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ABSTRACT

Syllables are compositional units of spoken language that efficiently structure hu-
man speech perception and production. However, current neural speech represen-
tations lack such structure, resulting in dense token sequences that are costly to
process. To bridge this gap, we propose a new model, Sylber, that produces speech
representations with clean and robust syllabic structure. Specifically, we propose
a self-supervised learning (SSL) framework that bootstraps syllabic embeddings
by distilling from its own initial unsupervised syllabic segmentation. This results
in a highly structured representation of speech features, offering three key ben-
efits: 1) a fast, linear-time syllable segmentation algorithm, 2) efficient syllabic
tokenization with an average of 4.27 tokens per second, and 3) novel phonolog-
ical units suited for efficient spoken language modeling. Our proposed segmen-
tation method is highly robust and generalizes to out-of-domain data and unseen
languages without any tuning. By training token-to-speech generative models,
fully intelligible speech can be reconstructed from Sylber tokens with a signif-
icantly lower bitrate than baseline SSL tokens. This suggests that our model
effectively compresses speech into a compact sequence of tokens with minimal
information loss. Lastly, we demonstrate that categorical perception—a linguistic
phenomenon in speech perception—emerges naturally in Sylber, making the em-
bedding space more categorical and sparse than previous speech features and thus
supporting the high efficiency of our tokenization. Together, we present a novel
SSL approach for representing speech as syllables, with significant potential for
efficient speech tokenization and spoken language modeling.

1 INTRODUCTION

Self-supervised learning (SSL) approaches have been successful in learning speech representations
that encode rich speech contents useful for diverse speech downstream tasks (Baevski et al., 2020;
Hsu et al., 2021; Hu et al., 2024; Mohamed et al., 2022; Yang et al., 2021). In particular, speech
tokens obtained by quantizing SSL features are receiving attention for understanding and generating
spoken language (Lakhotia et al., 2021; Kharitonov et al., 2021; Hassid et al., 2024; Lee et al., 2022;
Zhang et al., 2023). Substantial evidence suggests that SSL features are highly phonetic (Hsu et al.,
2021; Cho et al., 2023; 2024a; Choi et al., 2024), which suggests that these quantized tokens are
sub-phonemic units that densely tile the phonetic space (Sicherman & Adi, 2023). While capturing
fine-grained speech contents, most existing speech tokenization approaches yield high frequency
tokens (25-75 Hz), resulting in a long sequence of tokens to be processed. As prevailing attention
based neural networks (Vaswani, 2017) have a quadratic cost with respect to sequence length, it
becomes infeasible to process longer sequences with phoneme-level granularity.

A major bottleneck of the inefficiency in modeling spoken language is a lack of structure in current
neural speech representations. Unlike text, there is no clear delimiter nor orthographic symbol in
speech audio, which are crucial in efficient and scalable processing as evidenced in the text domain.
However, human speech perception is structured as being segmented (Greenberg, 1998; Oganian
& Chang, 2019; Gong et al., 2023) and categorical (Liberman et al., 1957; Pisoni, 1973; Pisoni &
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Lazarus, 1974). We argue that the machine representation of speech should resemble these cognitive
structures to allow similar efficiency as text processing. A natural segmented structure of speech
is a syllable, which organizes speech sounds in time (MacNeilage, 1998; Greenberg, 1998), and
ideally, the embedding of a syllable should represent contents in a categorical way to be symbolized
efficiently.

To this end, we propose a novel SSL framework that induces clean and robust syllabic structures in
speech representations. Specifically, we build on top of a previous self-supervised syllable learning
model, SDHuBERT (Cho et al., 2024b), and iteratively refine the syllabic segments that naturally
arise from the model. Unlike the original model, which induces syllable structure as a byproduct of
sentence-level SSL, we directly impose syllabic structures by regressing features against unsuper-
vised syllable segments extracted from a teacher model which is initially set as the training model.
We call the resulting model Sylber (Syllabic embedding representation). 1

The features from Sylber exhibit salient syllabic structure—showing a flat, consistent output within
each segment and distinctive from other syllables (Figure 2, right). This enables a fast, linear time
algorithm for segmenting these features. Moreover, this allows more accurate boundary detection
and clustering that is more coherent with ground truth syllables than previous approaches. Syllabic
tokens quantized from Sylber features show significantly lower frequency at an average of 4.27
token/second (Tok/s), and can be used to synthesize fully intelligible speech.2 Furthermore, spoken
language models based on syllabic tokens show comparable or better performance than the baselines
with a similar resource setting, in learning lexicons and syntax.

To test whether Sylber is categorical, we probe the embeddings of a continuum of speech samples
that interpolate rhyming word pairs, inspired by linguistics (Liberman et al., 1957). We introduce
the Discriminability Index (DI) to quantify the degree of categorical perception of a speech represen-
tation model. Surprisingly, we observe a transient boundary drawn in the middle of the continuum,
showing the best DI across SSL models. This suggests that the learned features are discretized
in embedding space, contributing to the high efficiency of our syllabic tokens. To the best of our
knowledge, this is the first demonstration of the validity and effectiveness of speech tokenization at
the syllable level, with a tight connection to linguistic theories.

We summarize our contributions as follows:

• We propose Sylber, a novel SSL framework that imposes salient and robust syllabic structure
in speech representation.

• Sylber outperforms previous approaches in syllable detection and discovery with a more effi-
cient segmentation algorithm with O(n) time complexity.

• The syllable segmentation by Sylber is generalizable to noisy conversational speech and even
to unseen languages (Spanish and Mandarin) while being trained only on English audiobook

• We use this model to build a new dynamic speech tokenization scheme that has significantly
lower sampling rate as 4.27 Tok/s on average, 6-7 times improvement over HuBERT tokens.

• We demonstrate that fully intelligible speech can be reconstructed from syllabic tokens, and
that these units are suited for lexical and syntactic understanding.

• We demonstrate that categorical perception arises in Sylber, projecting audio to a more cate-
gorical embedding space than previous SSL models.

2 RELATED WORK

Self-supervised learning in speech Self-supervised learning (SSL) has been leveraged to learn rich
representations from large, unlabeled speech corpora (Hsu et al., 2021; Baevski et al., 2020; Chen
et al., 2022; Chung et al., 2021; Mohamed et al., 2022). Notably, HuBERT (Hsu et al., 2021) and
WavLM (Chen et al., 2022) are pretrained using masked prediction on audio signals in order to
extract representations on the audio for each frame. These SSL techniques typically extract repre-
sentations at a fixed frame rate at 50 Hz, which is fairly finegrained and suggests that these repre-

1The code is available here: https://github.com/Berkeley-Speech-Group/sylber.
2Audio samples are at https://berkeley-speech-group.github.io/sylber.
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sentations are highly correlated with sub-phonemic structures (Hsu et al., 2021; Cho et al., 2023;
Abdullah et al., 2023; Sicherman & Adi, 2023; Baevski et al., 2021).

Speech tokenization Clustering and/or quantizing these SSL representations can provide speech
tokens that are used for acoustic unit discovery (Hallap et al., 2022), speech recognition (Baevski
et al., 2021; Chang et al., 2024), speech synthesis (Polyak et al., 2021; Hassid et al., 2024), language
modeling (Lakhotia et al., 2021; Borsos et al., 2022; Hassid et al., 2024; Zhang et al., 2023), and
translation (Lee et al., 2022; Li et al., 2023). However, these tokens severely suffer from high
sampling rates, which makes the downstream models hard to scale, and struggle to learn long-range
dependencies and higher-level linguistic structures due to the lack of explicit word boundaries and
longer sequences. These caveats can be greatly improved by tokenizing speech at syllable-level
granularity, yielding far shorter token lengths than the existing methods. For example, in English,
the typical speaking rate is 4-6 syllables per second.

Syllabic structure in speech SSL Previous studies have demonstrated that syllabic structure can
be induced by SSL (Peng et al., 2023; Cho et al., 2024b; Komatsu & Shinozaki, 2024). Peng et al.
(2023) shows that syllabic structure in SSL features can be induced by jointly training with images
and spoken captions. SDHuBERT (Cho et al., 2024b) demonstrates that such syllabic induction
can be free of other modalities, with a sentence-level SSL. Komatsu & Shinozaki (2024) combined
frame-wise distillation with speaker augmentation to derive syllabic segments. All these methods
then utilize an agglomeration algorithm on top of the learned features to infer syllable boundaries,
and extract syllable embeddings by averaging frames within detected segments. However, these
previous studies induce syllabic structures in indirect ways, resulting in noisy syllable boundaries.
Moreover, it is unclear whether the discovered syllables are valid speech representations or tokens.
Here, our approach greatly improves the quality of the segments, and we first demonstrate the effi-
cacy and validity of syllabic tokens through various experiments.

3 METHODS

3.1 SELF-SEGMENTATION DISTILLATION
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Figure 1: Self-segmentation distillation.

Sylber is trained by a novel SSL framework, self-
segmentation distillation, that imposes more explicit in-
ductive bias of segment structure in feature representa-
tions by directly solving the speech segmentation prob-
lem (Figure 1). Specifically, we use SDHuBERT (Cho
et al., 2024b) as a starting point, and leverage its unsu-
pervised syllable segments as pseudo labels for segmen-
tation. The target segment labels are continuous embed-
dings averaged across frames within each segment which
are extracted from a teacher model. The teacher model is
set as the initial student model and fixed during training,
where we have two training stages—use the initial seg-
ments by SDHuBERT and its model weights; and update
the teacher model and segments using the student model
trained in the first stage.

