Under review as a conference paper at ICLR 2025

RECURFORMER: NOT ALL TRANSFORMER HEADS
NEED SELF-ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based large language models (LLMs) excel in modeling complex
language patterns but face significant computational costs during inference, es-
pecially with long inputs due to the attention mechanism’s memory overhead.
We observe that certain attention heads exhibit a distribution where the attention
weights concentrate on tokens near the query token, termed as recency aware,
which focuses on local and short-range dependencies. Leveraging this insight,
we propose RecurFormer, a novel architecture that replaces these attention heads
with linear recurrent neural networks (RNNs), specifically the Mamba architec-
ture. This replacement reduces the cache size without evicting tokens, thus main-
taining generation quality. RecurFormer retains the ability to model long-range
dependencies through the remaining attention heads and allows for reusing pre-
trained Transformer-based LLMs weights with continual training. Experiments
demonstrate that RecurFormer matches the original model’s performance while
significantly enhancing inference efficiency. Our approach provides a practical
solution to the computational challenges of Transformer-based LLMs inference,
making it highly attractive for tasks involving long inputs.

1 INTRODUCTION

Transformer-based LLMs (OpenAl, 2023; Touvron et al., 2023) excel at modeling complex language
patterns but come with significant computational costs. During inference, the prefill phase processes
the input in parallel, generating the first token and initializing the key-value cache (KV-Cache),
while the generation phase recursively produces each token, adding new keys and values to the KV-
Cache (Radford et al., 2019; Brown et al., 2020). In long input tasks like document-based dialogue
generation, the attention mechanism’s overhead in the prefill phase leads to memory issues, making
optimization crucial (Yang et al., 2024).

Currently, one of the optimization methods applicable to the prefill phase is PyramidInfer (Yang
et al., 2024), which reduces the KV-Cache size by progressively removing tokens with lower at-
tention weights. However, the intrinsic drawback is that token removal can decrease generation
quality as the sequence length increases. Moreover, in modern Transformer-based inference frame-
works, such as VLLM (Kwon et al., 2023), the prefix caching strategy is employed, which caches
the KV-Cache from long documents or dialogue history to reduce computational complexity during
the prefill phase in long document retrieval and multi-turn dialogue scenarios. Since it is difficult to
predict which tokens may be needed in future token generation, such scenarios are not suitable for
compression through token eviction.

Inspired by the dependency length minimization (DLM) phenomenon (Futrell et al., 2015) observed
in quantitative linguistics and the principles of attention mechanisms, we identified a local, short-
range token attention distribution pattern, referred to as the recency aware, where attention is con-
centrated on tokens close to the query token. Additionally, we discovered an attention distribution
pattern where the attention weights are independent of relative position, termed contextual retrieval,
characterized by attention being distributed across tokens at arbitrary positions in the sequence,
reflecting a global focus.

While the attention mechanism excels at modeling dependencies over varying distances (Vaswani
etal., 2017), we discover that using a linear RNNs is a more efficient option for fitting the recency
aware so that it reduces cache size requirements. On one side, limited cache size makes linear

Under review as a conference paper at ICLR 2025

Vvtupdate _ zt: ‘/1
i=0

v = 3 [aly
i=0

Attention ”pvq;g A°B,Cy Attention
is ’(@u@ ’(9,/99 4B,y 4B Cy is
not ”Q% ’79;.{;9 ”Q% |42B,C, |4 B,C; [49B,Cy not
necessary /(?rq;/) ,(914;/) f(?aqgﬁ /(%4;9 « A" ByCo|A*B1Cy [A'ByC, [AOBsCy necessary
in f@//@ f@,/‘?} f/q,% f?q% f(pq:(3 Replace A1ByCy|A®B,C,|A2B,Cy|A' B;C3|A°B,Cy in
all f@"’ﬁﬁ ’@;/,;5 ’fQ@ ’7@,1;,) ’f@,@ ’fq@ |45 ByCo | A B, C, |43 B, [A2 B, 04| A1 B, C, | A9Bs all
head ”%n /(Q"'/) ’fo,,,@ ’7@,,4/,} ’@M ’fo,% ’79,% |ASB,Cy| A5 B, Cy |44 By, | A3 By Oy | A%B,C, | A B; C; |A%BC| head
\@‘;&\ F v $ Qe?%%d 0 X&"’b ,.\@9;00 ; v & oz%%{b R &'}b
¥ ® v <

Figure 1: The left diagram shows how attention with recency aware updates values via weighted
summation, where f(z) = softmax(z/+/dy), and dy, is the dimension of key. The right diagram
illustrates the linear RNNs update. A represents the weights for state transitions, while B; and
C; are input and output gates. Regions with darker shades of orange indicate a greater influence

on VtuPdme, such as representing higher attention weights, while lighter-colored regions have less

influence.

RNNS less effective than Transformer in handling long-range dependencies (Jelassi et al., 2024;
Arora et al., 2024), but it still captures local relationships effectively. On the other hand, linear
RNNSs have a lower cache size compared to the attention mechanism in both the parallel mode of
the prefill phase and the recursive mode of the generation phase (Fu et al., 2023; Gu & Dao, 2023;
Arora et al., 2024).

