
Graph neural networks with polynomial activations1

have limited expressivity2

Sammy Khalife #�3

Johns Hopkins University, Department of Applied Mathematics and Statistics4

Abstract5

The expressivity of Graph Neural Networks (GNNs) can be entirely characterized by appropriate6

fragments of the first order logic. Namely, any query of the two variable fragment of graded modal7

logic (GC2) interpreted over labeled graphs can be expressed using a GNN whose size depends only8

on the depth of the query (uniformity). As pointed out by [2, 9], this description holds for a family9

of activation functions of the underlying neural network, leaving the possibibility for a hierarchy of10

logics uniformly expressible by GNNs depending on the chosen activation function. In this article, we11

show that such hierarchy indeed exists by proving that GC2 queries cannot be uniformly expressed12

by GNNs with polynomial activations and aggregations. This implies a separation between the13

expressivity of GNNs with polynomial and those with non polynomial activations (such as Rectified14

Linear Units) and partially answers an open question formulated by [2, 9].15

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory16

of computation → Machine learning theory; Mathematics of computing; Computing methodologies17

→ Neural networks18

Keywords and phrases Graph Neural Networks; Uniform Expressivity; Polynomial Activations;19

Logic20

Digital Object Identifier 10.4230/LIPIcs...21

1 Introduction22

Graph Neural Networks (GNNs) are deep learning architectures for input data that incorpor-23

ates some relational structure represented as a graph, and have proven to be very performant24

and efficient for various types of learning problems [20, 4, 7, 6, 16, 11, 8, 13, 17, 19, 3, 5, 15].25

Understanding the expressive power of GNNs, and its dependence on the activation function26

of the underlying neural networks is one of the basic tasks towards a rigorous study of their27

computational capabilities.28

In this context, several approaches have been conducted in order to describe and charac-29

terize the expressivity of GNNs. The first approach consists in comparing GNNs to other30

standard computation models on graphs such as the color refinement or the Wesfeiler-Leman31

algorithms. This reduction type of approach stands to reason as the computational models32

of GNNs, Wesfeiler-Leman/color refinement algorithms are intimately connected: they all33

fall under the paradigm of trying to discern something about the global structure of a graph34

from local neighborhood computations. In that regard, it has been proven [14, 18] that35

the color refinement algorithm precisely captures the expressivity of GNNs. More precisely,36

there is a GNN distinguishing two nodes of a graph if and only if colour refinement assigns37

different colours to these nodes. This results holds if one supposes that the size of the38

underlying neural networks are allowed to grow with the size of the input graph. Hence, in his39

survey, [9] emphasizes the fact that this equivalence has been established only for unbounded40

GNN, and asks: Can GNNs with bounded size simulate color refinement? In [1], the authors41

answer by the negative if the underlying neural network are supposed to have Rectified42

Linear Unit (ReLU) activation functions. In [12] the authors provide a generalization of43

this result, for GNNs with piecewise polynomial activation functions. Furthermore, explicit44

lower bounds on the neural network size to simulate the color refinement can be derived for45

© Sammy Khalife;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:khalife.sammy@jhu.edu
https://orcid.org/0000-0003-3161-7794
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Graph neural networks with polynomial activations have limited expressivity

piecewise-polynomial activation functions given upper bounds on the number of regions of a46

neural network with piecewise-polynomial activation.47

The second line of research to study the expressive power of GNNs is to characterize the48

types of boolean queries interpreted over labeled graphs that a GNN can simulate. Given a49

boolean query Q (taking as input a graph, or a graph and one of its vertices), does there50

exist a GNN whose output characterizes the output of Q? For example, can a GNN express51

if a vertex of a graph is part of a clique of given size? Furthermore, can we characterize the52

set of queries that can be simulated by GNNs? In that context if the size of the GNN does53

not depend on the size of the input, graph, then we say that the GNN expresses the query54

uniformly (by size we mean the total number of weights of the underlying neural networks of55

the GNN, and supposing that the number of iterations of the GNN does not depend on the56

size of the input either). Uniform expressivity is interessing from a practical standpoint as it57

captures the expressivity of GNNs of fixed size with respect to the input graphs.58

Several mathematical answers to such questions have been already obtained. Notably, a59

complete description of the logic of the queries that the GNNs can express uniformly has been60

derived. The suitable formal logic interpreted over labelled graphs is a two variable fragment61

of graded model logic (GC2). Any GNN expresses a query of this logic, and conversely, any62

query of this logic can be expressed by a GNN whose size and iterations only depends on63

the depth of the query [2, 9]. For specific activation functions such as ReLUs, the size of64

a GNN required to express a given query of GC2 does not depend on the size of the input65

graph, but only on the number of subformulas (or depth) of the query. The known proofs66

of this result [2, 9] provide an explicit construction of a GNN with ReLU activations that67

expresses a given query. In recent results [10], the author provides a more general description68

of the logics expressible by GNNs, and also treat the non-uniform case. The uniform case is69

obtained for rational piecewise-linear activations (or equivalently, rational ReLUs), and a70

non-uniform result is presented for GNNs with general arbitrary real weights and activation71

functions. The author also presents new results about the expressivity of GNNs if random72

initialisation is allowed on the features of the vertices. In this article, we focus on uniform73

expressivity and consider the following question: What is the impact of the activation and74

aggregation functions on the logic uniformly expressed by GNNs?75

Main contributions. In this article we show a separation between polynomial and76

non-polynomial activations (and in particular, piecewise linear activations) with respect to77

the logic expressible by GNNs with those activation functions. More precisely, we prove that78

GNNs with polynomial activation and aggregation functions cannot express all GC2 queries79

(uniformly), although GNNs with piecewise linear activations and a linear aggregation function80

can. This result holds even if: i) the weights of the polynomial GNNs are arbitrary real81

numbers with infinite precision, and ii) the weights of the GNNs with piecewise polynomial are82

restricted to integers (also, the underlying neural networks are supposed to have finitely many83

linear pieces). This shows how the power of graph neural networks can change immensely84

if one changes the activation function of the neural networks. Our result constitutes an85

additional step towards a complete understanding of the impact of the activation function86

on the formal expressivity of GNNs.87

The rest of this article is organized as follows. Section 2 presents the definitions of GNNs88

and the background logic. In Section 3, we state our main result and compare it to the89

existing ones. Section 4 presents an overview of the proof of our main result, as well as proofs90

of the technical lemmata are presented. We conclude with some remarks and open questions91

in Section 5.92

S. Khalife XX:3

2 Preliminaries93

2.1 Graph Neural Networks (GNNs)94

We assume the input graphs of GNNs to be finite, undirected, simple, and vertex-labeled: a95

graph is a tuple G = (V (G), E(G), P1(G), · · · , Pℓ(G)) consisting of a finite vertex set V (G),96

a binary edge relation E(G) ⊂ V (G)2 that is symmetric and irreflexive, and unary relations97