The loss objective is a frame-wise regression loss that minimizes the Mean Squared Error (MSE) be-
tween the output features at each frame and the target embeddings from the corresponding segment.
Non-speech frames are regressed to zero, which are marked by norm thresholding by SDHuBERT
(Cho et al., 2024b), and segments with low waveform amplitude (Appendix A.1.7). A formal defi-
nition of this distillation loss is described in Appendix A.1.1.

In addition to the distillation loss, we include a denoising objective similar to Chen et al. (2022)
to improve robustness of the model, where 20% of the batch inputs for the student are mixed with
environmental noise (Reddy et al., 2021) or other speech audio (Appendix A.1.3). This additional
denoising is not a primary source of learning as a syllabic structure is readily visible without it,
which is qualitatively shown in Appendix A.2.2. Furthermore, the model training is not sensitive to
the choice of hyperparameters or model initialization (more discussed in Appendix A.2.6).
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Figure 2: Frame-wise similarity matrix of raw features measured by dot product. For HuBERT
and SDHuBERT, features from the ninth Transformer layer are extracted. Sylber shows extremely
salient syllabic structure that is aligned with the ground truth syllable boundaries, with clear null
activations in non-speech frames.

3.2 LINEAR TIME GREEDY SEGMENTATION ALGORITHM

The result of our self-segmentation distillation induces a framewise speech representation that ex-
hibits a segmented structure as seen in the frame-wise similarity matrix (Figure 2, right). As we
can see, our method produces a clean and robust segment structure that we can take advantage of
to design a linear-time, greedy audio segmentation algorithm. The algorithm involves a monotonic
agglomeration process where we sweep through each embedding and aggregate them into segments.
While sweeping, the adjacent frames are merged together into a segment as long as their cosine
similarity goes above a predefined merge threshold. The frames with L2 norm lower than a norm
threshold are regarded as non-speech, and terminate agglomerating whenever encountered while
sweeping. The greedy segmentation algorithm can sometimes make some errors by shifting some
frames. Therefore, an additional pass is used to locally refine the boundaries by maximizing simi-
larities between frames and assigned segments. See Appendix A.1.2 for details.

Each one of these steps can be implemented with O(n) complexity, so the entire segmentation
algorithm has linear complexity with respect to the audio sequence length. This allows fast on-
line segmentation and is significantly more efficient than previous segmentation approaches (Peng
et al. (2023); Cho et al. (2024b); Komatsu & Shinozaki (2024)) which all have O(n2) complexity
as shown in Table 1. In Section 5.1, we show that this algorithm is on-par with previous O(n2)
algorithms when applied to Sylber and other ablations involving previous models.

4 EXPERIMENTAL SETUP AND EVALUATION PROTOCOL

4.1 EXPERIMENTAL SETUP

Architecture Sylber has the same architecture as HuBERT with a CNN feature extractor followed
by Transformer encoder. Based on the observation that the ninth layer of SDHuBERT best encodes
syllables (Cho et al. (2024b)), we use a 9 layer transformer and initialize weights with SDHuBERT
up-to that layer.3 See Appendix A.1.5 for training details.

Tokenization To tokenize speech, we apply the aforementioned segmentation algorithm (Section
3.2) to get unsupervised speech segments. The features within segments are averaged to form
continuous speech tokens at a syllable granularity (4-5 syllables per second). We apply a simple
k-means clustering on the features with different vocab sizes (5K, 10K, and 20K). These cluster
sizes are larger than what is used by other SSL-based clustering techniques (usually around 50-2K
clusters), which is necessary since our features are closer to syllables than phonemes; similar to how
vocabulary sizes for BPE based tokenizers are significantly larger than the number of characters.

3The checkpoint is retrieved from https://github.com/cheoljun95/sdhubert.

4



Published as a conference paper at ICLR 2025

However, these syllabic tokens have a significantly lower temporal resolution compared to previous
SSL-based tokens, which leads to improvements in efficiency (see Section 5.2).

Token-to-speech If our syllabic tokens are valid speech tokens, we should be able to reconstruct in-
telligible speech from them. We train a Conditional Flow-matching (CFM) (Lipman et al., 2022; Le
et al., 2024) model to generate interpretable articulatory features that can be converted to speech au-
dio using SPARC (Cho et al., 2024c). These articulatory features are speaker agnostic provided that
pitch is normalized, while allowing full-reconstruction to speech. Since SSL-based speech tokens
generally lack speaker information (Polyak et al., 2021; Wang et al., 2023), we aim to reconstruct
these speaker-agnostic articulatory features from the syllabic tokens. See Appendix A.1.4 for the
implementation and training details.

Unit LM Following Lakhotia et al. (2021), we train an autoregressive unit language model (uLM)
using the syllabic tokens. The model has the same architecture as GSLM (Lakhotia et al., 2021),
which is a decoder-only Transformer with 12 layers. Additional details are in Appendix A.1.6.

Datasets LibriSpeech (Panayotov et al., 2015) is used for training Sylber, and k-means clustering.
For training the uLMs, we use either LibriSpeech or LibriLight (Kahn et al., 2020), and separately
report performance. LibriTTS-R (Koizumi et al., 2023) is used for training the CFM models.

4.2 EVALUATION

Syllable detection and discovery We evaluate syllable boundaries with precision, recall, F1, and
R-value following previous studies (Peng et al., 2023; Cho et al., 2024b; Komatsu & Shinozaki,
2024). Syllable discovery is evaluated by a separate clustering, where we use the same process as
the previous works that use 4096 clusters. We measure syllable purity, cluster purity, and mutual
information between the discovered syllables and the ground truth (Cho et al., 2024b; Komatsu &
Shinozaki, 2024). See Appendix A.1.8 for details.

Speech resynthesis We measure reconstruction performance using the average Pearson Correlation
of each component in articulatory features. To evaluate intelligibility, we use an off-the-shelf speech
recognition model, Whisper (Radford et al., 2023)4, and measure word error rate (WER) and char-
acter error rate (CER). Lastly, we apply an automated speech quality measurement, UTMOS (Saeki
et al., 2022), to evaluate the quality of generated speech. These are evaluated on the test-clean split
of LibriTTS-R. For some models, we collect subjective human evaluation on qualities, and report
mean opinion scores (MOS) on the naturalness (nMOS) and prosodic similarity with the ground
truth (psMOS).

Coding efficiency We evaluate the coding efficiency of the tokens with Token/second (Tok/s), bi-
trate, and coding-rate. The bitrate is calculated by (log2(vocab size))×Tok/s. We define coding-rate
as how much word information is preserved per bit: (1−WER/100)×total # of words

total # of bits . Likewise, the test-
clean split of LibriTTS-R is used to evaluate coding efficiency.

Spoken Language Understanding We use the zero-shot metrics of lexical learning, sWUGGY, and
syntax learning, sBLIMP, following Lakhotia et al. (2021); Algayres et al. (2023). These metrics
are measured by accuracy of discriminating real words/phrases and fake ones using the probabilities
inferred from uLM, respectively.

4.2.1 BASELINES

For syllable detection and discovery, we compare our models against HuBERT, VGHuBERT, SDHu-
BERT, and Komatsu & Shinozaki (2024). For token-to-speech, we train the baseline CFM models
using deduplicated HuBERT units with the size of 50, 100, and 200 by Lakhotia et al. (2021), and
500, and 2K by Nguyen et al. (2023); and SDHuBERT tokens with 5K, 10K, and 20K cluster sizes.
For coding efficiency, we apply Byte Pair Encoding (BPE) using SentencePiece5 to merge frequent
units to form a larger vocabulary for HuBERT so that the size matches ours: 5K, 10K, and 20K,
similar to Shen et al. (2024).6 For evaluating language understanding, we use GSLM (Lakhotia

4We use “openai/whisper-large-v3” from Huggingface.
5https://github.com/google/sentencepiece
6The coding efficiency metrics are substantially worse using HuBERT without BPE due to their sampling

granularity; thus, we compare against HuBERT with BPE to make a more fair comparison.
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Table 1: Syllable detection and discovery results measured. Pr: precision, Re: recall, R: R-value,
SP: syllabic purity, CP: cluster purity, and MI: mutual information. Complexity indicates time
complexity of post-hoc segmentation algorithm. n: the number of frames and k: the number of
syllables. All metrics are measured using LibriSpeech test data. Results of other model–algorithm
combinations are also compared. Sylber uses a linear time algorithm while the other models use a
quadratic time algorithm, which is only available with the clean structure learned by our approach.

Model Complexity Syllable Detection Syllable Discovery
Pr↑ Re↑ F1↑ R↑ SP↑ CP↑ MI↑

HuBERT O(kn2) 51.4 31.4 39.0 50.1 33.1 28.4 3.54
VGHuBERT O(kn2) 65.3 64.3 64.8 70.0 53.4 43.6 4.66
SDHuBERT O(n2/k) 64.3 71.0 67.5 70.7 54.1 46.2 4.76
Komatsu & Shinozaki (2024) O(kn2) 73.3 67.6 70.3 74.6 59.4 44.5 5.08
Sylber O(n) 76.6 68.3 72.2 75.9 64.0 43.9 5.28
Sylber–MinCut O(n2/k) 76.8 68.1 72.2 75.8 63.9 44.0 5.29
HuBERT-Greedy O(n) 54.5 35.2 42.8 52.7 29.5 25.9 3.36
SDHuBERT-Greedy O(n) 56.1 67.4 61.2 62.1 30.0 41.5 2.67

Table 2: Syllable detection performance in out-of-domain data. Sylber can generalize across novel
domain and langauges without any tuning, showing high scores in all detection metrics.

