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ABSTRACT

Deep learning representations are often difficult to interpret, which can hinder their
deployment in sensitive applications. Concept Bottleneck Models (CBMs) have
emerged as a promising approach to mitigate this issue by learning representa-
tions that support target task performance while ensuring that each component
predicts a concrete concept from a predefined set. In this work, we argue that
CBMs do not impose a true bottleneck: the fact that a component can predict a
concept does not guarantee that it encodes only information about that concept.
This shortcoming raises concerns regarding interpretability and the validity of
intervention procedures. To overcome this limitation, we propose Minimal Concept
Bottleneck Models (MCBMs), which incorporate an Information Bottleneck (IB)
objective to constrain each representation component to retain only the information
relevant to its corresponding concept. This IB is implemented via a variational
regularization term added to the training loss. As a result, MCBMs yield more
interpretable representations, support principled concept-level interventions, and
remain consistent with probability-theoretic foundations.

1 INTRODUCTION

Most machine learning models operate by learning data representations—compressed versions of the
input that retain the essential information needed to solve a given task (Bengio et al., 2013). However,
these representations often encode information in ways that are not easily interpretable by humans.
This lack of interpretability becomes especially problematic in sensitive domains such as healthcare
(Ahmad et al.| |2018; Xie et al.,2020; Jin et al.,2022), finance (Brigo et al.,[2021; [Liu et al.| [2023)),
and autonomous driving (Kim & Canny, 2017; | Xu et al., 2024b)). To address this issue, Concept
Bottleneck Models (CBMs) have been proposed, which enforce representations to be defined in terms
of a set of human-understandable concepts (Koh et al., 2020).

Given an input & and target y, Vanilla Models (VMs) are trained with a single goal: the representation
z derived from x should encode all information needed to accurately predict y. In many settings,
additional side information—often referred to as concepts—is available, denoted by ¢ = {c;}7;.
Concept Bottleneck Models (CBMs) leverage this by extending VMs with a second objective: each
concept ¢; must be recoverable from a designated component z; € z. By enforcing this additional
constraint, CBMs are purported to provide: (i) enhanced interpretability of the learned representation
space, and (ii) the abilityy to perform targeted interventions on specific concepts by manipulating z;
and propagating the resulting changes to the model’s predictions.

However, CBMs are prone to a phenomenon known as information leakage (Margeloiu et al., 2021}
Mahinpei et al., 2021)), where the representation z encodes input information that cannot be attributed
to the predefined concepts c¢. We refer to this additional information as nuisances n. Information
leakage raises two main concerns: (i) it undermines interpretability, since z; cannot be fully explained
by its corresponding concept c¢;; and (ii) it compromises the validity of interventions—modifying z;
may alter not only the associated concept c;, but also other unintended information encoded in z;.

We argue that information leakage stems from a fundamental limitation in the current formulation
of CBMs: the absence of an explicit Information Bottleneck (IB) (Tishby et al.,[2000) that actively
constrains z; to exclude information unrelated to c;. While the second objective in CBMs encourages
each z; to retain ¢; in its entirety, it does not enforce that z; captures only information about ¢;. In
the worst-case scenario, z; could encode the entire input  and still satisfy this objective.
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To address this issue, we propose  Table 1: Differences between VMs, CBMs and MCBM.
Minimal Concept Bottleneck Models

(MCBMs), which incorporate an 1B VMs CBMs MCBMs
into each z;. This ensures that z; not ~ Does z; encode all ¢;? X
only retains all the information about Does z; encode only ¢;? X X

its associated concept c;, but also ex-

cludes any information unrelated to c;, as summarized in Table[T] The name reflects that z; is trained
to be a minimal sufficient statistic of ¢; (Fisher, [1922;|1935)), in contrast to traditional CBMs where
z; is optimized to be merely a sufficient statistic of c;. As illustrated in Figure EI, this design yields
disentangled representations that directly address the two shortcomings of CBMs: (i) it improves
interpretability, since z; can be fully explained by its corresponding concept ¢;; and (ii) it enables
valid interventions—modifying z; affects only the associated concept c;.

In Section 2] we connect the data generative process to MCBMs through information-theoretic quanti-
ties, showing that the IB can be implemented via a variational loss. In Section[3] we review alternative
approaches to address information leakage. In Section[d] we present experiments demonstrating that
MCBMs enforce a true bottleneck, thereby enhancing interpretability and intervenability compared
to existing alternatives. Finally, in Section[3} we show that the assumptions made in CBMs to enable
interventions are theoretically flawed.
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Figure 1: In Vanilla Models, concepts and nuisances may be arbitrarily entangled in the representation,
and a variable z; may capture only part of a concept (depicted as paler colors). In CBMs, each z;
encodes all information about its corresponding concept c;, but may also capture some information
about nuisances (e.g., z1) or other concepts (e.g., z2). In contrast, MCBMs enforce that each
representation variable z; encodes all—and only—the information about its corresponding concept.

2 FROM DATA GENERATIVE PROCESS TO MCBMS

2.1 DATA GENERATIVE PROCESS

For this scenario, we consider inputs © € X, targets y € ), concepts ¢ = {Cj ;”:1 € C and nuisances
n € N, such that p(z, y,c,n) = p(x|c,n)p(y|x)p(c,n), i.e., the inputs x are described by the
concepts ¢ and the nuisances n, and the targets y are fully described by the input . The only
difference between ¢ and n is that the former are observed, while the latter are not or, in other words,

labels on ¢ are provided to us. We assume access to a training set {a:(i), y@, e } |, which defines

the empirical distribution p(x,y,¢) = S~ | § (& — 2®) § (y — y?) § (¢ — ¢?). The graphical

model corresponding to this generative process is shown in Figure [2a) for the case of two concepts.

2.2  VANILLA MODELS

In machine learning, the most commonly studied problem is that of predicting y from @, which
serves as a foundation for more specialized tasks. We refer to models trained to address this
problem as Vanilla Models (VMs). These models typically operate by first extracting an intermediate
representation z € Z from the input x via an encoder py(z | x) parameterized by 6. Subsequently,
a prediction § € ) is produced from z using a task head q,(y | z) parameterized by ¢. Since z
is intended to facilitate accurate prediction of y, the mutual information between z and y, denoted
1(Z;Y), should be maximized. In Appendix we formally show that:

max I(Z;Y) = I%%XEp(w,y) [Epg (2] [10g g (9]2)]] (D
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Figure 2b] shows the graphical model of a Vanilla Model with a two-dimensional representation z.
Black edges represent the encoder py(z | ), while green edges indicate the task head ¢4 (9 | 2). The
encoder is typically chosen to be deterministic, i.e., pg(z | ) = 6 (z — fo(x)), where fp : X — Z
is a neural-network—parameterized mapping. However, for tractability reasons (see Section [2.4), we
adopt a stochastic formulation where py(z | ) = N (z; fo(x), 021), as summarized in Table[2 The
choice of task head q4(y | z) depends on the structure of the output space ), also detailed in Table
The objective in Equation [I| corresponds to minimizing the cross-entropy loss when y is binary or
multiclass, and to minimizing the mean squared error between y and gg(z) when y is continuous.