P1(G), · · · , Pℓ(G) ⊂ V (G) representing ℓ > 0 vertex labels. In the following, we suppose that98

the Pi(G)’s form a partition of the set of vertices of G, i.e. each vertex has a unique label.99

Also, the number ℓ of labels, which we will also call colors, is supposed to be fixed and does100

not grow with the size of the input graphs. This setup introduced by [2, 9] allow to model101

the presence of features of the vertices of input graphs in practical applications. In order102

to describe the logic of GNNs, we also take into account access to the color of the vertices103

into the definition of the logic considered, as we shall see in Section 2.2. When there is no104

ambiguity about which graph G is being considered, N(v) refers to the set of neighbors of105

v in G not including v. |G| will denote the number of vertices of G. We use simple curly106

brackets for a set X = {x ∈ X} and double curly brackets for a multiset Y = {{y ∈ Y }}.107

▶ Definition 1 (Neural network). Fix an activation function σ : R → R. For any num-
ber of hidden layers k ∈ N, input and output dimensions w0, wk+1 ∈ N, a Rw0 → Rwk+1

neural network with σ activation is given by specifying a sequence of k natural numbers
w1, w2, · · · , wk representing widths of the hidden layers and a set of k + 1 affine transform-
ations Ti : Rwi−1 → Rwi , i = 1, . . . , k + 1. Such a NN is called a (k + 1)-layer NN, and is
said to have k hidden layers. The function f : Rw0 → Rwk+1 computed or represented by this
NN is:

f = Tk+1 ◦ σ ◦ Tk ◦ · · ·T2 ◦ σ ◦ T1.

In the following, the Rectified Linear Unit activation function ReLU : R → R≥0 is defined108

as ReLU(x) = max(0, x). The Sigmoid activation function Sigmoid : R → (0, 1) is defined as109

Sigmoid(x) = 1
1+e−x .110

▶ Definition 2 (Graph Neural Network (GNN)). A GNN is characterized by:111

◦ A positive integer T called the number of iterations, positive integers (dt)t∈{1,··· ,T } and112

(d′
t)t∈{0,··· ,T } for inner dimensions. d0 = d′

0 = ℓ is the input dimension of the GNN113

(number of colors) and dT is the output dimension.114

◦ a sequence of combination and aggregation functions (combt, aggt)t∈{1,··· ,T }. Each ag-115

gregation function aggt maps each finite multiset of vectors of Rdt−1 to a vector in Rd′
t .116

For any t ∈ {1, · · · , T}, each combination function combt : Rdt−1+d′
t −→ Rdt is a neural117

network with given activation function σ : R −→ R.118

The update rule of the GNN at iteration t ∈ {0, · · · , T − 1} for any labeled graph G and
vertex v ∈ V (G), is given by:

ξt+1(v) = comb(ξt(v), agg{{ξt(w) : w ∈ NG(v)}})

Each vertex v is initially attributed an indicator vector ξ0(v) of size ℓ, encoding the color of119

the node v: the colors being indexed by the palette {1, · · · , ℓ}, ξ0(v) = ei (the i-th canonical120

vector) if the color of the vertex v is i. We say that a GNN has polynomial activations121

provided the underlying neural network comb has polynomial activation functions.122

▶ Remark 3. The type of GNN in our Definition 2 is sometimes referred to as aggregation-123

combine GNNs without global readout. Here are a few variants that can be found in the124

litterature:125

XX:4 Graph neural networks with polynomial activations have limited expressivity

Recurrent GNNs, allowing combt and aggt functions, do not depend on the iteration t.126

GNNs with global readout, which allow the aggregation functions to also take as input the127

embeddings of all the vertices of the graph. See Remark 16 for more details on the logic128

side of things.129

General Message-passing GNNs that allow operations before the aggregation on the130

neigbhors as well as the current vertex. As mentioned in [10][Remark 4.1], it is not clear131

whether this type of GNN increases expressivity.132

▶ Remark 4. Since aggregation functions are defined on multisets of varying size, we say133

that an aggregation function is polynomial provided for every size of the input multiset, the134

aggregation function is a (symmetric) multivariate polynomial of the entries of the multiset.135

2.2 Logical background: GC2 and queries136

The first-order language of graph theory we consider is built up in the usual way from a137

vocabulary containing variables x1, x2, · · · , xm, the relations symbols E and =, the logical138

connectives ∧,∨,¬,→, and the quantifiers ∀ and ∃.139

Given a number of colors ℓ and a colored graph G = (V (G), E(G), P1(G), ..., P ℓ(G)),140

where P1(G), · · · , P ℓ(G) ⊂ V (G) represent the vertex colors (one color per vertex),141

The universe A of the logic is given by A = V .142

the set of symbols S of the first order logic we consider is composed of:143

◦ the 2-ary edge relation symbol E: (x, y) ∈ A2 are related if and only if (x, y) ∈ E.144

◦ function symbols col1, · · · , colℓ. coli(v ∈ G) returns 1 if the color of v is the i-th one.145

The pair (A, I) allows us to interpret the first order logic, where the map I is a function146

from A2 to {0, 1} (or equivalently, a subset of the set of pair of vertices).147

The quantifiers, variables, and set of symbols form the alphabet of the logic considered.148

The set of formulas in the logic is a set of strings over the alphabet defined inductively (see149

the appendix for a formal definition). The pair (A, I), called an S-structure for the logic,150

allows us to interpret the formulas of the logic (here, in the space of graphs). Any graph151

is naturally associated to an S structure in order to interpret the sentences of formula of152

the logic. For example, the following formula interpreted over a graph G expresses that no153

vertex of G is isolated: ∀x∃yE(x, y). Similarly, the formula ∀x¬E(x, x) expresses the fact154

that we do not want any self loops. A more interesting example is given by155

ψ := ∀x∀y[E(x, y) → E(y, x) ∧ x ̸= y] (1)156

expresses that G is undirected and loop-free. Similarly,157

ϕ := ∀x∃y∃z(¬(y = z) ∧ E(x, y) ∧ E(x, z))158

∧ ∀w(E(x,w) → ((w = y) ∨ (w = z))) (2)159

expresses that every node x of the considered graph has exactly two out-neigbhors.160

Since GNNs can output values for every vertex of a graph, the formulas we will be using to161

have to take as “input” some vertex variable; we call such variable a free variable. Concretely,162

a free variable is a variable which is not bound to a quantifier. Namely, the Formulas 1 and163