Corpus Language Style Pr↑ Re↑ F1↑ R↑
LibriSpeech (in-domain) English Reading 76.6 68.3 72.2 75.9

Fisher English Conversation 78.8 66.2 71.9 75.0
MLS Spanish Reading 73.5 69.9 71.7 75.9

AISHELL-3 Mandarin Reading 74.9 68.0 71.3 75.3

et al., 2021), tGSLM (Algayres et al., 2023), NAST (Messica & Adi, 2024), TWIST (Hassid et al.,
2024) as baselines. These are selected as their tokenizers stem from HuBERT.

5 RESULTS

5.1 SYLLABLE DETECTION AND DISCOVERY

Table 1 shows a comparison of syllable detection and discovery performance. Sylber outperforms
all previous approaches in every metric other than recall and cluster purity. As these two terms can
be inflated by having more segments, it indicates that SDHuBERT is oversegmenting. In terms of
discovery, we find the ground truth syllables are more purely mapped to ours than the baselines,
greatly improving the previous SOTA by a huge margin (59.4 → 64.0). The results indicate that
our model can detect and discover syllables better than the previous approaches. (Check Appendix
A.2.7 for visualizations of the embedding space.) Moreover, the output features from our model
are significantly cleaner than HuBERT or SDHuBERT as shown in Figure 2, which shows highly
consistent similarities within syllable spans. This allows for a much faster O(n) algorithm to be
applicable, compared to the previous O(kn2) and O(n2/k) algorithms where n is the number of
frames and k is the estimated number of syllables controlled by a hyperparameter. Compared to
SDHuBERT, our syllable segmentation shows approximately 4× gains in inference time (Appendix
A.2.8).

When we apply the previous algorithm, MinCut (Peng et al., 2023; Cho et al., 2024b) to Sylber, the
scores show very marginal differences (Sylber-Mincut in Table 1). MinCut is designed to search
for optimal segments at the cost of computation time. Therefore, this indicates that Sylber fea-
tures are clean and robust enough to find optimal segments in a greedy manner. In fact, when the
greedy linear-time algorithm is applied to SDHuBERT, we find significant performance degrada-
tion (SDHuBERT-Greedy). In the case of HuBERT, both Greedy and MinCut show generally low
performance due to the lack of syllabic structure.

Moreover, Sylber demonstrates surprising generalizability to unseen domain and languages without
any tuning. As shown in Table 2, the syllable detection by Sylber shows high performance when
applied to other corpora: conversational speech (Fisher; Cieri et al. (2004)), Spanish (MLS; Pratap
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Table 3: Resynthesis results. HB: HuBERT, SDHB: SDHuBERT, and KM: KMean cluster size. Re-
construction metrics are average Pearson Correlation and WER and CER are reported in percentage
(%). 95% confidence interval is reported for reconstruction and quality. Best scores are highlighted
with bold font and best scores with quantization are underlined.

Model Reconstruction Intelligibility Quality Frequency
Upstream KM Art↑ Loudness↑ Pitch↑ WER↓ CER↓ UTMOS↑ Tok/s↓

HB

50 0.926± 0.065 0.880± 0.089 0.586± 0.581 13.32 7.24 4.190± 0.553 23.59
100 0.941± 0.046 0.878± 0.098 0.594± 0.560 7.78 3.89 4.177± 0.548 26.68
200 0.944± 0.044 0.886 ± 0.090 0.608± 0.573 6.34 3.10 4.197± 0.543 28.97
500 0.941± 0.043 0.882± 0.095 0.623± 0.532 5.47 2.69 4.198± 0.533 29.46
2K 0.945 ± 0.040 0.883± 0.095 0.660± 0.458 5.04 2.46 4.197± 0.551 33.62

SDHB

5K 0.925± 0.066 0.872± 0.089 0.757± 0.384 9.88 5.40 4.140± 0.660

5.2410K 0.927± 0.064 0.879± 0.083 0.759± 0.412 9.25 4.99 4.173± 0.600
20K 0.930± 0.061 0.883± 0.081 0.784 ± 0.373 8.63 4.62 4.180± 0.609
∞ 0.959 ± 0.035 0.948± 0.042 0.906± 0.217 4.94 2.56 4.190± 0.552

Sylber

5K 0.919± 0.072 0.877± 0.091 0.739± 0.431 8.70 4.48 4.189± 0.607

4.2710K 0.922± 0.064 0.876± 0.088 0.753± 0.424 8.07 4.28 4.155± 0.624
20K 0.924± 0.066 0.882± 0.084 0.774± 0.374 7.95 4.06 4.210 ± 0.547
∞ 0.957± 0.037 0.950 ± 0.045 0.918 ± 0.216 4.88 2.42 4.199± 0.539

Table 4: Coding efficiency comparison.

Model
Token/second↓ Bitrate↓ Coding-rate↑

Vocab size Vocab size Vocab size
5K 10K 20K 5K 10K 20K 5K 10K 20K

HB50-BPE 7.45 6.82 6.30 91.57 90.68 90.00 0.0283 0.0285 0.0287
HB100-BPE 14.78 14.40 14.10 181.56 191.37 201.46 0.0152 0.0144 0.0137
HB200-BPE 16.67 15.99 15.53 204.79 212.41 221.84 0.0136 0.0132 0.0126
SDHB 5.24 64.39 69.63 74.87 0.0253 0.0243 0.0234
Sylber 4.27 52.43 56.70 60.97 0.0315 0.0302 0.0289

et al. (2020)), and Mandarin (AISHELL-3; Shi et al. (2021)), which are on par with the in-domain
case (LibriSpeech). This multilingual generalizability indicates that Sylber represents phonological
information which may have a shared physical basis across languages (Ohala, 1984; 1990; Cho et al.,
2024a). This finding suggests a potential scalability of Sylber. More details and discussion are in
Appendix A.2.5.

5.2 RESYNTHESIS PERFORMANCE AND CODING EFFICIENCY

The results of token-to-speech resynthesis are shown in Table 3 and can be heard here. We find a
general trend in both SDHuBERT and our syllabic tokens that articulatory reconstruction and intel-
ligibility increase with finer clustering granularity. For intelligibility, our model outperforms SD-
HuBERT at every vocab size while requiring less tokens per second. Interestingly, the articulatory
reconstruction is generally higher in SDHuBERT, but also less intelligible. This indicates that our
model marginalizes out some amount of articulatory variance which is orthogonal to orthographic
contents. This marginalization is also happening in intonation when the embeddings are quantized,
as shown in the huge reduction in pitch correlation compared to non-quantized model, resulting in a
flattened speech generation. This pattern is shared in both SDHuBERT and Sylber.

The articulation is slightly better reconstructed by HuBERT units with 100 or more clusters than the
units from SDHuBERT or our model, as shown in Table 3. This can be attributed to HuBERT’s sub-
phonemic, articulatory representations (Cho et al., 2023), which have a fine temporal granularity of
26.68 Tok/s or higher. The intelligibility is also slightly better with HuBERT units of 100 or more
clusters, with WERs of 5.04–7.78, compared to the best-performing syllabic units with a WER of
7.95. Though the difference is marginal, HuBERT units require at least 6-8 times more tokens per
second. Also, we find HuBERT units perform worse in representing pitch, corroborating findings
by Polyak et al. (2021); Kharitonov et al. (2021); Nguyen et al. (2023).
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Table 6: Speech uLM performance comparison. Sections are divided by training data size (top:
LibriSpeech (LS) and bottom: LibriLight (LL) or more).

Model # Param. Vocab size Tok/s↓ Bitrate↓ Corpus Data size (hr) sWUGGY↑ sBLIMP↑
GSLM 150M 100 26.68 177.26 LS 1K 68.70 57.06

SDHuBERT-uLM 125M
5K

5.24
64.39 LS 1K 65.80 54.87

10K 69.63 LS 1K 67.42 54.48
20K 74.87 LS 1K 67.85 54.87

Sylber-uLM 125M
5K

4.27
52.47 LS 1K 67.32 57.34

10K 56.74 LS 1K 68.41 58.04
20K 61.01 LS 1K 70.27 57.67

tGSLM 150M – 5 – LL 6K 68.53 55.31
NAST 150M 200 28.97 221.44 LL 6K 76.42 55.62
TWIST-ColdInit 125M 500 16.78 150.45 LL++ 150K 77.74 54.27
TWIST 13B 500 16.78 150.45 LL++ 150K 84.10 59.20
Sylber-uLM 125M 20K 4.27 61.01 LL 66K 76.31 60.54
Sylber-w/SIL-uLM 125M 20K 4.76 68.01 LL 66K 78.03 60.78

To further evaluate coding efficiency, we compare Sylber against baselines with comparable settings
of HuBERT units in Table 4. Our model outperforms each baseline in every metric, showing about
a 20% gain over the SDHuBERT tokens. In addition, Table 4 demonstrates the innate inefficiency in
previous approaches using HuBERT units. There is a minimal gain in sequence compression while
increasing the vocabulary size, where BPE is not able to reduce Tok/s by even half of the original
when applied to 100 and 200 clusters. The only comparable baseline is BPE on 50 HuBERT clusters,
which can reduce Tok/s from 23.59 to between 6.30-7.45. However, there is a huge information loss
as shown in the high WER of 13.32, which results in a lower coding-rate (0.0283, 0.0285, 0.0287)
compared to ours (0.0315, 0.0302, 0.0289) for vocab size of (5K, 10K, 20K) respectively.

