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ABSTRACT

Deep learning representations are often difficult to interpret, which can hinder their
deployment in sensitive applications. Concept Bottleneck Models (CBMs) have
emerged as a promising approach to mitigate this issue by learning representa-
tions that support target task performance while ensuring that each component
predicts a concrete concept from a predefined set. In this work, we argue that
CBMs do not impose a true bottleneck: the fact that a component can predict a
concept does not guarantee that it encodes only information about that concept.
This shortcoming raises concerns regarding interpretability and the validity of
intervention procedures. To overcome this limitation, we propose Minimal Concept
Bottleneck Models (MCBMs), which incorporate an Information Bottleneck (IB)
objective to constrain each representation component to retain only the information
relevant to its corresponding concept. This IB is implemented via a variational
regularization term added to the training loss. As a result, MCBMs yield more
interpretable representations, support principled concept-level interventions, and
remain consistent with probability-theoretic foundations.

1 INTRODUCTION

Most machine learning models operate by learning data representations—compressed versions of
the input that retain the essential information needed to solve a given task (Bengio et al., [2013]).
However, these representations often encode information in ways that are not easily interpretable
by humans. This lack of interpretability becomes especially problematic in sensitive domains such
as healthcare (Ahmad et al., [2018}; |Xie et al., |2020; Jin et al., [2022), finance (Brigo et al., [2021} |[Liu
et al.,|2023)), and autonomous driving (Kim & Canny|, 2017; Xu et al.||2024). To address this issue,
Concept Bottleneck Models (CBMs) have been proposed, which enforce representations to be defined
in terms of a set of human-understandable concepts (Koh et al., 2020).

Formally, given a task y and a set of concepts ¢ = {¢; =1 Vanilla Models (VMs) are trained with
a single objective: their representations z should capture the information necessary to predict y
accurately. CBMs extend this framework by adding a second objective: each concept ¢; must be
recoverable from a designated component z; € z. By enforcing this additional constraint, CBMs
are claimed to offer: (i) improved interpretability of the representation space, and (ii) the ability to
intervene on specific concepts by modifying z; and propagating these changes to the predictions.

However, CBMs are prone to a phenomenon known as information leakage (Margeloiu et al., 2021}
Mahinpei et al., 2021)), where the representation z encodes input information that cannot be attributed
to the predefined concepts ¢. We refer to this additional information as nuisances 7. Information
leakage raises two main concerns: (i) it undermines interpretability, since z; cannot be fully explained
by its corresponding concept c;; and (ii) it compromises the validity of interventions—modifying z;
may alter not only the associated concept c;, but also other unintended information encoded in z;.

We argue that information leakage stems from a fundamental limitation in the current formulation
of CBMs: the absence of an explicit Information Bottleneck (IB) (Tishby et al.,[2000) that actively
constrains z; to exclude information unrelated to c;. While the second objective in CBMs encourages
each z; to retain c; in its entirety, it does not enforce that z; captures only information about ¢;. In
the worst-case scenario, z; could encode the entire input  and still satisfy this objective.
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To address this issue, we propose  Table 1: Differences between VMs, CBMs and MCBM.
Minimal Concept Bottleneck Models

(MCBMs), which incorporate an 1B VMs CBMs MCBMs
into each z;. This ensures that z; not ~ Does z; encode all ¢;? X
only retains all the information about Does z; encode only ¢;? X X

its associated concept c;, but also ex-

cludes any information unrelated to c;, as summarized in Table[T] The name reflects that z; is trained
to be a minimal sufficient statistic of ¢; (Fisher, [1922;|1935)), in contrast to traditional CBMs where
z; is optimized to be merely a sufficient statistic of c;. As illustrated in Figure EI, this design yields
disentangled representations that directly address the two shortcomings of CBMs: (i) it improves
interpretability, since z; can be fully explained by its corresponding concept ¢;; and (ii) it enables
valid interventions—modifying z; affects only the associated concept c;.

In Section 2] we connect the data generative process to MCBMs through information-theoretic quanti-
ties, showing that the IB can be implemented via a variational loss. In Section[3] we review alternative
approaches to address information leakage. In Section[d] we present experiments demonstrating that
MCBMs enforce a true bottleneck, thereby enhancing interpretability and intervenability compared
to existing alternatives. Finally, in Section[3} we show that the assumptions made in CBMs to enable
interventions are theoretically flawed.
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Figure 1: In Vanilla Models, concepts and nuisances may be arbitrarily entangled in the representation,
and a variable z; may capture only part of a concept (depicted as paler colors). In CBMs, each z;
encodes all information about its corresponding concept c¢;, but may also capture some information
about nuisances (e.g., z1) or other concepts (e.g., z2). In contrast, MCBMs enforce that each
representation variable z; encodes all—and only—the information about its corresponding concept.

2  FROM DATA GENERATIVE PROCESS TO MCBMS

2.1 DATA GENERATIVE PROCESS

For this scenario, we consider inputs € X, targets y € )/, concepts ¢ = {Cj };”:1 € C and nuisances
n € N, such that p(z, y, ¢, n) = p(x|e, n)p(y|x), i.e., the inputs x are described by the concepts
c and the nuisances n, and the targets y are fully described by the input . The only difference
between ¢ and 7 is that the former are observed, while the latter are not or, in other words, labels
on c are provided to us. We assume access to a training set {:c(i), y@, c(i)}ij\il, which defines
the empirical distribution p(x,y,¢) = S~ | § (& — 2®) § (y — y) § (¢ — ¢?). The graphical
model corresponding to this generative process is shown in Figure [2a) for the case of two concepts.

