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ABSTRACT

Recent advances in Large Language Models (LLMs) have catalyzed the develop-
ment of Large Multimodal Models (LMMs). However, existing research primarily
focuses on tuning language and image instructions, ignoring the critical pretrain-
ing phase where models learn to process textual and visual modalities jointly.
In this paper, we propose a new pretraining paradigm for LMMs to enhance the
visual comprehension capabilities of LLMs by introducing a novel cross-modal
comprehension stage. Specifically, we design a dynamically learnable prompt to-
ken pool and employ the Hungarian algorithm to replace part of the original visual
tokens with the most relevant prompt tokens. Then, we conceptualize visual to-
kens as analogous to a “foreign language” for the LLMs and propose a mixed
attention mechanism with bidirectional visual attention and unidirectional textual
attention to comprehensively enhance the understanding of visual tokens. Mean-
while, we integrate a detailed caption generation task, leveraging rich descriptions
to further facilitate LLMs in understanding visual semantic information. After
pretraining on 1.5 million publicly accessible data, we present a new foundation
model called Croc. Experimental results demonstrate that Croc achieves new
state-of-the-art performance on massive vision-language benchmarks. To support
reproducibility and facilitate further research, we will release the training code
and pre-trained model weights.

1 INTRODUCTION

The rapid expansion of mobile networks has accelerated the generation of vast data volumes, pre-
senting unprecedented opportunities for the development and application of Large Language Models
(LLMs) (Zhao et al., 2023; Touvron et al., 2023; Bai et al., 2023). Despite their effectiveness, LLMs
are primarily confined to processing textual inputs. To expand their multimodal perceptual capabili-
ties, there is an increasing research focus on Large Multimodal Models (LMMs) (Yin et al., 2023; Jin
et al., 2024; Yang et al., 2023b), which are designed to process and integrate inputs across multiple
modalities.

As a milestone in LMM research, LLaVA (Liu et al., 2024b) leverages the language-only capabil-
ities of GPT-4 (Achiam et al., 2023) to generate multimodal language-image instruction-following
datasets, demonstrating impressive multimodal conversational capabilities. Building on this ground-
work, LLaVA-1.5 (Liu et al., 2024a) enhances performance through simple modifications to the orig-
inal LLaVA framework and incorporates academically oriented Visual Question Answering (VQA)
datasets with structured response formatting prompts. In parallel, BLIP-2 (Li et al., 2023a) and
MiniGPT-4 (Zhu et al., 2023) connect a frozen pre-trained vision encoder and a language model
through a trainable Q-Former or a linear layer, effectively mapping image features into the input em-
bedding space of the language model. Nonetheless, these methods achieve only a superficial integra-
tion of image features within the language model’s embedding space. In contrast, CogVLM (Wang
et al., 2023) introduces a trainable visual expert module into the attention and Feed-Forward Net-
work (FFN) layers of the language model. Despite this innovation, the freezing of the LLM limits
its capability to attain an in-depth understanding of visual features directly.

Recent research highlights the crucial role of the pretraining process in LMMs. Flamingo (Alayrac
et al., 2022) synergistically integrates pre-trained vision and language models through pretraining
on comprehensive multimodal web corpora that combine text and image, enabling the performance
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Figure 1: (a) Our Croc model introduces an additional pre-training stage with visual token recon-
struction. (b) Our Croc model outperforms LLaVA-1.5 on a wide range of multimodal tasks.

of diverse multimodal tasks such as captioning, visual dialogue, and visual question-answering.
However, the usage of large-scale pretraining data results in substantial resource consumption.
VILA (Lin et al., 2024) reveals that the pretraining process substantively augments various model
capabilities, including multi-image reasoning, improved in-context learning, and enriched world
knowledge. Nevertheless, VILA uses 50M of the interleaved pre-training corpus to improve data
diversity, which is more computationally expensive than LLaVA-1.5. LaVIT (Jin et al., 2023) intro-
duces a meticulously designed visual tokenizer to transform non-linguistic images into a sequence
of discrete tokens, thereby rendering them analogous to a foreign language that is interpretable by
LLMs. However, this direct input of visual tokens into LLMs and fostering visual understanding
through next-token prediction encounters significant hurdles. This limitation primarily originates
from the inherent discrepancies between visual and textual tokens, particularly the absence of a ro-
bust causal linkage between sequential visual tokens. Furthermore, the application of unidirectional
attention mechanisms in this context further restricts the LLM’s capacity to effectively comprehend
discrete visual tokens.