To avoid such inefficiency, we propose a novel structure named RecurFormer, which introduces
linear recurrent structure to Transformer that achieves better efficiency for model inference. Specif-
ically, it replaced the traditional attention mechanism with the Mamba architecture in attention heads
exhibiting the recency aware, as shown in Figure 1, where Mamba is a linear RNNs based on se-
lective structured state space sequence model, supporting parallel and recurrent computation (Gu
& Dao, 2023). Compared to fully attention-based Transformer, RecurFormer reduces cache size
in both the prefill and generation phases, without achieving these benefits by directly evicting any
tokens. With continual training, RecurFormer can reuse the original model’s weights while main-
taining performance. The attention heads not replaced can still benefit from existing optimization
strategies to further enhance overall performance. The advantages of RecurFormer include: 1) re-
ducing cache size without evicting tokens, which helps maintain generation quality, and 2) the ability
to reuse pre-existing Transformer-based model weights.

The key contributions of this paper are as follows:

Inspired by the DLM phenomenon in quantitative linguistics and the computational principles of
attention mechanisms, we are the first to observe that certain attention heads in Transformer-based
LLMs can be effectively replaced by a Linear RNNs structure due to the recency aware property.
We propose RecurFormer, a novel recursive-optimized Transformer architecture that replaces at-
tention heads influenced by the recency aware property with the Mamba architecture, reducing
cache size while reuse the original model weights.

We show through HashHop experiments that RecurFormer matches the original model’s quality.
Continued training confirms performance recovery, and ablation studies with the multiple query
associative recall (MQAR) task validate the need to retain certain attention mechanisms.

2 RELATED WORK

Optimization Strategies for Efficient Inference. Improving the computational and memory effi-
ciency of Transformer-based LLMs has become a key research focus, driven by the need for scalable

Under review as a conference paper at ICLR 2025

inference in complex natural language processing applications. Optimization methods can be cate-
gorized into token eviction-based and non-eviction-based approaches. Token eviction-based strate-
gies reduce storage and computation by dynamically removing less important tokens, functioning
as a sparse attention mechanism. BigBird (Zaheer et al., 2020) pioneered this approach by retaining
specific positional and random tokens, while H20 (Zhang et al., 2023) introduced attention-weight-
based eviction to prioritize key information. Further optimizations, such as Scissorhands (Liu et al.,
2024) and PyramidInfer (Yang et al., 2024), evict different tokens at each layer, with PyramidIn-
fer optimizing the prefill phase by expelling tokens with low attention at each layer progressively.
However, these methods become less efficient as the decoded sequence grows, especially in tasks
requiring retention of dialogue history or external knowledge.

Non-eviction-based methods, such as DMC (Nawrot et al., 2024), maintain higher generation qual-
ity by merging the key and value of the current token with the last one in the KV-Cache. While
effective at controlling KV-Cache growth, non-eviction methods face limitations in the prefill phase
due to their sequential nature, which limits parallelization. This study aims to develop a non-eviction
token optimization method applicable to both the prefill and generation phases, with the goal of re-
ducing cache size in Transformer-based LLMs while maintaining generation quality comparable to
the original model.

Linear RNNs. Non-linear RNNs, as the typical form of RNNS, is fundamentally constrained by
non-linear dependencies in state transitions, which limit their ability to perform parallel computa-
tions across the sequence dimension. Inspired by physical systems, T-LSTM (Balduzzi & Ghifary,
2016) introduced a pioneering approach to linearize hidden state transitions by decoupling input
and hidden states. This linearity enables cell states to be updated through associative operations.
Building on this property, GILR-LSTM (Martin & Cundy, 2018) employs a parallel scan strategy to
accelerate computation across sequence elements.

Recently, Linear RNNs based on state space models (SSM) have garnered considerable attention. By
discretizing SSM, these models become applicable to discrete sequences, and when combined with
the Hippo (Gu et al., 2020) memory update mechanism, they yield the structured state space (S4)
model (Gu et al., 2022). Expanding upon S4, the selective structured state space (S6) model (Gu
& Dao, 2023) further enhances sequence modeling capacity by increasing the dimensionality. By
integrating S6 with gating architecture, the Mamba (Gu & Dao, 2023) was introduced, showing
strong potential in sequence modeling tasks. However, due to limited memory capacity, Mamba
still falls short in tasks such as sequence copying and long-range dependency modeling compared
to attention-based architectures like Transformer (Jelassi et al., 2024). In RecurFormer, we identify
scenarios that circumvent Mamba’s limitations in modeling long-range dependencies, by focusing
on cases where short-term dependencies are predominant.

3 METHODOLOGY

Overview. The process begins by identifying attention heads in the model that exhibit a strong
short-range focus, characterized by the recency aware. Once identified, we replace the attention
mechanism in these heads with a more efficient linear RNNs, which is better suited for modeling
local dependencies. This replacement strategy allows us to maintain the model’s generation ability
while reducing cache size in both the prefill and generation phase. Our approach involves two steps:

* Select replaced head(Sec. 3.1): We first calculate the recency ratio (RR) for each attention head
in the pre-trained LLMs and assign a recency aware index (RA-I). Attention mechanisms in heads
with higher RA-I are prioritized for replacement by a linear RNNGs.