2.2  VANILLA MODELS

In machine learning, the most commonly studied problem is that of predicting y from x, which
serves as a foundation for more specialized tasks. We refer to models trained to address this
problem as Vanilla Models (VMs). These models typically operate by first extracting an intermediate
representation z € Z from the input & via an encoder pg(z | ). Subsequently, a prediction § € ) is
produced from z using a task head q4(y | z). Since z is intended to facilitate accurate prediction of y,
the mutual information between z and y, denoted I(Z;Y"), should be maximized. In Appendix
we formally show that:

max I(Z;Y) = I%%XEp(w,y) [Epg (2] [10g g (9]2)]] (D
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Figure 2b] shows the graphical model of a Vanilla Model with a two-dimensional representation z.
Black edges represent the encoder pg(z | «), while green edges indicate the task head ¢4(y | z).
The encoder is typically chosen to be deterministic, i.e., pg(z | ) = 0 (z — fo(x)). However,
for tractability reasons (see Section , we adopt a stochastic formulation where py(z | x) =
N (z; fo(x),021), as summarized in Table The choice of task head q,(9 | z) depends on the
structure of the output space Y, also detailed in Table[2] The objective in Equation [T| corresponds
to minimizing the cross-entropy loss when y is binary or multiclass, and to minimizing the mean
squared error between ¥y and gg(z) when y is continuous.

2.3 CONCEPT BOTTLENECK MODELS

Vanilla Models generally lack interpretability with respect to the known concepts ¢, as the encoder
fo is often opaque and difficult to analyze. Moreover, these models tend to entangle the concepts
in such a way that it becomes intractable to determine how individual concepts influence specific
components of the latent representation z, and consequently the predictions ¢. Concept Bottleneck
Models (CBMs) have been introduced to address this limitation. In a CBM, each concept c; is
predicted from a dedicated latent representation z; via a concept head q(é; | z;). Consequently, z;
must encode all information about c¢;—that is, z; must be a sufficient representation for c¢;. This
requirement can be formalized as maximizing the mutual information I(Z;; C;), for which the
following identity—proved in Appendix [B.2}—is employed:

max 1(Z;; 05) = maxEpe.c;) [Epy (z, o) [108 45(117)]] €
J )

As illustrated in Figure [2c, CBMs extend Vanilla Models by incorporating a concept head ¢(é; | z;),
depicted with blue arrows. These models jointly optimize the objectives in Equations[Tjand[2] As
detailed in Table[2] the form of the concept head g, (¢; | z;) depends on the nature of the concept
space C. The objective in Equation@]corresponds to minimizing the cross-entropy loss when c; is
binary or multiclass, and the mean squared error between c; and g5 (z;) when ¢; is continuous.

How are Interventions Performed in CBMs? As explained in Section|l} a key advantage often
attributed to CBMs is their ability to support concept-level interventions. Suppose we aim to estimate
p(Y | ¢; = a, x). In CBMs, this intervention is performed through the latent representation z;:

p(gle; = a,x) = / / P12, 20,)p(z5]e; = a)p(z o) dz; d2 3)

However, the conditional distribution p(z; | ¢;) is not defined—there is no directed path from c; to
z; in Figure[2d| Intuitively, because z; may encode information about & beyond c;, it cannot be fully
determined by c; alone. This raises a key question: how can interventions be performed in CBMs if
p(z;j | ¢;) is unknown? To make interventions feasible, CBMs typically impose two constraints:

(1) Concepts ¢; € c, are assumed to be binary. If a concept is originally multiclass with k
categories, it is converted into k binary concepts (One-vs-Rest (Rifkin & Klautaul 2004)).

(i) The concept head is defined as g4(c; | z;) = o(z;), where o denotes the sigmoid function.

Since o is invertible, this setup permits defining p(z; | ¢;) ~ 0~ *(c;). However, this is ill-defined at
the binary extremes, as 0~ (1) = —o~'(0) = co. To address this, in practice, p(z; | ¢; = 0) and
p(z; | ¢; = 1) are set as the 5th and 95th percentiles of the empirical distribution of z;, respectively
(Koh et al.,[2020). This workaround, however, introduces two crucial issues discussed in Section@

Table 2: Distributions considered in this work. fy is typically modeled by a large neural network
while gg, gg and gZ by simpler neural networks. We consider z to be always continuous.

po(2[) 15(912) R 49(%4l¢))
Binary - Bernoulli gg (2) Bernoulli  g§(z;) -
Multiclass - Categoric ( g;(z)) Categoric ( g§(z;) -

Continuous N (fo(x),021) N(gg(z)ﬂgf) N(g;(zj)wfﬁf) N(g;(cj),ogl)




Under review as a conference paper at ICLR 2026

2.4 MINIMAL CONCEPT BOTTLENECK MODELS

As discussed in Section [T} CBMs lack an explicit mechanism for enforcing a bottleneck, which often
undermines their intended advantages. To address this limitation, we introduce Minimal Concept
Bottleneck Models (MCBMs), which explicitly impose an Information Bottleneck. This ensures that
each z; retains all information about its associated concept c;, while excluding information unrelated
to ¢;. In other words, z; becomes a minimal sufficient representation of c;. To achieve this, we
introduce a representation head qq(Z; | c;) that predicts z; from c¢;. This encourages z; to discard
information unrelated to ¢;, as doing so improves the predictive accuracy of g, (2; | ¢;). Formally, this
objective corresponds to minimizing the conditional mutual information I(Z;; X | C;). We note that
if z; is a representation of «, then the following propositions are equivalent: (i) I(Z;; X|C;) = 0,
(ii) the Markov Chain X « C; < Z; is satisfied and (iii) p(z,|c;) = p(z%] To minimize
I1(Z;; X | C;), we leverage the following identity, which is proven in Appendix

min [(Z;; X|Cj) = Igi;lEp(x,cj) [Drcr (po(z|7)|lgs(25]c;))] “

Figure [2d|illustrates how MCBMs extend CBMs by introducing the representation head ¢(Z; | ¢;),
depicted with red arrows. These models are trained to jointly optimize the objectives given in
Equations and[d Although the KL Divergence in Equation ] does not admit a closed-form
solution in general, we show in Appendix that, under the distributional assumptions listed in
Table it reduces to the mean squared error between fo(z) and g3 (c;).

