 2009.

[4] Margaret Livingstone and David Hubel. Segregation of form, color, movement, and depth:
anatomy, physiology, and perception. Science, 240(4853):740–749, 1988.

[5] James V Haxby, Cheryl L Grady, Barry Horwitz, Leslie G Ungerleider, Mortimer Mishkin,
Richard E Carson, Peter Herscovitch, Mark B Schapiro, and Stanley I Rapoport. Dissociation
of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of
the National Academy of Sciences, 88(5):1621–1625, 1991.

[6] Giacomo Rizzolatti and Massimo Matelli. Two different streams form the dorsal visual system:
anatomy and functions. Experimental brain research, 153:146–157, 2003.

[7] Maurizio Corbetta and Gordon L Shulman. Control of goal-directed and stimulus-driven
attention in the brain. Nature reviews neuroscience, 3(3):201–215, 2002.

[8] Gustavo Deco and Edmund T Rolls. A neurodynamical cortical model of visual attention and
invariant object recognition. Vision research, 44(6):621–642, 2004.

[9] Melvyn A Goodale and A David Milner. Separate visual pathways for perception and action.
Trends in neurosciences, 15(1):20–25, 1992.

10



[10] Carol L Colby and Michael E Goldberg. Space and attention in parietal cortex. Annual review
of neuroscience, 22(1):319–349, 1999.

[11] Keiji Tanaka. Inferotemporal cortex and object vision. Annual review of neuroscience, 19(1):109–
139, 1996.

[12] A David Milner. How do the two visual streams interact with each other? Experimental brain
research, 235(5):1297–1308, 2017.

[13] Laurent Itti and Christof Koch. A saliency-based search mechanism for overt and covert shifts
of visual attention. Vision research, 40(10-12):1489–1506, 2000.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[19] Minkyu Choi, Yizhen Zhang, Kuan Han, Xiaokai Wang, and Zhongming Liu. Human eyes
inspired recurrent neural networks are more robust against adversarial noises. arXiv preprint
arXiv:2206.07282, 2022.

[20] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention
for rapid scene analysis. IEEE Transactions on pattern analysis and machine intelligence,
20(11):1254–1259, 1998.

[21] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention.
Advances in neural information processing systems, 27, 2014.

[22] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:e253, 2017.

[23] Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in
artificial intelligence. Communications of the ACM, 58(9):92–103, 2015.

[24] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the national academy of sciences, 111(23):8619–8624, 2014.

[25] Umut Güçlü and Marcel AJ van Gerven. Deep neural networks reveal a gradient in the
complexity of neural representations across the ventral stream. Journal of Neuroscience,
35(27):10005–10014, 2015.

[26] Michael Eickenberg, Alexandre Gramfort, Gaël Varoquaux, and Bertrand Thirion. Seeing it
all: Convolutional network layers map the function of the human visual system. NeuroImage,
152:184–194, 2017.

[27] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not un-
supervised, models may explain it cortical representation. PLoS computational biology,
10(11):e1003915, 2014.

11



[28] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to understand
sensory cortex. Nature neuroscience, 19(3):356–365, 2016.

[29] Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, and Aude Oliva.
Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual
object recognition reveals hierarchical correspondence. Scientific reports, 6(1):27755, 2016.

[30] Haiguang Wen, Junxing Shi, Yizhen Zhang, Kun-Han Lu, Jiayue Cao, and Zhongming Liu.
Neural encoding and decoding with deep learning for dynamic natural vision. Cerebral cortex,
28(12):4136–4160, 2018.

[31] Joel Dapello, Tiago Marques, Martin Schrimpf, Franziska Geiger, David Cox, and James J
DiCarlo. Simulating a primary visual cortex at the front of cnns improves robustness to image
perturbations. Advances in Neural Information Processing Systems, 33:13073–13087, 2020.

[32] William Berrios and Arturo Deza. Joint rotational invariance and adversarial training of
a dual-stream transformer yields state of the art brain-score for area v4. arXiv preprint
arXiv:2203.06649, 2022.

[33] Kuan Han, Haiguang Wen, Junxing Shi, Kun-Han Lu, Yizhen Zhang, Di Fu, and Zhongming
Liu. Variational autoencoder: An unsupervised model for encoding and decoding fmri activity
in visual cortex. NeuroImage, 198:125–136, 2019.

