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A corgi is 
playing drum kit.

A sheep and a cow.

A teddy bear is 
swimming in the ocean.

A cat wearing sunglasses and 
working as a lifeguard at a pool.

A storm trooper 
vacuuming the beach.

A Panda drinking coffee 
in a cafe in Paris.

Figure 1. Video-T1: We present the generative effects and performance improvements of video generation under Test-Time Scaling (TTS)
settings. The videos generated with TTS are of higher quality and more consistent with the prompt than those generated without TTS.

Abstract

With the scale capability of increasing training data, model
size, and computational cost, video generation has achieved
impressive results in digital creation, enabling users to
express creativity across various domains. Recently, re-
searchers in Large Language Models (LLMs) have ex-
panded the scaling to test-time, which can significantly im-
prove LLM performance by using more inference-time com-
putation. Instead of scaling up video foundation models
through expensive training costs, we explore the power of
Test-Time Scaling (TTS) in video generation, aiming to an-
swer the question: if a video generation model is allowed
to use non-trivial amount of inference-time compute, how
much can it improve generation quality given a challenging
text prompt. In this work, we reinterpret the test-time scal-

*Equal contribution. † The corresponding author.

ing of video generation as a searching problem to sample
better trajectories from Gaussian noise space to the target
video distribution. Specifically, we build the search space
with test-time verifiers to provide feedback and heuristic al-
gorithms to guide searching process. Given a text prompt,
we first explore an intuitive linear search strategy by in-
creasing noise candidates at inference time. As full-step
denoising all frames simultaneously requires heavy test-
time computation costs, we further design a more efficient
TTS method for video generation called Tree-of-Frames
(ToF) that adaptively expands and prunes video branches
in an autoregressive manner. Extensive experiments on text-
conditioned video generation benchmarks demonstrate that
increasing test-time compute consistently leads to signifi-
cant improvements in the quality of videos. Project Page:
https://liuff19.github.io/Video-T1.

ar
X

iv
:2

50
3.

18
94

2v
2 

 [
cs

.C
V

] 
 1

 A
pr

 2
02

5

https://liuff19.github.io/Video-T1


1. Introduction
The field of generative modeling has witnessed remarkable
progress in recent years [1, 39, 42, 60], with applications
spanning from image and text generation to more complex
tasks, such as video synthesis. Among these, video gen-
eration [22, 23] stands out due to its potential to revolu-
tionize digital content creation, enabling the automatic pro-
duction of high-quality videos from simple textual descrip-
tions [62]. This capability has profound implications for
various industries [22, 23, 30] (e.g., entertainment, educa-
tion, and advertisements). The pivotal factor of the expo-
nential growth in video generation lies in the scaling-up ca-
pability by training with an expanding volume of data, more
computational sources, and larger model sizes [22, 38].
This scaling behavior during the training process, com-
monly referred to as Scaling Laws [12, 19, 38, 41], plays a
crucial guiding role in the advancement of generative mod-
els with progressively higher capabilities.

Despite these advancements, generating high-quality
videos remains challenging due to the need for maintain-
ing temporal coherence and capturing complex dynamics
across frames [62]. While scaling video generation meth-
ods in the training process [22, 32] has yielded significant
improvements, it is inherently limited by high costs and re-
source demands, making it challenging to scale further. Re-
cently, researchers in LLMs have expanded the study of
scaling to the test-time [29] (e.g., DeepSeek-R1 [8] and
OpenAI o1 [15]) and demonstrated that Test-time Scaling
(TTS) can significantly improve the performance of LLMs
with more contextually appropriate responses by allocating
additional computation at inference time [8, 15, 48, 54].

In this paper, we propose to investigate Test-Time Scal-
ing (TTS) for video generation. Specifically, we aim to an-
swer the question: If a video generation model is permit-
ted to use the larger amount of inference-time computation,
how much can it improve the generation quality for chal-
lenging text prompts? We seek to explore the potential of
TTS to enhance video generation without the need for ex-
pensive retraining or model enlargement. To understand the
benefits of scaling up test-time computation in video diffu-
sion, we propose a general framework for TTS video gener-
ation, called Video-T1, which reinterprets the TTS of video
generation as a searching problem within the space of possi-
ble video trajectories originating from Gaussian noise. The
key insight is to scale the search space at test time with in-
creased computation so that we can find a broader range
of potential solutions to generate higher-quality and text-
aligned videos. In our search framework, we introduce test-
time verifiers to assess the quality of intermediate results
and heuristic algorithms to navigate the search space ef-
ficiently. Initially, we conduct a straightforward random
linear search strategy by sampling N noise candidates in
parallel and selecting the one that scores the highest per a

test-time verifier. However, recognizing the computational
intensity of this approach, particularly when denoising all
video frames simultaneously, we introduce a more efficient
framework called Tree-of-Frames (ToF). ToF operates in an
autoregressive manner under a tree structure, which lever-
ages the feedback from verifiers and adaptively expands and
prunes branches of video frames to balance computational
cost and generation quality. Through extensive experiment
on text-conditioned video generation benchmark, our find-
ings reveal that increasing test-time compute leads to sub-
stantial improvements in the quality and human-preference
alignment of samples generated by video generation mod-
els. Longer term, this offers a significant promise on how
to leverage inference-time computation to achieve superior
results in computer vision. (See qualitative results gallery
in Figure 1 and quantitative results in Figure 2). Our contri-
butions are summarized as follows:
• We propose a fundamental framework Video-T1 for test-

time scaling for video generation, which reinterprets this
process as a search problem to sample better video tra-
jectories. We show that scaling the search space of video
generation can boost video performance across different
dimensions of the benchmark.