How are Interventions Performed in MCBMs? In contrast to CBMs, MCBMs explicitly constrain
#; to contain only information about ¢;. As a result, modifying z; corresponds to intervening solely
on ¢;. This is reflected in Figure 2d, where MCBMss introduce a directed path from c; to z; through
the intermediate variable Z;. This structure permits the computation of:

p(zjle;) = /P(Zj 125)45(%5l¢;) dz; )
which simplifies to p(z; | ¢;) = ¢s(2; | ¢;) when p(z; | 2;) = d(z; — Z;), i.e., once the objective in
Equation[zl_f]is optimized and z; encodes exclusively c;. As shown in Table@ we define the encoder
distribution as q4(2; | ¢;) = N(gZ(c)), 021), where mean function g5 (c;) is chosen according to
the following rules:
(i) For binary concepts, g3(c;) = Aif ¢; = 1, and g3(c;) = —A otherwise.
(ii) For categorical concepts, g7 (c;) = A - one_hot(c;). This mirrors the Prototypical Learning
(Snell et al., 2017) approach where class-dependent prototypes {g;(c;)}72; are fixed.

(iii) For continuous concepts, g;(c;) = A - ¢;.

Here, A is a scaling constant that controls the norm of the latent representation, fixed to A = 3 in
all experiments. Regarding the variance term, we set: (i) o, = 0 in the case of CBMs to obtain a
deterministic encoder in line with their original formulation, and (ii) o, = 0; = 1 for MCBMs.

Practical Considerations for Optimizing MCBMs To optimize MCBMs, we combine the three
previously introduced objectives, incorporating two key considerations. First, we approximate the
expectations over p(x,y) and p(x, ¢;) using the empirical data distribution, replacing integrals
with summations over the dataset. Second, to enable gradient-based optimization through the
stochastic encoder, we apply the reparameterization trick (Kingma, 2013): E,, .2 [log ¢4 (y|2)] =

> log e (y\fé (x, e(i))) and (. |2) [l0g46(Cl25)] =~ > ;loggy (éj|féyj (:1:, e(i))), where
fo(z,€) = fo(x) + 07 1e (due to the choice of py(z|z) in Table 2), € ~ N (0,1) and fg ; (z,€)
corresponds to the element j of fj (x,€). Combining the considerations above yields the final
objective for training MCBMs, as shown in Equation|[6] where 3 and ~y are hyperparameters. The first
term corresponds to the objective used in Vanilla Models, the second term is introduced in CBMs,

and the third is specific to MCBMs. Detailed training algorithms for the various cases listed in Table
are providj%d in Appendix

3" Yo (91 (=) 4 Y tosas (1l (5.0)
k=1 =
3 (o) o (516

j=1

(6)
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Figure 2: Graphical models of the different systems described for two concepts and two-dimensional
representations. We provide in Appendix [A] the analogous ﬁgure for m concepts and m-dimensional
representations. Inputs x are defined by some concepts {c] * , and nuisances n2; and targets y
are defined by x (gray arrows). Vanilla models obtain the representatlons {z;} 7 Ly from x through
the encoder (cyan arrows) and solve the task ¢ sequentially through the task head

(green arrows). Concept Bottleneck Models make a prediction ¢; of each concept ¢; from one
representation z; through the concept head q(¢;|z;) (blue arrows). Minimal CBMs make a prediction
z;j of each representation z; from one concept ¢; through the representation head q(z;|c;) (red
arrows).

3 RELATED WORK

Information Leakage in Concept Bottleneck Models Information leakage occurs when the
learned representation z encodes information outside the concept set ¢, reducing both interpretability
and intervenability (Margelo1u et al., [2021; |[Mahinpei et al.,2021). This arises when the Markovian
assumption fails—i.e., when the target y is not fully determined by the concept set ¢, or equivalently,
p(yle) # p(yle, ), which is typically the case in real-world scenarios (Havasi et al.,[2022)). Con-
cept Embedding Models (CEMs) (Espinosa Zarlenga et al., [2022) were proposed to mitigate the
accuracy—interpretability trade-off in CBMs. However, this trade-off is fundamentally limited by the
chosen concept set, and CEMs may even be less interpretable than standard CBMs, as their more
entropic representations tend to amplify information leakage. Recently, this critique has been further
formalized: |Parisini et al.|(2025) proposed information-theoretic benchmarks for assessing inter-
pretability and Makonnen et al.|(2025) introduced new metrics grounded in usable mutual information
(Xu et al.,[2020). [Havasi et al.|(2022)) also introduced Hard Concept Bottleneck Models (HCBMs),
which predict y from binarized concept predictions ¢; rather than from z (see Appendix @ thereby
imposing an ad-hoc Information Bottleneck. Extensions such as Autoregressive CBMs and Stochastic
CBMs (Havasi et al., [2022; |Vandenhirtz et al., 2024) incorporate dependencies between concepts.