* Replace and continual training(Sec. 3.2): We replace the attention mechanism in selected heads
with a linear RNNs, enabling RecurFormer to capture local dependencies more efficiently. contin-
ual training is then conducted to restore performance, ensuring it matches the original Transformer
while reducing computational costs during prefill and generation phases.

3.1 SELECTING HEADS FOR REPLACEMENT

The key insight behind RecurFormer is the observation that not all attention heads in a Transformer-
based LLM exhibit the same focus distribution. We define the recency aware as the phenomenon

Under review as a conference paper at ICLR 2025

Layer 24 Head 18 Value L2 Norm Layer 24 Head 18 Attention Layer 24 Head 18 Cotribution (L2 Norm)
0

6,906

o

100 01338

075

>

Sequence Length
Sequence Length

“Attention Weight
Sequence Length

Contribution (L2 Norm)

2

0.087

0.00

5 10 15 20 25 30
Sequence Length

10 15 20 25 30
Sequence Length

(a) L2 norm (b) Attention weight (c) Contribution

Figure 2: The figure presents averaged results from the 18th attention head of the 24th layer in the
Llama-2-7b model, based on forward propagation through 1024 samples from Wikipedia English
articles, each containing more than 1030 tokens, with the first 32 tokens from each sample selected
as the input. The subfigures depict: (a) the L2 norm of the value vector for each token, (b) the
attention weight matrix, and (c) the product of the L2 norm and the corresponding attention weight
for each token, representing its contribution to the attention-weighted sum.

where the attention weights concentrate more on tokens that are temporally closer to the query token,
while others exhibit a more uniform or distant focus across the sequence, which we call contextual
retrieval. To quantify the degree of the recency aware in each head, we introduce the concept of RR,
which is computed as

D livji<k Anij
Zi,j Ahﬂ'-,j)

where Ay, ; ; represents the attention weight from token 4 to token j in head h, and £ is a threshold
that defines the local region of token interactions, i.e., the local range around the diagonal of the
attention matrix. A high RR indicates that the head primarily focuses on recent tokens, suggesting
that this head is mainly capturing short-range dependencies.

RR;, = (D

We begin by calculating the RR for each attention head to quantify its focus on recent tokens, aiming
to identify attention distributions that align with the recency aware. For each sample, we compute
the RR for every attention head and set a threshold «.. Attention heads with an RR exceeding « are
recorded, and we tally the number of times each head is recorded across the dataset, defining this
count as the head’s RA-I.

However, during this process, we encountered a recurring issue where certain attention heads con-
sistently assign disproportionately high attention weights to the first token. This attention sink
phenomenon (Zaheer et al., 2020), as illustrated in Figure 2b, distorts the RR measurement. The
excessive attention to the first token makes it difficult to accurately identify attention heads that are
genuinely focused on short-range dependencies, which the recency aware is meant to capture.

To address this issue, we analyzed the characteristics of the first token. In causal attention mecha-
nisms, the first token remains unaffected by subsequent tokens during attention-based information
mixing, leading to a relatively fixed value distribution. When this special distribution is passed
through the model’s fully connected layers, it results in lower L1 and L2 norms compared to other
tokens (Yan et al., 2024), as shown in Figure 2a. A token’s contribution to the final output depends
on both its attention weight and its value vector, which can be expressed as:

t

update __

vy = E Ap,t,iVi, 2
=0

where v"* represents the updated value for token ¢, Ap, +i is the attention weight between token ¢

and token ¢ in head h, and v; is the value vector for token i. Despite often receiving higher attention
weights, the first token’s value vector exhibits lower L1 and L2 norms relative to other tokens, which
limits its overall contribution to the final output (Guo et al., 2024; Devoto et al., 2024), as Figure 2c.

Under review as a conference paper at ICLR 2025

Table 1: Comparison of cache peak and cache size between self-attention with KV-cache and Mamba
in the prefill and generation phases.

Ph | Attention (KV-cache) | Mamba
ase
| CachePeak Cache Size | Cache Peak Cache Size
Prefil | O(,> +1,-d) O(,-d) | O, d) 0(d)
Generation O(ly - d) O(l, - d) o(d) o(d)

To mitigate the influence of the first token on RR calculations, we modify the RR calculation by
excluding the first token. This adjustment provides a clearer measure of the head’s focus on short-
range dependencies, offering better insight into the recency aware.

Furthermore, when replacing the attention mechanism with a linear RNNs, the input gate in the
linear RNNss provides an effective solution to this issue. It projects the value vector v; for each token
in the sequence, adjusting the value distribution across all tokens so that the value vector of the first
token can become similar to those of the other tokens. Specifically, this transformation is expressed
as v, = B;v;, where B; is the weight vector of the input gate applied to v;, the original value vector
for token ¢. This projection allows the first token to appropriately influence other tokens, as it would
in the attention mechanism, without requiring additional sequence-level modeling operations.

3.2 REPLACING SELECTED HEADS AND CONTINUAL TRAINING

Employing attention mechanisms in recency aware dominant heads results in inefficiencies. To
address this, we propose substituting these heads with a linear RNNs structure, termed Mamba,
within Transformer models. Mamba (Gu & Dao, 2023), based on the S6 architecture, is designed
to model sequence information more efficiently. Although its performance in modeling long-term
dependencies is constrained by finite memory compared to Transformer (Jelassi et al., 2024), it
mitigates this limitation in scenarios where capturing local dependencies is critical. Additionally,
since Mamba’s state transitions do not rely on nonlinear activation functions, the operators within
its state transitions are associative, allowing for efficient parallel computation via a parallel scan
mechanism. This significantly enhances computational efficiency, particularly in the prefill phase,
where parallel computation across multiple tokens is required.

