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Abstract

Telomere dysfunction drives aging and age-related diseases, yet its large-scale study is
hindered by reliance on specialized molecular assays, limiting clinical and research ad-
vancements. Here we present TLPath, a deep learning framework that leverages digital
pathology foundational model, UNI, to predict bulk-tissue telomere length from routine
H&E-stained images. The pipeline extracts morphological features from image patches
and aggregates them into a whole slide-level representations, which are then used in a su-
pervised model to accurately predict telomere length. These extracted features can predict
bulk-telomere length with significant accuracy (> 0.51 in well-represented tissues), outper-
forming chronological age as a predictor (correlation = 0.20) and identifying age-discordant
cases – detecting both accelerated telomeres shortening in young individuals and preserved
telomeres in older individuals. Moreover, the mechanistic interpretation of TLPath reveals
that its predictions are grounded in established cellular senescence markers such as the
nuclear to cytoplasmic ratio and nuclear shape variation.
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1. Introduction

Telomeres are protective structures at chromosome ends that shorten with cell division, trig-
gering visible cellular changes when critically shortened(Blackburn, 1991) (Rossiello et al.,
2022). Telomere shortening has been recognized as one of the aging hallmarks (López-Ot́ın
et al., 2023). While specialized methods exist to measure telomere length, they require com-
plex molecular techniques, limiting large-scale tissue studies (Rossiello et al., 2022) (Kimura
et al., 2010) (Cawthon, 2002) (Norris et al., 2021). Research has shown that telomere short-
ening triggers cellular senescence with distinct morphological changes including increased
cell size, irregular shape, and enhanced granularity. Computational pathology now enables
prediction of molecular properties from tissue images. This suggests cellular morphology
in routine histology slides could predict telomere length, offering scalable measurement
without specialized techniques.

To address this need, we present TLPath, a novel computational framework that pre-
dicts telomere length directly from standard histopathology (H&E) images by analyzing
cellular morphology patterns. Leveraging 7.3 million patch images from the GTEx project
across 18 tissue types from 919 individuals, our model employs the UNI foundational model
for feature extraction, building on recent advancements in digital pathology foundation
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models that enable transfer learning across diverse histopathological tasks. TLPath en-
ables, for the first time, the prediction of bulk-tissue telomere length directly from standard
histopathology images, potentially transforming our ability to study telomere biology at
scale.

2. Methods

Whole-slide images from the GTEx project (digitized at 20X) were preprocessed via back-
ground removal, color normalization, and segmented into 512 × 512 patches to extract
tissue-rich regions. We selected 18 tissue types (each with ≥ 70 samples, totaling 5,263
samples) and utilized the UNI foundational model (Chen et al., 2024) to extract 1,024-
dimensional embeddings for each patch. These embeddings were mean-aggregated into
whole-slide representations. A Random Forest regression model was then trained to predict
relative telomere length using nested cross-validation. Model performance was evaluated
via mean squared error (MSE), coefficient of determination (R2), and Pearson correlation
coefficient. To interpret TLPath predictions, we used SHAP values from the Random For-
est model to identify key predictive features. High-activation patches were further analyzed
using QuPath (Bankhead et al., 2017) to quantify cellular morphology and CONCH (Lu
et al., 2024) to map high-dimensional features to histological terms from GTEx pathology
reports, elucidating the morphological basis of telomere prediction.

Figure 1: The TLPath pipeline

3. Results

3.1. TLPath Enables Age-Independent Telomere Assessment

Using UNI-extracted H&E features, TLPath achieved an average correlation of 0.32 across
tissues, with > 0.4 in 11 of 18 tissue with r = 0.66 in Pancreas, a well represented tissue(n
= 540). Few tissues show negative correlation likely due to insufficient sample sizes, as
prior studies (Ozturk, 2024), (Rossiello et al., 2022) have consistently demonstrated that
telomere length shortens with increasing age. Critically, TLPath maintained significant
predictive power in age-matched cohorts—accurately distinguishing telomere length differ-
ences within 5-year brackets, including atypical cases—demonstrating its ability to capture
age-independent morphological signatures. (see Figure 2)
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3.2. Interpretation of Morphological Features