Information Bottleneck in Representation Learning The Information Bottleneck (IB) (Tishby
et al.,[2000) provides a principled way to balance preserving information about a factor with compress-
ing the representation. In this framework, a representation is sufficient if it retains all the information
about the variable of interest, and minimal if it contains only that information (Achille & Soatto)
2018alb; |[Shwartz Ziv & LeCun, [2024). Computation of these quantities is intractable, so variational
methods have been developed to derive tractable evidence bounds (Alemi et al.| 2016} [Fischer; 2020).
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4 EXPERIMENTS

In this section, we present a series of experiments designed to empirically demonstrate that CBMs fail
to impose an effective bottleneck, even in simple settings. We also examine the consequences of this
limitation. In contrast, we show that MCBMs successfully enforce a bottleneck, thereby mitigating
the issues that arise in its absence. Additional implementation details, including encoder architectures
and training hyperparameters for each experiment, are provided in Appendix [E]

4.1 Do CBMs AND MCBMS LEAK INFORMATION?

Some works assume that the task y is fully defined

by the concepts c. However, it is unrealistic to ex- @ @ <

pect a finite set of human-understandable concepts <

to completely describe an arbitrarily complex task. @ @ @ \@
In practice, certain nuisances 7 that describe the

input x also influence y. Specifically, we decom-

pose the nuisances as n = {n,, n;}, where n, @ @

captures nuisances that, together with the concepts,

describe y, while 125 comprises those independent (a) Data (b) Representation

of y (see Figure[3a). As discussed throughout this
work, CBMs provide no incentive to remove infor-
mation unrelated to the concepts. Moreover, since
the objective of most models is to solve y, they
are incentivized to preserve not only c but also
n,,. While this may improve task performance, it comes at the expense of interpretability and valid
interventions. For instance, if z; € z is intended to represent the concept ¢; € ¢, , one might assume
that modifying z; corresponds solely to intervening on c;. However, if z; also encodes information
about 12, (or even 1y as we show later), then modifying z; also affects the nuisances, invalidating any
causal conclusions. By introducing the Information Bottleneck in Equation ] we explicitly constrain
the model to remove nuisances from z;, thereby restoring the validity of causal analyses involving c;.
We note, however, that this necessarily reduces task performance: if ¢ is incomplete and solving y
requires information from n (i.e., n, # (), excluding n from z will lower predictive performance.

Figure 3: Some nuisances n,, € n affect the task
y while others nj; € n do not. None of them
should affect the representation z since it must
be fully described by the concepts c.

We next examine whether n,, and nj are present in the representations across different CBM variants
and datasets. For this purpose, we define the following task—concept configurations: (i) MPI3D
(Gondal et al., [2019), where y is the object shape, n,, the horizontal axis, ny the vertical axis, and
c the remaining generative factors; (ii) Shapes3D (Kim & Mnih, [2018), where y is the shape, n,,
the floor color and wall color, ny the orientation, and c the remaining factors; (iii) CIFAR-10
(Krizhevsky et al.l [2009), where y is the standard classification task, ¢ consists of 64 of the 143
attributes extracted by |Oikarinen et al.|(2023)) using GPT-3 (Brown et al.,|2020), and n,, the remalmng
attributes, since all nuisances are correlated with y; and (iv) CUB (Wah et al.l|2011), where y is
the bird species, c includes concepts from twelve randomly selected attribute groups, and n,, the
attributes from the remaining 20 groups. While MCBMs natively support multiclass concepts, the
other baselines in our study are limited to binary concepts. To ensure fairness, factors with k classes
are therefore represented as k binary concepts.

Table 3: Average value of URR for task-related nuisances n,,.

MPI3D Shapes3D  CIFAR-10 CUB

Vanilla 35,019 4554+64 19.8+0.7 3.84+1.0
CBM (Koh et al., [2020) 28.1+£0.5 1814+29 185+0.7 3.8+0.8
CEM (Espinosa Zarlenga et al.,[2022) 43.2+5.2 156.8+39 27.24+0.8 39+1.1
ARCBM (Havasi et al., [2022) 282+1.7 184421 18.2+0.6 3.94+0.9
SCBM (Vandenhirtz et al.,2024) 243+04 21.8+14 183+0.7 3.6£0.8
" MCBM (low 7) 10.74+0.1 25+£0.1 18.0+ 0.5 34409
MCBM (medium 7) 6.7+0.2 0.24+0.3 18.1 +0.5 2.84+0.8
MCBM (high v) 0.0+0.0 0.0+0.0 17.6+0.5 2.4+1.0

Task-related information leakage To measure the presence of a nuisance factor n; € n, in z,
we estimate I(N;; Z | C)—the information about n; contained in 2z beyond what is explained by

c. Since this quantity is intractable, we approximate it as I(N;; Z|C) = H(N;|C) — H(N;,|C, Z),
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where A (N; | C) = — 330 log h,(e®™) and H (N} | C, Z) = — 3" log hé? (), 2()). Here,
hy, and h{; are MLP classifiers trained to predict n; from ¢ and (c, z), respectively. In Table |3}

we report the average value of % across all n; € n,, which we call Uncertainty Reduction
: .

Ratio (URR). From these results, we conclude that: (i) CBMs tend to reduce nuisance information
compared to VMs, though not consistently; (ii) CEMs generally preserve the largest amount of
nuisance information, often exceeding even VMs; (iii) ARCBMs and HCBMs show no systematic
advantage over CBMs in terms of nuisance removal; and (iv) MCBM:s provide the strongest reduction
of nuisance information, particularly as v increases, which enforces a stricter bottleneck.

Task-unrelated information leakage Neural net-
works typically discard input information, as their
layers are non-invertible (Tishby & Zaslavsky} 2015}

Table 4: Average value of URR for task-
unrelated nuisances.

Tschannen et al., [2019). Moreover, since ny is ir- Vanilla 1;\/[ 311313 T f; 2’17p isng
relevant for predicting y, there is no incentive to CBM 7 4 11 9 20' 6+ 3' 3
retain it in the representation z. One might there- ) ) ’ ’

. CEM 155+4.2 409+1.8
fore expect z to be free of ;. However, prior work ARCBM 87T+14 9266+ 0.5
has shown that neural representations often preserve SCBM 7' 0+ 0'3 21'7 + 1'7
information not directly related to the task (Achille MCBM (1) 0 '0 I 0' 00 0 To .O
& Soatto, [2018a; |Arjovsky et al., 2019). To exam- : : : :
ine this, we analyze whether nj is present in z for ﬁggﬁ Ehmf;);) gg ::E gg 88 i 88

MPI3D and Shapes3D—the only settings where 1y
is non-empty. Tablereports URR values for the nuisance variables in ny in. We find that: (i) as
in Table E], CEMs retain more nuisance information than even VMs; and (ii)) MCBMs are the only
models that consistently eliminate nuisances across all values of +, as expected: with no incentive to
preserve ny and an explicit penalty for doing so, such information is naturally discarded.