2, contain no free variable. However, the formula ϕ(x) := ∃y∃z(¬(y = z) ∧E(x, y) ∧E(x, z))164

has a single free variable x. We interpret ϕ with (G, v) as a S-structure, where G is a graph165

and v one of its vertices (and the assignment that maps x to v). In this case, ϕ expresses166

that vertex v has two out-neighbors in G.167

S. Khalife XX:5

Any formula in FO(S) (the first order logic on S) can be thought of as a 0/1 function on168

the class of all interpretations of FO(S):169

1. If ϕ is a sentence, then any graph G is an S-structure and is mapped to 0 or 1, depending170

on whether G satisfies ϕ or not.171

2. If ϕ(x) is a formula with a single free variable x, then any pair (G, v), where G = (V,E)172

is a graph and v ∈ V , is an interpretation with G as the S-structure and the assignment173

β maps x to v. Thus, every pair (G, v) is mapped to 0 or 1, depending on whether (G, β)174

satisfies ϕ or not. This example can be extended to handle formulas with multiple free175

variables, where we may want to model 0/1 functions on subsets of vertices.176

The depth of a formula ϕ is defined recursively as follows (for a formal and general177

definition of depth, cf. Definition 30). If ϕ is of the form in then its depth is 0. If ϕ = ¬ϕ′
178

or ϕ = ∀xϕ′ or ϕ = ∃xϕ′, then the depth of ϕ is the depth of ϕ′ plus 1. If ϕ = ϕ1 ⋆ ϕ2 with179

⋆ ∈ {∨,∧,→,↔}, then the depth of ϕ is the 1 more than the maximum of the depths of ϕ1180

and ϕ2. In order to characterize the logic of GNNs, we are interested in a fragment of the181

first order logic, defined as follows.182

▶ Definition 5 (Guarded model logic (GC) and GC2 [2, 9]). The fragment of guarded logic183

GC is formed using quantifiers that restrict to range over the neighbours of the current184

nodes. GC-formulas are formed from the atomic formulas by the Boolean connectives and185

quantification restricted to formulas of the form ∃≥py(E(x, y)∧ψ)), where x and y are distinct186

variables and x appears in ψ as a free variable. Note that every formula of GC has at least187

one free variable. We refer to the 2-variable fragment of GC as GC2, also known as graded188

modal logic (with two variables).189

A depth-recursive definition can be given as follows: a graded modal logic formula F is
either Col(x) (returning 1 or 0 for one of the palette colors) or one of the following:

¬ϕ(x), ϕ(x) ∧ ψ(x), or ∃≥Ny(E(x, y) ∧ ϕ(y))

where N is a positive integer and ϕ and ψ are GC2 formulas of smaller depth than F .190

▶ Example 6 ([2]). All graded modal logic formulas are unary by definition, so all of
them define unary queries. Suppose ℓ = 2 (number of colors), and for illustration purposes
Col1 = Red, Col2 = Blue. Let:

γ(x) := Blue(x) ∧ ∃y(E(x, y) ∧ ∃≥2x(Edge(y, x) ∧ Red(x))

γ queries if x has blue color, and has at least one neigbhor which has at least two red
neighbors. Then γ is in GC2. Now,

δ(x) := Blue(x) ∧ ∃y(¬E(x, y) ∧ ∃≥2xE(y, x) ∧ Red(x))

is not in GC2 because the use of the guard ¬E(x, y) is not allowed. However,

η(x) := ¬(∃y(E(x, y) ∧ ∃≥2xE(y, x) ∧ Blue(x))

is in GC2 because the negation ¬ is applied to a formula in GC2.191

2.3 Color refinement192

For the proof of our main result, we will need two additional definitions that we include for193

completeness:194

XX:6 Graph neural networks with polynomial activations have limited expressivity

▶ Definition 7 (Embeddings and refinement). Given a set X, an embedding ξ is a function195

that takes as input a graph G and a vertex v ∈ V (G), and returns an element ξ(G, v) ∈ X.196

We say that an embedding ξ refines an embedding ξ′ if and only if for any graph G and any197

v ∈ V (G), ξ(G, v) = ξ(G, v′) =⇒ ξ′(G, v) = ξ′(G, v′). When the graph G is clear from198

context, we use ξ(v) as shorthand for ξ(G, v).199

▶ Definition 8 (Color refinement). Given a graph G, and v ∈ V (G), let (G, v) 7→ col(G, v) be200

the function which returns the color of the node v. The color refinement refers to a procedure201

that returns a sequence of embeddings crt, computed recursively as follows:202

- cr0(G, v) = col(G, v)203

- For t ≥ 0, crt+1(G, v) := (crt(G, v), {{crt(G,w) : w ∈ N(v)}})204

In each round, the algorithm computes a coloring that is finer than the one computed in205

the previous round, that is, crt+1 refines crt. For some t ≤ n := |G|, this procedure stabilises:206

the coloring does not become strictly finer anymore.207

The following connection between color refinement and GNNs will be useful to prove our208

main result. Notably, the theorem holds regardless of the choice of the aggregation function209

agg and the combination function comb.210

▶ Theorem 9 ([14, 18]). Let d be a positive integer, and let ξ be the output of a GNN after d211

iterations. Then crd refines ξ, that is, for all graphs G,G′ and vertices v ∈ V (G), v′ ∈ V (G′),212

cr(d)(G, v) = crd(G′, v′) =⇒ ξ(G, v) = ξ(G′, v′).213

3 Uniform expressivity of GNNs214

▶ Definition 10 ([9]). Suppose that ξ is the vertex embedding computed by a GNN. We say
that a GNN expresses uniformly a unary query Q there is a real ϵ < 1

2 such that for all graphs
G and vertices v ∈ V (G). {

ξ(G, v) ≥ 1 − ϵ if v ∈ Q(G)
ξ(G, v) ≤ ϵ if v /∈ Q(G)

We are now equipped to state the known previous results regarding the expressivity of215

GNNs:216

▶ Theorem 11. [2, 9] Let Q be a unary query expressible in graded modal logic GC2. Then217

there is a GNN whose size depends only on the depth of the query, that expresses Q uniformly.218

▶ Remark 12. Let ℓ be the number of colors of the vertices in the input graphs, the family of219

GNNs with agg = sum, and comb(x, y) = ReLU(Ax+By + C) (where A ∈ Nℓ×ℓ, B ∈ Nℓ×ℓ
220

and C ∈ Nℓ) is sufficient to uniformly express all queries of GC2 uniformly. This result221

follows from the constructive proof in [2]. Furthermore, for each query Q of depth q, there is222

a GNN of this type with at most q iterations that expresses uniformly Q.223

▶ Example 13. Let Q be the following GC2 query:

Q(x) := Red(x) ∧ (∃yE(x, y) ∧ Blue(y))

asking if the vertex x has red color, and if it has a neighbor with blue color. Writing
the subformulas of Q: sub(Q) = (Q1, Q2, Q3, Q4) with Q1 = Red, Q2 = Blue, Q3 =
∃(E(x, y) ∧Q2(y), and Q4 = Q = Q1 ∧Q3, let

A =


1 0 0 0
0 1 0 0
0 0 0 0
1 0 1 0

 , B =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , c =


0
0
0

−1



S. Khalife XX:7

and let σ be the clipped ReLU function, i.e. σ(·) := min(1,max(0, ·)) (the clipped ReLU can
be computed by a neural network with ReLU activations). Then, it can be verified that Q
can be computed in 4 iterations with the update rule:

ξ0(v) = 1, ξt+1(v) := σ(Aξt(v) +B(
∑

w∈N(v)

ξt(w)))

i.e. Qi(v) = ξ4(v)i. In particular, Qi(v) = 1 ⇐⇒ ξ4(v)i = 1. Note that in that case, we are224

able to compute exactly the query.225

▶ Remark 14. The ability of GNNs to compute exactly GC2 queries is used in the proof226

of Theorem 11 included in the first section of the appendix. (We also report that in the227

constructive proof of [2], the matrices A and B should be replaced by their transpose). We228

emphasize here that one cannot mimic the proof for sigmoid activations, even by replacing229

exact computation by uniform expressivity.230

Theorem 11 has a partial converse, with a slight weakening:231

▶ Theorem 15. [2] Let Q be a unary query expressible by a GNN and also expressible in232

first-order logic. Then Q is expressible in GC2.233

▶ Remark 16. The right logic for GNNs with global readout (cf. Remark 3) is not GC2. If C2234

is the fragment of the first order logic with counting quantifiers (∃≥p) and with at most 2235

variables; then we have the following result [2]: Let Q be a Boolean or unary query expressible236

in C2. Then there is a GNN with global readout that expresses Q.237

In contrast with Theorem 11, we prove:238

▶ Theorem 17. There are GC2 queries that no GNN with polynomial activations and239

aggregations can uniformly express.240

Equivalently, if LP (resp. LReLU) is the set of logical queries uniformly expressible by241

GNNs with polynomial aggregation and activations (resp. piecewise linear activations and242

polynomial aggregation), then we have the following strict inclusion: LP ⊊ (LReLU = GC2).243

A natural question suggested by this result is: what is the fragment of GC2 that polynomial244

GNNs can uniformly express? As detailed in the next section, the query used in our proof245

uses logical negation. Although we do not settle the above question entirely, we can obtain246

the following corollary by immediate contradiction, as GNNs with polynomial activations247

and aggregations can simulate logical negation:248

▶ Corollary 18. There are queries of GC2 using only the guarded existential quantifiers with249

counting ∃≥KE, the logical and ∧ and the atomic formulas Col(.), that GNNs with polynomial250

activations and aggregations cannot uniformly express.251

4 Proof of our main result252

Overview. To prove our result we construct a query that no GNN with polynomial253

activation can uniformly express. We prove this statement by contradiction: on the one254

hand we interpret the embedding returned by a GNN with polynomial activations on a set of255

given input graphs, as a polynomial of some parameters of the graph structure. On the other256

hand, we interpret our query on the same set of input graphs. We show that if GNN were to257

uniformly express the query, then the polynomial obtained by the first evaluation cannot258

verify the constraints imposed by the query. Our approach uses fundamental properties of259

multivariate polynomials and can easily extend to a large family of queries.260

XX:8 Graph neural networks with polynomial activations have limited expressivity

Our set of inputs are formed using rooted unicolored trees of the form shown in Figure 1261

which is a tree of depth two whose depth one vertices have prescribed degrees k1, · · · , km,262

with k1, · · · , km ≥ 1. We first collect three elementary Lemmata, one that will be useful to263

extract monomials of largest degree in a multivariate polynomial (Lemma 19). Since the264

trees are parameterized by m-tuples of integers k1, . . . , km, the embedding of the root node265

computed by the GNN at any iteration is a function of these m integers. Since the activations266

are polynomials, these embeddings of the root node are multivariate symmetric polynomial267

functions of k1, . . . , km (Lemma 20). Furthermore, the degree of these polynomials is bounded268

by a constant independent of m. Our proof of Theorem 17 builds on these results combined269

with fundamental properties of symmetric multivariate polynomials of bounded degree.270

s

x1 x2 xm

k1 − 1 vertices k2 − 1 vertices · · · km − 1 vertices

Figure 1 T [k1, · · · , km]

▶ Lemma 19. Let p be a positive integer and let S ⊂ Np be a finite subset of integral vectors271

of the nonnegative orthant, such that |S| ≥ 2. Then there exist x∗ ∈ S and u ∈ Np such that272

for any x ∈ S − {x∗}, ⟨x∗, u⟩ > ⟨x, u⟩.273

Proof. Consider one vector x∗ maximizing ∥x∥2
2 over S, i.e. ∥x∗∥2

2 = maxx∈S∥x∥2
2 then let274

x ∈ S − {x∗}. Such x∗ and x exist because S is finite and |S| ≥ 2.275

- Case 1: x is not colinear to x∗. It follows from the Cauchy-Schwarz inequality, that
⟨x∗, x⟩ < ∥x∗∥2∥x∥2. Hence

⟨x∗, x∗ − x⟩ = ∥x∗∥2
2 − ⟨x∗, x⟩ > ∥x∗∥2(∥x∗∥2 − ∥x∥2) > 0

- Case 2: x ∈ S − {x∗} is colinear to x∗, i.e. x = λx∗ with λ ∈ R. Since x∗ is maximizing
the 2-norm on S, then 0 ≤ λ < 1. Then

⟨x∗, x∗ − x⟩ = ∥x∗∥(1 − λ) > 0

In both cases, ⟨x∗, x∗ − x⟩ > 0. Hence, we can set u := x∗ ∈ S ⊂ Np, and the Lemma is276

proved. ◀277

▶ Lemma 20. Let ξt(T [k1, . . . , km], s) be the embedding of the tree displayed in Figure 1278

obtained via a GNN with polynomial activation and aggregation functions after t iterations,279

where ξ0(v) = 1 for all vertices v ∈ V (T [k1, . . . , km]). Then, for any iteration t, there280

exists a symmetric multivariate polynomial F such that ξt(T [k1, . . . , km], s) = F (k1, · · · , km).281