2.3 CONCEPT BOTTLENECK MODELS

Vanilla Models generally lack interpretability with respect to the known concepts ¢, as the encoder
fo is often opaque and difficult to analyze. Moreover, these models tend to entangle the concepts
in such a way that it becomes intractable to determine how individual concepts influence specific
components of the latent representation z, and consequently the predictions §. Concept Bottleneck
Models (CBMs) have been introduced to address this limitation. In a CBM, each concept c; is
predicted from a dedicated latent representation z; via a concept head q(é; | z;). Consequently, z;
must encode all information about c;—that is, z; must be a sufficient representation for c;. This
requirement can be formalized as maximizing the mutual information /(Z;; C;), for which the
following identity—proved in Appendix [B.2}—is employed:

max 1(Z;; C5) = maxEpe.c;) [Epy(z,1e) [108 45(&175)]] €
J )

As illustrated in Figure [2c|, CBMs extend Vanilla Models by incorporating a concept head ¢(¢; | z;),
depicted with blue arrows. These models jointly optimize the objectives in Equations[I|and 2} As
detailed in Table the form of the concept head g4 (é; | ;) depends on the nature of the concept
space C. The objective in Equation 2] corresponds to minimizing the cross-entropy loss when c; is
binary or multiclass, and the mean squared error between c; and g§(z;) when c; is continuous.

How are Interventions Performed in CBMs? As explained in Section[I} a key advantage often
attributed to CBMs is their ability to support concept-level interventions. Suppose we aim to estimate
p(y | ¢; = a, ). In CBMs, this intervention is performed through the latent representation z;:

p(Yle; = o, ) = //p(ﬁlzpz\j)l?(zﬂcj = a)p(z\j|x) dzj dz\; (3)

However, the conditional distribution p(z; | ¢;) is not defined—there is no directed path from c; to
z; in Figure[2d| Intuitively, because z; may encode information about & beyond c;, it cannot be fully
determined by c; alone. This raises a key question: how can interventions be performed in CBMs if
p(z; | ¢;) is unknown? To make interventions feasible, CBMs typically impose two constraints:

(i) Concepts c; € c, are assumed to be binary. If a concept is originally multiclass with &
categories, it is converted into k binary concepts (One-vs-Rest (Rifkin & Klautaul 2004)).

(i) The concept head is defined as g4(c; | zj) = o(z;), where o denotes the sigmoid function.

Since o is invertible, this setup permits defining p(z; | ¢;) ~ 0~ (c;). However, this is ill-defined at
the binary extremes, as 0! (1) = —o~1(0) = occ. To address this, in practice, p(z; | ¢; = 0) and
p(z; | ¢; = 1) are set as the 5th and 95th percentiles of the empirical distribution of z;, respectively
(Koh et all,[2020). This workaround, however, introduces two crucial issues discussed in Section 5]

Table 2: Distributions considered in this work. fy : X — Z is typically a large neural network while
935 :Z2—=Y,95:Z— Candg; : C — Z are comparatively lightweight networks (see Section .
Throughout this work, we model z as a continuous latent representation.

po(2]) 46(9]2) 49(25) 49(25]c;)
Binary - Bernoulli ( g(2) ) ~ Bernoulli (g;(zj) -
Multiclass - Categoric ( g/(z)) Categoric (gg(zj) -

Continuous N(fg(x),agf) N(gz(z),dgf) N(Q;(Zj)»a?;f) N(g;(cj),agl)
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2.4 MINIMAL CONCEPT BOTTLENECK MODELS

As discussed in Section [T} CBMs lack an explicit mechanism for enforcing a bottleneck, which often
undermines their intended advantages. To address this limitation, we introduce Minimal Concept
Bottleneck Models (MCBMs), which explicitly impose an Information Bottleneck. This ensures that
each z; retains all information about its associated concept c;, while excluding information unrelated
to ¢;. In other words, z; becomes a minimal sufficient representation of c;. To achieve this, we
introduce a representation head qq(Z; | c;) that predicts z; from c¢;. This encourages z; to discard
information unrelated to ¢;, as doing so improves the predictive accuracy of g, (2; | ¢;). Formally, this
objective corresponds to minimizing the conditional mutual information I(Z;; X | C;). We note that
if z; is a representation of «, then the following propositions are equivalent: (i) I(Z;; X|C;) = 0,
(ii) the Markov Chain X « C; < Z; is satisfied and (iii) p(z,|c;) = p(z%] To minimize
I1(Z;; X | C;), we leverage the following identity, which is proven in Appendix

min [(Z;; X|Cj) = Igi;lEp(x,cj) [Drcr (po(z|7)|lgs(25]c;))] “

Figure [2d|illustrates how MCBMs extend CBMs by introducing the representation head ¢(Z; | ¢;),
depicted with red arrows. These models are trained to jointly optimize the objectives given in
Equations and[d Although the KL Divergence in Equation ] does not admit a closed-form
solution in general, we show in Appendix that, under the distributional assumptions listed in
Table it reduces to the mean squared error between fo(z) and g3 (c;).

How are Interventions Performed in MCBMs? In contrast to CBMs, MCBMs explicitly constrain
#; to contain only information about ¢;. As a result, modifying z; corresponds to intervening solely
on ¢;. This is reflected in Figure 2d, where MCBMss introduce a directed path from c; to z; through
the intermediate variable Z;. This structure permits the computation of:

p(zjle;) = /P(Zj 125)45(%5l¢;) dz; )
which simplifies to p(z; | ¢;) = ¢s(2; | ¢;) when p(z; | 2;) = d(z; — Z;), i.e., once the objective in
Equation[zl_f]is optimized and z; encodes exclusively c;. As shown in Table@ we define the encoder
distribution as q4(2; | ¢;) = N(gZ(c)), 021), where mean function g5 (c;) is chosen according to
the following rules:
(i) For binary concepts, g3(c;) = Aif ¢; = 1, and g3(c;) = —A otherwise.
(ii) For categorical concepts, g7 (c;) = A - one_hot(c;). This mirrors the Prototypical Learning
(Snell et al., 2017) approach where class-dependent prototypes {g;(c;)}72; are fixed.