Table | summarizes the cache peak and cache size of Mamba compared to self-attention with KV-
cache, during both the prefill and generation phases. In this table, [, denotes the length of the input,
l, the length of generated tokens, and d the model dimension. As shown, Mamba reduces both the
computational complexity and cache size across these phases.

In Mamba, the inference process for generating the next token requires two main cache states: the
convolutional state and the SSM state. The convolutional state cache size and the SSM state cache
size are given by

Cconv = dinner * dconva CVSSM = dinner * dslalm inner = kepd . dmodely (3)

where dcony is the convolution kernel size, dga is the state dimension, kepq is expand factor, and
dmodel 18 the model dimension. Compared to the cache size of Transformer, which increases with
the sequence length during the generation phase, Mamba maintains a constant cache size during
inference, effectively reducing memory pressure.

We denote the proportion of attention heads to be replaced as 3, with those exhibiting higher RA-I
being prioritized for replacement. In these selected heads, Mamba blocks substitute the attention
mechanism, as described in Algorithm 1. W(Sm refers to the subset of weights from the original
model’s linear layer that is used to project the query from Xj,, only including the necessary weights
for the chosen attention heads, thus reducing unnecessary computations. Similarly, W;’?ﬁ is used
to project the key. In the S6 model, since each embedding dimension is processed independently,
the inputs from all heads utilizing Mamba blocks are aggregated into a single tensor along the
embedding dimension, allowing for efficient computation across multiple heads.

Since Mamba introduces new parameters, continual training RecurFormer is necessary to restore its
performance to a level comparable to the original Transformer-based LLMs.

Under review as a conference paper at ICLR 2025

Algorithm 1 RecurFormer Block

Require: X, € REXLXD list heads,y, list heads,
Ensure: X, € RBxLxD

1: 'V« Wy Xin > Value projections with weight matrix Wy,
2 Q<+ ngX,-n > Partial query projections with Wg‘rt
30 K+ WE" X, > Partial key projections with WE"
4: X,y < AttentionBlock(Q, K, V [heads,]) > Multi-head self-attention output
5: Xm < MambaBlock(V [headsy,)) > Mamba block output
6: Xou < Concatenate(X,y, X;n) > Concatenating outputs of attention heads and Mamba block

4 EXPERIMENTS

We evaluated RecurFormer on Qwen2 (Team, 2023) and Llama2 (Touvron et al., 2023) series to
assess cache reduction and generation quality. Ablation studies explored different S values, and
continued training confirmed RecurFormer’s ability to reuse pre-trained weights. We visualized
the RA-I values of different heads across various models, alongside the attention distributions, and
analyzed the contributions of the first token.

4.1 GENERATION QUALITY AND CACHE SIZE REDUCTION

Backbones. We utilize the Qwen2-0.5B, Llama2-7B, and Qwen2-7B models as the base models,
sourced from the official versions. Llama2-7B uses Multi-Head Attention (MHA), while Qwen2
series use Grouped Query Attention (GQA) (Ainslie et al., 2023).

Task for Evaluating Generation Quality. Evaluating natural language generation quality is often
subjective. To provide an objective measure, we use the linked list reasoning task, HashHop (Magic,
2024). In this task, the model reconstructs a linked list from its first element. We assess performance
using the hy, metric, which is the ratio of the longest correct sequence starting from the first element
to the total target list length, as shown in the hg4, column of Table 2. This provides a clear measure
of the model’s ability to maintain quality as generation sequence length increases. Further details
and examples are in Appendix A.1.

Task for Statistic Cache Size. We evaluated Qwen2-0.5B, Llama2-7B, and Llama2-13B using
randomly generated token sequences as inputs. The results, shown in the cs1gy and csgox columns
of Table 2, demonstrate that RecurFormer not only increases the allowable input length but also
significantly reduces cache size growth as the generation length extends. When S is 0, corresponding
to the original model, we define the cache size under this condition to be 1.0000.

Experiment Implementation. RecurFormer was constructed based on the original models with 3
set to 0.9, except for the model with 0.5B parameters, where [was set to 0.5. All experiments were
performed on a single A100 GPU with 80G of memory, with a batch size of 1. Further details on
the computation of the RA-I and sample selection are provided in Appendix B.

Main Results. The primary objective of our experiments was to demonstrate that RecurFormer
can significantly reduce cache size while maintaining generation quality at a level comparable to
unoptimized models. Specifically, we aimed to validate the effectiveness of RecurFormer across
different attention mechanisms, such as MHA and GQA, as well as across models with varying
parameter sizes. As shown in Table 2, RecurFormer achieved a cache size reduction of 89.7%
at 10,240 tokens and 90.0% at 61,440 tokens for Llama2-7B, as indicated by the csyox and csgox
columns, with only a minimal decrease in generation quality, where the h 44 score is 0.839 compared
to 0.894 for the unoptimized model. Similarly, for Qwen2-7B, RecurFormer reduced cache size by
87.3% at 10,240 tokens and by 87.5% at 61,440 tokens, confirming RecurFormer’s ability to effec-
tively manage cache size while preserving generation quality across different attention mechanisms,
such as MHA and GQA.

