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Abstract. Autism Spectrum Disorder (ASD) is one of the leading neu-
rodevelopmental disorders in the world and rapidly increasing in preva-
lence. Existing automated ASD prediction systems have two critical
drawbacks. The first one involves making the prediction using only Cor-
pus Callosum (CC) segmentation data, whereas since similar changes are
seen in other mental illnesses like schizophrenia and bipolar disorder, the
CC segmentation is not enough to predict ASD. The second issue is that
single parameteric from neuroimaging data; such as volume, area, or fiber
integrity; cannot fully capture the intricate neuropathological changes in
the CC associated with ASD development. There is no multiparametric-
based radiomics learning model that is based solely on a single ROI.
To address these limitations, we propose a radiomics-informed trans-
former framework for detecting ASD from a single ROI-based radiomics
extracted features. The proposed framework operates through two key
mechanisms. First, we have developed an optimized hidden Markov ran-
dom field algorithm for CC segmentation that addresses resource con-
straints by focusing exclusively on the localized region of the CC. Second,
we leverage BERT to distinguish radiomic features of healthy and ASD
subjects. Furthermore, we ensure complementary information is learned
by tokenized radiomics and radiomic features by designing an effective
feature de-correlation loss. Combined, our method addresses the limita-
tions of ASD diagnosis, achieving 98.2% DSC for CC segmentation and
96.8% for the ASD classification task.
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1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition affecting
communication, social interaction, and behavior [1]. Diagnosing ASD is chal-
lenging due to the lack of definitive medical tests, relying instead on behavioral
and developmental assessments [2]. Structural and functional abnormalities in
the Corpus Callosum (CC), which facilitates interhemispheric communication,
are linked to ASD symptoms [3], [4], [5], [6]. Notably, a decreased size of the
CC is consistently observed in individuals with ASD [3]. Identifying structural
biomarkers for ASD is clinically important, and this paper aims to propose and
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validate an automated approach using Radiomics-Informed Transformers (RIT),
is illustrated in Fig. 1 to detect CC abnormalities, potentially enhancing early
diagnosis and intervention strategies.

Fig. 1: Overview of our method.(a) CC Localization and segmentation. (b) Ra-
diomics feature extraction. (c) Encouraging complementary radiomic features
through Feature de-correlation in RIT.

In the literature, studies typically either focus only on segmenting the CC or
on the global detection of ASD from MRI (fMRI) scans. For instance, the UNet
model has been adopted for the CC segmentation [7], while employing different
data augmentation techniques. Furthermore, a comparative study implemented
and evaluated three different DL models: CENet, UNet++, and MultiResUNet
[8]. Recently, Chandra et al. proposed a U-Net-based Fully Convolutional Net-
work for automatic CC segmentation (CCsNeT) in brain MRI images [9]. A
recent study employed a dual deep-learning classifiers approach for CC segmen-
tation, using bidirectional LSTM with CBAM and a Modified Convolutional
Neural Network (M-CNN) to enhance accuracy [10]. However, these methods
are limited to segmentation tasks without offering diagnostic capabilities. Ad-
ditionally, the effectiveness of these deep learning models is often hindered by
the lack of available data, which restricts their accuracy and generalizability. On
the other hand, the Federated Learning (FL) technique was uniquely applied for
autism detection by locally training two different machine learning classifiers,
logistic regression and support vector machine [11]. These classifiers were used
to classify ASD factors and detect ASD in both children and adults. Perochon et
al. proposed an application that displayed stimuli designed to elicit behavioral
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signs of autism, which were quantified using computer vision and machine learn-
ing techniques [12]. These behavioral signs were analyzed to train the XGBoost
model which aimed at distinguishing between diagnostic groups. Furthermore, a
novel method called Com-BrainTF introduced a hierarchical local-global trans-
former architecture to learn intra- and inter-community aware node embeddings
for the ASD prediction task [13]. Although these methods propose different ways
of using both approaches, they do not address the limitations of either focusing
solely on CC segmentation or on global ASD detection nor do they explore ways
to combine their complementary advantages.