In this paper, we introduce a novel pretraining paradigm for LMMs designed to significantly en-
hance the visual comprehension capabilities of LLMs by incorporating a pioneering cross-modal
comprehension stage. Specifically, we design a dynamically learnable prompt token pool and apply
the Hungarian algorithm to selectively replace part of the original visual tokens with the most rele-
vant prompt tokens. Then we conceptualize visual tokens as analogous to a “foreign language” for
the LLMs and propose a mixed attention mechanism with bidirectional visual attention and unidi-
rectional textual attention to improve the understanding of visual tokens. Meanwhile, we integrate
a detailed caption generation task, leveraging rich image descriptions to further facilitate LLMs in
understanding visual semantic information. Experiment results demonstrate that our proposed Croc
model achieves new state-of-the-art performance across multiple benchmarks. The main contribu-
tions of this paper are summarized as follows:

• We introduce a new pretraining paradigm to enhance the visual comprehension capabilities of
LLMs by introducing a novel cross-modal comprehension stage. This stage integrates visual
token reconstruction and targets detailed caption generation.

• For visual token reconstruction, we design a dynamically learnable prompt token pool and employ
the Hungarian algorithm to replace part of the original image tokens with the most relevant prompt
tokens. In addition, we propose a mixed attention mechanism with bidirectional visual attention
and unidirectional textual attention for more comprehensive visual token understanding.

• Experimental results demonstrate that our proposed Croc model achieves new state-of-the-art
across various benchmarks and exhibits robust visual understanding and reasoning capabilities.
We will release the training code and models to facilitate future research.
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2 RELATED WORK

Large Multimodal Model Pre-training. As a significant advancement, LLaVA (Liu et al., 2024b)
meticulously filters the CC3M (Changpinyo et al., 2021) dataset down to 595K and maintains the
frozen state of both the visual encoder and the LLM weights, exclusively training the projection layer
to align features from the visual encoder and the LLM. However, this strategy predominantly results
in limited deep feature integration between the visual encoder and the LLM, primarily due to the
constraints imposed by the projection layer. To address this limitation, CogVLM (Wang et al., 2023)
introduces a trainable visual expert module into the attention and feed-forward network layers of the
language model. Despite this innovation, constrained by the frozen state of the LLM, it continues
to face challenges in comprehending the “foreign language” of visual tokens. Recently, LaVIT (Jin
et al., 2023) introduces a well-designed visual tokenizer to convert non-linguistic images into a
sequence of discrete tokens. However, directly inputting visual tokens into LLM to enhance visual
understanding of LLM through next-token prediction presents significant limitations. VILA (Lin
et al., 2024) proposes an interleaved pertraining stage to augment the LLM to support visual input,
but it relies on a 50M pertraining dataset, necessitating considerable computational resources.

Cross-Model Comprehension. To improve the performance of Masked Image Modeling (MIM)
based pre-training methods, MVP (Wei et al., 2022) initially explores the integration of multimodal
pre-training within the MIM framework. Subsequently, diverging from conventional methods that
predominantly predict raw pixels or low-level features, MILAN (Hou et al., 2022) adopts an inno-
vative approach by reconstructing image features infused with substantial semantic content derived
from caption supervision. UnMasked Teacher (Li et al., 2023b) selectively masks video tokens
exhibiting low semantic content and aligns the remaining unmasked tokens through a linear pro-
jection to their counterparts from the teacher model. Experimental results confirm that this ap-
proach achieves state-of-the-art performance across various video-related tasks. In a recent study,
RILS (Yang et al., 2023a) introduces a novel pre-training framework that employs masked visual
reconstruction within a language semantic space. This framework facilitates the extraction of struc-
tured information by vision models through the accurate semantic prediction of masked tokens.
Meanwhile, EVA (Fang et al., 2023) demonstrates that recovering the masked-out tokenized seman-
tic vision features is an efficient strategy for vision-centric representation learning, obviating the
need for semantic feature quantization or further tokenization. Inspired by the above works, we
propose a visual token reconstruction task to improve the visual comprehension capability of LLMs.

3 METHODOLOGY

3.1 PRELIMINARIES OF LLAVA AND LLAVA-1.5

As the seminal work of visual instruction tuning, LLaVA (Liu et al., 2024b) presents the first at-
tempt to use language-only GPT-4 (Achiam et al., 2023) to generate multimodal language-image
instruction-following data. The framework of LLaVA comprises three essential components: a Vi-
sual Encoder for transforming input images into distinct visual embeddings, a Projector for mapping
visual embeddings into the textual embedding space, and a Large Language Model for processing
both visual and textual tokens and generating corresponding responses. LLaVA utilizes a two-stage
instruction-tuning process. In the first stage, image-text pairs are converted to the single-turn con-
versation which requests the assistant to describe the image. Given the input visual tokens Tv and
textual tokens Tt, both Tv and Tt are fed into LLM to produce a coherent response. The ground-
truth prediction answer is represented by the original caption Tc. For a sequence of length L, the
probability of generating contextually original caption Tc={ci}Li=1 is calculated as follows:

p(Tc|Tv, Tt) =

L∏
i=1

p(ci|Tv, Tt,<i, Tc,<i). (1)