Furthermore, the degree of F does not depend on m, but only on the underlying neural282

network and t.283

S. Khalife XX:9

Proof. For clarity, we will perform two separate inductions, one for the existence of the284

symmetric polynomial, and the second for the degree boundedness.285

We first prove by induction on t that, for any vertex v ∈ V (T [k1, · · · , km]), ξt(T [k1, . . . ,286

km], v) is a polynomial function of the ki’s.287

Base case: for t = 0 this is trivial since all vertices are initialised with the constant288

polynomial 1, whose degree does not depend on m.289

Induction step: Suppose the property is true at iteration t, i.e for each node w,290

ξt(T [k1, . . . , km], w) is a multivariate polynomial of the ki’s. Since291

ξt+1(T [k1, . . . , km], v) = comb(ξt(T [k1, . . . , km], v),292

agg({{ξt(T [k1, · · · , km], w) : w ∈ N(v)}}))293

where comb is a neural network with polynomial activations, hence a multivariate polynomial.294

Also, agg is supposed polynomial in the entries of its multiset argument. Then by composition,295

ξt+1(T [k1, . . . , km], v) is a multivariate polynomial of k1, · · · , km.296

To conclude on the symmetry of the polynomial, we need the intermediary claim:297

Claim: Let T [k1, · · · , km] be two rooted trees given by Figure 1, and let s be its source298

vertex. Then for any iteration t, the color refinement embedding crt(s) is invariant by299

permutation of the ki’s.300

Proof of claim. By induction of t ≥ 0, we prove the following claim: for any integer t ≥ 0,301

crt(s) and the multiset {{crt(x1), · · · , crt(xm)}} are invariant by permutation of the ki’s.302

Base case: (t = 0) is obvious since cr0(v) = 1 for any vertex v ∈ T [k1, · · · , km].303

Induction step: Suppose that for some iteration t, crt(s) and {{crtx1, · · · , crt(xm)}} are304

invariant by permutation of the ki’s. crt+1(s) being invariant by permutation of the ki’s is a305

consequence of: crt+1(s) = (crt(s), {{crt(x1), · · · , crt(xm)}}) ◀306

We know from Theorem 9 that the color refinement algorithm refines any GNN at any307

iteration. Since the tuple obtained by color refinement for the vertex s is invariant with308

respect to permutations of the ki’s, ξt(T [k1, . . . , km], s) is also invariant with respect to309

permutations of the ki’s.310

Finally, the degree boundedness also follows by induction:311

Base case: At the first iteration (t = 0), Pm is constant equal to 1 (q1 = 1) for any m.312

Induction step: Suppose that for any iteration t ≤ T , there exists qt ∈ N (that does not313

depend on m nor the vertex v ∈ V (T [k1, · · · , km])), such that for any integer m, and for any314

iteration t, deg(Pm) ≤ qt. Then, using again the update rule:315

ξt+1(T [k1, · · · , km], v)︸ ︷︷ ︸
Qm

=comb(ξt(T [k1, · · · , km], v)︸ ︷︷ ︸
Rm

,316

agg({{ξt(T [k1, · · · , km], w) : w ∈ N(v)}})︸ ︷︷ ︸
Sm

)317

Rm and Sm are multivariate polynomials of m variables. By the induction hypothesis, there318

exist rt and st, such that for any m, deg(Rm) ≤ qt and deg(Sm) ≤ qt.319

The function comb is a bivariate polynomial of degree independent of m (neural network320

with a polynomial activation function). Let v be its degree. Hence, the degree of Qm is at321

most v × q2
t . Hence the property remains true at t+ 1, setting qt+1 := v × q2

t . ◀322

XX:10 Graph neural networks with polynomial activations have limited expressivity

Proof of Theorem 17. Consider the following query of GC2:

Q(s) = ¬
(
∃≥1x(E(s, x) ∧ ∃≤1sE(x, s))

)
= ∀xE(s, x)∃≥2sE(x, s)

Q is true if and only if all the neigbhors of the node s have degree at least 2. We will prove by
contradiction that any bounded GNN with polynomial activations and aggregations cannot
uniformly express the query Q. Let Pm := ξt(T [k1, · · · , km], s) be the embedding of the
source node of T [k1, · · · , km] returned by a GNN with polynomial activations, after a fixed
number of iterations t. Suppose that it can uniformly express the query Q, then;{

Pm(k1, · · · , km) ≥ 1 − ϵ if s ∈ Q(T [k1, · · · , km])
Pm(k1, · · · , km) ≤ ϵ if s /∈ Q(T [k1, · · · , km])

Let P̃m := Pm − 1
2 and ϵ′ := 1

2 − ϵ. Interpreting the query Q over T [k1, · · · , km] implies the323

following constraints on the sequence of polynomial P̃m:324

∃ϵ′ > 0 such that ∀k ∈ Nm

{
∃i ∈ {1, · · · ,m}, ki = 0 =⇒ P̃m(k) ≤ −ϵ′

∀i ∈ {1, · · · ,m}, ki > 0 =⇒ P̃m(k) ≥ ϵ′
(3)325

Let q be the degree of Pm, q := deg(Pm) = deg(P̃m) and let S be the set of exponents of326

the monomials of Pm, i.e.327

S := {(α1, · · · , αm) ∈ Nm : α1 + · · · + αm ≤ q and kα1
1 · · · kαm

m328

is a monomial of P̃m}329

First, note that q ≥ 2 (P̃m cannot be linear, otherwise its zero locus would contain a union330

of several hyperplanes as soon as m ≥ 2). This insures that |S| ≥ 2.331

Then using Lemma 19 (with p = m) tells us there exists α∗ ∈ S and u = (u1, · · · , um) ∈
Nm such that for any α′ ∈ S − {α∗},

⟨α∗, u⟩ > ⟨α′, u⟩

Claim 1: The (univariate) monomial t⟨α∗,u⟩ is the monomial of P̃m(tu1 , · · · , tum) of332

largest degree.333

Proof.