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of RecurFormer across optimization methods for Qwen2-7B,
Llama2-7B, and Qwen2-0.5B. The table shows the maximum input length ({,,), generation quality
(hgq), and cache size at generation lengths of 10,240 and 61,440 tokens.

Model | Optimization Method | 1, hgqy csiok CSeok
Original Model 133,120 0.881 1.0000 1.0000

Qwen2-0.5B RecurFormer 137216 0815 04390 04375
Original Model 71,680 0.894 1.0000 1.0000

Llama2-7B RecurFormer 91,800 0.839 0.1030 0.1000
PyramidInfer 71,680 0.462 0.1054 0.1043

Qwen2-7B Original Model 122,880 0.995 1.0000 1.0000
RecurFormer 132,000 0913 0.1268 0.1252

Smoothed Loss Original Model —— Smoothed Loss Original Model —— Smoothed Loss Original Model
95% Confidence Interval Loss Original Model
Smoothed Loss RecurFormer

14 95% Confidence Interval Loss Original Model 95% Confidence Interval Loss Original Model
—— Smoothed Loss RecurFormer 35 Smoothed Loss RecurFormer
95% Confidence Interval Loss RecurFormer 95% Confidence Interval Loss RecurFormer

o

95% Confidence Interval Loss RecurFormer

o

bed
>
N

e

0

w

N
Smoothed Loss

Smoothed Loss
Smoothed Loss

g
=)
w s

N

)

0 1000 2000 3000 4000 0 250 500 750 1000 1250 0 600 1200 1800 2400 3000 3600
Steps Steps Steps
(a) Qwen2-0.5B (b) Llama2-7B (c) Qwen2-7B

Figure 3: Loss values of RecurFormer and the corresponding original models during continual train-
ing on the masked prediction task using the Wikipedia English training set.

Additionally, experiments on Qwen2-0.5B and Qwen2-7B further demonstrated the scalability of
RecurFormer across models with different parameter sizes. As shown in Table 2, for Qwen2-0.5B,
RecurFormer reduced cache size by 56.1% at 10,240 tokens and by 56.3% at 61,440 tokens, as seen
in the ¢s1¢f, and csgox columns, while maintaining generation quality comparable to the unoptimized
model, as indicated by the hg4q column. This consistency in simultaneously preserving generation
quality and optimizing cache size and memory requirements across models with different parameter
sizes highlights the robustness of RecurFormer. Furthermore, RecurFormer increased the maximum
input length for all tested models, extending the limit for Llama2-7B from 71,680 tokens to 91,800
tokens and for Qwen2-7B from 122,880 tokens to 132,000 tokens, as shown in the [,, column,
demonstrating its potential for long-sequence generation tasks.

In the case of Llama2-7B, both RecurFormer and PyramidInfer achieved similar cache size reduc-
tions. RecurFormer reduced the cache size by 89.7% at 10,240 tokens and 90.0% at 61,440 tokens,
while PyramidInfer reduced it by 89.46% and 89.57%, respectively. However, the key difference
lies in the generation quality. RecurFormer maintained a high generation quality with an h 4, score
of 0.839, only slightly lower than the unoptimized model’s 0.894. In contrast, PyramidInfer’s hg,
score dropped significantly to 0.462, indicating a substantial degradation in generation quality com-
pared to the original model. This highlights RecurFormer’s ability to balance cache optimization
with minimal impact on generation quality, a clear advantage over PyramidInfer.

4.2 CONTINUAL TRAINING

To validate the effectiveness of RecurFormer in inheriting the weights from Transformer-based
LLMs, we performed continued training on RecurFormer with a S value of 0.5, constructed from
Qwen2-0.5B, Llama2-7B, and Qwen2-7B. The training was conducted using a masked predic-
tion task on the Wikipedia English training set. The results, presented in Figure 3, demonstrate
RecurFormer’s ability to converge with the original models and achieve comparable performance.

Under review as a conference paper at ICLR 2025

Table 3: PPL values for the original models and RecurFormer on the masked prediction task using
the Wikipedia English validation set.

Model | Qwen2-0.5B | Llama2-7B | Qwen2-7B
odel

| Original RecurFormer | Original RecurFormer | Original RecurFormer
PPL | 12.088 14.202 | 9.023 9.199 | 9215 9.692

Table 4: Expansion of RecurFormer across different models with various J values.