(iii) For continuous concepts, g;(c;) = A - ¢;.

Here, A is a scaling constant that controls the norm of the latent representation, fixed to A = 3 in
all experiments. Regarding the variance term, we set: (i) o, = 0 in the case of CBMs to obtain a
deterministic encoder in line with their original formulation, and (ii) o, = 0; = 1 for MCBMs.

Practical Considerations for Optimizing MCBMs To optimize MCBMs, we combine the three
previously introduced objectives, incorporating two key considerations. First, we approximate the
expectations over p(x,y) and p(x, ¢;) using the empirical data distribution, replacing integrals
with summations over the dataset. Second, to enable gradient-based optimization through the
stochastic encoder, we apply the reparameterization trick (Kingma, 2013): E,, .2 [log ¢4 (y|2)] =

> log e (y\fé (x, e(i))) and (. |2) [l0g46(Cl25)] =~ > ;loggy (éj|féyj (:1:, e(i))), where
fo(z,€) = fo(x) + 07 1e (due to the choice of py(z|z) in Table 2), € ~ N (0,1) and fg ; (z,€)
corresponds to the element j of fj (x,€). Combining the considerations above yields the final
objective for training MCBMs, as shown in Equation|[6] where 3 and ~y are hyperparameters. The first
term corresponds to the objective used in Vanilla Models, the second term is introduced in CBMs,

and the third is specific to MCBMs. Detailed training algorithms for the various cases listed in Table
are providj%d in Appendix

3" Yo (91 (=) 4 Y tosas (1l (5.0)
k=1 =
3 (o) o (516

j=1

(6)
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(c) Concept Bottleneck Model (CBM) (d) Minimal Concept Bottleneck Model (MCBM)

Figure 2: Graphical models of the different systems described for two concepts and two-dimensional
representations. Appendix [A] shows the analogous figure for m concepts and m-dimensional repre-
sentations. Inputs @ are defined by some concepts {c; }*; and nuisances m; and targets y are defined
by x (gray arrows). Vanilla models obtain the representations {z; =y from & through the encoder
(cyan arrows) and solve the task gy sequentially through the task head (green arrows).
Concept Bottleneck Models make a prediction ¢; of each concept c¢; from one representation z;
through the concept head q,(¢;|z;) (blue arrows). Minimal CBMs make a prediction Z; of each
representation z; from one concept ¢, through the representation head q,(%;|c;) (red arrows).

3 RELATED WORK

Information Leakage in Concept Bottleneck Models Information leakage occurs when the
learned representation z encodes information outside the concept set ¢, reducing both interpretability
and intervenability (Margeloiu et al., 2021} [Mahinpei et al.,[2021). This arises when the Markovian
assumption fails—i.e., when the target y is not fully determined by the concept set ¢, or equivalently,
p(yle) # p(yle, ), which is typically the case in real-world scenarios (Havasi et al.| [2022). Con-
cept Embedding Models (CEMs) (Espinosa Zarlenga et al., [2022) were proposed to mitigate the
accuracy—interpretability trade-off in CBMs. However, this trade-off is fundamentally limited by the
chosen concept set, and CEMs may even be less interpretable than standard CBMs, as their more
entropic representations tend to amplify information leakage, a critique formalized in (Parisini et al.|
2025). |[Havasi et al.|(2022) also introduced Hard Concept Bottleneck Models (HCBMs), which predict
y from binarized concept predictions ¢; rather than from z (see Appendix E[), thereby imposing an
ad-hoc Information Bottleneck. Extensions such as Autoregressive CBMs (ARCBMs) and Stochastic
CBMs (SCBMs)(Havasi et al., [2022; Vandenhirtz et al., [2024) incorporate dependencies between
concepts. Energy-based CBMs (Xu et al., [2024a) replace the task head with an energy function
that scores concept—label compatibility, enabling richer and more structured concept relationships.
Beyond architectural changes, prior work has characterized leakage using information-theoretic quan-
tities (Parisini et al., [2025; Makonnen et al.,2025)). To the best of our knowledge, this is the first work
that leverages Information Theory to (i) formally identify the underlying design flaw—CBM:s require
each z; to predict ¢; but do not restrict z; from encoding additional nuisance information—and
(i1) introduce a principled, variational IB objective that directly constrains each latent variable to
retain only concept-relevant information.

Information Bottleneck in Representation Learning The Information Bottleneck (IB) (Tishby
et al.,[2000) provides a principled way to balance preserving information about a factor with compress-
ing the representation. In this framework, a representation is sufficient if it retains all the information
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about the variable of interest, and minimal if it contains only that information (Achille & Soatto,
2018azb; [Shwartz Ziv & LeCun, [2024)). Computation of these quantities is intractable, so variational
methods have been developed to derive tractable evidence bounds (Alemi et al., 2016; |[Fischer}, 2020).

4 EXPERIMENTS

In this section, we present a series of experiments designed to empirically demonstrate that CBMs fail
to impose an effective bottleneck, even in simple settings. We also examine the consequences of this
limitation. In contrast, we show that MCBMs successfully enforce a bottleneck, thereby mitigating
the issues that arise in its absence. Further implementation details—including encoder architectures
and training hyperparameters for each experiment—are provided in Appendix [F

4.1 Do CBMs AND MCBMS LEAK INFORMATION?

Some works assume that the task y is fully defined
by the concepts c. However, it is unrealistic to ex- @ @

pect a finite set of human-understandable concepts RN

to completely describe an arbitrarily complex task. @ @ @ \@
In practice, certain nuisances 7 that describe the

input x also influence y. Specifically, we decom-

pose the nuisances as n = {n,,n;}, where n, @ @

captures nuisances that, together with the concepts,

describe y, while 125 comprises those independent (a) Data (b) Representation

of y (see Figure[3a). As discussed throughout this
work, CBMs provide no incentive to remove infor-
mation unrelated to the concepts. Moreover, since
the objective of most models is to solve y, they
are incentivized to preserve not only ¢ but also
n,,. While this may improve task performance, it comes at the expense of interpretability and valid
interventions. For instance, if z; € z is intended to represent the concept ¢; € ¢, , one might assume
that modifying z; corresponds solely to intervening on c;. However, if z; also encodes information
about n,; (or even ny as we show later), then modifying z; also affects the nuisances, invalidating any
causal conclusions. By introducing the Information Bottleneck in Equation[d] we explicitly constrain
the model to remove nuisances from z;, thereby restoring the validity of causal analyses involving c;.
We note, however, that this necessarily reduces task performance: if ¢ is incomplete and solving y
requires information from n (i.e., n, # (), excluding n from z will lower predictive performance.