P̃m =
∑
α∈S

γαk
α1
1 · · · kαm

m =⇒ P̃m(tu1 , · · · , tum−1 , tum) =
∑
α∈S

γαt
⟨α,u⟩

Hence, the monomial of largest degree of P̃m(tu1 , · · · , tum) is the one such that ⟨α, u⟩ is334

(strictly) maximized when α ∈ S. By construction, it is α∗. ◀335

Now, suppose that P̃m has bounded degree (i.e. there is a uniform bound on the degree336

of the polynomials P̃m that is independent of m). Then, any monomial of largest degree of337

P̃m does not contain all the variables. Without loss of generality (by symmetry of P̃m), we338

can suppose that the monomial kα∗
1

1 · · · kα∗
m

m does not contain km, i.e. α∗
m = 0.339

Claim 2: In these conditions, the (univariate) monomial t⟨α∗,u⟩ is also the monomial of340

of largest degree of Pm(tu1 , · · · , tum−1 , 0).341

S. Khalife XX:11

Proof. Evaluating P̃m in (tu1 , · · · , tum−1 , 0) removes the contribution of each monomial of342

Pm containing the last variable, and keeps only the contribution of the monomials containing343

it:344

P̃m =
∑
α∈S

γαk
α1
1 · · · kαm

m =⇒ P̃m(tu1 , · · · , tum−1 , 0) =345 ∑
α∈Sα=(α1,··· ,αm−1,0)

γαt
⟨α,u⟩

346

Therefore, the monomial of largest degree of P̃m(tu1 , · · · , tum−1 , 0) is the one such that ⟨α, u⟩347

is (strictly) maximized when α ∈ S and αm = 0. By construction, such α is α∗. ◀348

However, Conditions 3 imply that the leading monomial of P̃m(tu1 , · · · , tum) must have a349

positive coefficient but the leading monomial of P̃m(tu1 , · · · , tum−1 , 0) must have a negative350

coefficient, by taking both limits when t tends to +∞ (this limit can be constant). This is a351

contradiction because Claims 1 and 2 imply that these coefficients are both γα∗ .352

Hence if Pm expresses Q, the leading monomial of P̃m contains all the variables, and353

deg(Pm) = deg(P̃m) ≥ m. This gives a contradiction with Lemma 19 since Pm = P̃m + 1
2 is354

supposed to be computed by a GNN. Therefore, no GNN with polynomial activations and355

aggregations can uniformly express the query Q.356

◀357

5 Discussion and open problems358

The expressive capabilities of GNNs are accurately characterized by the color refinement (or359

Wesfeiler-Leman) algorithm and fragments of the 2-variable counting logic. It is valuable360

to comprehend the expressivity of machine learning architectures, and in particular those361

of GNNs, as it can help in selecting an appropriate architecture for a given problem and362

facilitates the comparison of various architectures and approaches. It is also essential to363

note that expressivity is just one facet of practical use of GNNs and the related machine364

learning algorithms. This paper does not delve into other crucial aspects such as the GNN’s365

ability to generalize from provided data, and the computational efficiency of learning and366

inference. In particular, we have not investigated the ability of a GNN to learn a logical367

query from examples (without knowing the query in advance), for instance from a sample368

complexity standpoint. We believe that theoretical investigations on the expressivity of369

GNNs and logical expressivity can also suggest potential avenues to integrate logic-based and370

statistical reasoning in machine learning methods, and in particular in GNN architectures.371

These investigations also include questions of independent mathematical interest, some of372

which remain open. We list some below that are closely related to the results presented in373

this article:374

Question 1: Can GNNs with sigmoidal activations and agg = sum can uniformly express375

GC2 queries?376

Question 2: Can GNNs with sigmoidal activations and polynomial activations uniformly377

express GC2 queries?378

We conjecture that the answer to both 1 and 2 is negative. The answer to Question 3379

seems less clear.380

Question 3: Can GNNs with polynomial activation functions and a non polynomial381

aggregation function express uniformly GC2 queries?382

XX:12 Graph neural networks with polynomial activations have limited expressivity

More generally, we believe to be of interest to characterize the logics expressible by GNNs383

with certain activations and aggregation functions:384

Question 4: What is the fragment of GC2 uniformly expressible by GNNs with polyno-385

mial activations and aggregation functions?386

▶ Remark 21. Note that the proof of Theorem 11 can easily be extended to a larger family
of queries. Namely, for any integer p ≥ 2, let

Qp(s) := ¬
(

∃≥1x(E(s, x) ∧ ∃≤(p−1)sE(x, s))
)

= ∀xE(s, x)∃≥psE(x, s)

Qp queries if vertex s has neighbors whose degree are all at least p. Then any (Qp)p∈N cannot387

be expressed by any GNN with polynomial activations.388

▶ Remark 22. The proof of Theorem 17 was initially attempted using queries of the form:

Q̃p(s) = ¬
(

∃≥1x(E(s, x) ∧ ∃≥(p+1)sE(x, s))
)

= ∀xE(s, x)∃≤psE(x, s)

Which expresses that all the neighbors of s have degree at most p. Note the similarity389

between Qp from Remark 21 and Q̃p. Although Q̃p also seems a good candidate that cannot390

be expressed uniformly by a GNN with polynomial activations and aggregations, we could391

not conclude with the same approach as in the proof of Theorem 17, due to the following392

interesting fact:393

There exists ϵ > 0 and a sequence of symmetric polynomial (pm)m∈N ∈ R[x1, · · · , xm] of394

bounded degree (i.e. there exists an integer q such that for any m, deg(pm) ≤ q) and for any395

m, pm is greater than ϵ on the vertices of the unit hypercube {0, 1}m, and less than −ϵ on396

all the other points of Nm. pm = 1 −
∑m

i=1 x
2
i +

∑m
i=1 x

4
i is an example of such sequence of397

symmetric polynomials.398

References399

1 Anders Aamand, Justin Chen, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Nicholas400

Schiefer, Sandeep Silwal, and Tal Wagner. Exponentially improving the complexity of simulat-401

ing the weisfeiler-lehman test with graph neural networks. Advances in Neural Information402

Processing Systems, 35:27333–27346, 2022.403

2 Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo404

Silva. The logical expressiveness of graph neural networks. In 8th International Conference on405

Learning Representations (ICLR 2020), 2020.406

3 Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction407

networks for learning about objects, relations and physics. Advances in neural information408

processing systems, 29, 2016.409

4 Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.410

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,411

34(4):18–42, 2017.412

5 Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar413

Veličković. Combinatorial optimization and reasoning with graph neural networks. arXiv414

preprint arXiv:2102.09544, 2021.415

6 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks416

on graphs with fast localized spectral filtering. Advances in neural information processing417

systems, 29, 2016.418

7 Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive graph for419

multi-hop reading comprehension at scale. arXiv preprint arXiv:1905.05460, 2019.420

8 David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,421

Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning422

molecular fingerprints. Advances in neural information processing systems, 28, 2015.423