• We carefully build the search space in test-time scaling by
test-time verifiers to provide feedback and heuristic algo-
rithms (i.e., a straightforward random linear search and
ToF search for more efficient test-time scaling) to guide
the search process.

• Extensive experiments demonstrate that scaling the
search space of video generation can boost the perfor-
mance of various video generation models across differ-
ent dimensions of the benchmark, and our proposed ToF
search can significantly reduce scaling cost when achiev-
ing high-quality results.

2. Related Work
Test-Time Scaling in LLMs. Recent advancements have
demonstrated the effectiveness of test-time scaling (TTS)
methods such as chain-of-thought prompting [34, 55], out-
come reward models, and process reward models [25, 52,
64] in enhancing the reasoning capabilities of large lan-
guage models (LLMs) during inference stages. Notable
examples include implementations in OpenAI o1 [15] and
DeepSeek-R1 [8]. These methods promote the genera-
tion of intermediate reasoning steps, resulting in more pre-
cise responses. These researches suggests that reallocat-
ing computational resources from pre-training [18] to test-
time can enhance performance more efficiently [29, 44].
Moreover, strategies like self-consistency [5, 53], best-of-
N [36, 46], Monte Carlo Tree Search [56, 67], and Reward-
guided Search [6, 20] employ diverse generation techniques
and sophisticated aggregation methods, often facilitated by
process reward models. These approaches help in produc-
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Figure 2. Results of Test-Time Scaling for Video Generation. As the number of samples in the search space increases by scaling test-
time computation (TTS), the models’ performance exhibits consistent improvement (In the bar chart, light colors correspond to the results
without TTS, while dark colors represent the improvement after TTS.).

ing diverse and integrated outputs. Additionally, DeepSeek
R1 [8] utilizes outcome-based reinforcement learning tech-
niques, like group relative policy optimization [43], to en-
hance the reasoning capabilities of pre-trained models. The
combination of parallel and sequential generation tech-
niques in these models represents a nuanced approach to
generating contextually appropriate outputs, thereby estab-
lishing new operational standards for LLMs in complex
problem-solving scenarios.
Test-Time Scaling in Computer Vision. In both the vi-
sual understanding and visual generation fields, researchers
have investigated various test-time scaling methods to fur-
ther push the performance boundaries. With the success of
test-time scaling methods in LLMs, several recent vision
language models (VLMs) [49, 57] utilized step-by-step rea-
soning capability enhanced by test-time scaling methods
and surpassed larger models in visual question-answering
tasks. Recent investigations on image diffusion models
have demonstrated that image diffusion models’ genera-
tion quality could be further enhanced with test-time scaling
methods [9]. With verifiers providing judgments and algo-
rithms selecting better candidates, image diffusion models
consistently improve their performance across generation
tasks by scaling up inference time [33].
Video Generation. Efficient and high-quality video gener-
ation has attracted increasing attention due to its wide appli-
cations in areas [26–28, 47]. With the success of diffusion
models [11, 40] in text-to-image generation, several studies
have extended them to text-to-video (T2V) tasks, achiev-
ing promising results. One line of work [2, 4, 13, 31, 60]
improves video quality by scaling up diffusion transformer
(DiT) [37] pre-training, leading to high visual fidelity
and smoother motion. These models have reached near-

production-level performance but require extensive compu-
tational resources, especially for long videos [16]. Another
line of work [3, 7, 16, 17, 21, 59] combines diffusion models
with autoregressive mechanisms to better handle long and
complex videos. For example, NOVA [7] generates videos
by predicting frames sequentially over time while sampling
tokens in random spatial order, unifying various generation
tasks into a single framework. Pyramid-Flow [16] redefines
the generation process as a multi-scale trajectory over com-
pressed representations, using spatial and temporal pyra-
mids to reduce training costs while maintaining quality. The
autoregressive approaches show strong potential to gener-
ate longer, coherent, and high-quality videos with improved
efficiency, making them a promising direction for future re-
search.

3. Method
3.1. How to Scale Video Generation at Test Time
In the realm of LLMs, researchers have explored the ben-
efits of scaling up test-time computation to boost model
performance. Several key factors have been identified that
shape the effectiveness of test-time scaling strategies in
LLMs, such as the choice of policy models, process re-
ward models (PRMs), and varying levels of problem diffi-
culty [29, 45]. Similarly, Test-Time Scaling (TTS) in video
generation hinges on key components like different video
generation models, multimodal evaluation models, and the
complexity of prompts across diverse benchmark dimen-
sions. However, unlike LLMs, video generation poses spe-
cific challenges. First, videos inherently exhibit strong tem-
poral continuity, meaning that while they consist of discrete
frames, ensuring smooth transitions between frames is es-
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Figure 3. Pipeline of Test-Time Scaling for Video Generation. Top: Random Linear Search for TTS video generation is to randomly
sample Gaussian noises, prompt the video generator to generate sequential of video clips through step-by-step denoising in a linear manner,
and select the highest score form the test verifiers. Bottom: Tree of Frames (ToF) Search for TTS video generation is to divide the video
generation process into three stages: (a) the first stage performs image-level alignment that influences the later frames; (b) the second stage
is to apply dynamic prompt in test verifiers V to focus on motion stability, physical plausibility to provide feedback that guides heuristic
searching process; (c) the last stage assesses the overall quality of the video and select the video with highest alignment with text prompts.

sential for perceptually coherent results. Second, state-of-
the-art video generation models are primarily based on dif-
fusion models, which employ a multi-step denoising pro-
cess that complicates the direct scaling of computational re-
sources. These factors introduce additional complexities:
test-time scaling in video generation must simultaneously
address both spatial (frame-level) quality and temporal con-
sistency while also considering the heavy iterative diffusion
denoising process.