Are concepts removed to a greater extent in Table 5: Average concepts accuracy

MCBMs? One might worry that removing nui- CIFAR-10 CUB
.sance~1nf0rma.t10n could also inadvertently ehrp- CBM IR L 02 963 E01
inate information about the concepts. To test this,

. CEM 84.8+0.2 96.3+0.1
we report concept prediction accuracy for CIFAR- ARCBM 843+ 0.2 96.2+ 0.1
10 and CUB in Table 3] (note that all models reach SCBM 3 4'3 n 0'2 96 '5 n 0 1
100% accuracy on MPI3D and Shapes3D). We can MCBM (17) 84 '9 T 0 1 96‘ 310 2
observe that (i) no model consistently outperforms ’ : ' ’
the others—some preserve more concept informa- ﬁggﬁ Ehm%) 88%12 i(()) 12 ggé i 8 :1))

tion in CIFAR-10, while others perform slightly
better in CUB; and (ii) increasing v in MCBMs gradually reduces concept accuracy, as stronger
regularization may suppress features correlated with the concepts. These results indicate that MCBMs
effectively remove nuisance information while largely preserving concept-relevant content.

How does this affect

Table 6: Task accuracy
task performance?

. . MPI3D Shapes3D  CIFAR-10 CUB

As previously dis- —ram 100000 100.0£00 72106 774£03
cussed, when ny is gy 999400 1000+00 7384101 77.6+0.2
hon-empty, r.esmclt‘ CEM 100.0£0.0 100.04+0.0 73.1+0.3 77.5+0.3
?“? Ztocontam only  pepp 242406 29.7+04 689+0.3 755408
“111 Orfga“gn ab"“; ¢ SCBM 24.2+05 297+03 623400 735404
fn;):ce r(‘:nuce_ peirfog MCBM (1)  92.7£1.1 1000£0.0 724L£05 78306
oane, insul%cient & MCBM(m9) 460406 322415 708402 774404

MCBM (h~) 249403 301402 705+0.6 73.5+1.5

solve y, then z can-

not achieve perfect accuracy. In Table[6] we observe the following: (i) CBMs and CEMs reach task
accuracy comparable to (or even higher than) VMs, indicating that they also rely on n,, to predict
y; (ii) ARCBMs and SCBMs achieve lower task accuracy, as they impose a bottleneck after the
representations (see Appendix [D)); and (iii) MCBMs show decreasing task accuracy as 7 increases,
reflecting the stricter bottleneck applied to the representations. Importantly, this reduction in task
accuracy should not be viewed negatively: since all models achieve similar concept accuracy (see
Table ), it indicates that predictions rely less on nuisance information.
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4.2 Do MCBMS YIELD MORE INTERPRETABLE REPRESENTATIONS ?

One of the key properties often attributed
to CBMs is that their internal representa- Var‘"'a- R 3753 39.94 4256 RERE

tions align with human-interpretable con-

. . CBM| 78.69 71.02 27.21 62.06 26.67 61.47 25.80
cepts. While this generally holds, we show
that MCBMS yleld representatlons that are CEM 7243 67.91 26.05 60.87 31.67 37.05 64.66 33.42

even more interpretable. To support this
claim, we employ two metrics: (1) Cen- ARCBM 57.58  23.23  65.91 3472 34.05 51.92 29.99
tered Kernel Alignment (CKA) (Cristian-
ini et al. [Cortes et all, 2012; Ko- SCBM 67.64 2214 69.72 58.04 3230 5098 31.22
rnblith et al, 2019), which measures the

.. 0 . MCBM
similarity between learned representations (low y) 4164 4787 [y %384 2660
and concept labels (encoded as one-hot
.. R ( d_MCB"'; 38.69 77.23 67.36  61.92
vectors); and (ii) Disentanglement (East{ (medmv
(wood & Williams|, [2018)), which assesses Jrcam .57 e T
. . igh vy
whether each dimension of the represen-
tation z; captures at most one concept ¢, S & FH &S
¥l p p 7 ~ ,oQQ’ OQV A 782, d(‘?

S

These metrics capture interpretability from
complementary perspectives: (i) alignment Figure 4: CKA (left) and Disentanglement (right).
indicates whether the information is orga-

nized in a concept-aware fashion; and (ii) disentanglement reflects the extent to which individual
concepts are independently encoded in the representations. As shown in Figure[d (i) CBMs, CEMs,
ARCBMs, and HCBMs achieve stronger alignment with concepts than Vanilla Models, yet they do
not consistently improve disentanglement; and (ii) MCBMs consistently improve both alignment and
disentanglement, particularly as -y increases, reflecting the removal of additional nuisances. These
results suggest that explicitly eliminating nuisances leads to more interpretable representations.