[34] Minkyu Choi and Jun Tani. Predictive coding for dynamic visual processing: development
of functional hierarchy in a multiple spatiotemporal scales rnn model. Neural computation,
30(1):237–270, 2018.

[35] Chengxu Zhuang, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C Frank, James J
DiCarlo, and Daniel LK Yamins. Unsupervised neural network models of the ventral visual
stream. Proceedings of the National Academy of Sciences, 118(3):e2014196118, 2021.

[36] Aria Yuan Wang, Kendrick Kay, Thomas Naselaris, Michael J Tarr, and Leila Wehbe. Incor-
porating natural language into vision models improves prediction and understanding of higher
visual cortex. BioRxiv, pages 2022–09, 2022.

[37] Talia Konkle and George Alvarez. Deepnets do not need category supervision to predict visual
system responses to objects. Journal of Vision, 20(11):498–498, 2020.

[38] Reuben Rideaux and Andrew E Welchman. But still it moves: static image statistics underlie
how we see motion. Journal of Neuroscience, 40(12):2538–2552, 2020.

[39] Patrick Mineault, Shahab Bakhtiari, Blake Richards, and Christopher Pack. Your head is there
to move you around: Goal-driven models of the primate dorsal pathway. Advances in Neural
Information Processing Systems, 34:28757–28771, 2021.

[40] Umut Güçlü and Marcel AJ van Gerven. Increasingly complex representations of natural movies
across the dorsal stream are shared between subjects. NeuroImage, 145:329–336, 2017.

[41] Shahab Bakhtiari, Patrick Mineault, Timothy Lillicrap, Christopher Pack, and Blake Richards.
The functional specialization of visual cortex emerges from training parallel pathways with
self-supervised predictive learning. Advances in Neural Information Processing Systems,
34:25164–25178, 2021.

[42] Thomas Serre. Deep learning: the good, the bad, and the ugly. Annual review of vision science,
5:399–426, 2019.

[43] Hyun-Chul Kim, Sangsoo Jin, Sungman Jo, and Jong-Hwan Lee. A naturalistic viewing
paradigm using 360 panoramic video clips and real-time field-of-view changes with eye-gaze
tracking. NeuroImage, 216:116617, 2020.

[44] Pierre Sermanet, Andrea Frome, and Esteban Real. Attention for fine-grained categorization.
arXiv preprint arXiv:1412.7054, 2014.

12



[45] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see better: Recurrent attention
convolutional neural network for fine-grained image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4438–4446, 2017.

[46] Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, and Kostas Daniilidis. Polar
transformer networks. arXiv preprint arXiv:1709.01889, 2017.

[47] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang, and Gao Huang. Glance and focus:
a dynamic approach to reducing spatial redundancy in image classification. Advances in Neural
Information Processing Systems, 33:2432–2444, 2020.

[48] Yiyou Guo, Jinsheng Ji, Xiankai Lu, Hong Huo, Tao Fang, and Deren Li. Global-local attention
network for aerial scene classification. IEEE Access, 7:67200–67212, 2019.

[49] Kevin Wu, Eric Wu, and Gabriel Kreiman. Learning scene gist with convolutional neural
networks to improve object recognition. In 2018 52nd Annual Conference on Information
Sciences and Systems (CISS), pages 1–6. IEEE, 2018.

[50] AM Derrington and P Lennie. Spatial and temporal contrast sensitivities of neurones in lateral
geniculate nucleus of macaque. The Journal of physiology, 357(1):219–240, 1984.

[51] Michael Connolly and David Van Essen. The representation of the visual field in parvicellular
and magnocellular layers of the lateral geniculate nucleus in the macaque monkey. Journal of
Comparative Neurology, 226(4):544–564, 1984.

[52] Christine A Curcio, Kenneth R Sloan, Robert E Kalina, and Anita E Hendrickson. Human
photoreceptor topography. Journal of comparative neurology, 292(4):497–523, 1990.

[53] Juhong Min, Yucheng Zhao, Chong Luo, and Minsu Cho. Peripheral vision transformer. arXiv
preprint arXiv:2206.06801, 2022.

[54] Chittesh Thavamani, Mengtian Li, Nicolas Cebron, and Deva Ramanan. Fovea: Foveated
image magnification for autonomous navigation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 15539–15548, 2021.