To address these challenges, we propose to reinterpret
video TTS as a path-search problem to sample better tra-
jectories from pure Gaussian noise space to the target video
distribution. The key insight is to scale the search space at
test time with increased computation so that we can explore
a broader range of potential solutions to generate higher-
quality and text-aligned videos. Taking a closer look at this
scheme, a video can be represented as a sequence of dis-
crete frames. Considering the temporal nature of the frame
sequence, it can be modeled as a chain-like architecture,
where the video generation resembles the growth of a de-
generate tree (i.e., a tree where each non-leaf node has ex-
actly one child – rooted in the Gaussian noise space of the
video domain). In this way, we formalize the generation of
a high-quality video as a searching problem: starting from

an initial root node, we seek a path through T steps that
reaches a leaf node, maximizing the quality along the gen-
erated sequence. To build such a search space, we define
several key components:
• Video Generator G: Video generation models, which

generate videos from given text prompts by the multi-step
denoising process. Formally, we define:

G : c→ RH×W×C×T , (1)

where c represents the input text condition, and the output
is a generated video with T frames.

• Test Verifiers V: Multimodal evaluation models that as-
sess the quality of generated videos and assign a final
score to provide feedback in the generation process. This
can be expressed as:

V : RH×W×C×T × c→ R, (2)

where the function takes both the generated video and the
input condition to produce a scalar quality score.

• Heuristic Search Algorithms f : The optimization meth-
ods that leverage feedback from the verifier to guide
the search trajectory, ultimately finding better video se-
quences. We define this as:

f : G × V × (RH×W×C)N × c→ RH×W×C×T , (3)
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where (RH×W×C)N represents the set of N initial
noise samples (i.e., root nodes in the search forest), and
RH×W×C×T denotes the final selected video sequence
(i.e., a path from a root node to a leaf node at depth T ).

3.2. Random Linear Search
A straightforward approach for TTS video generation is to
randomly sample Gaussian noises, prompt G to generate
complete video sequences by performing the full denois-
ing process for each sample, and perform the Best-of-N se-
lection to obtain the one with the highest score from the
test verifiers V . We refer to this method as random linear
search (the top of Figure 3), as it performs step-by-step de-
noising in a linear manner along the noise dimension. In this
search algorithm, each noise sample deterministically cor-
responds to a determined video output, and the only scaling
factor for test-time scaling is the number of noise samples
N , leading to a computational cost that increases linearly
with the number of samples.

From a more structural perspective, random linear search
can be interpreted as a forest consisting of N degenerate
trees, where each tree represents an independent sequence
of T denoising steps. The search task then reduces to select-
ing a better length-T path among them. The total number of
nodes in the forest is TN , leading to a generation time com-
plexity of O(TN). Since each video evaluation requires a
constant-time assessment of its quality, the evaluation cost
per sample is O(1), resulting in an overall quadratic time
and space complexity O(TN).

While random linear search provides a simple baseline,
its linear structure introduces two inherent limitations: 1)
Simplicity of linear structure. Although the final path se-
lects a single branch, the tight bounds of this approach re-
quire exhaustive traversal of the entire space, lacking effi-
cient optimization mechanisms. 2) Isolation of indepen-
dent structure. Without any feedback or interaction mech-
anisms between trees, it introduces additional randomness,
making it slower for test-time scaling.

3.3. Tree-of-Frames Search
Random linear search is essentially adopted by a Best-of-N
strategy that scales test-time computation through increas-
ing the number of initial noise samples N . However, this
approach requires a fixed time complexity of O(TN) as an-
alyzed above, which becomes increasingly inefficient as ei-
ther N scales up or the video length T grows, making it
impractical for long video generation or high-quality sam-
pling at larger scales. To address this limitation and achieve
a better balance between video quality and test-time com-
putational efficiency, we propose Tree-of-Frames (ToF)
Search (Algorithm 2), which leverages the sequential gen-
eration capability of autoregressive models (unlike diffu-
sion models that denoise the entire video sequence simul-

Algorithm 1 Random Linear Search

Require: Number of noise samples N , video frame length
T , verifier V , video generator G and decoder D, Gaus-
sian noise distribution N

Ensure: Video v̂ with the highest verifier score

1: Initialize empty set C ← {}
2: for i = 1 to N do
3: Sample initial noise z(i) ∼ N
4: Initialize x

(i)
0 ← z(i)

5: for t = 1 to T − 1 do
6: {x(i)

τ | τ ∈ [0, t]} ← G({x(i)
τ | τ ∈ [0, t− 1]}, t)

7: end for
8: Decode video v(i) ← D({x(i)

τ | τ ∈ [0, T − 1]})
9: Compute score s(i) ← V(v(i))