Model Qwen2-0.5B Llama2-7B Qwen2-7B

8 0.00 0.25 0.50 0.75 0.90 1.00 | 000 025 050 075 090 1.00 | 0.00 0.25 0.50 0.75 0.90 1.00
Imax [133,120 135,168 137,216 139,264 142,048 143,360|71,680 75,080 78,480 81,920 91,800 94,208 122,880 125,440 128,000 130,560 132,000 133,120
hgq | 0.881 0.846 0.815 0.051 0.000 0.000 | 0.894 0.849 0.861 0.818 0.839 0.000 | 0.995 0.987 098 0.922 0913 0.000
csqok | 1.0000 0.7043 0.4390 0.3145 0.0632 0.0006 |1.0000 0.7510 0.5020 0.2530 0.1030 0.0040| 1.0000 0.6578 0.3815 0.5930 0.1268 0.0007

csgok | 1.0000 0.7035 0.4375 0.3130 0.0626 0.0001 |1.0000 0.7500 0.5000 0.2500 0.1000 0.0010| 1.0000 0.6563 0.3800 0.5900 0.1252 0.0001
1.0 1.0 1.0 0.8
09 08 08 0.6
Fos g gos g
Z 06 g 504
<07 < ot =64 <04 o =64 <
dnoder =128 . 0.2
06 04 it =256 02 At =256
oder = 512 Anoder = 512 oder =512
0.0
0.5
000 025 050 0.75 1.00 0.00 025 0.50 0.75 1.00 000 025 050 075 1.00 0.00 025 0.50 0.75 1.00
B 5 B]
(a) 128 Tokens (b) 256 Tokens (c) 512 Tokens (d) 1024 Tokens

Figure 4: Accuracy in the MQAR task for different sequence lengths. Each subfigure shows the
accuracy of RecurFormer and the original Transformer model over validation samples of (a) 128
tokens, (b) 256 tokens, (c) 512 tokens, and (d) 1024 tokens.

After convergence, we evaluated both RecurFormer and the corresponding original models on the
validation set, using the masked prediction task and calculating the perplexity (PPL), as Table 3.

4.3 ABLATION STUDIES

To verify the necessity of retaining attention heads in RecurFormer, we extended Table 2 with dif-
ferent B values. When S is set to 1.0, meaning no attention heads are retained in RecurFormer, we
observe a significant degradation in generation quality in Table 4, with hp,, dropping to 0. This
phenomenon occurs consistently across models with different parameter sizes, as well as those uti-
lizing either MHA or GQA as the base models. Intrigued by this finding, we conducted additional
experiments using the MQAR task on randomly initialized Transformer and RecurFormer models.

The MQAR task requires the model to return the value corresponding to a given key in a sequence of
key-value pairs, with a detailed explanation of the task provided in Appendix A.2. The training set
consists of samples with 4 to 64 pairs, and pair lengths ranging from 64 to 256. The test set contains
samples with 4 to 256 pairs, and lengths ranging from 64 to 1,024. We used a randomly initialized
Transformer model with rotary position encoding (RoPE) (Su et al., 2024) and GQA, specifically
with 2 layers, 512 embedding dimensions, 8 attention heads, and 4 key-value heads. After selecting
the heads to be replaced in each layer based on 3, we trained the model on the training set.

We recorded the proportion of correct value predictions, i.e., accuracy, on the validation set for
different 3 values, as shown in Figure 4. Specific examples and descriptions of the MQAR task
are provided in Appendix A.2. Despite the MQAR task being simpler than the HashHop task, we
observed that RecurFormer, with all attention heads replaced by Mamba blocks, still exhibited poor
accuracy, indicating that retaining the attention mechanism in RecurFormer is necessary.

Under review as a conference paper at ICLR 2025

Layer 14 Head 5 Attention Layer 11 Head 18 Attention Layer 16 Head 17 Attention

0.1865 02012 0 0.06982

2

0.1399 0.1509 0.05237

5
g

0.0933 0.1006. 0.03491

Sequence Length

Attention Weight
Sequence Length
Attention Weight
Sequence Length
Attention Weight

0.0466 0.0503 0.01746

w
g
g

0.0000

0.0000 0.00000

0 50 100 150 200 2
Sequence Length Sequence Length Sequence Length

0 50 100 150 200 250 0 50 100 150 200 250

(a) Qwen2-0.5B RA-I = 1024 (b) Llama2-7B RA-I = 1024 (c) Qwen2-7B RA-I = 1024

Layer 10 Head 9 Attention Layer 15 Head 14 Attention Layer 23 Head 23 Attention

002405 0.1089. 0.008179
0 0 0

0.01804
0.01202
0.00601

0 50 100 150 200 250 00000 -0 50 100 150 200 250 0000 0 50 100 150 200 2500000000
Sequence Length

Sequence Length

2

o

2
2

0.0817 0.006134

2

8
3
8
3
8

0,054 0.004089

2
2

Sequence Length

Attention Weight
Sequence Length
“Attention Weight
Sequence Length
Attention Weight

0,002045

g

g
2
8
S
w
g
8

2
3

b

g

Sequence Length

(d) Qwen2-0.5B RA-I =0 (e) Llama2-7B RA-I = 0 (f) Qwen2-7B RA-I = 0

Figure 5: Visualization of attention distribution for heads with high, mid, and low RA-I values in the
Qwen2-0.5B, Llama2-7B, and Qwen2-7B models, averaged over 1024 samples. High RA-I heads
focus more on recent tokens (main diagonal), while low RA-I heads show a more global attention
pattern, with notably higher attention on the first token.