[55] Aditya Jonnalagadda, William Yang Wang, BS Manjunath, and Miguel P Eckstein. Foveater:
Foveated transformer for image classification. arXiv preprint arXiv:2105.14173, 2021.

[56] Emre Akbas and Miguel P Eckstein. Object detection through search with a foveated visual
system. PLoS computational biology, 13(10):e1005743, 2017.

[57] Anne Harrington and Arturo Deza. Finding biological plausibility for adversarially robust
features via metameric tasks. In SVRHM 2021 Workshop@ NeurIPS, 2021.

[58] Manish Reddy Vuyyuru, Andrzej Banburski, Nishka Pant, and Tomaso Poggio. Biologically
inspired mechanisms for adversarial robustness. Advances in Neural Information Processing
Systems, 33:2135–2146, 2020.

[59] Binxu Wang, David Mayo, Arturo Deza, Andrei Barbu, and Colin Conwell. On the use of
cortical magnification and saccades as biological proxies for data augmentation. arXiv preprint
arXiv:2112.07173, 2021.

[60] Alyssa A Brewer, William A Press, Nikos K Logothetis, and Brian A Wandell. Visual ar-
eas in macaque cortex measured using functional magnetic resonance imaging. Journal of
Neuroscience, 22(23):10416–10426, 2002.

[61] Ricardo Gattass and Charles G Gross. Visual topography of striate projection zone (mt) in
posterior superior temporal sulcus of the macaque. Journal of neurophysiology, 46(3):621–638,
1981.

[62] Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image
synthesis. Science, 364(6439):eaav9436, 2019.

[63] Laurent Itti and Christof Koch. Computational modelling of visual attention. Nature reviews
neuroscience, 2(3):194–203, 2001.

13



[64] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[65] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

[66] Ming Jiang, Shengsheng Huang, Juanyong Duan, and Qi Zhao. Salicon: Saliency in context.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1072–1080, 2015.

[67] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[68] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[69] Thomas Naselaris, Kendrick N Kay, Shinji Nishimoto, and Jack L Gallant. Encoding and
decoding in fmri. Neuroimage, 56(2):400–410, 2011.

[70] James V Haxby, J Swaroop Guntupalli, Andrew C Connolly, Yaroslav O Halchenko, Bryan R
Conroy, M Ida Gobbini, Michael Hanke, and Peter J Ramadge. A common, high-dimensional
model of the representational space in human ventral temporal cortex. Neuron, 72(2):404–416,
2011.

[71] Matthew F Glasser, Stamatios N Sotiropoulos, J Anthony Wilson, Timothy S Coalson, Bruce
Fischl, Jesper L Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster, Jonathan R Polimeni,
et al. The minimal preprocessing pipelines for the human connectome project. Neuroimage,
80:105–124, 2013.

[72] Daniela Adolf, Snezhana Weston, Sebastian Baecke, Michael Luchtmann, Johannes Bernarding,
and Siegfried Kropf. Increasing the reliability of data analysis of functional magnetic resonance
imaging by applying a new blockwise permutation method. Frontiers in neuroinformatics, 8:72,
2014.

[73] Matthew F Glasser, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John Harwell, Essa
Yacoub, Kamil Ugurbil, Jesper Andersson, Christian F Beckmann, Mark Jenkinson, et al. A
multi-modal parcellation of human cerebral cortex. Nature, 536(7615):171–178, 2016.

[74] Haiguang Wen, Junxing Shi, Wei Chen, and Zhongming Liu. Deep residual network predicts
cortical representation and organization of visual features for rapid categorization. Scientific
reports, 8(1):3752, 2018.

[75] James W Bisley and Michael E Goldberg. Attention, intention, and priority in the parietal lobe.
Annual review of neuroscience, 33:1–21, 2010.

[76] Steven Yantis and John T Serences. Cortical mechanisms of space-based and object-based
attentional control. Current opinion in neurobiology, 13(2):187–193, 2003.

[77] John HR Maunsell and Stefan Treue. Feature-based attention in visual cortex. Trends in
neurosciences, 29(6):317–322, 2006.