10: Add (v(i), s(i)) to C
11: end for
12: Final verify v̂ ← arg max

(v,s)∈C
s

13: return v̂

taneously), introducing inference-time reasoning along the
temporal dimension. This approach enables a more flexible
and scalable video generation process, structured into three
distinct stages: given a text prompt as input, (a) the first
stage is to generate the initial frame with text-alignment on
various dimensions (e.g., spatial relation, appearance style,
color), which strongly impacts later frames due the continu-
ity of video frames; (b) the second stage focuses on generat-
ing intermediate frames which should consider the key fac-
tors like subject consistency, motion stability, even physics
plausibility to guarantee a smooth video flow; (c) the fi-
nal stage is dedicated to assessing the overall video quality
and alignment with text prompts. According to the goal of
three stages, we meticulously design three key techniques in
ToF search algorithm: image-level alignment, hierarchical
prompting, and heuristic pruning.
Image-level alignment. Different from LLMs, video gen-
eration involves both spatial and temporal dimensions.
Along the spatial axis, video frames are generated through
step-wise denoising employed in diffusion models. Inspired
by the Chain-of-Thought (CoT) reasoning mechanism in
image generation [9], we introduce a progressive evalua-
tion strategy at the frame level to dynamically scale com-
putation during the denoising process. Specifically, during
the denoising of each frame, a potential test verifier evalu-
ates whether the partially denoised image has reached suf-
ficient clarity for reliable assessment. Early stage frames
often remain too blurry for a meaningful evaluation, which
could mislead the scoring of frame quality. Once the frame
reaches a visually informative state, the model further as-
sesses its potential to evolve into a high-quality final im-
age. By performing early rejection of low-potential candi-
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dates and allocating compute toward promising trajectories,
image-level scaling ensures more efficient use of resources
during inference.

Hierarchical prompting. From a spatial perspective, each
video frame is generated as an independent image. How-
ever, different frames play distinct roles in shaping the
video’s narrative and temporal coherence. With the anal-
ysis above, we design a hierarchical prompting strategy in
three different stages: (a) for the first frame, we extract the
key prompts related to core semantics (e.g., color, object
count, relative positions) to prompt the verifiers to provide
feedback that determines the consistency and correctness
of subsequent frames; (b) for intermediate frames, we ap-
ply dynamic prompt in test verifiers V to focus on action
description and motion continuity based on the context es-
tablished by the first frame; (c) lastly, we prompt test ver-
ifiers to assess the overall quality of the final text-video
alignment while mitigating the risk of accumulating tem-
poral artifacts from excessive motion. To maintain smooth
transitions across these distinct stages, we introduce adap-
tive branching by injecting additional initial noise samples
when switching between stages, thereby improving tempo-
ral coherence and diversity.

Heuristic pruning. Throughout the generation process, we
model the video as the dynamic growth of a forest, where
trees represent possible generation paths and are expanded
and pruned over time. Similar to random linear search, we
start by generating N initial frames, corresponding to the
roots of N trees. Each time step t ∈ [0, T − 1] corresponds
to a layer in the tree, with each frame acting as a node. At
each time step, every surviving parent node kt−1 dynami-
cally branches into bt candidate continuations. All kt−1 · bt
nodes are evaluated using a heuristic reward score H by
test verifiers V , after which only the top kt nodes are re-
tained for further growth. The heuristic score balances local
frame quality with global consistency to prioritize the most
promising paths. By iteratively applying adaptive branching
and heuristic pruning, ToF search efficiently explores the
search space while maintaining manageable compute costs.
See Algorthm 2 for more details.

Complexity analysis. The time complexity of growing one
level of the tree is:

O(kt−1bt + bt log(kt−1bt)). (4)

Here, generating kt−1bt nodes takes O(kt−1bt) time, and
heap sorting for pruning costs O(bt log(kt−1bt)). By iter-
atively applying dynamic branching and heuristic pruning,
the deepest leaf nodes in the forest correspond to the final
frames of the video, with the path to those nodes represent-
ing the optimal video sequence. The overall time complex-

ity of this process is:

O(k0 +

T−1∑
t=1

kt−1bt + bt log(kt−1bt)). (5)

In practice, we set k0 = N and a branching limit bi ≤ b =
2. In the worst-case scenario, assuming bi = b = 2 for all
i, the resulting time complexity is:

O(N + TN + 2T log(N)) = O(TN). (6)

This complexity is consistent with the random linear search.
In our practical experiments, we perform branching opera-
tions only at specific prompt stages to ensure a diverse and
stable transition between stages. Consequently, bt remains
1 for most timesteps, and Eq. 5 can simplify to O(N + T ).
Compared to the quadratic complexity of random linear
search, our proposed ToF significantly reduces computa-
tional costs while maintaining high sample diversity. The
logarithmic dependency on N ensures efficient scaling. Ad-
ditionally, by dynamically adjusting the branching factor,
we achieve a better trade-off between exploration in early
timesteps and convergence in later stages. For detailed com-
plexity analysis, please refer to supplementary materials.