4.3 Do MCBMS ENABLE MORE RELIABLE INTERVENTIONS?

Another key property of- CBM — ARCBM — HCBM — MCBM (low y) — MCBM (med. y) — MCBM (high y)
ten attributed to CBMs is 44 27 -

their capacity to support
interventions.  Although
standard CBM intervention
methods suffer from theo-
retical limitations (see Sec- 37 | 191
tion3)), they can still be ap-
plied in practice. Accord-
ingly, for CBMs we follow
the procedure in Section[2.3]

for ARCBMs and SCBMs 5, ! I I .11 ! . . .
we use the procedure de- 0 25 50 75 100 0 25 50 75 100
scribed in Appendix D} and (a) CIFAR-10 (b) CUB

for MCBMs we apply the . . .
method in Section P4l To Figure 5: Error (y-axis) versus percentage of concepts intervened (x-

evaluate intervention relia- 2X18) across different models.

bility across models, we adopt the standardized protocol of (2020), which tracks how
prediction error changes as the number of intervened concepts increases. Following
(2023)), we intervene on the concepts predicted with the lowest confidence. Results for CIFAR-10 and
CUB are shown in Figure [5| (note that interventions have minimal effect on MPI3D and Shapes3D,
since—as shown in Table E]—the concepts are not strong predictors of the task). From these results,
four main observations emerge: (i) CBMs may even increase error when multiple concepts are
intervened—an effect of nuisance information leaking into the representation due to the absence of a
proper bottleneck; (ii) ARCBMs and SCBMs mitigate this by applying an Information Bottleneck
after the representations, which improves intervention effectiveness while leaving interpretability
unchanged (Figure )); (iii) in MCBMs, intervention gains remain largely invariant to v, as indicated
by the nearly parallel trends across its different values; and (iv) at low and medium v, MCBMs
deliver the strongest intervention performance, especially when fewer than 100% of the concepts are
intervened, clearly outperforming ARCBMs and SCBMs.
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5 OTHER FUNDAMENTAL THEORETICAL FLAWS OF CBMS

As briefly discussed in Section[2.3] CBMs—unlike MCBMs—do not provide a principled mechanism
to estimate p(z; | ¢;). To enable interventions, two assumptions are typically introduced: (i) multi-
class concepts are handled using a One-vs-Rest scheme, and (ii) interventions are implemented via
the sigmoid inverse function, i.e., p(z; | ¢;) = § (zj —o! (cj)). These assumptions are not only ad
hoc but also theoretically incorrect, as we explain and illustrate with toy experiments below.

One-vs-Rest Limitations One-vs-Rest
strategies exhibit several limitations: (i) in-
dividual binary classifiers tend to be biased
toward the negative class, and (ii) the pre-
dicted probabilities across classifiers are typ-
ically uncalibrated (Bishop, |2006). To illus-
trate these issues, we design an experiment
where the concepts are defined based on a
four-class spiral dataset with imbalanced
class distributions. We train: (i) a CBM
with One-vs-Rest binarization, and (ii) an
MCBM modeling concepts directly as mul-
ticlass variables.

Figure 6: CBM (top) versus MCBM (bottom): class
boundaries (left), highest predicted likelihood (middle),
and second-highest predicted likelihood (right).

The results reveal three major shortcomings
of CBMs trained with the One-vs-Rest strat-
egy. First, Figure [6] (Ieft) shows that they
overpredict the most frequent class, especially when the true class is rare and spatially close to
the dominant. Second, Figure[6] (middle) shows that CBMs produce poorly calibrated predictions,
lacking the smooth likelihood transitions observed in MCBMs. Finally, Figure 6] (right) shows that
CBMs often assign near-one likelihoods to multiple classes simultaneously, whereas MCBMs confine
high secondary likelihoods to regions of overlap, producing more reliable uncertainty estimates.
Importantly, these effects may not be captured by standard metrics like accuracy, yet they represent
fundamental flaws from a probabilistic perspective.

Sigmoid Inverse Function The intervention
procedure p(z; | ¢;) ~ 6(zj—o Y(c;)) 05
does not satisfy Bayes’ rule, i.e., p(z; | ¢;) =
q(b(CJ |ZJ )p(ZJ)

= p(2)

= p(z]c=1)
o Hc=1)

= p(z]c=0)

o~ Hc=0)

For example, as illustrated in

Flgure ' when the prior p(z;) is bimodal—a
common case for representations arising from
two classes—p(z; | ¢;) differs markedly from
o~ 1(¢;). Ignoring the prior therefore not only
violates probability theory but also yields poor
practical approximations. This issue is diffi- 0.0
cult to overcome in CBMs, as the prior p(z;)

is unknown and challenging to estimate. Figu['e 7: Density (y_axis) vs. z (X-axis)

0.2

6 CONCLUSIONS

In this paper, we argue that—contrary to common belief—Concept Bottleneck Models (CBMs) do
not enforce a true bottleneck: although representations are encouraged to retain concept-related
information, they are not constrained to discard nuisance information. This limitation undermines
interpretability and provides no theoretical guarantees for intervention procedures. To address this, we
propose Minimal Concept Bottleneck Models (MCBMs), which introduce an Information Bottleneck
in the representation space via an additional loss term derived through variational approximations.
Beyond enforcing a proper bottleneck, our formulation ensures that interventions remain consistent
with Bayesian principles. Empirically, we show that CBMs and their variants fail to remove non-
concept information from the representation, even when irrelevant to the target task. In contrast,
MCBMs effectively eliminate such information while preserving concept-relevant content, yielding
more interpretable representations and principled interventions. Finally, we highlight fundamental
flaws in the intervention process of CBMs, which MCBMs overcome due to their principled design.
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A COMPLETE GRAPHICAL MODELS

@ ®
©

O,

©
)

(a) Data Generative Process (b) Vanilla Model

(c) Concept Bottleneck Models (d) Minimal Concept Bottleneck Models (ours)

Figure 8: Graphical models of the different systems described. We consider m concepts and m-
dimensional representations. Inputs « are defined by some concepts {c; ;=1 and nuisances n; and
targets y are defined by x (gray arrows). Vanilla models obtain the representations {z;}72; from
x through the encoder (cyan arrows) and solve the task gy sequentially through the rask
head (green arrows). Concept Bottleneck Models make a prediction ¢; of each concept c;
from one representation z; through the concept head q(¢;|z;) (blue arrows). Minimal CBMs make a
prediction z; of each representation z; from one concept ¢; through the representation head ¢(z;|c;)
(red arrows).
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B DETAILS OF DERIVATIONS