Figure 3: Some nuisances n,, € n affect the task
y while others n; € n do not. None of them
should affect the representation z since it must
be fully described by the concepts c.

We next examine whether 12, and ny are present in the representations across different CBM variants
and datasets. For this purpose, we define the following task—concept configurations: (i) MPI3D
(Gondal et al., 2019), where y is the object shape, 1, the horizontal axis, ny the vertical axis, and
c the remaining generative factors; (ii) Shapes3D (Kim & Mnih, [2018), where y is the shape, n,,
the floor color and wall color, ny the orientation, and c the remaining factors; (iii) CIFAR-10
(Krizhevsky et al., [2009), where y is the standard classification task, ¢ consists of 64 of the 143
attributes extracted by|Oikarinen et al. (2023) using GPT-3 (Brown et al.,|2020), and 72, the remaining
attributes, since all nuisances are correlated with y; (iv) CUB (Wah et al.,|2011), where y is the bird
species, c includes concepts from twelve randomly selected attribute groups, and n,, the attributes
from the remaining 15 groups; and (v) AwA2 (Xian et al.,|2017)), where y is the animal class, c
consists of 20 of the 85 human-annotated attributes, and 72, the remaining attributes. While MCBMs
natively support multiclass concepts, the other baselines in our study are limited to binary concepts.
To ensure fairness, factors with £ classes are therefore represented as % binary concepts.

Task-related information leakage To measure the presence of a nuisance factor n; € n, in z,
we estimate I(N;; Z | C')—the information about n; contained in z beyond what is explained by
c. Since this quantity is intractable, we approximate it as I(N;; Z|C) = H(N;|C) — H(N;,|C, Z),
where H(N; | C) = — Zgzl log hfp(c(k)) and H(N; | C, Z) = — Z,ivzl log hff(c(k), 2(F), Here,
hy, and hy? are MLP classifiers trained to predict n; from ¢ and (c, z), respectively. In Table (3] we

report the average value of % across all n; € n,, which we call Uncertainty Reduction Ratio

(URR). From these results, we coriclude that: (i) CBMs tend to reduce nuisance information compared
to VMs, though not consistently; (ii) CEMs and ECBMs generally preserve the largest amount of
nuisance information, often exceeding even VMs; (iii) ARCBMs and HCBMs show no systematic
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advantage over CBMs in terms of nuisance removal; and (iv) MCBMs provide the strongest reduction
of nuisance information, particularly as v increases, which enforces a stricter bottleneck.

Table 3: Average value of URR for task-related nuisances n,.

MPI3D Shapes3D  CIFAR-10 CUB AwA?2
Vanilla 35,019 455+64 198+0.7 38+1.0 1.5+0.3
CBM 281£05 181+29 185+£0.7 38+08 14+£03
CEM 432+52 158+39 272£08 39+£11 11405
ECBM 252+30 4714+37 181+£05 45+10 1.1+0.3
ARCBM 282+17 184+21 182+£06 39+09 1.6=£0.3
SCBM 243+£04 218+14 183+£07 3.6+08 1.2=£0.2
MCBM (low ) 10.7+0.1 25=£0.1 18.0+0.5 34+£09 1.0+£04

MCBM (medium+vy) 6.7£0.2 0.2=£0.3 18.1+0.5 28+0.8 09£04
MCBM (high 7) 00+0.0 0.0+00 17.6£0.5 24+1.0 0.7+0.4

Task-unrelated information leakage Neural net- Table 4: Average value of URR for task- nui-
works typically discard input information, as their gances.

layers are non-invertible (Tishby & Zaslavsky, 2015

Tschannen et al., 2019). Moreover, since ny is ir- Vanilla 1i\/[ 3Pflg 1 fzh E;pisng
relevant for predicting y, there is no incentive to CBM 7 4 11 9 20' 6+ 3' 3
retain it in the representation z. One might there- CEM 1 5 5+ 4 9 40'9 + 1' 3
fore expect z to be free of n;. However, prior work ECBM 6 2 11 4 46' 4+ 4'7
has shown that neural representations often preserve ARCBM 8.7 T 1' 4 26.6 T 0'5
information not directly related to the task (Achille SCBM 7'0 1 O. 3 21'7 + 1'7
& Soatto, [2018a; |Arjovsky et al., [2019). To exam- - : . .
ine this, we analyze whether ny is present in z for ﬁggﬁ gnyf)y) gg i 83 88 i 88

MPI3D and Shapes3D—the only settings where n
is non-empty. Table @] reports URR values for the MCBM (hy) 0.0£0.0 0.0+0.0

nuisance variables in ny in. We find that: (i) as in Table E], CEMs and ECBMs can retain more
nuisance information than even VMs; and (ii) MCBMs are the only models that consistently eliminate
nuisances across all values of +y, as expected: with no incentive to preserve n; and an explicit penalty
for doing so, such information is naturally discarded.

Are concepts removed to a

¢ tent in MCBMSs? Table 5: Average concepts accuracy
greater extent in s?

One might worry that removing CIFAR-10 CUB AWA2

nuisance information could also CBM 84.8+0.2 96.3+0.1 98.1+0.1
inadvertently eliminate informa- CEM 84.8 0.2 96.3 £ 0.1 98.0 £0.1
tion about the concepts. To test ECBM 84.6 0.2 96.1 +0.4 98.0+0.1
this, we report concept prediction ARCBM 84.3 0.2 96.2 0.1 97.9+0.1
accuracy for CIFAR-10 and CUB SCBM 84.3+0.2 96.5+0.1 98.4+4+0.1

in Table E] (1’10'[6 that all models MCBM (l ’}/) 84.9 :I: 0.1 96.3 £0.2 98.0+£0.2
reach 100% accuracy on MPI3D MCBM (Il’l ’y) 84.9 +£0.2 96.1 £0.1 97.9+0.1
and Shapes3D). We can observe _MCBM (hy) 848401 958403 97.6£0.2

that (i) no model consistently out-

performs the others—some preserve more concept information in CIFAR-10, while others perform
slightly better in CUB; and (ii) increasing v in MCBMs gradually reduces concept accuracy, as
stronger regularization may suppress features correlated with the concepts. These results indicate that
MCBMs effectively remove nuisance information while largely preserving concept-relevant content.