3.4. Multi-Verifiers
Beyond test-time scaling in policy models, previous re-
search [24, 35, 65] has demonstrated that applying test-
time scaling to generative verfier models can significantly
enhance performance. This improvement can be achieved
through methods such as majority voting with a single veri-
fier model [35] or by ensembling multiple verifiers [24]. To
further boost the performance of test-time scaling in video
generation, we employ a mixture of different verifiers to
mitigate biases and select the best videos from the candi-
dates:

î = argmax
0<i<n

(
H(f (i))

)
= argmax

0<i<n

(
1

|M|
∑
v∈M

cvRankv(f (i))

)
,

(7)

where M is the set of test verifiers, Rankv indicates the
score ranking assigned by verifier v ∈ M to the ith candi-
date video f (i), cv denotes the weight associated with veri-
fier v, n is the total number of sampled candidates, and î is
the index of the candidate with the highest score. This ap-
proach ensures the robustness of test-time scaling and yields
better performance gains.

4. Experiment
4.1. Experiment Setup
Video Generation Models. We evaluate our TTS strat-
egy (i.e., random linear search and ToF search) using six
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Algorithm 2 Tree-of-Frames (ToF) Search

Require: Initial number of roots N , maximum tree depth
T , branching factors {bt}Tt=1, pruning sizes {kt}Tt=0,
heuristic score H by test verifier V , video generator G
with image-level scaling, noise distribution N

Ensure: Video path v̂ with the highest heuristic score

1: Initialize empty priority queue Q
2: for i = 1 to N do
3: Sample initial noise z(i) ∼ N
4: Inital root frame f

(i)
0 ← z(i), 0

5: Enqueue (f
(i)
0 , score = 0, path = {f (i)

0 }) into Q
6: end for
7: for t = 1 to T do
8: Initialize empty list C ← {}
9: for j = 0 to kt−1 do

10: Dequeue node (f, s, p) from Q
11: for m = 1 to bt do
12: Generate continuation fm ← G(f, t)
13: Compute heuristic reward hm ← H(fm, t)
14: Add (fm, s+ hm, p ∪ {fm}) to C
15: end for
16: end for
17: Heap sort C by total score in descending order
18: Clear Q
19: for n = 1 to kt do
20: Enqueue the n-th top node from C into Q
21: end for
22: end for
23: Final verify (f̂ , ŝ, v̂)← arg max

(f,s,v)∈C
s

24: return v̂

popular open-sourced pre-trained video generation models,
including three diffusion-based video models (OpenSora-
v1.2 [66], CogVideoX-2B, and CogVideoX-5B [60]) and
three autoregressive models (NOVA [7], Pyramid-Flow
(SD3), and Pyramid-Flow (FLUX) [16]). These models
span a parameter range from 0.6B to 5B.
Test Verifiers. To obtain reasonable feedback and pro-
vide the heuristic score H in different stages, we leverage
three multi-modal reward models specific to video genera-
tion (i.e., VisionReward [58], VideoScore [10], and Vide-
oLLaMA3 [63]) to assess generated video quality under
two search algorithms. VisionReward [58] is designed to
capture human preferences across multiple dimensions (di-
viding the evaluation into 29 weighted questions), while
VideoScore [10] is initialized from LMM and trained on
a dataset containing human-provided multi-aspect scores to
automatically assess video quality. VideoLLaMA3 [63] is a
multimodal foundation model that exhibits state-of-the-art
image and video understanding. For comparison, we use

metrics VBench [14] as a ground-truth ”verifier” to demon-
strate the upper bound achievable by the three test verifiers.
Details of Search Algorithms. We conduct experiments
on two search algorithms assessed on VBench [14]. For
the random linear search, experiments are conducted on 6
video generation models using various verifiers, where the
initial sample noise level is incremented from 1 to 30 for
each trial. In the case of ToF search, the method is applied to
3 autoregressive models using the best-performing multiple
verifier where the initial sample noise is varied from 1 to 7.
Metrics. To quantify the performance of text-to-video gen-
eration, we use VBench [14], which is a comprehensive
benchmark incorporating 16 fine-grained dimensions that
evaluate both motion quality and semantic alignment. For
the computational cost, we extend the metric of the number
of function evaluations (NFE) [33, 50, 61] from image gen-
eration to video generation by defining NFE as the product
of the total number of denoising steps executed during the
generation process and the temporal length of latent embed-
dings, which takes the temporal dimension of the video into
inference computational costs.

4.2. Analysis of Experimental Results
TTS consistently yields stable performance gains across
different video generation models. We conduct a series
of random linear search experiments across multiple video
generation models using different verifiers. In these ex-
periments, the final video outputs were evaluated with the
VBench [14] total score—a composite metric aggregating
16 distinct dimensions of quality (e.g., motion smoothness,
semantic alignment, aesthetic quality). Figure 4 demon-
strates that as the inference computational budget increases,
all video generation models exhibit improved performance
across different verifiers, eventually approaching a conver-
gence limit once a certain threshold is reached. This find-
ing indicates that the TTS strategy can effectively guide the
search process during test time and significantly enhance
generation quality. Moreover, when comparing different
verifiers applied to the same video model, we observe vary-
ing growth rates and extents in their performance curves.
This divergence suggests that each verifier emphasizes dif-
ferent evaluation aspects.
Multiple verifiers can further boost the curve of TTS.
Beyond the test-time scaling in video generation models, we
ensemble the multiple verifiers in Figure 4 that can further
boost the performance of test-time scaling in video genera-
tion. Such a mixture of different verifiers can also mitigate
biases and select the best video from the candidates.
Advanced foundation models offer significant potential
for improvement with TTS. Additionally, comparative
analysis across video models in Figure 4 and Table 2 reveals
that lightweight models (e.g., NOVA) exhibit only marginal
performance improvements with increased inference effort,
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CogVideoX-2B CogVideoX-5BOpenSora-v1.2

NOVA Pyramid-Flow (SD3) Pyramid-Flow (FLUX)

Figure 4. Performance of random linear search on different video models and verifiers. The top row displays results for autoregressive
models, while the bottom row shows diffusion-based models. The initial points of the curves represent the random video sample results
without TTS. The models are arranged in order of increasing parameter count from left to right; different colored curves represent the
performance trends under various verifiers, and the gray dashed line corresponds to the baseline established by VBench, which serves as a
ground-truth verifier.