Table 5: Subjective evaluation
on resynthesis quality.

Model KM nMOS↑ psMOS↑
GT 4.37 4.71

HB 200 3.24 2.65
HB 2K 3.33 2.90
Sylber 20K 3.32 3.04
Sylber ∞ 3.80 3.62

HuBERT units and Sylber units show comparable quality in terms
of naturalness in both machine and human evaluation (UTMOS
in Table 3; nMOS in Table 5). In terms of prosody, Sylber 20K
units show higher subjective similarity than HuBERT 200 or 2K
units as shown in the psMOS results (Table 5).

Without quantization, the best performance is achieved by our
model, with a WER of 4.88, Tok/s of 4.27, and higher correlations
in loudness and pitch (Table 3). Furthermore, both of the subjec-
tive qualities, nMOS and psMOS, significantly increase (Table
5). This indicates the significant potential of syllabic tokens as an
efficient speech coding that can be harnessed by a better quanti-
zation method. We leave this investigation for future work.

5.3 SPOKEN LANGUAGE UNDERSTANDING

Table 6 compares the sWUGGY and sBLIMP scores of speech uLMs. In the limited resource set-
ting that uses 1K hours of training data. Sylber-uLMs generally outperform the baselines, GSLM
and SDHuBERT-uLMs at sBLIMP, and the model with 20K vocab size outperforms GSLM in
sWUGGY, while none of the SDHuBERT-uLMs outperform GSLM or Sylber-uLMs (top section
of Table 6). This indicates that our syllabic tokens have better utility in terms of language mod-
eling compared to the syllabic tokens from SDHuBERT. We also observe a general trend shared
in SDHuBERT and ours that a larger vocab size yields a higher sWUGGY score, indicating that a
finer clustering better covers the lexical space. Notably, Sylber-uLM trained on 1K hours outper-
forms tGSLM which has a similar token granularity as 5 Hz but with a fixed pooling window, even
though their model is trained on a larger dataset of 150K hours. This suggests that a variable pooling
window by syllabic segmentation is more suitable than using a fixed pooling window.

When we scale up the train data to 66K hours, Sylber-uLMs are able to achieve comparable or
better sWUGGY scores than the models with similar sizes: tGSLM, NAST, and TWIST-ColdInit
(bottom section of Table 6). We also include a silence interleaved version (Sylber-w/SIL-uLM),
where we insert a silence token when the gap between two adjacent tokens is longer than 140 ms.
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Figure 3: A. Overview of articulatory interpolation of rhyming words when interpolating α ∈ [0, 1].
B. Hypothetical curves of categorical (solid lines) and non-categorical (dashed lines) embeddings. C.
Similarity curves examples from Melspectrogram (Mel), HuBERT, and Sylber. Sylber consistently
shows highly categorical perception, drawing a sharp boundary in continuum between words.

This improves the performance, especially sWUGGY, while increasing Tok/s and bitrate to 4.76
and 68.01, which are still far below the previous models. Although sWUGGY falls short of the
TWIST model with 13B parameters, Sylber-uLMs show slightly better performance in sBLIMP,
which is astonishing given the huge gap in model size and training data. Most importantly, all these
results are obtained using significantly smaller sequence length and bitrate, several times lower than
previous approaches. This suggests that Sylber units are highly efficient and valid tokens for spoken
language modeling.

6 EMERGENT CATEGORICAL PERCEPTION IN SYLBER

The results shown in Section 5.2 suggest that HuBERT features might densely tile the embedding
space, requiring many clusters to fully cover the space with fidelity. This lack of discreteness leads
to a redundant token vocabulary (Sicherman & Adi, 2023), resulting in an exponentially grow-
ing token vocabulary size when tokens are grouped to reduce sequence length. However, human
speech perception exhibits categorical effects, where listeners tend to impose discrete boundaries on
a continuum of speech sounds rather than tracking gradual acoustic changes (Liberman et al., 1957;
Pisoni & Lazarus, 1974; Harnad, 2003). This phenomenon—categorical perception—suggests that
phonemic categories are perceived as discrete units despite underlying acoustic variability. If similar
categorical effects emerge in the embedding space of SSL models, they could enable more efficient
tokenization with a compressed set of discrete units. Based on this linguistic theory, we evaluate the
degree of categorical perception in Sylber and other SSL models to assess the discreteness of their
embedding spaces.

We simulate interpolation between two rhyming words to probe the embeddings of speech SSL
models to check whether they are categorical. Specifically, monosyllabic words are used where
a single consonant is different at the front (onset) or back (coda) of the syllable. We make the
contrast to be varying one of the phonological properties: nasality, voicedness, or place (e.g., “ball”
vs “mall”, “down” vs “town”, or “lest” vs “rest”, respectively). We do not include vowel contrasts
since categorical perception of vowels is not as consistent as consonants (Pisoni, 1973; Pisoni &
Lazarus, 1974). We consider 13 types of such difference and simulate 4 pairs for each type, resulting
52 word pairs in total. The details of the difference types and the full list of word pairs can be found
in Appendix A.1.9. To simulate a continuum between words, we utilize SPARC (Cho et al., 2024c)
which allows direct editing in the physical articulatory space (Figure 3-A). We first generate audio
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using the an off-the-shelf TTS API.7 We extract articulatory features from the speech, which are then
temporally aligned by dynamic time warping to either end if necessary. We sample 51 equidistant
samples in the linear interpolation between two words, where each end is manually adjusted to make
the perceptual boundary drawn approximately in the middle (α = 0.5), which can be heard here.
The pitch and loudness are also controlled to be at the same level. More details about SPARC can
be found in Appendix A.1.4.

Given a speech representation model, we extract features for each interpolating point between words
in each pair. We calculate the similarity between interpolating features with features from either
end, forming a likelihood curve along the interpolation. Hypothetically, if the representation is
categorical, the likelihood curves should show a sharp transition at the boundary (Figure 3-B). If
the embeddings are not categorical and tracing the interpolation, the curves would show “X” pattern
as the dashed line in Figure 3-B. We define the Discriminability index (DI) to quantify the level
of categorical perception. The DI measures an empirical risk of wrong discrimination, where the
probability is calculated based on similarities. See Appendix A.1.10 for the detailed definition. If the
embeddings are categorical, DI will be close to 0. If they are non-categorical with X-shaped curves,
DI will be 0.25. The maximum value of DI is 0.5, which would be random chance discrimination.

Figure 3-C illustrates that a clear boundary is drawn when interpolating between two rhyming words,
whereas such a boundary is less prominent in HuBERT. This indicates that Sylber needs only 2
categories to represent the interpolating continuum, while HuBERT requires multiple categories or
units, which induces high levels of inefficiency and redundancy. The similarity curves using the
melspectrogram resemble an X-shape, indicating a non-categorical embedding space.

Table 7: DI comparison.

Model DI↓
Onset Coda All

Mel 0.198 0.193 0.196
MFCC 0.191 0.182 0.188
W2V2 0.172 0.178 0.174
HB 0.136 0.152 0.141
W2V2-L 0.138 0.156 0.143
HB-L 0.166 0.180 0.170
WavLM-L 0.136 0.148 0.140
SDHB 0.133 0.126 0.131
Sylber 0.116 0.103 0.112

We compare Sylber with traditional acoustic features (Melspec-
trogram and MFCC), representative frame-wise SSL models (Hu-
BERT (HB), Wav2Vec2 (W2V2), WavLM, and large (-L) ver-
sions (if applicable), and SDHuBERT. As shown in Table 7, our
model’s embeddings demonstrate the best discriminability, with
the lowest DIs across both onset and coda contrasts (overall DI:
0.112). The results are unexpected as we only impose the model
to learn temporal structure, and our loss objective does not in-
volve any categorical learning at all. However, the embedding
space of Sylber is naturally structured to be categorical, indicat-
ing the self-segmentation distillation might be a natural learning
algorithm that resembles human language learning. Taken to-
gether, these qualitative and quantitative results suggest that the
embedding space of Sylber is readily quantized, contributing to
the performance improvements observed in previous sections.

7 CONCLUSION

We propose a novel self-supervised learning framework of speech, Sylber, that learns to transform
speech waveform into a syllabic embedding that is well aligned with linguistic theories. Sylber offers
promising potential for interpretable and efficient speech tokenization, and scalable and efficient
spoken language modeling.

Limitations As we present our model more as a coding framework of speech, we largely put our fo-
cus on demonstrating efficiency and reconstruction quality. Therefore, our model is not yet suitable
for universal speech representation, which the most speech SSL approaches aim for (Yang et al.,
2021). We find that Sylber degrades in some SUPERB downstream tasks, which we believe is due
to the parsimonious structure we are imposing. See Appendix A.2.4 and Table 12 for details and
discussion. Also, the SUPERB protocol is optimally designed for frame-wise SSL; therefore, more
investigation is needed on downstream architectures that better leverage the syllabic structure.