However, neuroimaging measures of the CC are not diagnostic of autism, as
similar alterations are found in disorders like schizophrenia and bipolar disor-
der [14]. Single-value parameters from neuroimaging data do not capture the
complex neuropathological changes in the CC associated with autism. Autism’s
pathogenesis involves microscopic alterations in brain tissue from various genetic,
molecular, and cytoarchitectural factors. Therefore, an approach that quantifies
the spatial distribution of microscopic tissue heterogeneity could improve autism
diagnosis. Radiomics uncover meaningful information within radiological images,
offering deeper insights into tissue characteristics beyond single-value approaches
[15]. This technique, applied to segmented CC data, has the potential for enhanc-
ing ASD detection by extracting a comprehensive array of quantitative features,
including texture, shape, intensity, and spatial relationships within tissues.

In this work, we propose an approach for detecting ASD by integrating ra-
diomic and transformer-based deep learning methods from segmented CC scans.
Radiomic features are calculated locally around each voxel. Traditionally inde-
pendent, these features show interdependencies reflecting biological processes
and spatial relationships within tissues. Thus, our key contributions are:

– We localize and extract the CC from brain MRIs by defining a square around
the skull, and isolating the CC-containing region. To address resource con-
straints in low-income settings, we use an optimized Hidden Markov Random
Field (HMRF) algorithm for computationally efficient CC segmentation.

– We integrate radiomic features with a transformer-based deep learning model,
tokenizing the features using BERT for nuanced representation.

– We enhance the segmentation process by integrating tokenized radiomic fea-
tures and enforcing feature de-correlation, ensuring precise and complemen-
tary feature extraction. To our knowledge, no study has tested an ASD
diagnostic model using radiomics focused on interhemispheric connectivity.

2 Methodology

In this study, ASD detection is structured as a multistage process focusing on
single region analysis, specifically the CC, which exhibits significant importance
for radiomics analysis. To optimize CC localization from brain MRIs, we have
developed a method that includes sub-image division and an HMRF algorithm.
This approach is specifically designed to accommodate resource-constrained set-
tings.
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2.1 CC Localization and Segmentation

The proposed approach consists of (a) identifying the square circumscribing skull
and (b) dividing this square into 16 equal regions (R1, R2, . . . , R16), aiming to
find the local minimum region that contains the CC.

Square Circumscribing Skull
In this study, we introduce a method for segmenting the CC while address-

ing the challenge of reducing the segmentation zone. The approach divides the
Square Circumscribing Skull (SCS) into a grid of 4 rows and 4 columns to localize
the skull within the original matrix M . After slicing, we obtain 16 sub-images.
Evaluation with 1000 MRIs showed that 90% of the CC overlaps with the union
of R6 and R7.

To localize the CC more precisely, we use ccROI as the seed and expand it
to c̃cROIϵ, defined as:

c̃cROIϵ = SCS
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The expansion parameter ϵ is crucial but lacks a predefined statistical method.
We employ an iterative approach to find the optimal ϵ, aiming to maximize
the percentage pϵ of CC contained within c̃cROIϵ. The Elbow method helps
determine ϵ by plotting pϵ against ϵ values and identifying the optimal point
where further expansion does not significantly increase pϵ.
Algorithm Overview The optimized HMRF algorithm leverages the spatial
dependencies and intensity characteristics within the SCS sub-images to refine
the segmentation of the CC (Algorithm 1).

Algorithm 1 Optimized HMRF Algorithm
Require: SCS: Square Circumscribing Skull sub-image
Ensure: Segmented CC region CCseg

1: Initialize HMRF parameters and pixel labels
2: repeat
3: Update pixel labels using local neighborhood information:
4: L(i)← argmaxP (L(i) = l|x(i),W)
5: where L(i) is the label of pixel i, x(i) denotes the feature vector at pixel i, and

W represents model parameters.
6: Refine labels based on global image properties:
7: P (L(i) = l|W) ∝ exp

(∑
j∈N (i) λijδ(L(i), L(j)) + γi(l)

)
8: where λij captures pairwise interactions between neighboring pixels and γi en-

codes unary potentials.
9: until Convergence criteria are met

10: Extract CCseg from the final pixel labels
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2.2 Radiomics feature extraction