4.4 ANALYTICAL AND STATISTICAL EXPERIMENTS

RA-I Visualization We selected attention heads with different RA-I values from the Qwen2-0.5B,
Llama2-7B, and Qwen2-7B models and visualized their behavior, as shown in Figure 5. The figure
presents the average attention distribution heatmaps for these heads over 512 English samples, each
containing more than 1030 tokens. For the analysis, we used the first 256 tokens of each sample
as input. Attention heads with a high RA-I tend to focus on tokens close to the query token, re-
sulting in a bright main diagonal that reflects the model’s emphasis on local context dependencies.
In contrast, heads with a low RA-I exhibit a more uniform attention distribution across the entire
sequence, capturing longer-range dependencies. The attention distribution for low RA-I heads dis-
plays a mosaic-like pattern, indicating a more global focus. This distinction suggests that high RA-I
heads are better suited for handling short-range dependencies, while low RA-I heads play a crit-
ical role in capturing long-range information. Although we did not include the first token in the
visualization, it was still part of the attention calculation.

Additionally, in Figure 6, we visualized the RA-I values of each head in each layer of the Qwen2-
0.5B, Llama2-7B, and Qwen2-7B models. It can be observed that more heads in the Qwen?2 series
exhibit higher RA-I values, indicating that the heads in the Qwen2 models more frequently display
a recency aware attention distribution pattern.

Token Contribution Analysis. To verify the hypothesis that the contribution of the first token’s
value vector is lower than that of other tokens, we analyzed the contribution values across different
heads in the Qwen2-0.5B, Llama2-7B, and Qwen2-7B models. The contribution value is computed
as the product of the attention weight and the L2 norm of the value vector, as discussed in Section 3.1.
We used 512 samples from the Wikipedia English dataset, each containing more than 1030 tokens.
From these, the first 256 tokens were selected for analysis. Table 5 presents the mean contributions
along with their 95% confidence intervals for both the first token and non-first tokens.

Under review as a conference paper at ICLR 2025

1024 1024 1024

768

)
=N
&
=
N
&

512

o
©
RA-I Value
RA-I Value

&
Iy
RA-I Value

)
G
=N
)
G
=

0 6 5 10 15 20 25
Head

Head

(a) Qwen2-0.5B RA-1 (b) Llama2-7B RA-I (c) Qwen2-7B RA-1

Figure 6: RA-I values of each head in each layer of the Qwen2-0.5B, Llama2-7B, and Qwen2-7B
models. We observed generally higher RA-I values in the Qwen2 model series, suggesting that more
attention heads are primarily recency aware.

Table 5: Mean L1 and L2 Contribution Values and 95% Confidence Intervals (CI) for First and Non-
First Tokens in Qwen2-0.5B, Llama2-7B, and Qwen2-7B.

\ L1 Contribution \ L2 Contribution
Model

| Mean 95% CI | Mean 95% CI
Qwen2-0.5B 0.0281 [-0.0530, 0.1094] | 0.0070 [-0.0083, 0.0222]
' 0.0718 [0.0286, 0.1152] | 0.0129 [0.0046, 0.0212]
Llama2-7B 0.0082 [-0.0320, 0.0486] | 0.0013 [-0.0041, 0.0067]
0.0442 [0.0254, 0.0630] | 0.0052 [0.0030, 0.0074]
Qwen2-7B 0.0708 [-0.5195, 0.6602] | 0.0120 [-0.0713, 0.0947]
0.1465 [0.0615,0.2314] | 0.0181 [0.0075, 0.0286]

As shown in Table 5, the mean contribution of the first token is significantly lower than that of
non-first tokens in the Qwen2-0.5B and Llama2-7B models, as indicated by the non-overlapping
confidence intervals. Although the variability in the first token’s contribution is higher in the Qwen2-
7B model, the trend remains consistent, with the first token contributing less than non-first tokens.
These results support the hypothesis that the first token’s contribution is limited, providing a basis
for ignoring the first token when calculating the RR in practical scenarios.

5 CONCLUSION

We explored the necessity of self-attention in all heads of Transformer-based LLMs and demon-
strated the potential of replacing some self-attention mechanisms with a Linear RNNs. By iden-
tifying the recency aware phenomenon, where certain attention heads focus on recent tokens, we
introduced RecurFormer. In RecurFormer, we replace self-attention with a linear recurrent neural
network in these specific heads. This substitution reduces computational costs and cache size dur-
ing both the prefill and generation phases without compromising performance. Our experiments
showed that RecurFormer effectively reuses pretrained Transformer weights with continual training,
maintaining generation quality while enhancing efficiency. However, RecurFormer faces a key lim-
itation in efficiently parallelizing the computation of Mamba blocks and self-attention heads within
the same layer. This challenge is particularly evident under small batch sizes, affecting hardware
resource utilization, which we aim to improve in future work. By integrating linear recurrence
into Transformer architectures, RecurFormer provides a promising foundation for future large-scale
model architectures, potentially leading to more efficient and scalable neural networks.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=hmOwOZWzYE.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
Rudra, and Christopher Re. Simple linear attention language models balance the recall-throughput
tradeoff. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=e93ffDcpH3.

David Balduzzi and Muhammad Ghifary. Strongly-typed recurrent neural networks. In International
Conference on Machine Learning, pp. 1292-1300. PMLR, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877-1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8acl42f64a-Paper.pdf.

Alessio Devoto, Yifan Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective
l> norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=C0OZDy0WYGg.