7We use the TTS service in Vertex AI (https://cloud.google.com/vertex-ai) with a default female voice.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 SELF-SEGMENTATION DISTILLATION

Given a speech audio signal x, we extract features, MS(x) = zS and MT (x) = zT , where MS and
MT are the student and teacher models, respectively. The unsupervised segmentation algorithm,
Useg, outputs segment boundaries from z as Useg(z) = {s}N , where N is the number of discovered
segments, and s ∈ N2 denotes start and end frames of the segment, indexed as sj,0 and sj,1 for the
j-th segment. We define an assignment function, A(i) = j, that gives the index of the segment, j,
given a frame number, i, such that sj,0 ≤ i ≤ sj,1. When there is no assignable segment, A(i) = −1,
meaning i is a non-speech frame. The segment-averaged feature, vj , is defined by averaging across
frames in the j-th segment: vj = 1

p−q

∑
k∈[p,q] zk, where (p, q) = (sj,0, sj,1). vTA(i) is defined as

the teacher’s segment-averaged feature of the segment that i-th frame belongs to, which is the target
of the regression, which is zero for any non-speech frame: vT−1 = 0. Finally, the loss function of the
proposed self-segmentation distillation is defined as LSegDistill :=

∑
i ||vTA(i) − zSi ||22.

A.1.2 GREEDY SEGMENTATION ALGORITHM

Algorithm 1 Greedy Segmentation Algorithm
1: procedure GREEDY-SEGMENTATION(states, Nthr , Mthr)
2: Compute L2 norms and mark speech frames: speechi = (∥si∥2 ≥ Nthr)
3: Initialize empty list of segments S
4: for i = 1 to n do
5: if speechi and (no current segment or sim(si, avg(Sk)) < Mthr) then
6: Start new segment Sk+1 with si
7: else if speechi then
8: Add si to current segment Sk and update avg(Sk)
9: else if current segment Sk exists then

10: Finalize current segment Sk

11: end if
12: end for
13: for each boundary j between segments Sk and Sk+1 do
14: if speechj then
15: if sim(avg(Sk), avg(Sk+1) ≥ Mthr then
16: Merge Sk and Sk+1

17: Continue
18: end if
19: Define local search range from a = midpoint(Sk) to b = midpoint(Sk+1)
20: Get similarity to left or right segment L = [sim(si, avg(Sk))]

b
a, R = [sim(si, avg(Sk+1))]

b
a

21: Find optimal boundary j∗ = argmaxj(sum(L1:j−1) + sum(Rj:b−a))
22: Update boundary to j∗

23: end if
24: end for
25: return S
26: end procedure

The algorithm involves three linear passes through the audio embeddings (Algorithm 1). The first
step thresholds all embeddings based on their L2 norm, distinguishing between speech and non-
speech segments. Next, a monotonic agglomeration process iterates through the embeddings, group-
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ing them into segments. At each time step, a frame is merged into the current segment if its cosine
similarity with the segment’s average embedding exceeds a predefined threshold. This process runs
in a single pass without constructing the entire similarity matrix by greedily starting a new segment
whenever a frame falls below the threshold.

However, this greedy approach can introduce segmentation errors by slightly misaligning frame as-
signments. To correct this, a third pass refines segment boundaries. If adjacent segments have a
cosine similarity above the merge threshold, they are merged. Otherwise, a local search range is
defined from the midpoint of the previous segment to the midpoint of the following segment. Within
this range, we compute the cosine similarity between each frame and the averages of the two seg-
ments. Instead of updating the averages dynamically, we use the original segment embeddings to
keep the computational complexity linear. Finally, we determine the optimal boundary by maximiz-
ing the sum of cosine similarities between each frame and its assigned segment across all frames
within the search range.

The time complexity is determined by the asymptotic number of dot product operations (or similarity
computations), as these are the most computationally expensive steps in the segmentation algorithm.

A.1.3 NOISE AUGMENTATION

For the denoising objective, we mix the input with a randomly sampled environmental sound or other
speech audio. For mixing with environmental sound, we randomly select a clip from Reddy et al.
(2021) and sample a 5 second clip from it. We first z-score the waveform and multiply by a factor
sampled from [0.05, 0.7], and mix with the original speech audio. Note that the original speech is
also z-scored. For mixing with other speech, we randomly select another clip in the batch and shift
from left or right with a percentage sampled from [0.4, 0.7], to make sure the original speech holds
the dominant information context in the mixture. The magnitude is also modulated by multiplying
by a factor sampled from [0.0, 0.2]. We apply this augmentation to 20% of the samples in the batch,
and only to the inputs fed to the student model. Within the 20%, we have the source of noise be 75%
environmental noise and 25% other speech.

A.1.4 TOKEN-TO-SPEECH

SPARC The target of our token-to-speech model is processed by SPARC (Cho et al., 2024c), which
is composed of articulatory encoding and decoding. The encoding pipeline outputs 14 articulatory
features at 50 Hz, which are composed of the XY coordinates of 6 articulators (lower incisor; upper
and lower lips; tongue tip, blade and dorsum;), loudness, and pitch. These are interpretable and
grounded representations of speech that are fully informative of speech contents (Cho et al., 2024c).
The decoder, or articulatory vocoder, is a Hifi-GAN (Kong et al., 2020) conditioned on a speaker
embedding inferred from a separate speaker encoder. Cho et al. (2024c) shows that SPARC suc-
cessfully decomposes speech contents and speaker identity, by normalizing pitch to remove speaker
specific pitch level. We replicate the implementation from Cho et al. (2024c), except that we change
the layer of WavLM in the speaker encoder from the CNN outputs to the sixth Transformer layer,
based on the observation that this layer contributes the most to the downstream speaker identification
task (Chen et al., 2022). Following Kharitonov et al. (2021), the pitch is normalized by dividing it
by the mean pitch and then taking its logarithm for the target of the token-to-speech model. The
original pitch range is restored from the predicted normalized pitch by reversing the normalization
process. For training SPARC, we use LibriTTS-R using a single A5000-24GB GPU.

Conditional flow-matching (CFM) The input model in the CFM is composed of two feed forward
networks (FFNs) and a linear layer, where each FFN has two linear layers with 512 hidden units
and residual connection, with a ReLU activation and dropout rate of 0.05. Layernorm is applied
to the output of each FFN. The final linear layer projects the 512 dimensional feature to 256. The
Transformer in the CFM has 8 layers and each layer has 8 heads with 64 dimensions, and 512 for
the encoding dimension. We use Rotary positional embeddings (Su et al., 2024). The final output is
projected to the 14 dimensional flow in articulatory feature space. For training, the learning rate is
fixed as 1e-4, with a batch size of 64 and 200k updates using a single A6000-48GB GPU.

Inference The SSL token embeddings are restored by the k-means codebooks, and expanded to the
durations of the original segments. The non-speech frames are filled with zeros. For the case without
quantization, the segment-averaged features are used. We use the extracted speaker embedding and
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mean pitch from the original speaker to synthesize speech from articulatory features predicted from
tokens. We use the original segment durations for each token without predicting them since the
duration information can be easily tokenized. (For example, duration can be tagged for each token.
See Appendix A.2.3.) We remove randomness in the CFM to yield consistent generations for the
evaluation purposes.

A.1.5 SYLBER TRAINING DETAILS

We train Sylber in two stages. The first stage is training with segment boundaries inferred from
SDHuBERT which are extracted once at the beginning and fixed while in this stage. The second
stage utilizes online segmentation using the teacher model’s outputs, by the algorithm in Section 3.2.
Note that this training is only possible since our model exhibits features clean enough for our greedy
segmentation to work. In the second stage, the L2 norm threshold is updated online by aggregating
the statistics of speech and non-speech segments, and the merge threshold is randomly sampled from
[0.8, 0.9]. After the training, the norm threshold is fixed at 3.09 and the merge threshold is fixed at
0.8. See Appendix A.1.7 for details about the thresholding. The first-stage teacher is set and fixed as
the initial student model, which is SDHuBERT with nine encoder layers. The second-stage teacher
is then updated and fixed using the student model trained in the first stage. The model is trained for
115K steps in the first stage and further trained for 50K steps in the second stage. We use a batch
size of 64 and each data point is randomly cropped to be 5 seconds, following Cho et al. (2024b).
We show in Appendix A.2.9 that this does not significantly impact resynthesis for longer segments.
The learning rate is set as 1e-4 with initial 500 warmup updates for the first stage and 5e-5 for the
second stage. The second stage training improves performance in syllable detection and discovery
(Appendix A.2.1). We used a single A6000-48GB GPU for training.

A.1.6 ULM TRAINING DETAILS

For training uLMs, we largely follow Hassid et al. (2024). When training on LibriLight, we use
96% of the data for training and 2% each is held out for validation and test. For each speech clip,
we sample 100 tokens for training, which is roughly corresponding to 20 seconds. We use a single
A6000-48GB GPU for training uLMs on LibriSpeech and two of them for training on LibriLight.