B.1 PROOF OF EQUATION(T]

I(Z)Y) = //p(z,y) logp(ylz))dydz ™
/// p(x,y)pe(z|x) log ((|)) drdydz 8
p(ylz) g4(9l2)
/// p(z,y)pe(z |xlog ()%(y')dddz 9)
= Epay) [Em( |) UOg%( | )H e(z) [Dkr (p(yl2)llas(912)] + HY)  (10)

Thus, since H(Y) is independent of 6 and ¢, we have that:
max 1(Z;Y) = maxEp(zy) [Epg(ala) 108 45(912)]] (12)

B.2 PROOF OF EQUATION 2]

C;) = //p(zj,cj)log p;c(]c,z)j) de; dz; (13)
i)
= ///p(%cj)pg(zﬂx) longx de; dz; (14
o
Bpa.c;) [Bpo(z12) log a(é; |%)H + E;De(zj) [Drr (p(cjlzi)lla(élz))] + H(Cy)
(16)
> Epa.c;) [Bg(z]2) 08 a(&]2)]] + H(C}) (17)

Given the fact that H(C) is constant, we have that:

max I(Z;; Cj) = max Ep(a.c) [Epy(z, 1) 08 4(6512))]] (18)

B.3 PROOF OF EQUATION[]

. ) — ) , p(zjlz)

2:X105) = [[ [ pte.cppo(esle) g B2 d ey (19)

_ ‘ , p(zjlz) a(Zlc)) g
- ///p(x,cj)pg(zj|x) log p(z5103) alsles) dzdc; dz; (20)
= Epa.c;) [Drr (Po(2512)|1a(251¢;))] — Epe;) [Prr (p(z5lei)la(Z41¢;))] (2D
< Epa.c;) [Drr (po(2i]7)[a(25lc)))] (22)

Thus, we have that:

min [(Z;; X|C5) = min By ;) [Dice (po(z517)la(251c;))] (23)
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B.4 KL DIVERGENCE BETWEEN TWO GAUSSIAN DISTRIBUTIONS

We are given the conditional distributions:
po(zjlx) = N(fo(x);,031),
46(%5lc;) = N(gi(cy), o31),
and aim to minimize the expected KL divergence:

Igi(ﬁnEp(m,cj) [Dxw (po(zj|) || g¢(Z5]cs))] -

The KL divergence between two multivariate Gaussians with diagonal covariances is given by:

det X,

1
DxL(N (pp, Zp) | Mg, 2q)) = 5 det 2
P

B tr(Zq_lzp) + (kg — 'up)ngl(:uq — pp) —d +log

Applying this to our case:

* p = fo(@);, kg = g3(c;),

e X, = afcl, g = agl,

* d is the dimension of z;.
Plugging in, we obtain:

1 [do?

1 z 2 O-g
D= 5 |5 + 2ol = )P~ + dog ()]

Note that all terms except the squared distance are constant with respect to 6 and ¢. Therefore:

1 4
Ep(z,qj) [Hfﬁ(x)] - g¢(cj)||2] + const.

Ep(a,c;) [Dx (9o(2517) | 46 (351¢)))] = 55

Conclusion: Minimizing the expected KL divergence
iy ,c) [Dxe (po(25]) || 45(351c;))]
is equivalent (up to a scaling factor) to minimizing the expected mean squared error:

min By (z.c;) [[1fo(@); - 95(ci)1?] -
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C TRAINING ALGORITHM OF MCBMSs

Algorithm 1 Training Algorithm for MCBMs

Require: Dataset D = {a:(’“), y®) k) }f;’:l, latent norm A, learning rate 7, batch size B
Ensure: Parameters 6 (encoder), ¢ (class-head, task-heads, representation-heads)

1: Initialize parameters 6, ¢ and representations heads:

2: forallj=1,...,ndo

3:

Nl

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

22:

23:
24
25:

26:
27:

AN A

if ¢; is binary then
g; < Aif¢; =1lelse — A
else if ¢; is multiclass then
g; < A-one hot (c;)
else
g; < A
end if

end for
while not converged do

Sample a mini-batch {z(¥), y*) cF}B ~ D

for all z(*) y*) ¢(*) in batch do
Encode: Compute uék) — fo (x(k))
Sample noise € ~ N (0, 1) > Reparameterization trick with only one sample
Reparameterize: 2(F) /Jék) +o0,O¢€
Task prediction: g « g% () > Similar to VMs
Task loss: ﬁg(,k) — Hy(’“) — g ||2 if y is continuous else CE (y(k), y<k>)
forallj=1,...,ndo

Concept j prediction: é;k) — 9oj (z](k)) > Similar to CBMs
2
Concept 7 loss: EEZ) — Hcék) — é;k) H if ¢; is continuous else CE (cg»k), é;k))
Representation j prediction: éj(k) —9; cgk) > Novelty in MCBMs
2

Representation j loss: Li’? — zj(-k) — éj(k) H

end for * * *

Total loss: L&) « L7 + B30 L)+ 30 L

end for

Update 6, ¢ using gradient descent:

B B
1 1
0(—0—77V9<B§ ﬁ(k)>, ¢<_¢_,7v¢< E E(k)>
k=1

k=1

o]

28: end while
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D HARD CONCEPT BOTTLENECK MODELS

As discussed in Section [3] one of the most successful approaches to mitigating information leakage
is the family of Hard Concept Bottleneck Models (HCBMs) (Havasi et al., | 2022)). Unlike MCBMs,
which enforce an Information Bottleneck (IB) directly at the representation level z, HCBMs operate
by pruning the information contained in z before producing the task prediction g. In doing so, they
encourage Yy to depend solely on ¢, thereby yielding interventions that are more reliable in practice.
This approach differs fundamentally from MCBMs: whereas Equation ] in MCBMs minimizes
over Z;, thereby removing nuisances directly from the representation z;, HCBMs optimize at the

prediction level, focusing on Y. Formally, they are trained to minimize:

min I(Y; X|C) = N Ep(a.c;) [Dx L (po.s(glz)|Ip(glc))] (24)