Richard Futrell, Kyle Mahowald, and Edward Gibson. Large-scale evidence of dependency length
minimization in 37 languages. Proceedings of the National Academy of Sciences, 112(33):10336—
10341, 2015. doi: 10.1073/pnas.1502134112. URL https://www.pnas.org/doi/abs/
10.1073/pnas.1502134112.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher R€. Hippo: Recurrent memory
with optimal polynomial projections. Advances in Neural Information Processing Systems, 33:
1474-1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024. URL https://arxiv.org/abs/2406.12335.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and eran malach. Repeat after me: Trans-
formers are better than state space models at copying. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=duRRoGeoQT.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

11

https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=e93ffDcpH3
https://openreview.net/forum?id=e93ffDcpH3
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://www.pnas.org/doi/abs/10.1073/pnas.1502134112
https://www.pnas.org/doi/abs/10.1073/pnas.1502134112
https://arxiv.org/abs/2406.12335
https://openreview.net/forum?id=duRRoGeoQT

Under review as a conference paper at ICLR 2025

Z. Liu, A. Desai, F. Liao, W. Wang, V. Xie, Z. Xu, A. Kyrillidis, and A. Shrivastava. Scissorhands:
Exploiting the persistence of importance hypothesis for llm kv cache compression at test time.
Advances in Neural Information Processing Systems, 36, 2024.

Magic. Hashhop: Long context evaluation. https://github.com/magicproduct/
hash-hop, 2024.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
International Conference on Learning Representations, 2018.

Piotr Nawrot, Adrian Larnicucki, Marcin Chochowski, David Tarjan, and Edoardo Ponti. Dynamic
memory compression: Retrofitting LLMs for accelerated inference. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
tDRYrAkORB7.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl Blog, 1(8):9, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.127063. URL https://www.
sciencedirect.com/science/article/pi1/S0925231223011864.

Qwen Team. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4a845aa-Paper.pdf.

Ruiqing Yan, Xingbo Du, Haoyu Deng, Linghan Zheng, Qiuzhuang Sun, Jifang Hu, Yuhang Shao,
Penghao Jiang, Jinrong Jiang, and Lian Zhao. Unveiling and controlling anomalous attention
distribution in transformers. arXiv preprint arXiv:2407.01601, 2024.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. PyramidInfer: Pyra-
mid KV cache compression for high-throughput LLM inference. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics ACL 2024,
pp. 3258-3270, Bangkok, Thailand and virtual meeting, August 2024. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2024.findings—-acl.195.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers
for longer sequences. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS *20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H20: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

12

https://github.com/magicproduct/hash-hop
https://github.com/magicproduct/hash-hop
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2024.findings-acl.195
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

Under review as a conference paper at ICLR 2025

A TASKS DESCRIPTIONS

A.1 HAsHHopP

HashHop provides an objective evaluation of how the quality of generated content changes with
sequence length. In this task, the model must sequentially reconstruct a linked list, starting from the
first element. Each element in the linked list is represented as a random string of length A, with the
target list containing h,, connections, and the total input consisting of h; characters.

We use the hy, metric to evaluate the model’s performance, defined as the ratio of the longest correct
sequence starting from the first element to the total length of the target list. This metric objectively
reflects the model’s ability to preserve generation quality as the sequence grows.

For example:

, 04—=05 01 =02, , 02—=03,
, , 03 =04, , 05— 06.

In this case, the valid linked list is:
01 =02 =03 — 04 — 05 — 06.
Here, the elements in represent random pairs that serve as distractors, and the symbol =

indicates the starting point of the linked list. The task challenges the model to connect pairs where
the second element of one pair matches the first of another, forming a valid linked list.

A.2 MQAR

For example:

For the queries:
A?, C? F? = 4, 6, 1

Here, the ? indicates the position where the model needs to predict the corresponding value for each
key based on the provided key-value pairs.

B EXPERIMENT IMPLEMENTATION DETAIL

Calculate RA-I. From the Wikipedia English dataset, we randomly selected 1024 samples where
the number of tokens exceeded 1030. For each sample, we extracted the first 1024 tokens to compute
the RA-I for each attention head in the Transformer-based LLMs, setting o to 102.

Configuration of Mamba block. The Mamba block parameters were configured as follows: dopny
was set t0 4, dgae Was set to 16, dt gk was set to 256, and kepg was set to 2.

Configuration of HashHop task. The HashHop dataset was generated with h. set to 8, h,, set to
16, and h; set to 6144. We continued training RecurFormer on the HashHop dataset, experimenting
with various values of 5. After completing the continued training on the HashHop dataset, the
model’s performance was evaluated using the hg4q metric.

Configuration of PyramidInfer. We configured PyramidInfer by adjusting the inter-layer token
eviction ratio Preguce and the minimum token retention count Py, to match the cache size as closely
as possible with our approach. For Llama2-7B it was set to 0.7, and Py, was set to 32.

13

	Introduction
	Related Work
	Methodology
	Selecting Heads for Replacement
	Replacing Selected Heads and continual training

	Experiments
	Generation Quality and Cache Size Reduction
	continual training
	Ablation Studies
	Analytical and Statistical Experiments

	Conclusion
	Tasks Descriptions
	HashHop
	MQAR

	Experiment Implementation Detail