14



Appendix: A Dual-Stream Neural Network Explains the
Functional Segregation of Dorsal and Ventral Visual Pathways in
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A Regions of Interests

In our study, we delineated our regions of interest (ROIs) into two primary segments: 1) the ventral
visual stream and object recognition-related regions and 2) the dorsal visual stream and overt attention-
related regions. This approach followed the parcellations proposed by [1]. For the dorsal visual
stream, the ROIs includes V3A, V3B, V6, V6A, and V7. Within the parietal cortex, visuo-spatial
information and overt attention are processed by the intraparietal sulcus (IPS) and the superior parietal
lobule (SPL) [2, 3, 4, 5, 6]. The IPS encompasses V7, IPS1, IP0, IP1, and IP2; whereas the SPL
consists of lateral intraparietal cortex (LIPv, LIPd), ventral intraparietal complex (VIP), anterior
intraparietal (AIP), medial intraparietal area (MIP), 7PC, 7AL, 7Am, 7PL, and 7Pm. We also included
the frontal eye field (FEF), which is acknowledged for controlling eye movements [7, 8, 9, 10]. In
contrast, the ROIs associated with object recognition and the ventral visual stream encompassed V8,
the posterior inferotemporal (PIT) complex, the fusiform face complex (FFC), and ventromedial
visual (VMV) areas 1, 2, 3, along with the lateral occipital area (LO). In addition, we included the
superior temporal sulcus (STS), which is recognized for processing multimodal signals, including
auditory and visual cues [11, 12, 13]. Fig. S1 displays the full set of region labels, corresponding to
Fig.3(a) from the main text. Among the parcellations by [1], regions including significantly predicted
voxels either by the WhereCNN or WhatCNN are presented in Fig. S1.
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Figure S1: Region labels. Regions including significant voxels from Fig.3(a) in the main text are
presented.
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B Training Details

The backbone Convolutional Neural Networks (CNNs) of both the WhereCNN and WhatCNN
share the same architecture, consisting of four blocks of convolutional operations. Situated atop the
backbone CNN, the WhereCNN and WhatCNN possess additional layers tailored to their specific
objectives: the WhereCNN features two convolutional layers that produce 2D saliency maps, whereas
the WhatCNN includes a Gated Recurrent Unit (GRU) layer followed by a fully connected layer for
object classification.

During the pre-training of the backbone CNN, a global average pooling and a fully connected layer
are integrated atop the backbone CNN, serving as a classifier. Upon completion of the pre-training
process, the classifier is detached, allowing the pre-trained backbone CNN to be incorporated as a
component of the WhereCNN or WhatCNN.

As detailed in Section 3.1 of the main text, our model underwent a three-stage training process. In
this section, we will elaborate on the specifics of the pre-training phase.

Stage 1 - WhereCNN The backbone architecture of the WhereCNN was pre-trained on ILSVRC2012
[14] for an image classification task over 120 epochs. A batch size of 1, 024 was employed, along with
the Adam optimizer [15] (lr=0.001, β1=0.9, β2=0.99). During pre-training, fixations for the retinal
transformation were randomly generated across the image area. Once the backbone architecture
had been pre-trained, we detached the classifier and initialized the WhereCNN using the model
parameters obtained from the pre-training stage. We then performed SALICON training, as described
in Section 3.1 of the main text.

Stage 2 - WhatCNN In a process mirroring Stage 1, the backbone of the WhatCNN was also
pre-trained on ILSVRC2012 [14] for an image classification task over 120 epochs, utilizing random
fixations and the Adam optimizer (lr=0.001, β1=0.9, β2=0.99). After pre-training the backbone CNN,
we initialized the WhatCNN using the weights of the pre-trained backbone CNN.

Subsequently, the WhatCNN, initialized with the pre-trained weights as a whole, was trained on
ILSVRC2012 [14] for object recognition using four fixations. Four randomly generated fixations were
employed for training the WhatCNN for 55 epochs, again utilizing the Adam optimizer (lr=0.001,
β1=0.9, β2=0.99). After this stage, we conducted a fine-tuning process using the learned fixations
from the WhereCNN. In this stage, the WhereCNN, after the pre-training in Stage 1, was incor-
porated to guide the WhatCNN’s fixations. However, only the WhatCNN was optimized, while
the WhereCNN remained unchanged. This fine-tuning with learned fixations deployed four gazes,
utilizing the Adam optimizer (lr=0.0001, β1=0.9, β2=0.99) over 25 epochs. Finally, the WhatCNN
underwent further training on MSCOCO, as described in Section 3.1 of the main text.