A.1.7 THRESHOLDS SETTING

Thresholds in SDHuBERT segmentation For segmenting SDHuBERT features, we apply the min-
imum cut algorithm (MinCut) introduced by Peng et al. (2023) and modified by Cho et al. (2024b).
Following Cho et al. (2024b), the initial mask is obtained by thresholding norms of features from the
eleventh layer of the Transformer, where we normalize norms to be in [0, 1] and use 0.1 as threshold.
The minimum cut refines each masked chunk to make it syllabic. Specifically, the algorithm con-
ducts intra-segment agglomerative clustering with a preset number of clusters. This preset number
is estimated by a pre-defined speaking rate. As this preset number of syllables may be larger than the
number of segments, a post-hoc merging process merges adjacent segments with cosine similarity
higher than a threshold, which we call the merge threshold. We use a more sensitive segmentation
configuration than the original setting by Cho et al. (2024b) to prevent loss of speech contents due to
overly broad segments. Specifically, we halve the estimated syllable duration from 200ms to 100ms
to cover speech with fast speaking rate, and increase the merge threshold from 0.3 to 0.4. Note that
the scores of SDHuBERT in Table 1 are those reported by Cho et al. (2024b), which use the original
setting.

Non-speech Frames The non-speech frames are initially defined as“knocked out” frames by norm
thresholding with SDHuBERT. However, we find that SDHuBERT is still sensitive to non-speech
noise events. Therefore, we mark segments where the average absolute amplitude of z-scored wave-
form is lower than 0.1 as non-speech frames as well.

Thresholds in Sylber greedy segmentation algorithm Unlike the thresholds in SDHuBERT, which
are heuristically driven, we aim to set the thresholds in our algorithm in a more principled way,
especially in the second stage of training where the target segments are dynamically generated. We
first set the norm threshold to be optimal boundary between signal (speech) and noise (non-speech),
where the likelihoods of being signal and noise are equal. Specifically, we assume both signal and
noise distributions to be Gaussian and solve the equality condition. After the first training stage, we
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use the pseudo-ground truth segments used for training to get the distribution of segment norms and
norms of non-speech frames in the dev split of LibriSpeech. To make the distribution reflect noise,
we apply the noise augmentation as described in the denoising objective (Section A.1.3) to each
sample. In the second training stage, we update the mean and variance of noise distribution using
the non-segment portions of student outputs using an exponential moving average with a decay rate
of 0.9999, while keeping the signal distribution the same as initially set. This results in the threshold
of 3.09 after training.

On the other hand, we still remain largely heuristically driven in terms of setting our merge thresh-
old. We use a particularly high threshold of 0.8 compared to 0.3 in the previous works. Such a
high threshold for merging is effective in Sylber since the features are much cleaner than SDHu-
BERT. Instead setting this threshold to a fixed number, we sample a value from [0.8, 0.9] during the
second stage training, which is somewhat arbitrarily set after visually inspecting multiple samples.
For inference, we select 0.8 as the threshold since it is the lowest number in the range we impose
during training. While other threshold values (e.g., 0.7 or 0.9) generally work well, the phoneme
recognition experiment in Appendix A.2.4 empirically proves that 0.8 is optimal when thresholds of
0.1 increments are tested (Table 11).

A.1.8 SYLLABLE SEGMENTATION EVALUATION DETAILS

The evaluation protocol for syllable detection and discovery follows the previous studies (Cho et al.,
2024b; Komatsu & Shinozaki, 2024). We use the syllable labels of dev and test splits of LibriSpeech
created by forced aligned phonemes and syllabication of them. Similar to SDHuBERT, Sylber inter-
leaves silence frames between syllables. Thus, we use the front boundaries of the detected segments
as the boundary predictions. Since this may incur some shifts in the detected boundaries, we use the
dev split for finding the optimal constant shift to correct the boundaries, following the previous stud-
ies (Peng et al., 2023; Cho et al., 2024b; Komatsu & Shinozaki, 2024). The boundary prediction is
considered a hit if it falls within a 50 ms tolerance window of the ground truth boundary. The scores
are measured by precision (Pr), recall (Re), F1, and an additional R-value (R) that is introduced by
Räsänen et al. (2009) to balance hit-rate and oversegmentation in measuring the quality.

For syllable discovery, the segment averaged embeddings are first clustered with 16384 centroids
using k-means clustering and then the centroids are merged to 4096 using agglomerative (or hier-
archical) clustering. We use the same setting as the previous studies (Peng et al., 2023; Cho et al.,
2024b; Komatsu & Shinozaki, 2024) to make a fair comparison, whereas we use a separate cluster-
ing setting in the main tokenization experiments. The detected segments are mapped to the ground
truth syllables by maximizing the temporal overlap between paired segments and syllables. We then
measure the purity terms—cluster purity (CP), which indicates how purely each segment cluster is
mapped to a syllable, and syllable purity (SP), which measures the reverse—as well as mutual infor-
mation (MI). We refer to Section 4.1 of Komatsu & Shinozaki (2024) for formal definitions of these
terms.

A.1.9 RHYMING WORD PAIRS

For the consonant at the onset, we constrain the difference to be phonologically adjacent: voiced
or voiceless sounds (e.g., “down” vs “town”), non-nasal or nasal sounds (e.g., “ball” vs “mall”), or
spatially adjacent pairs (e.g., “lest” vs “rest”). For the consonant at the coda, we confine the words to
have /I/ as the nucleus vowel to minimize different coarticulation pattern induced by different ending
consonants. We only consider nasality difference at the coda and we regard voiced and unvoiced
consonants the same since voiced-ness is relatively subtle at the coda position. Additionally, we
include the “n-ng” contrast. Table 8 shows the full list of word pairs.

A.1.10 DISCRIMINABILITY INDEX

Given words at the left and right ends in interpolation, xL, xR ∈ W , the probability of being the left
word given interpolating factor α is defined as p(xL|xα) =

sim(xL,xα)−offsetL
sim(xL,xα)−offsetL+sim(xR,xα)−offsetR

. The
probability of being the right word is symmetrically defined. We need to subtract an offset due to
the high base similarity, as the words are rhyming pairs, such that offsetA = minα∈[0,1]sim(xA, xα).
Then the empirical risk can be defined as LDisc(q|xL, xR) := Eα∈[0,1]1α<qp(xR|xα) +
1α≥qp(xL|xα), for the decision boundary at q ∈ [0, 1]. The optimal boundary can be drawn by
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Table 8: Rhyming word pairs used in the discriminability task.

Onset
Voicedness

b-p v-f d-t z-s g-k
bay, pay vill, fill down, town zeal, seal goal, coal
bar, par vine, fine dall, tall zip, sip gap, cap
ban, pan vault, fault deen, teen zig, sig gain, cane
bad, pad vox, fox dime, time zoo, sue gauge, cage

Nasality Place
b-m d-n l-r t-s

ball, mall dose, nose lock, rock tank, sank
bean, mean dull, null lane, rain tale, sale
boon, moon dine, nine long, wrong tip, sip
bost, most deal, kneal lest, rest tell, sell

Coda
g/k-ng n-ng d/t-n b/p-m

pig, ping thin, thing kid, kin trip, trim
sick, sing bin, bing seed, seen deep, deem
dig, ding sin, sing chit, chin sip, seem

click, cling kin, king grid, grin rip, rim

minimizing the risk, α∗ = argminq∈[0,1]LDisc(q|xL, xR). Discriminability index (DI) is then de-
fined as the risk at the optimal boundary, averaged over word pairs:

DI :=
1

|W |
∑

xL,xR∈W

LDisc(α
∗|xL, xR) (1)

For the models with frame-level features like MFCC or HuBERT, we use dynamic time warping to
find an optimal alignment that maximizes similarity. While some sample pairs are already aligned,
we find that additional warping yields better scores. For models with syllabic features (SDHuBERT
and Sylber), we average across all speech (or norm thresholded) parts of the features as all samples
are monosyllabic, yielding a single embedding per sample. We use cosine similarity to measure
similarity between embeddings from samples. For frame-wise SSL models, the best layers with the
lowest DIs are chosen.

A.2 ADDITIONAL EXPERIMENTS AND ANALYSES

A.2.1 EFFECT OF THE SECOND STAGE TRAINING

To check the effectiveness of the second stage training, we compare syllable detection and discovery
metrics between the stage 1 and stage 2 models. As shown in Table 9, we observe some gain after
the second stage training, especially in precision of the segmentation.

Table 9: Syllable detection and discovery performance comparison between two stages.

Model Syllable Detection Syllable Discovery
Pr↑ Re↑ F1↑ R↑ SP↑ CP↑ MI↑

Sylber-Stage-1 73.7 69.2 71.4 75.6 63.2 43.9 5.24
Sylber-Stage-2 76.6 68.3 72.2 75.9 64.0 43.9 5.28

A.2.2 EFFECT OF DENOISING OBJECTIVE

As demonstrated in left two panels in Figure 4, the syllabic structures are already highly visible
without the denoising objective, indicating that the major learning source is self-segmentation dis-
tillation rather than the denoising objective. However, adding the denoising objective significantly
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improves robustness; otherwise, the model becomes highly sensitive to noisy audio as shown in the
right two panels in Figure 4.

Clean audio-W/o denoising Clean audio-W/ denosing Noisy audio-W/o denoising Noisy audio-W/ denosing

Figure 4: Frame-wise similarity matrix with and without denosing objectives, using clean signal
(left two panels) and noisy signal (right two panel). The orange waveform depicts the source noise
we add to the clean speech signal.