S. Khalife XX:13

9 Martin Grohe. The logic of graph neural networks. In 2021 36th Annual ACM/IEEE Symposium424

on Logic in Computer Science (LICS), pages 1–17. IEEE, 2021.425

10 Martin Grohe. The descriptive complexity of graph neural networks. arXiv preprint426

arXiv:2303.04613, 2023.427

11 William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence428

and Machine Learning, 14(3):1–159, 2020.429

12 Sammy Khalife and Amitabh Basu. On the power of graph neural networks and the role of430

the activation function. arXiv preprint arXiv:2307.04661, 2023.431

13 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial432

optimization algorithms over graphs. Advances in neural information processing systems, 30,433

2017.434

14 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,435

Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural436

networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages437

4602–4609, 2019.438

15 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and439

Peter Battaglia. Learning to simulate complex physics with graph networks. In International440

conference on machine learning, pages 8459–8468. PMLR, 2020.441

16 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.442

The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.443

17 Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M444

Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.445

A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.446

18 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural447

networks? arXiv preprint arXiv:1810.00826, 2018.448

19 Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng449

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and450

applications. AI open, 1:57–81, 2020.451

20 Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects452

with graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.453

XX:14 Graph neural networks with polynomial activations have limited expressivity

A Proof that piecewise linear GNNs (and AGG=SUM) are as454

expressive as GC2455

Proof. One can reformulate the claim of the Theorem as follows.456

Claim. Let Q be a query in GC2, and let sub(Q) = (Q1, Q2, · · · , Qd) be an enumeration457

of the sub-formulas of Q. Then, there exists a GNN returning an embedding ξt such that458

for graph G and any vertex v ∈ V (G), ξt ∈ {0, 1}d, and for any i ∈ {1, · · · , d}, ξt+1
i (v) =459

1 ⇐⇒ Qi(v) = 1.460

The overall GNN will take as input the graph G as well as for each node of v, ξ0(v) ∈ {0, 1}ℓ
461

encoding the colors of each node of G; and after L iterations, outputs for each node a vector462

ξd(v) ∈ {0, 1}d. Furthemore, at each intermediate iteration t ∈ {1, · · · , d−1}, the constructed463

GNN will verify ξt(v) ∈ {0, 1}d. This property will be crucial for the inductive argument to464

go through.465

In order to prove the claim, we simply need to find appropriate (combt)1≤t≤d and
(aggt)1≤t≤d functions such that if ξt verifying the update rule:

ξt+1(G, v) = combt(ξt(G, v), aggt({{ξt(G, v)) : v ∈ NG(v)}}))

then ξt have the property we are seeking, i.e. it computes the given query Q. We will prove466

that we can find such combt and aggt functions by induction on the depth of Q.467

Base case. If Q has depth 1, Q is one of ℓ color queries, and this can be computed via468

a GNN in one iteration, whose underlying neural network is the projection onto the i−th469

coordinate, i.e.470

- comb0(x, y) = proji(x)471

- agg0 can be chosen as any aggregation function.472

Induction step. Let suppose Q be a query of depth d > 1.473

First construction. By the induction hypothesis, we here suppose that we have access474

to some (combt)1≤t≤d−1 and (combt)1≤t≤d−1 such that for any j ∈ {1, · · · , d − 1} and for475

any 1 ≤ i ≤ j, Qj(v) = 1 ⇐⇒ ξi
j(v) = 1. Recall that sub(Q) = (Q1, Q2, · · · , Qd), i.e. the476

Qis form an enumeration of the sub-formulas of Q. In particular, Qd = Q. In the following477

construction, ξi keeps “in memory” the output of the subformulas Qj , for j ≤ i. For each478

case described above , we show that we are able to construct combd and aggd in the following479

form:480

- combd : Rd × Rd → Rd, (x, y) 7→ σ(AdX +BdY + cd), where σ(·) = min(1,max(0, ·)) is481

the clipped ReLU. Note that a clipped ReLU can be computed by a Neural Network with482

ReLU activations.483

- aggd is the sum function.484

Due to the inductive nature of GC2, either one of the following holds:485

Case 1: there exist subformulas Qj and Qk of Q, such that ℓ(Qj) + ℓ(Qk) = d and486

Q = Qj ∧Qk487

Case 2: Q(x) = ¬Qj(x) where Qj is a query of depth d− 1488

Case 3: there exists a subformula Qj of Q such that ℓ(Qj) = d − 1 and Q(x) =489

∃≥Ny(E(x, y) ∧Qj(y))490

We will first give general conditions on the update of the combinations and aggregate491

functions, and then conclude that these conditions are actually be met by constant comb492

and agg functions:493

- Ad gets the same first d− 1 rows as Ad−1.494

S. Khalife XX:15

- Bd gets the same first d− 1 rows as Bd−1495

- cd get the same first d− 1 coordinates as cd−1,496

Case 1: The d-th row of Ad gets all zeros except: (Ad)jd = 1, (Ad)kd = 1. and the d-th497

row of Bt. Set (cd)d = 0.498

Case 2: The d-th row of Ad gets all zeros except: (Ad)jd = 1. The d-th row of Bd is set499

to 0 except (Bd)jd = −1. Set (cd)d = −1.500

Case 3: The d-th row of Ad gets all zeros except: (Ad)jd = 1. The d-th row of Bd is set501

to 0 except (Bd)jd = −1. Set (cd)d = −N + 1.502

What remains to prove is the following:

For any i ∈ {1, · · · , d}, ξd
i (G, v) = 1 ⇐⇒ Qi(v) = 1

Due to our update rule described for each case, the first d− 1 coordinates of ξd(G, v) are the503

same as ξd−1(G, v). Hence, the property is true for i ≤ d− 1 by immediate induction. We504

are left to show that ξd
d(G, v) = 1 ⇐⇒ Q(v) = Qd(v) = 1. Here, we use the fact that:505

for every node v, every coordinate of ξd−1(v) is in {0, 1}.506

σ is the clipped ReLU activation function: σ(·) = min(1,max(0, ·)).507

Since ξd(v) = σ(Atξ
d−1(v) + Bt

∑
w∈N(v) ξ

d−1(w) + ct) This follows from an immediate508

discussion on the three cases described previously, and ends the induction on d.509

An important feature of the update described above is that (Ad, Bd, cd) verifies all the510

conditions imposed for every (At, Bt, ct)1≤t≤d to compute all subformulas Qt. The updates511

of At, Bt and ct are only made for the t-th row and t-th entry, and do not depend on the512

previous columns but only on the query Q. Hence, we may as well start from the beginning513

by setting (At, Bt, ct) to (Ad, Bd, cd), instead of changing these matrices at every iteration t.514