Stage3 - WhereCNN & WhatCNN During this stage, both WhereCNN and WhatCNN, trained in
the previous stages, were used to initialize model weights, followed by further end-to-end training,
leveraging the stream-specific objectives (object recognition and saliency prediction, respectively).
As the training requires labels for both tasks, the model was trained using images in the SALICON
dataset, which contain labels for both saliency prediction and object recognition.

The model samples fixations from the predicted saliency maps from WhereCNN. As this sampling
process is non-differentiable, the gradients from object recognition cannot optimize the weights of
WhereCNN. To tackle this issue, we utilized REINFORCE [16] to approximate the gradient for
WhereCNN. At the time t, a fixation lt is generated by WhereCNN, based on which WhatCNN
predicts a class prediction pt. Then, in the context of REINFORCE, the reward rt of choosing
lt as the fixation is calculated as the reduced classification loss relative to the previous time step
rt = CE(pt−1, labelc)− CE(pt, labelc), where CE is the cross-entropy loss, labelc is class labels.
The goal of REINFORCE is to maximize the discounted sum of rewards, R =

∑T
t=1 γ

t−1rt, where
γ ∈ (0, 1) is the discount factor and set as 0.8.

In this stage, we strived to minimize the object recognition and saliency prediction losses while
maximizing the discounted sum of rewards. As indicated in Section 3.1 of the main text, we utilized
the Adam optimizer (lr=0.0002, β1=0.9, β2=0.99) for 25 epochs for this training stage.

For All Stages All training stages were conducted using four NVIDIA A40 GPUs. All codes are
written in Pytorch 1.9.1.
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C Saliency Maps and Inhibition of Returns

Once the saliency maps were generated by WhereCNN, inhibition of return (IOR) was used to prohibit
future fixations to re-visit image areas that had been already explored. This process is illustrated in
Fig. S2

*

WhereCNN

Saliency Map

IOR

Saliency Map with IOR

Sample Next Fixation Point

: Current Fixation Point

: Next Fixation Point

Figure S2: Process of determining the next fixation point given the current fixation. A saliency map,
generated by WhereCNN, is multiplied element-wise (indicated by ∗) with the inhibition of return
(IOR) to prevent future fixations from reverting to previous positions. In the IOR, white and black
colors correspond to values of 1 and 0, respectively.

In the process of determining the next fixation, the WhereCNN generate a saliency map based
on the current fixation. The location of this subsequent fixation is guided by the saliency map’s
probabilistic distribution. However, it’s important to note that if the current fixation point possesses a
high probability, subsequent fixations are likely to occur in proximity to the present fixation.

To ensure a more dynamic and comprehensive exploration of the visual field, we employed the
principle of Inhibition of Return (IOR), detailed in Eq.2 of the main text, and presented again here in
Eq.4.

IOR(t) = ReLU
(
1−

t∑
τ=1

G(µ = lτ ,Σ = σ2I)
)

(4)

where G(µ,Σ) is a 2D Gaussian function centered at lτ (prior fixations) with a standard deviation σ
at the τ -th step. The Inhibition of Return (IOR) is initially created at a resolution of 224× 224 with
σ = 25, and subsequently resized to align with the dimensions of the saliency map. IOR serves to
decrease the saliency of previously attended areas, thereby preventing the model from repetitively
focusing on these regions. This mechanism is informed by the model’s all prior fixation history.
The IOR map is designed such that it assigns lower values (approaching 0.0) in the vicinity of prior
fixation points, and higher values (up to 1.0) in regions further away. Thus, when the IOR map is
element-wise multiplied with the saliency map, it effectively reduces the saliency values in areas
already explored.

Following the application of IOR, the subsequent fixation point is decided upon by considering
the adjusted saliency map. It is then chosen based on the probabilistic distribution within this
updated map. This strategy encourages more diverse fixations and facilitates a broader and more
comprehensive understanding of the scene.

D WhereCNN’s Saliency Maps and Fixation Points

The original images are presented in Cartesian coordinates. Once the retinal transformation is applied
to these images, the resultant retinal images adopt retinal coordinates, as detailed in Eq.1 of the main
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text. Since the inputs to the WhereCNN operate in retinal coordinates, it naturally follows that the
output saliency maps mirror this coordinate system. To visualize these within this paper, we utilize
the inverse function of Eq.1, thereby transforming the saliency maps from retinal back to Cartesian
coordinates.