How does this affect task performance? As previously discussed, when n,, is non-empty, restrict-
ing z to contain only information about ¢ should reduce performance on y: if c alone is insufficient
to solve y, then z cannot achieve perfect accuracy. In Table[6] we observe the following: (i) CBMs,
CEMs and ECBM s reach task accuracy comparable to (or even higher than) VMs, indicating that they
also rely on mn,, to predict y; (i) ARCBMs and SCBMs achieve lower task accuracy, as they impose
a bottleneck after the representations (see Appendix [D); and (iii) MCBMs show decreasing task
accuracy as 7y increases, reflecting the stricter bottleneck applied to the representations. Importantly,
this reduction in task accuracy should not be viewed negatively: since all models achieve similar
concept accuracy (see Table[5), it indicates that predictions rely less on nuisance information.
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Table 6: Task accuracy

MPI3D Shapes3D  CIFAR-10 CUB AwA?2
Vanilla 100.0£0.0 100.0+£0.0 721£06 774+03 91.6+04
CBM 999+00 100.0+0.0 738£01 776+02 91.1+04
CEM 100.0 £0.0 100.0+£0.0 73.1+£0.3 77.5+£0.3 90.7£0.5
ECBM 999+0.0 100.0+0.0 744+£04 771405 92.1+0.3
ARCBM 2424+06 297x04 689+03 75.5+£08 89.9+0.3
SCBM 242405 297+£03 623+00 73.5+04 91.8+0.1
MCBM (1) 92.7+1.1 100.0+£0.0 724£05 783+06 90.6+0.4
MCBM (m~vy) 46.0+£0.6 322+15 708=£0.2 774£04 90.1£0.2
MCBM (thy) 249£03 301+£02 705+£06 73.5+15 88.7+0.3

4.2 Do MCBMS YIELD MORE INTERPRETABLE REPRESENTATIONS ?

One of the key properties often attributed to CBMs is that their internal representations align with
human-interpretable concepts (Debole et al.,[2023). While this generally holds, we show that MCBMs
yield representations that are even more interpretable. To support this claim, we employ two metrics:
(i) Centered Kernel Alignment (CKA) (Cristianini et al.,[2001}; [Cortes et al., 2012} [Kornblith et al.]
2019), which measures the similarity between learned representations and concept labels (encoded
as one-hot vectors); (ii) Disentanglement (Eastwood & Williams| [2018)), which assesses whether
each dimension of the representation z; captures at most one concept ¢;; and (iii) Oracle Information
Score (OIS) (Zarlenga et al} [2023), which dextends beyond standard disentanglement by accounting
for concept dependencies, requiring that correlations between z; and zj, do not exceed those between
c;j and cj,. These metrics capture interpretability from complementary perspectives: (i) CKA indicates
whether the information is organized in a concept-aware fashion; and (ii) Disentanglement and OIS
reflect the extent to which individual concepts are independently encoded in the representations. As
shown in Figure @} As shown in Figure @} (i) CBMs, CEMs, AR-CBMs, and HCBMs generally
achieve higher CKA with concepts than Vanilla Models, but they do not consistently improve
Disentanglement or OIS; (ii)) ECBMs do not, in general, produce more interpretable representations
than VMs; and (iii) MCBMs consistently improve CKA, Disentanglement, and OIS, with larger gains
as -y increases, reflecting the removal of additional nuisances.

These results indicate that explicitly removing nuisances leads to more interpretable representations.
To analyze this systematically, Table[7]reports the rank correlations between the metrics in Figure
[ and the URR values in Table [3] across datasets. We observe that CKA and OIS are strong and
consistent predictors of nuisance information, whereas disentanglement is noticeably weaker. This is
particularly helpful for tuning +: since n,, is unobserved in real scenarios, URR cannot be computed
as in Table[3] As a workaround, these metrics—computed solely from ¢ and z—can serve as practical
proxies for selecting the trade-off between task accuracy and leakage.
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Figure 4: CKA (left, T), Disentanglement (middle, 1) and OIS (right, |).
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Table 7: Rank Correlation (p-value) between each metric and URR for n,, across datasets

MPI3D Shapes3D CIFAR-10 CUB AwA?2
CKA —.95(<.001) —.91(<.001) —.71(.04) —.77(.02) —.75(.04)
Disentanglement ~ —.81(.01) —-.57(13)  —.43(29) —.69(.05) —.99(<.001)
oIS 90 (.002) 81(.01)  .86(.006) .89(.002)  .66(.07)

4.3 Do MCBMS ENABLE MORE RELIABLE INTERVENTIONS?

Another key property often attributed to CBMs is their capacity to support interventions. Although
standard CBM intervention methods suffer from theoretical limitations (see Section @) they can
still be applied in practice. Accordingly, for CBMs we follow the procedure in Section 23] for
ARCBMs and SCBMs we use the procedure described in Appendix [D] and for MCBMs we apply the
method in Section 2.4} To evaluate intervention reliability across models, we adopt the standardized
protocol of Koh et al.|(2020), which tracks how prediction error changes as the number of intervened
concepts increases. Following Shin et al.|(2023)), we examine the effect of interventions using two
complementary policies on CIFAR-10, CUB, and AwA2: (i) intervening on the concepts with the
lowest predicted confidence (results in Figure 5)); and (ii) intervening on randomly selected concepts
(results in Appendix [E)). For MPI3D and Shapes3D, interventions yield only minor changes in
performance, which aligns with Table [] showing that their concepts are relatively weak predictors
of the target. Across datasets where concepts are informative, both intervention policies lead to
consistent and converging conclusions: (i) CBMs may even increase error when multiple concepts
are intervened—an effect of nuisance information leaking into the representation due to the absence
of a proper bottleneck; (ii)) ARCBMs and SCBMs mitigate this by applying an Information Bottleneck
after the representations, which improves intervention effectiveness while leaving interpretability
unchanged (Figure[d); (iii) in MCBMs, intervention gains remain mostly insensitive to y when only
a small or moderate number of concepts are intervened—evidenced by the nearly parallel curves
across v values—but increase with higher v when more concepts are intervened, as reflected in
the steeper negative slopes; (iv) at low and medium v, MCBMs deliver the strongest intervention
performance, especially when fewer than 100% of the concepts are intervened, clearly outperforming
ARCBMs and SCBMs; and (v) for AwA2—where all models exhibit low levels of nuisance retention
(Table [B)—intervention performance is nearly identical across methods.