In these conditions, the combination function combt, parametrized by At, Bt and ct can be515

defined independently of t. The same holds for aggt as it can be chosen as the sum for any516

iteration.517

Second construction. We refer to the proof of [9] for an approach where the GNN is518

non-recurrent (each combt in that case depends on t). However, we insist on the fact that ξt
519

is a {0, 1} is a vector so that the proof with a clipped ReLU activation goes through.520

◀521

The reason for which the constructive proof in [2] does not extend to other activations
(namely, sigmoid) is that for a fixed positive integer p, we need fp : R → R such that for
some 0 < ϵ < 1

2 , and for any x1, · · · , xN ∈ [0, 1
2 − ϵ] ∪ [1

2 + ϵ, 1],

fp(
N∑

i=1
xi) ≥ 1

2 + ϵ ⇐⇒ there are at least p xi’s such that xi ≥ 1
2 + ϵ

Such fp does not exist: on the one hand, it is necessary that f(x) ≥ 1
2 + ϵ for any x ≥ p.522

Furthermore, it is possible to pick x1, · · · , xN such that for any i, xi ∈ [0, 1
2 − ϵ] but523

x1 + · · ·xN ≥ p. This in turn would imply fp(
∑N

i=1 xi) ≥ 1
2 + ϵ but all xi’s are smaller than524

1
2 . The reason the constructive proof above goes through follows from the fact that the525

previous property becomes verified if one restricts to {0} ∪ {1} and fp(.) = cReLU(· − p+ 1)526

where cReLU is the clipped ReLU.527

XX:16 Graph neural networks with polynomial activations have limited expressivity

B Logic background: general definitions528

▶ Definition 23. A first order logic is given by a countable set of symbols, called the alphabet529

of the logic:530

1. Boolean connectives: ¬,∨,∧,→,↔531

2. Quantifiers: ∀,∃532

3. Equivalence/equality symbol: ≡533

4. Variables: x0, x1, . . . (finite or countably infinite set)534

5. Punctuation: (,) and ,.535

6. a. A (possibly empty) set of constant symbols.536

b. For every natural number n ≥ 1, a (possibly empty) set of n-ary function symbols.537

c. For every natural number n ≥ 1, a (possibly empty) set of n-ary relation symbols.538

▶ Remark 24. Items 1-5 are common to any first order logic. Item 6 changes from one system539

of logic to another. Example: In Graph theory, the first order logic has:540

no constant symbols541

no function symbol542

a single 2-ary relation symbol E (which is interpreted as the edge relation between vertices).543

When graphs are supposed labeled with ℓ colors: ℓ function symbols col1, · · · , colℓ.544

coli(v ∈ G) returns 1 if the color of v is the i-th one.545

The set of symbols from Item 6 is called the vocabulary of the logic. It will be denoted by S546

and the first order logic based on S will be denoted by FO(S).547

▶ Definition 25. The set of terms in a given first order logic FO(S) is a set of strings over548

the alphabet defined inductively as follows:549

1. Every variable and constant symbol is a term.550

2. If f is an n-ary function symbol, and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.551

▶ Definition 26. The set of formulas in a given first order logic is a set of strings over the552

alphabet defined inductively as follows:553

1. If t1, t2 are terms, then t1 ≡ t2 is a formula.554

2. If R is an n-ary relation symbol, and t1, . . . , tn are terms, then R(t1, . . . , tn) is a formula.555

3. If ϕ is a formula, then ¬ϕ is a formula.556

4. If ϕ1, ϕ2 are formulas, then (ϕ1 ∨ ϕ2), ϕ1 ∧ ϕ2, ϕ1 → ϕ2 and ϕ1 ↔ ϕ2 are formulas.557

5. If ϕ is a formula and x is a variable, then ∀xϕ and ∃xϕ are formulas.558

The set of all variable symbols that appear in a term t will be denoted by var(t). The set559

of free variables in a formula is defined using the inductive nature of formulas:560

1. free(t1 ≡ t2) = var(t1) ∪ var(t2)561

2. free(R(t1, . . . , tn)) = var(t1) ∪ . . . ∪ var(tn)562

3. free(¬ϕ) = free(ϕ)563

4. free(ϕ1 ⋆ ϕ2) = var(ϕ1) ∪ var(ϕ2), where ⋆ ∈ {∨,∧,→,↔}564

5. free(∀xϕ) = free(ϕ) \ {x}565

6. free(∃xϕ) = free(ϕ) \ {x}566

▶ Remark 27. The same variable symbol may be a free symbol in ϕ, but appear bound to a567

quantifier in a subformula of ϕ.568

S. Khalife XX:17

▶ Definition 28. The set of sentences in a first order logic are all the formulas with no free569

variables, i.e., {ϕ : free(ϕ) = ∅}.570

▶ Definition 29. Given a first order logic FO(S), an S-structure is a pair U = (A, I) where571

A is a nonempty set, called the domain/universe of the structure, and I is a map defined on572

S such that573

1. I(c) is an element of A for every constant symbol c.574

2. I(f) is a function from An to A for every n-ary function symbol f .575

3. I(R) is a function from An to {0, 1} (or equivalently, a subset of An) for every n-ary576

relation symbol R.577

Given an S-structure U = (A, I) for FO(S), an assignment is a map from the set of578

variables in the logic to the domain A. An interpretation of FO(S) is a pair (U , β), where U579

is an S-structure and β is an assignment.580

We say that an interpretation (U , β) satisfies a formula ϕ, if this assignment restricted581

to the free variables in ϕ evaluates to 1, using the standard Boolean interpretations of the582

symbols of the first order logic in Items 1-5 of Definition 23.583

▶ Definition 30. The depth of a formula ϕ is defined recursively as follows. If ϕ is of the584

form in points 1. or 2. in Definition 26 , then its depth is 0. If ϕ = ¬ϕ′ or ϕ = ∀xϕ′ or585

ϕ = ∃xϕ′, then the depth of ϕ is the depth of ϕ′ plus 1. If ϕ = ϕ1 ⋆ ϕ2 with ⋆ ∈ {∨,∧,→,↔},586

then the depth of ϕ is the 1 more than the maximum of the depths of ϕ1 and ϕ2.587

This is equivalent to the depth of the tree representing the formula, based on the inductive588

definition. The length/size of the formula is the total number nodes in this tree. Up to589

constants, this is the number of leaves in the tree, which are called the atoms of the formula.590

	1 Introduction
	2 Preliminaries
	2.1 Graph Neural Networks (GNNs)
	2.2 Logical background: GC2 and queries
	2.3 Color refinement

	3 Uniform expressivity of GNNs
	4 Proof of our main result
	5 Discussion and open problems
	A Proof that piecewise linear GNNs (and AGG=SUM) are as expressive as GC2
	B Logic background: general definitions