That is, the optimization is performed directly over the predictions y. To implement this, it defines:

Po.o(@lz) = / / / 46 (916%) p (¢"16) (é12) po (2]) dé® déd 25)

where g4 (§ | €°) denotes the new task head, q (¢ | z) the concept head, and py (z | ) the encoder,
as defined in Section 2l The distribution

p(&%e;) =0 (& — O (6 —0.5)) (26)

referred to as the binarizing head, applies the Heaviside step function © to produce a binary version
éé’ € {0,1} of ¢;. In this way, HCBMs enforce an ad-hoc Information Bottleneck by predicting ¢
from binarized concept representations. This process is schematized in Figure[9]

How are Interventions Performed in HCBMs? Because HCBMs introduce a bottleneck immedi-
ately before predicting gy, the intervention process is more straightforward than in standard CBMs.
More specifically, interventions are carried out according to:

il = a.2) = [ [ aslglés, & p(clle; = alpol@, o) dél e, @)

Here, p(é? |c; = ) is approximated as 5(62’. — a), while the other distributions are available in closed
form. Although this procedure provides stronger guarantees than the intervention mechanisms in
standard CBMs, two main issues remain:

(i) The optimization is performed over the predictions y instead of the representation z. As
a result, the representations themselves are not necessarily interpretable, as evidenced in
Figure ] which limits one of the core motivations for adopting CBMs in the first place.

(ii) HCBM s still require binarizing multiclass concepts, which introduces theoretical limitations
and practical drawbacks, as further discussed in Section 3]

O @@
(@)
& @

Figure 9: Graphical models of HCBMs with two concepts and two-dimensional representations. Hard
Concept Bottleneck Models obtain a binarized version ég’ of each predicted concept ¢; through the

binarizing head p(("’; | ¢j) (fuchsia arrows). Unlike the models in Figure HCBMs predict the task
output y from the binarized concepts ég’ using the new task head (green arrows).
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E EXPERIMENTS DETAILS

E.1 HYPERPARAMETERS FOR SECTION 4]

Table 7: Hyperparameters for Section @4 For all datasets, the concept head g is implemented
as the identity function in CBMs, and as a multilayer perceptron (MLP) with three hidden layers
in MCBMs. We emphasize that CBMs are, by design, restricted to use invertible g to enable
intervention procedures.

MPI3D  Shapes3D CIFAR-10 CUB
fo architecture ResNet20 ResNet20 2 conv. layers InceptionV3
fo pretraining None None None ImageNet
935 hidden layers 64 64 64 256
low 1 1 0.1 0.05
medium y 3 3 0.3 0.1
high 5 5 0.5 0.3
number of epochs 50 50 200 250
batch size 128 128 128 128
optimizer SGD SGD Adam SGD
learning rate 6x1073 6x1073 1x1074 2 x 1072
momentum 0.9 0.9 0. 0.9
weight decay 4x107% 4x107° 4x107° 4 %1075
scheduler Step Step Step Step
step size (epochs) 20 20 80 100
scheduler ~ 0.1 0.1 0.1 0.1

E.2 DATASETS

MPI3D This is a synthetic dataset with controlled variation across seven generative factors: object
shape, object color, object size, camera height, background color, horizontal axis, and vertical axis.
In our setup, y corresponds to the object shape, n,, to the horizontal axis, ny to the vertical axis, and
c to the remaining generative factors. To ensure consistency in the mapping between concepts and
task nuisances and the target, we filter the dataset such that any combination of elements in {c, 1, }
corresponds to a unique value of y. All invalid combinations are removed accordingly.

Shapes3D This synthetic dataset consists of 3D-rendered objects placed in a room, with variation
across six known generative factors: floor color, wall color, object color, scale, shape, and orientation.
In our setup, y corresponds to the shape, ny includes floor color and wall color, ng corresponds
to orientation, and ¢ comprises the remaining factors. We follow the same filtering strategy as in
MPI3D to construct this configuration: we retain only those samples for which each combination of
{¢,n,} uniquely determines y, removing all invalid configurations.

CIFAR-10 CIFAR-10 is a widely used image classification benchmark consisting of 60,000 natural
images of size 32 x 32, divided into 10 classes (e.g., airplanes, automobiles, birds, cats, etc.). The
dataset is split into 50,000 training and 10,000 test images, with balanced class distributions. To
reduce the need for manual concept annotations, the concepts are synthetically derived following
the methodology of (Vandenhirtz et al., 2024)). A total of 143 attributes are extracted using GPT-3
(Brown et al., 2020); 64 form the concept set ¢, while the rest define the nuisance set n,,. Binary
values are obtained with the CLIP model (Radford et al.|[2021)) by comparing the similarity of each
image to the embedding of an attribute and to its negative counterpart.

CUB The Caltech-UCSD Birds (CUB) dataset contains 11,788 images of 200 bird species, anno-
tated with part locations, bounding boxes, and 312 binary attributes. Following the approach of |Koh
et al.| (2020), we retain only the attributes that are present in at least 10 species (based on majority
voting), resulting in a filtered set of 112 attributes. These attributes are grouped into 27 semantic
clusters, where each group is defined by a common prefix in the attribute names. In our setup, the
task variable y is to classify the bird species. The concept set c consists of the attributes belonging to
12 randomly selected groups (per run), while the nuisance set ny includes the attributes from the
remaining 20 groups. Since most attributes exhibit some correlation with the classification task, we
set ny to the empty set.
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