In preparation for our model’s processing of the movie Raiders of the Lost Ark, we reduce the frame
rate to 6 frames per second (fps). This adjustment helps mitigate computational and memory costs
associated with the handling of the extracted features. As the model engages with the movie, a solitary
fixation point is established for each frame. Importantly, the Inhibition of Return (IOR) mechanism is
not invoked during the model’s interaction with the movie. Fig. S3 showcases saliency maps and
fixation points derived from segments of the movie Raiders of the Lost Ark. Frames situated on the
same horizontal axis are selected at a rate of 1 fps.
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Figure S3: Given the movie frames (1st row), the WhereCNN generates saliency maps (2nd row) and
fixations (3rd row). The red marker in the 3rd row presents the fixation point.

.

E Investigating Layer-wise Correspondence to Visual Cortex

In the main text, the whole features from the all layers of each stream are used for predicting voxel
activities (noted as Stream-wise encoding). In an alternative way, the features from each layer can be
used to predict voxel activities, instead of concatenating all the layers, (noted as Layer-wise encoding).
In this way, the hierarchical correspondence between each layer in the model to the ROIs of the visual
system can be observed.

With the layer-wise encoding scheme, we predicted fMRI responses using features from each layer
in the WhereCNN and WhatCNN. Fig. S4 associates each voxel to one (color-coded) layer most
predictive of that voxel for either (a) WhatCNN or (b) WhereCNN. Fig. S4 (a) shows that the lower
layers of WhatCNN better predict earlier visual areas such as V1/V2, whereas the higher layers of
WhatCNN better predict higher-order visual areas such as LO and PIT, consistent with prior studies
[17, 18]. The results with the WhereCNN show different patterns, as shown in Fig. S4 (b). Within
early visual areas, the lower layers of WhereCNN better predict foveal representations, whereas the
higher layers better predict peripheral representations.

(a) WhatCNN

Layer-wise Voxel Predictions
(b) WhereCNN

Layer Index of WhatCNN

1st 2nd 3rd 4th 5th

EarlierHigher

Visual Cortex Hierarchy

Central
Vision

Peripheral
Vision

Peripheral
Vision

Visual Fields

Layer Index of WhereCNN

1st 2nd 3rd 4th 5th

Earlier Higher

Figure S4: Each voxel is predicted by the features from a single layer from (a) WhatCNN and (b)
WhereCNN. Layer indexes are color-coded so that the layer best predicting each voxel is presented.

F Implications to the Computer Visions

In the current study, we demonstrated that the biologically plausible components (two stream, retinal
sampling and eye movements) can be used to build a better model for the human visual cortex in a
naturalistic viewing condition. At the same time, those components we considered in this study may
also bring benefits to the computer vision applications.

1) Efficiency. Unlike conventional CNNs that process entire images, our dual-stream model allows
serial processing. It concentrates processing power on key image regions through attention directed
fixations. This serial processing may significantly lower memory and computational overhead,
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because resources are allocated only to the crucial image regions. It is plausible that such efficiency
underpins the brain’s adoption of dual stream processing due to biological constraints on energy use.

2) Adaptability. The dual streams of our model offer complementary lenses for visual exploration
and perception in real-world environments. One stream provides a broad yet rough overview of the
environment. The other gathers detailed observations with precision. Their synergistic interaction may
facilitate adaptive behaviors for tasks like visual search, object detection in complex and cluttered
scenes. Moreover, the distinct functions of each of the parallel streams present a combinatorial
flexibility when leveraged together, potentially enhancing the model’s overall capability to adapt to
diverse visual challenges, including potential applications in robotics.

However, leveraging such potential benefits within the scope of current study face challenges. First,
mainstream datasets like ImageNet and MS-COCO offer a narrow view and lack the high-resolution
detail our model thrives on. Moreover, these datasets often focus on large, central objects, limiting
our model’s adaptability that benefits object recognition. A better benchmark to our model would be
high-resolution panoramic images or synthetic virtual reality environments to accommodate unlimited
fixation variances. In such settings, the efficiency and adaptability of our model should be more
appealing.
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