NOVA Pyramid-Flow (SD3) Pyramid-Flow (FLUX)

Figure 5. Comparison between random linear search and ToF search. The red curve represents random linear search. The blue curve
represents ToF search, with the dashed line being the predicted curve from a geometric series decay approximation. Curve fitting reveals
that similar subsequent trends tend to converge to an upper limit.

whereas larger models (e.g., CogVideoX-5B) benefit from
a substantially wider search space and thus achieve more
significant enhancements. This observation underscores the
potential of larger models to leverage the TTS strategy more
effectively, thereby yielding higher-quality video genera-
tion under increased computational budgets.

Table 1. Inference-time scaling cost comparison on GFLOPs.

Methods Linear Search ToF Search

Pyramid-Flow(FLUX) 5.22× 107 1.62× 107

Pyramid-Flow(SD3) 3.66× 107 1.13× 107

NOVA 4.02× 106 1.41× 106

ToF Search is more efficient and superior to the random
linear search. We implement the ToF search in three au-

toregressive models and conduct a comparison experiment
with the random linear search and ToF search in Figure 5.
We observe that the ToF search achieves comparable per-
formance at a much lower computational cost, highlighting
its high efficiency. To minimize the significant differences
in computational costs among models of different sizes, We
also show quantitative results of GFLOPs in Table 1. More-
over, larger and better models show higher efficiency, as
evidenced by the faster rising speed of the curve.
Performance across most dimensions can be greatly im-
proved with TTS. The complexity of prompts across di-
verse benchmark dimensions is a key component in video
TTS. We conduct experiments to quantitatively evaluate the
performance improvement of different models using TTS
methods across various dimensions (See Figure 6 and Ta-
ble 2). As ToF and random linear search can achieve
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OpenSora-v1.2

NOVA Pyramid-Flow Pyramid-Flow

CogVideoX-5B

(SD3) (FLUX)

CogVideoX-2B

Figure 6. Qualitative TTS performance improvement ratio on different complexities of prompts across different video generation
models across diverse benchmark dimensions of Vbench.

Table 2. Quantitative Performance Comparison on VBench across different video generation models.
Total Score Quality Score Semantic Score Object Class Scene Multiple Objects

Diffusion-based Models
CogVideoX-5B 81.61 82.75 77.04 85.23 53.20 62.11

+ TTS 84.42+3.44% 84.32+1.90% 84.83+10.1% 99.38+16.6% 63.07+18.6% 84.47+36.0%

CogVideoX-2B 80.91 82.18 75.83 83.37 51.14 62.63
+ TTS 83.89+3.68% 85.27+3.76% 78.39+3.38% 88.89+6.62% 52.94+3.52% 63.79+1.85%

OpenSora-v1.2 79.76 81.35 73.39 82.22 42.44 63.34
+ TTS 81.65+2.37% 81.90+0.68% 80.63+9.87% 98.29+19.5% 48.82+15.0% 66.99+5.76%

Autoregressive Models
Pyramid-Flow (SD3) 81.72 84.74 69.62 86.67 43.20 50.71

+ TTS 85.31+4.39% 86.84+2.48% 79.21+13.8% 90.31+4.20% 58.39+35.2% 78.00+53.8%

Pyramid-Flow (FLUX) 81.61 84.11 71.61 93.49 47.65 61.08
+ TTS 86.51+5.86% 87.50+3.26% 82.56+18.6% 99.69+6.63% 56.07+17.7% 88.93+45.6%

NOVA 78.56 83.79 57.63 91.36 45.22 67.87
+ TTS 79.80+1.58% 84.99+1.43% 59.03+2.43% 93.91+2.79% 47.69+5.46% 69.89+2.98%

a similar convergence score during test-time scaling, we
choose the better score for (+TTS). We find that for com-
mon prompt sets (e.g., Scene, Object) and easily assessable
categories (e.g., Imaging Quality), TTS methods achieve
significant improvements across different models.

A few dimensions heavily rely on the capabilities of foun-
dation models, making improvements challenging for
TTS. However, for some hard-to-evaluate latent properties
(e.g., Motion Smoothness, Temporal Flickering), the im-
provement is less pronounced. This is likely because Mo-
tion Smoothness requires precise control of motion trajec-
tories across frames, which is challenging for current video
generation models to achieve. Temporal Flickering, on the
other hand, involves maintaining consistent appearance and
intensity over time, which is difficult to precisely assess,
especially when dealing with complex scenes and dynamic

objects. (See Figure 6 and Table 2)