A.2.3 CODING EFFICIENCY WITH DURATION-INFORMED TOKENIZATION

When we measure coding efficiency in Section 3, we ignore the duration information. Here, we
recalculate the metrics by adding duration as a separate token tagged to each speech token. Note
that duration is counted as the number of frames, so it already lies on a discrete space. We find that
99% of HuBERT tokens have duration less than 8, 7, and 6 with the vocab size of 50, 100, and 200,
respectively. This means that the duration of each token can be coded by 3 bits. However, when
BPE is applied, these 3 bits will be multiplied by the maximum number of units in subwords to
count per-token duration bits, which is 10 to 16 depending on the vocab size and cluster granularity.

The syllabic tokens do not densely cover the frames. Therefore, the duration of subsequent silence
can be tagged along with the duration of the tokens. 98% of syllabic tokens have duration less than
or equal to 16 (4 bits). We can also keep the subsequent silence duration up-to 7 frames (3 bits)
efficiently, and silence longer than 7 frames can be regarded as a separate “silence token,” adding
one more token to the k-means codebook.

Taking all these into consideration, we measure the coding efficiency metrics with the duration-
informed tokens as Table 10. Compared to Table 4, the gap between HuBERT-BPE and Sylber gets
even larger, where we achieve around or more than 4× gains in bitrate and coding-rate compared to
HuBERT baselines. Moreover, even after appending duration tokens, Sylber tokens still have very
low bitrates which are below or around 100.

Table 10: Coding efficiency of duration-informed tokens.

Model
Token/second↓ Bitrate↓ Coding-rate↑

Vocab size Vocab size Vocab size
5K 10K 20K 5K 10K 20K 5K 10K 20K

HB50-BPE 7.45 6.82 6.30 449.26 418.24 392.36 0.0058 0.0062 0.0066
HB100-BPE 14.78 14.40 14.10 624.82 666.64 709.06 0.0044 0.0041 0.0039
HB200-BPE 16.67 15.99 15.53 654.77 979.72 967.13 0.0043 0.0029 0.0029
SDHB 5.84 112.73 118.58 124.42 0.0239 0.0228 0.0219
Sylber 4.76 91.80 96.56 101.32 0.0297 0.0284 0.0271

A.2.4 GENERAL REPRESENTATIONAL POWER OF SYLBER

Though the universal utility of our model is not of our focus, we evaluate and benchmark down-
stream tasks using SUPERB (Yang et al., 2021). First of all, to find the optimal merge threshold,
we train a phoneme recognition (PR) model with syllabic embeddings, where the merge threshold is
sampled from [0.3, 0.9]. The regular CTC based approach is not applicable to syllabic granularity,
since it requires that the input length must be no shorter than the target length. Instead, we adopt
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RNN-T (Graves, 2012) which does not have a restriction on the length of the sequence. To keep the
model size similar to the PR model in SUPERB, we use a very simple, non-RNN transcriber, which
is a Layernorm followed by two linear layers where the GELU activation function is applied to the
first linear layer’s output. The output size of the first layer is set as 768 and set as the vocab size
of phonemes, 73, for the second layer. The predictor network has a 3 layer LSTM with a hidden
size of 1024, 0.1 dropout rate and Layernorm applied. The model is trained with the RNN-T im-
plementation in PyTorch, and we use beam size of 5 for decoding. The learning rate is set as 0.001
and AdamW is used. The model is trained until no improvement is found in validation loss. We use
LibriSpeech clean subsets (train-clean-100, dev-clean, and test-clean), which are the datasets used
in the SUPERB PR task setting. For the results in Table 11, the merge threshold of 0.8 is selected
and used throughout the SUPERB evaluation. This number coincides with the threshold we use in
the main results as well. We use the code provided by S3PRL for the experiment.8

Table 11: Phoneme recognition on LibriSpeech (LS) dev-clean with different merge thresholds.

Dataset PER ↓
Mthr=0.5 Mthr=0.6 Mthr=0.7 Mthr=0.8 Mthr=0.9

LS dev-clean 6.15 5.88 5.73 5.68 5.68

We evaluate 3 versions of Sylber. We freeze the model following the SUPERB protocol.

Sylber-All Layer uses all layer features without segmenting with 50 Hz full-sampling rate, being a
regular entry to SUPERB.
Sylber-Segment uses the segment embedding after segmentation, with syllable granularity.
Sylber-Segment-Expand expands segment embedding to the original length.

Table 12 compares these with a HuBERT base model, which has a comparable model size and is
trained on the same data. Since Sylber-Segment has a shorter sequence length than the target, thus
making the CTC-based recognition task inapplicable, we replace the scores using the aforemen-
tioned RNN-T model, and we find a reasonable performance in PR as PER of 5.98, while ASR is
lagging behind by a large margin. As our model features are syllabic, this structure may need to be
resolved to be converted to characters, adding an additional layer of complexity on top of mapping
phonemic features to characters, which is hard to resolve in a limited resource setting.

Another notable point is that our models achieve higher keyword spotting accuracy (KS) and intent
classification (IC) compared to the HuBERT base model in all 3 versions. This is aligned with the
improved performance in language learning reported in Section 5.3. Also, there is a huge drop in
speaker identity detection (SID) when our syllabic embedding is used, indicating that the speaker
information is somewhat marginalized out.

Also, the failure in slot filling (SF) and automatic speech verification (ASV) by Sylber-Segment is
attributed to the fact that S3PRL is tuned to a lengthy input of speech representation with a regular
sampling rate. Further investigation is required, for a proper application of syllabic embedding to
those tasks.

Table 12: Performance comparison of various models across different metrics
Model PR KS IC SID ER ASR ASR (w/ LM) QbE SF ASV SD

PER↓ Acc↑ Acc↑ Acc↑ Acc↑ WER↓ WER↓ MTWV ↑ F1↑ CER↓ EER↓ DER↓
Hubert-base 5.41 96.3 98.34 81.42 64.92 6.42 4.79 0.0736 88.53 25.2 5.11 5.88
Sylber-All Layer 11.78 96.75 98.44 76.16 64.34 11.76 8.32 0.0623 85.79 29.21 6.72 5.08
Sylber-Segment ∗5.98 97.08 98.92 50.59 64.50 ∗14.07 – 0.0139 – – – 13.21
Sylber-Segment-Expand 88.79 97.11 99.08 51.25 65.25 12.04 8.88 0.0591 85.66 29.49 8.75 15.55

A.2.5 OUT-OF-DOMAIN GENERALIZABILITY OF SYLBER

To verify whether the syllable segmentation by Sylber can be applied to other domains, we evaluated
the model on different datasets from other domains and languages. Specifically, we use the Fisher
corpus Cieri et al. (2004), an English conversational dataset with noisy phone call dialogues. As the

8https://github.com/s3prl/s3prl
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training data of Sylber is clean audio-book reading data, evaluation on Fisher can show whether Syl-
ber can work on a different style of speaking and noisy speech. To create the testbed, we sample 200
conversations each for the validation and test sets, and we filtered utterances with less than 3 words
spoken, leaving 23K utterances for each set. Furthermore, we also evaluated two datasets from
different languages, Spanish and Mandarin, to demonstrate that the syllable boundary detection by
Sylber is not limited to English. These two languages are selected since they are the most common
languages other than English and a have distinct nature from English. In particular, Mandarin is
a tonal language and a distinct Asian language which has a different root from the Indo-European
language family. We used a Spanish subset of Multilingual LibriSpeech (MLS) (Pratap et al., 2020)
and AISHELL-3 (Shi et al., 2021) for Mandarin.

We follow the same procedure proposed by Peng et al. (2023) and Cho et al. (2024b) to get ground
truth syllable segments. We apply the Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) to
get phoneme alignments and we group phonemes by syllabification rules to get syllable boundaries.
For syllabification, we use a script by Gorman (2013) for English and Silabeador (Sanz-Lázaro)
for Spanish. For Mandarin, we regard character boundaries as syllable boundaries since Mandarin
is a syllabic language. Figure 9 shows the resulting boundaries. Lastly, we measure the same
syllable detection scores as in Table 1 using exactly the same configuration of Sylber and greedy
segmentation. Note that we do not include any language or domain-specific optimization or training.

Table 2 shows the boundary detection scores in the three out-of-domain (OOD) datasets. As we
can see, all metrics show close to or even better scores compared to the in-domain scores that are
denoted in the top row. Sylber shows a surprising generalization capacity in challenging noisy
conversation data and even novel languages distinct from English. The similarity matrices in Figure
5 show clean and prominent segments, similar to the in-domain sample shown in Figure 2. This high
performance does not require any domain-specific design adaptation. The main reason for this zero-
shot multilingual generalization is due to the fact that Sylber represents phonological information
rather than other higher order linguistic information like semantic concepts. This finding resonates
well with a linguistics perspective that suggests a shared physical basis of phonologies of different
languages (Ohala, 1984; 1990). This also corroborates a universal articulatory basis shared across
languages, which is revealed by analyzing articulatory physiology encoded in SSL models (Cho
et al., 2024a).

Hypothetically, we can use Sylber for initial segmentation of other domain or languages to train a
domain-specific or data-scaled domain-general Sylber. To sum, this result suggests a strong potential
for our method for real-world, multilingual applications.