Focusing on the pancreas, SHAP analysis identified five key UNI features driving telom-
ere predictions. High-activation patches for these features were analyzed using QuPath to
quantify 14 cellular and nuclear properties. Results revealed a higher nucleus-to-cell ratio
was linked to shorter telomeres, while increased nuclear circularity and intensity variation
were associated with longer telomeres. Additionally, the CONCH model linked these fea-
tures to higher-order pathological terms (e.g., necrosis, fascia, hypertrophy), underscoring
TLPath’s computational interpretability . (see Figure 3)

Figure 2 : (a) Comparison of Pearson correlations
between chronological age and HE features (b) TL-
Path’s performance in predicting telomere length
across tissue with significance (c) The strongest cor-
relations were observed in pancreas (r = 0.66, n
= 540), kidney – cortex (r = 0.66, n = 201), and
prostate (r = 0.62, n = 186) and the scatter plots
show each predicted vs. true telomere length (Z-
scored) values for these tissues. (d) Telomere length
prediction by age group in all tissues, with number
of samples shown. (e) Telomere length prediction in
pancreas tissue in age-matched samples. (f) Pancre-
atic histopathology comparing samples from a young
and old individual

Figure 3: (a) High-activation patches of TLPath’s
most important features are extracted from long and
short telomere samples. This was fed into QuPath
(analysis 1) to identify cells and measure 14 dis-
tinct cellular and nuclear morphological properties
and CONCH model (analysis 2). The average con-
fidence score is calculated for all terms, across all
patches. (b) The plot compares differential cellular
morphology characteristics in the long versus short
telomere patches for features 906 and 852 of UNI. (c)
The plots highlight the association of our terms from
GTEx pathology reports to features patches 906 and
825, with long and short telomere from WSI.

3.3. Benchmarking and Architectural Optimization

We systematically benchmarked TLPath’s components across models (TITAN, UNI), aggre-
gation methods (mean, min-max, concatenated), and regression approaches. Mean aggrega-
tion produced robust representations, while Random Forest yielded consistent predictions
across 18 tissues. Although Elastic Net had slightly higher correlations in some common
tissues, TLPath demonstrated generalizable performance across the board (Table 1).
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WSI Aggregation TLPath ElasticNet SVR Ridge Lasso LR
Concatenated 0.520 0.526 0.495 0.478 0.494 0.450
Mean 0.521 0.526 0.495 0.478 0.494 0.449
Min-Max 0.508 0.526 0.494 0.477 0.494 0.444
TITAN 0.520 0.526 0.495 0.478 0.494 0.172

Table 1: Mean test Pearson correlation across selected tissues (Brain - Cerebellum, Colon
- Transverse, Esophagus - Mucosa, Kidney - Cortex, Lung, Pancreas, Stomach, Testis) for
different model types and WSI representation strategies.

References

P. Bankhead, M. B. Loughrey, J. A. Fernández, et al. Qupath: Open source software
for digital pathology image analysis. Scientific Reports, 7:16878, 2017. doi: 10.1038/
s41598-017-17204-5.

E. H. Blackburn. Structure and function of telomeres. Nature, 350(6319):569–573, 1991.

R. M. Cawthon. Telomere measurement by quantitative pcr. Nucleic Acids Research, 30
(10):e47–e47, 2002.

R. J. Chen, T. Ding, M. Y. Lu, et al. Towards a general-purpose foundation model
for computational pathology. Nature Medicine, 30:850–862, 2024. doi: 10.1038/
s41591-024-02857-3.

Masayuki Kimura et al. Measurement of telomere length by the southern blot analysis of
terminal restriction fragment lengths. Nature Protocols, 5(9):1596–1607, 2010.

M. Y. Lu, B. Chen, D. F. K. Williamson, et al. A visual-language foundation model
for computational pathology. Nature Medicine, 30:863–874, 2024. doi: 10.1038/
s41591-024-02856-4.
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