5. Conclusion
In conclusion, this study presents a novel framework for
test-time scaling in video generation, redefining it as a
search problem for optimal video trajectories. We build
the search space in TTS by test-time verifiers and to pro-
vide feedback and employ heuristic algorithms like ran-
dom linear search and the more efficient ToF search algo-
rithm. Extensive experiments demonstrate that scaling the
search space can boost the video performance across vari-
ous video generation models, and our proposed ToF search
can significantly reduce scaling cost when achieving high-
quality video outputs. This framework opens new avenues
for research into efficient test-time optimization strategies
in video generation.
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A. More Implementation Details
A.1. More Discussion of Image-level Alignment
In our generation process, inspired by recent work [9], each
frame is generated with image-level TTS. Specifically, we
employ a two-stage evaluation mechanism. First, a potential
assessment reward model examines whether the partially
generated frame exhibits sufficient visual clarity for mean-
ingful evaluation and assigns a binary label. If the output
is deemed unclear (‘no’), the model skips further process-
ing for that frame. Otherwise (‘yes’), the frame advances to
a secondary evaluation stage where its potential to yield a
high-quality final image is assessed. Again, a binary deci-
sion is made: if the frame is unlikely to lead to an optimal
outcome, the generation path is truncated immediately; if it
passes, the synthesis continues to produce the final image.

A.2. More Discussion of Hierarchical Prompting
In our approach to hierarchical prompting, we employ
DeepSeek-R1-8B [8], a large language model distilled from
the LLaMA-8B [51] architecture. DeepSeek-R1-8B is used
to decompose a given input prompt into three distinct hier-
archical prompts, each tailored to represent a specific stage
of the video sequence:
• Static scene description: The first prompt provides a de-

tailed depiction of the static scene intended for the initial
frame, establishing the starting visual context of the se-
quence.

• Action/motion directions: The second prompt outlines
the actions or motion directions that guide the dynamic
progression across the intermediate frames, ensuring a
coherent evolution of the scene.

• Expected ending state: The third prompt delineates the
expected ending state for the concluding frame, defining
the desired outcome of the video sequence.

DeepSeek-R1-8B processes the input prompt and generates
these three hierarchical prompts, which are then returned as
an ordered list of length three. At each stage of the video
sequence—initial, intermediate, and final—the test verifier
evaluates the generated output with the corresponding hi-
erarchical prompt. This stage-specific assessment ensures
that the video content aligns with the intended descriptions,
maintaining both accuracy and coherence throughout the se-
quence. Figure 9 gives an example of hierarchical prompt-
ing generation and test-time verification.

A.3. Detailed Complexity Analysis
In our method, the video generation process is modeled as
the dynamic growth of a forest, where the trees are branched
and pruned over time. Specifically, similar to the linear
search, we begin by generating N initial frames, repre-
senting the roots of N trees in the forest. Each time step
t ∈ [0, T − 1] corresponds to a level in the tree, and each

frame is treated as a tree node. We consider the process
in which each of the N trees grows by adding one level of
nodes. At each time step, the kt−1 surviving parent nodes
dynamically branch into bt possible continuations. We then
evaluate all kt−1 ·bt nodes using a heuristic reward function
H , followed by pruning to retain only the top kt branches.
The time complexity of growing one level of the tree is:

O(kt−1bt + bt log(kt−1bt)). (8)

Here, generating kt−1bt nodes takes O(kt−1bt) time, the
evaluation cost per node is O(1), and the total eval-
uation time is O(kt−1bt). Heap sorting for pruning
costs O(bt log(kt−1bt)). By iteratively applying dynamic
branching and heuristic pruning, the deepest leaf nodes in
the forest correspond to the final frames of the video, with
the path to those nodes representing the optimal video se-
quence. The overall time complexity of this process is:

O(k0 +

T−1∑
t=1

kt−1bt + bt log(kt−1bt)). (9)

In practice, we set a branching limit b for dynamic
branching, i.e., bt ≤ b. In the heuristic pruning step, we
use the heuristic reward function H to prune branches that
fall below the average value. On average, each pruning step
retains kt ≈ kt−1bt

2 =
k0

∏t
i=1 bi
2t ≤ k0b

t

2t branches before kt
drops to 1. Therefore, we have:

O(k0 +

T−1∑
t=1

kt−1bt + bt log(kt−1bt))

= O(k0 +

T−1∑
t=1

k0
∏t

i=1 bi
2t

+ bt log(
k0
∏t

i=1 bi
2t

)

(10)

In practice, we set k0 = N and b = 2. In the worst-case
scenario, assuming bi = b = 2 for all i, the resulting time
complexity is:

O(N + TN + 2T log(N)) = O(TN). (11)

This complexity is consistent with that of the linear
search. However, in our actual experiments, we perform
branching operations only at specific prompt stages to en-
sure a diverse and stable transition between stages. Con-
sequently, bt remains 1 for most timesteps, leading to the
following update rule:

kt =

{
kt−1bt

2 , 0 < t ≤ log(k0)
1, t > log(k0).

(12)

Thus, Eq. 9 can simplify to:
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Figure 7. Using TTS, the small model (Pyramid-Flow) achieves scores that are close to, or even exceed, those of the 13B large model
(HunyuanVideo) in many dimensions. The gray dashed horizontal line in the figures indicates HunyuanVideo’s score in that dimension.