A.2.6 ABLATION EXPERIMENTS: DIFFERENT MODEL & SEGMENT INITIALIZATION

To demonstrate the robustness of training Sylber, we conduct a set of ablation experiments with
different initial segments and model weights. In particular, we simulate a noisier setting by randomly
adding noise to the initial segment boundaries. We randomly selected 20% of the syllable boundaries
from training, and shifted them between 20-80ms, affecting 36% of the segment annotations in total.
This perturbation is applied to the SDHuBERT unsupervised segmentation we used in the first stage
and is done once before training.

We train models with two different initialization – SDHuBERT and HuBERT, to see if initialization
with SDHuBERT is necessary. We do not include training from scratch since the training is not
successful, resulting in degenerate representations. Moreover, we train the models with a reduced
setting by reducing the number of updates from 115K to 50K, increasing the learning rate from
1e-4 to 5e-4, and skipping the second-stage training. We measure the same syllable detection and
discovery metrics used in Table 1.

As shown in Table 13, the models trained with the noisier initial segments can perform well, show-
ing high scores closer to the main Sylber model. The frame-wise similarity matrices visualized in
Figure 6 show similar prominent syllabic structures in both models. The performance difference
between two initializations is marginal and no single model outperforms in all metrics. This indi-
cates that HuBERT can also be used for weight initialization and that SDHuBERT is unnecessary if
a reasonable initial segmentation is provided.

Furthermore, we train models using phoneme boundaries as initial segments to see the case where
the granularity of boundaries is dramatically different. While syllabic segmentation is naturally
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Figure 5: Frame-wise similarity matrices of Sylber applied to samples from OOD datasets: Fisher
(top), Spanish (middle), and Mandarin (bottom). The dot product is applied to raw features to
measure similarity. We can see highly prominent syllabic segments in all OOD cases.

Table 13: Syllable detection and discovery performance for Sylber trained with noisy initial seg-
mentation with reduced training setting. Original Sylber result is denoted at the top. Pr: precision,
Re: recall, R: R-value, SP: syllabic purity, CP: cluster purity, and MI: mutual information.

Initial Segmentation Model Init. Syllable Detection Syllable Discovery
Pr↑ Re↑ F1↑ R↑ SP↑ CP↑ MI↑

SDHuBERT Segment SDHuBERT 76.6 68.3 72.2 75.9 63.16 43.92 5.24
Noisy SDHuBERT Segment SDHuBERT 74.9 67.8 71.2 75.2 61.87 42.19 5.17
Noisy SDHuBERT Segment HuBERT 73.4 68.6 70.9 75.2 63.48 41.62 5.22

driven from SDHuBERT, we do not have a readily available unsupervised phonemic segmenta-
tion. Therefore, we utilize the ground truth phoneme transcription and alignment inferred by MFA
(McAuliffe et al., 2017). We train the exact same settings as above with two different model ini-
tializations and the reduced training setting. We measure the same detection metrics but against the
ground truth phoneme boundaries (Table 14).

As shown in right two columns in Figure 6, the resulting features are more structured with phonemic
granularity, showing prominent squares accurately aligned with the ground truth phoneme bound-
aries. Moreover, the detection scores are very high, at or over 0.9 (Table 14). Even though the
ground truth boundaries are used in training, this is still surprising since sensitivity to boundaries
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Figure 6: Frame-wise similarity matrix of raw features measured by dot product. Three different
samples are shown by rows and columns mean different models. Next to the original model, Sylber
(main), the models are denoted as Initial Model-Initial Segment. Even with initial noisy syllable
segments (NoisySyllable), similar prominent syllable segments emerge from training. When ground
truth phoneme boundaries (GTPhoneme) are used, phonemic segments are induced.

Table 14: Phoneme detection performance using ground truth phoneme segments as initial segmen-
tation by different model weight initialization (SDHuBERT or HuBERT). Pr: precision, Re: recall,
and R: R-value.

Initial Segmentation Model Initialization Pr↑ Re↑ F1↑ R↑
Phoneme Segment SDHuBERT 87.6 90.3 89.0 90.4

HuBERT 94.2 91.6 92.9 93.6

is not guaranteed as the training does not involve any categorization or contrastive objective. Also,
unlike the syllable case, the model initialized with HuBERT shows higher performance than the
one with SDHuBERT. This indicates that phonemic information is better encoded in HuBERT than
SDHuBERT, which aligns with the original motivation behind SDHuBERT.

Lastly, the reduced training setting with higher learning rate is expected to induce a less stable
optimization than the original setting. However, we were still able to train models with comparable
performance even with additional noise added to the segmentations. This means that our method is
not sensitive to a specific choice of hyperparameters, and is easy to train.

A.2.7 VISUALIZATION OF SYLBER EMBEDDING

To provide a better sense of embedding structure in Sylber, we apply t-SNE to syllabic embeddings
obtained from Sylber. We select the 50 most frequent syllables in the LibriSpeech dataset, ignor-
ing stress. Then, for each syllable, we select the top-1K Sylber segments with highest temporal
intersection-over-unions with the ground truth syllables and use those embeddings (50K vector em-
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Figure 7: Visualization of Sylber embedding space using t-SNE. The top row shows different col-
orization by nucleus vowels, onset consonants, and coda consonants. The bottom row shows col-
orization by different syllables. As shown here, embeddings for each syllable are distinctively clus-
tered, putting similar syllables closer (e.g., /DH-AH/, /T-AH/, and /AH/ in the bottom left panel).

beddings in total). We plot the result with colorization by different categories in Figure 7. Overall,
the Sylber embedding space demonstrates a highly discrete structure. The top row shows color dis-
tributions by nucleus vowels, onset consonants, and coda consonants. We can see the syllables with
the same phoneme components are closely clustered. Also, the distance reflects phonological simi-
larity of the sounds. This is most prominently shown in vowels and coda consonants. For example,
the similar vowels /AH/ and /AE/ clusters are adjacent. Furthermore, /N/ and /N-D/ at the coda
are clustered together. The bottom row shows color distributions of individual syllables selected
from the top-N most frequent syllables. We can see each individual island corresponds to a differ-
ent syllable suggesting a high level of specificity in Sylber for representing syllables. In addition,
the clusters of phonologically similar syllables are adjacent. For example, /DH-AH/, /T-AH/, and
/AH/ in the bottom left plot, and /L-IY/ and /DH-IY/ in the bottom middle plot are close to each
other. On the other hand, /AE-N-D/ and /AH-N-D/ are not well distinguishable, overlapping in the
embedding space, which is natural given the highly phonological similarity between those syllables.
In summary, the Sylber embedding space is highly discrete and well aligned with the phonological
characteristics of syllables.

A.2.8 REAL-TIME FACTOR

We evaluate the inference efficiency of Sylber and compare it to SDHubert to show the efficacy
of using these models as segmentation models in Table 15. In the first two rows, we evaluate the
real-time factor (RTF) in the small batch size regime to measure the efficacy for realtime speech
processing. We randomly sampled 32 LibriSpeech files and sequentially ran them through the model
and measured the end-to-end latency in order to calculate the RTF. In the latter two rows, we evaluate
the RTF in the large batch size regime to measure the efficacy for offline speech processing. We
randomly sampled 32 batches of 32 files from LibriSpeech and ran them through the model in a
batched manner. All experiments used the same set of randomly selected files in the same order
for both SDHuBERT and Sylber. Every experiment was run on a single A6000-48GB GPU with 2
AMD EPYC 7513 32-Core Processor. As a result, Sylber shows a ∼4× reduction in RTF in both
the single and batched inference settings compared to SDHuBERT. As we are using a naive numpy
implementation for Sylber, this gap can be even larger with a more optimized implementation.
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Table 15: Real-time factor (RTF) of syllable segmentation by Sylber and SDHuBERT.

Batch Size Model RTF↓
1 SDHuBERT 0.00635

Sylber 0.00174

32 SDHuBERT 0.00600
Sylber 0.00169
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Figure 8: Performance decomposition by different input lengths for Sylber and HuBERT. The x
axis shows the input length in seconds. Figure 8a shows Syllable detection metrics while Figures
8b-d show resynthesis scores for different SSL models and unit granularity. The HuBERT units
are denoted with ‘HB-’ in the label and dashed lines. Figure 8b shows WER, Figure 8c shows
Articulatory correlation and Figure 8d shows Pitch correlation.

A.2.9 PERFORMANCE BY INPUT LENGTH

We decomposed the performance for syllable detection and resynthesis into different input length
bins. As shown in Figure 8, the syllable detection scores have marginal differences across different
input length bins. In terms of resynthesis, there is also minimal difference in input lengths longer
than 5 seconds, slightly degrading for 15-20s and 20-25s inputs in resynthesis. This indicates that our
token-to-speech model is not dependent on long-context and the speech information is coming from
the tokens rather than being inferred from the context. This suggests that our model is not reliant on
long-context information; instead, the tokens themselves primarily carry the speech information.
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Figure 9: Mel spectrogram with phoneme and syllable alignments on OOD datasets: Fisher (top),
Spanish (middle), and Mandarin (bottom). The alignments are obtained by MFA and syllabification
to group phonemes into syllables for Fisher and Spanish. For Mandarin, the alignments of characters
are regarded as syllable alignments. The Sylber similarity matrices on these samples can be found
in Figure 5.
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