CBM ARCBM SCBM — MCBM (low y) = MCBM (med. y) = MCBM (high y)

40+ 274 124
311 18 6
22 v y T ) 9 v y T ) 0 v v v )
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
(a) CIFAR-10 (b) CUB (c) AwA2

Figure 5: Error (y-axis) versus percentage of concepts intervened (x-axis) across different models.

5 OTHER FUNDAMENTAL THEORETICAL FLAWS OF CBMS

As briefly discussed in Section[2.3] CBMs—unlike MCBMs—do not provide a principled mechanism
to estimate p(z; | ¢;). To enable interventions, two assumptions are typically introduced: (i) multi-
class concepts are handled using a One-vs-Rest scheme, and (ii) interventions are implemented via
the sigmoid inverse function, i.e., p(z; | ¢;) ~ 6 (z; — ¢~ *(c;)). These assumptions are not only ad
hoc but also theoretically incorrect, as we explain and illustrate with toy experiments below.

One-vs-Rest Limitations One-vs-Rest strategies exhibit several limitations: (i) individual binary
classifiers tend to be biased toward the negative class, and (ii) the predicted probabilities across clas-
sifiers are typically uncalibrated (Bishopl 2006)). To illustrate these issues, we design an experiment
where the concepts are defined based on a four-class spiral dataset with imbalanced class distributions.
We train: (i) a CBM with One-vs-Rest binarization, and (ii) an MCBM modeling concepts directly as
multiclass variables.
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The results reveal three major shortcomings of
CBMs trained with the One-vs-Rest strategy.
First, Figure [6] (left) shows that they overpredict
the most frequent class, especially when the true
class is rare and spatially close to the dominant.
Second, Figure |§| (middle) shows that CBMs
produce poorly calibrated predictions, lacking
the smooth likelihood transitions observed in
MCBMs. Finally, Figure [f] (right) shows that
CBMs often assign near-one likelihoods to mul- T\
tiple classes simultaneously, whereas MCBMs /
confine high secondary likelihoods to regions /

of overlap, producing more reliable uncertainty

estimates. Importantly, these effects may not be  Ejgure 6: CBM (top) versus MCBM (bottom): class
captured by standard metrics like accuracy, yet  poundaries (left), highest predicted likelihood (middle),

they represent fundamental flaws from a proba-  3nq second-highest predicted likelihood (right).
bilistic perspective.

Sigmoid Inverse Function The intervention
procedure p(z; | ¢;) = §(zj—o7(c;)) 05
does not satisfy Bayes’ rule, i.e., p(z; | ¢;) =
qs(cj |Z7 )P(ZJ)

= p(2)

= p(z|c=1)
o Hc=1)
= p(z|c=0)
o Hc=0)

For example, as illustrated in
Flgure. 7, when the prior p(z;) is bimodal—a
common case for representations arising from ,’ \\

two classes—p(z; | ¢;) differs markedly from 02 T \ N

o~ *(c;). Ignoring the prior therefore not only / ‘\‘ /II \
violates probability theory but also yields poor // /\ o~ \\
practical approximations. This issue is diffi- 0.0 —_
cult to overcome in CBMs, as the prior p(z;)

is unknown and challenging to estimate. Figure 7: Density (y-axis) vs. z (x-axis)

6 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

In this paper, we argue that—contrary to common belief—Concept Bottleneck Models (CBMs) do
not enforce a true bottleneck: although representations are encouraged to retain concept-related
information, they are not constrained to discard nuisance information. This limitation undermines
interpretability and provides no theoretical guarantees for intervention procedures. To address this, we
propose Minimal Concept Bottleneck Models (MCBMs), which introduce an Information Bottleneck
in the representation space via an additional loss term derived through variational approximations.
Beyond enforcing a proper bottleneck, our formulation ensures that interventions remain consistent
with Bayesian principles. Empirically, we show that CBMs and their variants fail to remove non-
concept information from the representation, even when irrelevant to the target task. In contrast,
MCBMs effectively eliminate such information while preserving concept-relevant content, yielding
more interpretable representations and principled interventions. Finally, we highlight fundamental
flaws in the intervention process of CBMs, which MCBMs overcome due to their principled design.

Regarding the limitations of this work, we highlight the following: (i) MCBMs introduce a new
hyperparameter, v, which must be tuned to balance predictive accuracy and interpretability; (ii) the
representation head g7 adds a small number of parameters, though this overhead is negligible
relative to the backbone; and (iii) while MCBMs consistently reduce nuisance information, complete
removal remains challenging for high-variance datasets, suggesting that performance depends on the
expressive capacity of the backbone architecture.

As for future directions, promising avenues include: (i) extending the model with an auxiliary la-
tent variable z,,41 appended to z to explicitly capture task-relevant nuisance factors n,, allowing
21, ..., %y to remain strictly interpretable while still retaining task-useful information in the full rep-
resentation z; and (ii) studying how the choice of prior distributions g4 (z; | ¢;) affects representation
quality and evaluation metrics such as disentanglement, alignment, and concept leakage.

10
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A COMPLETE GRAPHICAL MODELS

@ ®
©

O,

©
)

(a) Data Generative Process (b) Vanilla Model

(c) Concept Bottleneck Models (d) Minimal Concept Bottleneck Models (ours)

Figure 8: Graphical models of the different systems described. We consider m concepts and m-
dimensional representations. Inputs « are defined by some concepts {c; ;=1 and nuisances n; and
targets y are defined by x (gray arrows). Vanilla models obtain the representations {z;}72; from
x through the encoder (cyan arrows) and solve the task gy sequentially through the rask
head (green arrows). Concept Bottleneck Models make a prediction ¢; of each concept c;
from one representation z; through the concept head q(¢;|z;) (blue arrows). Minimal CBMs make a
prediction z; of each representation z; from one concept ¢; through the representation head ¢(z;|c;)
(red arrows).