O(k0 +

T−1∑
t=1

kt−1bt + bt log(kt−1bt))

= O(k0 +

T−1∑
t=log(k0)+1

bt +

log(k0)∑
t=1

k0
∏t

i=1 bi

2t
+ bt log(

k0
∏t

i=1 bi

2t
))

= O(k0 + T − log(k0) + k0 + log2(k0)−
log 2

2
log2(k0))

= O(N + T ).
(13)

Compared to the quadratic complexity of linear search,
our approach converge at a geometric rate, ultimately
achieving linear complexity. It significantly reduces com-
putational costs while maintaining high sample diversity.
The logarithmic dependency on N ensures efficient scal-
ing, making our method more suitable for high-dimensional
video generation. Additionally, by dynamically adjust-
ing the branching factor, we achieve a better trade-off be-
tween exploration in early timesteps and convergence in
later stages.

B. More Experiments
B.1. More Quantitative Results
We performed multiple random linear search experiments
across various video generation models with different ver-
ifiers. Figures 10-12 present more quantitative results on
VBench across different dimensions. These indicate that
TTS consistently delivers stable performance improvements
across dimensions. Moreover, the evaluation accuracy of
different verifiers varies across dimensions, justifying our
use of multiple verifiers.

B.2. More Qualitative Results
We provide additional visual results for Pyramid-Flow [16]
and CogVideoX-5B [60] in Figures 13-18. Each example
displays different video outputs as NFE increases with the
same prompt input. The results show that video quality and
text alignment improve with more TTS samples.

B.3. Comparison with Large Models
Figure 7 compares the outputs of the small model Pyramid-
Flow (2B) with TTS and the large model HunyuanVideo
(13B) single. As scaling increases, the small model’s per-
formance approaches or even surpasses that of the large
model in many dimensions.

B.4. Failure Cases
Figure 8 shows failure cases in Pyramid-Flow experiments
where TTS does not significantly improve video quality. In-
creasing inference computation fails to generate reasonable
details (e.g., hand movements), indicating that model per-
formance limitations constrain TTS method improvements.

Figure 8. Failure cases on prompt “A person is clapping”.

14



Stage 1: Text-to-Image Verification

Does the first frame not completely fail to meet the requirements stated 
in the text "A bear is hugging near the base of a tall tree in a forest, with 
leaves rustling gently in the breeze"? 

Prompt: “a bear climbing a tree” 

Hierarchical Prompting Generation
Split video generation prompts into 3 stages:
1. Static scene description. Describe all the objects or characters in the input prompt.
2. Action/motion directions. Describe the motion or action of all the objects or characters 
in the input prompt.
3. Expected ending state. Describe the ending scene of the video.
…
Now process this input: a bear climbing a tree

Video Generation

["A bear is hugging the base of a tall tree in a forest, with leaves rustling gently in the breeze", 
"The bear is climbing the tree with strong movements, using its legs and arms, branches swaying 
slightly with each step", "The bear has reached the top of the tree, sitting comfortably with a 
view of the surrounding forest, the tree swaying gently in the wind"]

Yes.

Stage 2: Medium Frames Verification

Does the medium frames not completely fail to meet the requirements 
stated in the text "The bear is climbing the tree with strong movements, 
using its legs and arms, branches swaying slightly with each step"? 

Stage 3: Final Verification

Does the video not completely fail to meet the requirements stated in the 
text "The bear has reached the top of the tree, sitting comfortably with a 
view of the surrounding forest, the tree swaying gently in the wind"? 

Does the whole video meet most of the requirements stated in the text 
"a bear climbing a tree“?

Yes.

Yes.

Yes.

Figure 9. Verifications during TTS process.
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CogVideoX-2B CogVideoX-5BOpenSora-v1.2

NOVA Pyramid-Flow (SD3) Pyramid-Flow (FLUX)

Figure 10. TTS performance on Appearance Style across diverse verifiers.

CogVideoX-2B CogVideoX-5BOpenSora-v1.2

NOVA Pyramid-Flow (SD3) Pyramid-Flow (FLUX)

Figure 11. TTS performance on Aesthetic Quality across diverse verifiers.

CogVideoX-2B CogVideoX-5BOpenSora-v1.2

NOVA Pyramid-Flow (SD3) Pyramid-Flow (FLUX)

Figure 12. TTS performance on Color across diverse verifiers.
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“Yellow flowers swing in the wind”

“A panda playing on a swing set”
Figure 13. More visual results during TTS process on Pyramid-Flow. From left to right, each row of frames are extracted from a video
sequence. From top to bottom, each row represents the output video results of TTS with an increasing number of samples.
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“Robot dancing in Times Square.”

“A person is riding a bike”

Figure 14. More visual results during TTS process on Pyramid-Flow. The TTS method can effectively alleviate common issues in video
generation, such as those related to human motion and complex movements.
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“A vase and scissors.”

“A happy fuzzy panda playing guitar nearby a campfire, 
snow mountain in the background”

Figure 15. More visual results during TTS process on CogVideoX-5B.
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“A corgi is playing drum kit.”

“A bigfoot walking in the snowstorm.”

Figure 16. More visual results during TTS process on CogVideoX-5B.
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“An apple on the bottom of a sandwich, front view.”

“A suitcase and a vase”

Figure 17. More visual results during TTS process on CogVideoX-2B. The TTS method can help to enhance multi-object spatial perception.
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“A bowl on the left of a bottle, front view.”

“A sandwich on the top of an orange, front view.”

Figure 18. More visual results during TTS process on NOVA. The TTS method improves the alignment between the spatial relationships
of objects in videos and the corresponding text prompt.
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