Radiomics is an analytical technique that allows for the computation of multiple
descriptors of shape and texture [16]. The relevant information present in the im-
age is extracted using three classes of features: (i) shape features, (ii) first-order
features, and (iii) texture-based features. In fact, texture features are designed
to capture local variations in the image, utilizing measures such as Gray-level
Co-occurrence Matrices (GLCM) to represent second-order textural distribu-
tions. Conventional statistical metrics, including entropy and correlation, are
commonly employed to summarize these textural measures [17]. Recently, brain
radiomics features have been used to understand neurodegenerative conditions
such as schizophrenia [18], revealing patterns invisible to the naked eye. How-
ever, there are no existing reports of clinical models based on CC radiomics
features, likely due to the absence of appropriate datasets. Radiomic feature
extraction from the segmented CC was performed using py-Radiomics (version
3.1.0; https://pyradiomics.readthedocs.io/en/latest/) [19], which conformed to
the Image Biomarker Standardization Initiative [20].

2.3 Encouraging Complementary Radiomic Features through
Feature De-correlation in RIT

Unlike existing classification approaches that rely on generic radiomic features or
deep learning models, our method leverages the power of tokenization to enhance
feature representation. Traditional methods often suffer from limitations such as
naive feature concatenation, which fails to capture the complex interdependen-
cies within the data. In contrast, our approach integrates tokenized radiomic
features using BERT, producing token embeddings that are directly used in the
classification task. To enforce learning of complementary features, we introduce
a de-correlation loss between BERT token embeddings Zi and original radiomic
features Ri:

Lcorr =

∥∥∥∥∥
∑Nk

i=1 w
iZT

i Ri∑Nk

i=1 w
i

∥∥∥∥∥ (2)

Where Ti represents the token embeddings from BERT Ri represents the ra-
diomic features wi is the exponential weighting parameter Nk is the number of
features stored in the feature bank.

3 Experiments

3.1 Datasets

The experiment investigated two datasets: the Autism Brain Imaging Data Ex-
change (ABIDE) and a dataset collected from the Military Hospital of Tunis in
Tunisia. We noticed a lack of publicly available GT for CC segmentation within
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the widely used datasets. The ABIDE dataset includes two large-scale collec-
tions, ABIDE I and ABIDE II. ABIDE I contains 1112 scans, with 539 from
individuals with ASD and 573 from HC. ABIDE II includes 1114 scans from 521
individuals with ASD and 593 HC. Additionally, we used a private dataset of
101 patients from the Military Hospital of Tunis, consisting of 74 ASD cases and
27 HC. A professional neurologist manually segmented the CC regions from the
images, creating a valuable GT for CC segmentation.

3.2 Qualitative and Quantitative Results

Fig. 2: Qualitative results.(a) Input MRI from ABIDE. (b) Mapped MRI. (c)
Cropped MRI. (d) GT. (e) Optimized HMRF (Ours)

Fig. 2 demonstrates the visual evaluation of the results obtained from challeng-
ing brain MRI scans, confirming the accuracy of our proposed method for CC
segmentation. Our collaborating clinician expert has verified that the CC shape
and thickness are clearly defined, and the delineated CC area closely aligns with
the four anatomical divisions of the CC, particularly delineating critical areas
like the rostrum and splenium. Importantly, the fornix is accurately excluded
from the CC area. The method successfully extracts the CC from both ASD
(cases 1 and 3) and HC (cases 2 and 4) subjects. Specifically, the method effec-
tively distinguishes CC from neighboring tissues of similar intensity, resolving
this challenge within the MRI examples provided.
Proposed Method versus experts in a Turing-like test Radiologist and
neurologist from the Military Hospital of Tunis independently assessed the qual-
ity of CC masks generated either by human experts or the optimized HMRF
algorithm. Each expert evaluated 50 scans with annotated slices, which were ran-
domized to ensure unbiased assessment. The clinicians were blinded to whether
the CC masks were generated by humans or the algorithm, and they rated the
completeness of the segmented CC and the correctness of its contours on a 1-6
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scale. In over 30 images, experts consistently selected the GT as exhibiting the
best delineation, while in 10 images, our method closely resembled the GT to
such an extent that experts were unable to distinguish between them.
Quantitative Comparison with State-of-the-art for CC segmentation
In Table 1 we compare our method against the relevant deep learning methods, as
well as baseline [8], [9], [10]. According to the Dice Similarity Coefficients (DSC),
we can see that we have reached our goal by making higher scores with 98.2%
comparatively to relevant deep learning methods. Likewise, we have recorded
high Accuracy scores (Acc) with 99.6%. On the other hand, for sensitivity met-
ric, the proposed method reaches good score and still better than CCsNeT [9]
and Optimized UNet [10] methods. The decline of the proposed method perfor-
mance according to this metric can be explained by the cause of the GT which
is manually drawing.