14



Under review as a conference paper at ICLR 2026

B DETAILS OF DERIVATIONS

B.1 PROOF OF EQUATION(T]

I(Z)Y) = //p(z,y) logp(ylz))dydz ™
/// p(x,y)pe(z|x) log ((|)) drdydz 8
p(ylz) g4(9l2)
/// p(z,y)pe(z |xlog ()%(y')dddz 9)
= Epay) [Em( |) UOg%( | )H e(z) [Dkr (p(yl2)llas(912)] + HY)  (10)

Thus, since H(Y) is independent of 6 and ¢, we have that:
max 1(Z;Y) = maxEp(zy) [Epg(ala) 108 45(912)]] (12)

B.2 PROOF OF EQUATION 2]

C;) = //p(zj,cj)log p;c(]c,z)j) de; dz; (13)
i)
= ///p(%cj)pg(zﬂx) longx de; dz; (14
o
Bpa.c;) [Bpo(z12) log a(é; |%)H + E;De(zj) [Drr (p(cjlzi)lla(élz))] + H(Cy)
(16)
> Epa.c;) [Bg(z]2) 08 a(&]2)]] + H(C}) (17)

Given the fact that H(C) is constant, we have that:

max I(Z;; Cj) = max Ep(a.c) [Epy(z, 1) 08 4(6512))]] (18)

B.3 PROOF OF EQUATION[]

. ) — ) , p(zjlz)

2:X105) = [[ [ pte.cppo(esle) g B2 d ey (19)

_ ‘ , p(zjlz) a(Zlc)) g
- ///p(x,cj)pg(zj|x) log p(z5103) alsles) dzdc; dz; (20)
= Epa.c;) [Drr (Po(2512)|1a(251¢;))] — Epe;) [Prr (p(z5lei)la(Z41¢;))] (2D
< Epa.c;) [Drr (po(2i]7)[a(25lc)))] (22)

Thus, we have that:

min [(Z;; X|C5) = min By ;) [Dice (po(z517)la(251c;))] (23)
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B.4 KL DIVERGENCE BETWEEN TWO GAUSSIAN DISTRIBUTIONS

We are given the conditional distributions:
po(zjlx) = N(fo(x);,031),
46(%5lc;) = N(gi(cy), o31),
and aim to minimize the expected KL divergence:

Igi(ﬁnEp(m,cj) [Dxw (po(zj|) || g¢(Z5]cs))] -

The KL divergence between two multivariate Gaussians with diagonal covariances is given by:

det X,

1
DxL(N (pp, Zp) | Mg, 2q)) = 5 det 2
P

B tr(Zq_lzp) + (kg — 'up)ngl(:uq — pp) —d +log

Applying this to our case:

* p = fo(@);, kg = g3(c;),

e X, = afcl, g = agl,

* d is the dimension of z;.
Plugging in, we obtain:

1 [do?

1 z 2 O-g
D= 5 |5 + 2ol = )P~ + dog ()]

Note that all terms except the squared distance are constant with respect to 6 and ¢. Therefore:

1 4
Ep(z,qj) [Hfﬁ(x)] - g¢(cj)||2] + const.

Ep(a,c;) [Dx (9o(2517) | 46 (351¢)))] = 55

Conclusion: Minimizing the expected KL divergence
iy ,c) [Dxe (po(25]) || 45(351c;))]
is equivalent (up to a scaling factor) to minimizing the expected mean squared error:

min By (z.c;) [[1fo(@); - 95(ci)1?] -
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C TRAINING ALGORITHM OF MCBMSs

Algorithm 1 Training Algorithm for MCBMs

Input: Dataset D = {w(’“), y®) k) }f;’:l, latent norm A, learning rate 7, batch size B
Output: Parameters 6 (encoder), ¢ (class-head, task-heads, representation-heads)

1: Initialize parameters 6, ¢ and representations heads:

2: forallj=1,...,ndo

3: if ¢; is binary then

4: g; < Aif¢; =1lelse — A
5: else if ¢; is multiclass then

6: g; < A-one hot (c;)

7: else

8: g; < A

9: end if
10: end for

11: while not converged do
12: Sample a mini-batch {z(¥), y*) cF}B ~ D
13: forall z(®) y*) (%) in batch do

14: Encode: Compute uék) — fo (x(k))

15: Sample noise € ~ N (0, 1) > Reparameterization trick with only one sample

16: Reparameterize: 2(F) uﬁ,k) +o0,O¢€

17: Task prediction: g « g% () > Similar to VMs

18: Task loss: ﬁg(,k) — Hy(’“) — g ||2 if y is continuous else CE (y(k), y<k>)

19: forallj=1,...,ndo

20: Concept j prediction: é;k) — 9oj (z](k)) > Similar to CBMs
2

21: Concept 7 loss: EEZ) — Hcék) — é;k) H if ¢; is continuous else CE (cg»k)

22: Representation j prediction: éj(k) —9; cgk) > Novelty in MCBMs

2

23: Representation j loss: Li’? — zj(-k) - éj(k) H

24: end for * * *

25: Total loss: L&) « L7 + B30 L)+ 30 L

26: end for

27: Update 6, ¢ using gradient descent:

B B
1 1
0(—0—77V9<B§ ﬁ(k)>, ¢<_¢_,7v¢< E E(k)>
k=1

k=1

o]

28: end while
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D HARD CONCEPT BOTTLENECK MODELS

As discussed in Section [3] one of the most successful approaches to mitigating information leakage
is the family of Hard Concept Bottleneck Models (HCBMs) (Havasi et al., | 2022)). Unlike MCBMs,
which enforce an Information Bottleneck (IB) directly at the representation level z, HCBMs operate
by pruning the information contained in z before producing the task prediction g. In doing so, they
encourage Yy to depend solely on ¢, thereby yielding interventions that are more reliable in practice.
This approach differs fundamentally from MCBMs: whereas Equation ] in MCBMs minimizes
over Z;, thereby removing nuisances directly from the representation z;, HCBMs optimize at the

prediction level, focusing on Y. Formally, they are trained to minimize:

min I(Y; X|C) = N Ep(a.c;) [Dx L (po.s(glz)|Ip(glc))] (24)

That is, the optimization is performed directly over the predictions y. To implement this, it defines:

Po.o(@lz) = / / / 46 (916%) p (¢"16) (é12) po (2]) dé® déd 25)

where g4 (§ | €°) denotes the new task head, q (¢ | z) the concept head, and py (z | ) the encoder,
as defined in Section 2l The distribution

p(&%e;) =0 (& — O (6 —0.5)) (26)

referred to as the binarizing head, applies the Heaviside step function © to produce a binary version
éé’ € {0,1} of ¢;. In this way, HCBMs enforce an ad-hoc Information Bottleneck by predicting ¢
from binarized concept representations. This process is schematized in Figure[9]

How are Interventions Performed in HCBMs? Because HCBMs introduce a bottleneck immedi-
ately before predicting gy, the intervention process is more straightforward than in standard CBMs.
More specifically, interventions are carried out according to:

il = a.2) = [ [ aslglés, & p(clle; = alpol@, o) dél e, @)

Here, p(é? |c; = ) is approximated as 5(62’. — a), while the other distributions are available in closed
form. Although this procedure provides stronger guarantees than the intervention mechanisms in
standard CBMs, two main issues remain:

(i) The optimization is performed over the predictions y instead of the representation z. As
a result, the representations themselves are not necessarily interpretable, as evidenced in
Figure ] which limits one of the core motivations for adopting CBMs in the first place.

(ii) HCBM s still require binarizing multiclass concepts, which introduces theoretical limitations
and practical drawbacks, as further discussed in Section 3]
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Figure 9: Graphical models of HCBMs with two concepts and two-dimensional representations. Hard
Concept Bottleneck Models obtain a binarized version ég’ of each predicted concept ¢; through the

binarizing head ])(fff; | ¢;) (fuchsia arrows). Unlike the models in Figure HCBMs predict the task
output y from the binarized concepts ég’ using the new task head (green arrows).
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E OTHER INTERVENTION PROCEDURES

As detailed in Section [#.3] we further examine how performance evolves as we intervene on an
increasing number of randomly selected concepts, with the resulting curves shown in Figure [I0]
The overall behavior is consistent with the trends observed in Figure 5] highlighting similar model
characteristics. As expected, the results exhibit somewhat higher variance across seeds, since each
run intervenes on a different subset of concepts.

CBM ARCBM SCBM = MCBM (low y) == MCBM (med. y) = MCBM (high y)

40 4 27 124
22 T T T 1 9 T 0
0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

(a) CIFAR-10 (b) CUB (c) AWA2

Figure 10: Error (y-axis) versus percentage of concepts intervened (x-axis) across different models
for randomly selected concepts.

F EXPERIMENTS DETAILS

F.1 HYPERPARAMETERS FOR SECTION[4]

Table 8: Hyperparameters for Section El For all datasets, the concept head gg is implemented
as the identity function in CBMs, and as a multilayer perceptron (MLP) with three hidden layers
in MCBMs. We emphasize that CBMs are, by design, restricted to use invertible gg to enable
intervention procedures.

MPI3D  Shapes3D CIFAR-10 CUB AwA2
fo architecture ResNet20 ResNet20 2 conv. layers InceptionV3  ResNet-50
fo pretraining None None None ImageNet ImageNet
g, hidden layers 64 64 64 256 256
95 hidden layers None None None None None
g;, hidden layery| 3 3 3 3 3
low v 1 1 0.1 0.05 0.05
medium 3 3 0.3 0.1 0.1
high v 5 5 0.5 0.3 0.3
number of epochs 50 50 200 250 120
batch size 128 128 128 128 128
optimizer SGD SGD Adam SGD SGD
learning rate 6x1073 6x 1073 1x107* 2 x 1072 2 x 1072
momentum 0.9 0.9 0. 0.9 0.9
weight decay 4x107% 4x1075 4x107° 4x107%  4x107°
scheduler Step Step Step Step Step
step size (epochs) 20 20 80 100 50
scheduler ~y 0.1 0.1 0.1 0.1 0.1

"Beyond the choice of v, MCBMs introduce an additional design decision: the architecture of 95(cj). Inall
our experiments, we implement this module as a small MLP with a single hidden layer of size 3, adding only 8
parameters per concept. Since concept sets typically contain at most 200 concepts, this corresponds to roughly
1600 additional parameters—negligible compared to the size of standard neural encoders fy.
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F.2 DATASETS

MPI3D This is a synthetic dataset with controlled variation across seven generative factors: object
shape, object color, object size, camera height, background color, horizontal axis, and vertical axis.
In our setup, y corresponds to the object shape, n, to the horizontal axis, ny to the vertical axis, and
c to the remaining generative factors. To ensure consistency in the mapping between concepts and
task nuisances and the target, we filter the dataset such that any combination of elements in {c, n,, }
corresponds to a unique value of y. All invalid combinations are removed accordingly.

Shapes3D This synthetic dataset consists of 3D-rendered objects placed in a room, with variation
across six known generative factors: floor color, wall color, object color, scale, shape, and orientation.
In our setup, y corresponds to the shape, ny includes floor color and wall color, ny corresponds
to orientation, and c comprises the remaining factors. We follow the same filtering strategy as in
MPI3D to construct this configuration: we retain only those samples for which each combination of
{c, ny} uniquely determines y, removing all invalid configurations.

CIFAR-10 CIFAR-10 is a widely used image classification benchmark consisting of 60,000 natural
images of size 32 x 32, divided into 10 classes (e.g., airplanes, automobiles, birds, cats, etc.). The
dataset is split into 50,000 training and 10,000 test images, with balanced class distributions. To
reduce the need for manual concept annotations, the concepts are synthetically derived following
the methodology of (Vandenhirtz et al., 2024)). A total of 143 attributes are extracted using GPT-3
(Brown et al., 2020); 64 form the concept set ¢, while the rest define the nuisance set n,,. Binary
values are obtained with the CLIP model (Radford et al.|[2021)) by comparing the similarity of each
image to the embedding of an attribute and to its negative counterpart.

CUB The Caltech-UCSD Birds (CUB) dataset contains 11,788 images of 200 bird species, anno-
tated with part locations, bounding boxes, and 312 binary attributes. Following the approach of |Koh
et al.| (2020), we retain only the attributes that are present in at least 10 species (based on majority
voting), resulting in a filtered set of 112 attributes. These attributes are grouped into 27 semantic
clusters, where each group is defined by a common prefix in the attribute names. In our setup, the
task variable y is to classify the bird species. The concept set ¢ consists of the attributes belonging
to 12 randomly selected groups (per run), while the nuisance set 12, includes the attributes from the
remaining 15 groups. Since most attributes exhibit some correlation with the classification task, we
set iy to the empty set.

AwA2 The Animals with Attributes 2 (AwA2) dataset (Xian et al., 2017) contains 37,322 images of
50 animal classes annotated with 85 human-defined attributes describing appearance, behavior, and
habitat. In our setup, the task variable y is the animal class. To construct the concept and nuisance
partitions, we retain a subset of 20 attributes—covering fundamental appearance and morphology
features—as the concept set ¢, while the remaining 65 attributes form the nuisance set n,,. Since
nearly all attributes exhibit some degree of correlation with the class label, we set 125 to the empty set.
Following the preprocessing in|Xian et al.[(2017), we binarize continuous attributes using a threshold
of 0.5.
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