Table 1: Comparison with state-of-the-art methods for CC segmentation. Base-
line†is a naïve CC segmentation implementation using basic HMRF.
Method Model DSC (%) Acc (%) Specificity (%)
Shrivastava et al.[8] UNet++ 71.68 99.36 99.44
Shrivastava et al.[8] CE-Net 93.11 99.89 99.94
Shrivastava et al.[8] MultiResUNet 80.2 79.71 79.55
Chandra et al. [9] CCsNeT 96.74 - -
Padmanabha Sarma and Saranya [10] Optimized UNet 97.81 96.28 98.83
Baseline† HMRF 86.3 91.3 93.47
Proposed Method Optimized HMRF 98.2 99.6 94.9

Quantitative Comparison with State-of-the-art for ASD classifica-
tion As seen in Table 2 , our proposed RIT model outperforms all other ar-
chitectures. Notably, it achieves the highest accuracy at 96.8% and precision at
83.1 %. While Com-BrainTF demonstrates superior sensitivity (80.1 %).

Table 2: Comparison with state-of-the-art methods for ASD classification.
Method Model Acc (%) Sensitivity (%) Precision (%)
Farooq et al.[11] SVM 81 ✗ 81
Farooq et al.[11] LR 78 ✗ 73
Bannadabhavi et al.[13] Com-BrainTF 72.5 80.1 ✗

Proposed Method RIT 96.8 72.3 83.1

3.3 Ablation Study

Effect of Square Circumscribing Skull and Localization In Table 3, we
present an ablation study to evaluate the impact of using the SCS and local-
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ization on the performance of our proposed method. The first baseline model,
which does not use SCS or localization, achieves a Dice DSC of 79.2%. Incorpo-
rating localization but not SCS in the second baseline model improves the DSC
to 82.11%. The third baseline model, which employs both SCS and localization,
shows a significant improvement with a DSC of 95.6%.

Table 3: Ablation study for proposed method of CC segmentation.
Model SCS Localization Nb_Class DSC (%) Acc (%)
Baseline† ✗ ✗ Manually 79.2 65.3
Baseline † ✓ ✗ Manually 82.11 80.52
Baseline† ✓ ✓ Manually 95.6 98.1
Optimized HMRF ✓ ✓ Automatic 99.2 99.6

Effectiveness of tokenized radiomic feature and de-correlation We
perform ablation experiments to demonstrate improvements from using radiomic
features, tokenized radiomic features, and feature de-correlation loss. Results are
shown in Table 4. We can see that including feature de-correlation further boosts
performance and leads to the best overall results.

Table 4: Ablation study for proposed method of ASD classification.
Model Ri Ti Lcorr Acc (%)
Baseline† ✓ ✗ ✗ 75.9
Baseline † ✗ ✓ ✗ 81.26
RIT ✓ ✓ ✓ 96.8

4 Conclusion

In this work, we propose a new approach for CC segmentation from brain MRIs
based on radiomic and deep learning techniques. Our method is based on two
key ideas: precise localization of the CC by defining a square around the skull
and isolating the CC-containing region, and enhancing feature representation
through tokenization and feature de-correlation. Unlike existing approaches, our
method specifically addresses the computational constraints in low-resource set-
tings and improves feature extraction. We achieve state-of-the-art results in both
CC segmentation and ASD classification, outperforming existing methods. Ad-
ditionally, we have explored the diagnostic potential of our approach for ASD
by investigating the interhemispheric connectivity captured in the CC. Our fu-
ture work includes investigating more sophisticated radiomic feature and larger
datasets.
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