In the first stage, both the visual encoder and LLM weights are frozen and only the projection layer
is updated. In the second stage, LLaVA keeps the visual encoder weights frozen and updates both
the pre-trained weights of the projection layer and the LLM. With simple modifications to LLaVA,
LLaVA-1.5 (Liu et al., 2024a) integrates CLIP ViT-L/14@336px (Radford et al., 2021) with an MLP
projection and incorporates academic task-oriented VQA data with response formatting prompts,
resulting in better multimodal comprehension capability.
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Figure 2: The training pipeline of our proposed Croc model. In contrast to LLaVA-1.5 (Liu et al.,
2024a), we introduce an additional pre-training stage that involves novel visual token reconstruction
by LLM and targets detailed caption generation. We find that guiding LLM in comprehensive visual
token learning is essential for improving cross-modal comprehension.

3.2 CROSS-MODAL COMPREHENSION

In this section, we propose a novel cross-modal comprehension pre-training method. Fig. 2 illus-
trates the training pipeline of the proposed Croc model. Unlike LLaVA, Croc includes an additional
pre-training phase between stages 1 and 2. We conceptualize image tokens as a foreign language
of the LLM and design a dynamically learnable prompt token pool to replace part of the original
visual tokens with the most relevant prompt tokens. To facilitate the image token reconstruction,
we design a mixed mechanism of bidirectional visual attention and unidirectional textual attention.
Meanwhile, we introduce a detailed caption generation task to further enhance the LLM’s under-
standing of visual tokens.

Prompt Visual Token Generation. Inspired by EVA (Fang et al., 2023), we use LLM to reconstruct
the masked visual tokens conditioned on visible image tokens. Given an image I , we first extract
visual features using the image encoder Fv = Ev(I). Following LLaVA, we select the features
before and after the last Transformer layer, and the visual projector translates the visual features into
visual tokens Tv = {v1, v2, . . . , vn}. After that, unlike the previous works (He et al., 2022; Li et al.,
2023b), we introduce a learnable prompt token pool to replace part of visual tokens with the most
relevant prompt tokens. To ensure full utilization of the prompt tokens in the token pool, we use
the Hungarian algorithm (Kuhn, 1955) to associate each masked visual token with a corresponding
prompt token. We denote the prompt token pool as Tp ∈ RN×D, where N and D represent the
number of prompt tokens and the feature dimension. Under the mask ratio of γ, we get the set of
masked visual tokens T̃v awaiting replacement. We pad T̃v with ∅ into a set of size N . To find a
bipartite matching between T̃v and Tp, we search for a permutation of N elements σ ∈ SN with the
lowest cost:

σ̂ = argmin
σ∈SN

N∑
i

(
∥T̃ i

v − Tσ(i)
p ∥2

)
(2)

Mixed Attention Mechanism. Due to the inherent disparities between visual and textual tokens,
the causal interactions between visual tokens are significantly weaker than those observed between
textual tokens. Inspired by the UNILM (Dong et al., 2019), we introduce a mixed cross-modal
attention mechanism. As illustrated in Fig. 7, to enhance pre-training effectiveness and facilitate a
more comprehensive assimilation of visual tokens by the LLM, we employ bidirectional attention
among visual tokens and unidirectional attention among textual tokens. Such an arrangement not
only allows mutual attention among visual tokens but also allows each textual token to attend to all
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Figure 3: Comparisons of cross-modal attention. Different from the unidirectional attention used
in LLaVA, our method mixes bidirectional visual attention and unidirectional textual attention. The
colored and striped squares represent “attended” and “not attended”, respectively.

BLIP Caption: A large body of water with a city in the background.

ShareGPT4V Caption:The image captures a breathtaking view of the Hong Kong skyline at sunset. The sky, 
awash with hues of orange and blue, serves as a stunning backdrop to the city's architectural marvels. The 
tallest building, the International Finance Centre, pierces the sky with its imposing height. Its lights are 
switched on, casting a warm glow that contrasts with the cool tones of the evening sky.\n\nThe other buildings, 
though not as tall, are no less impressive. They are adorned with lights that twinkle like stars against the 
twilight sky. The water below mirrors the sky's colors, adding to the overall vibrancy of the scene.\n\nThe 
perspective of the image is from the water, looking towards the shore. This viewpoint allows for a 
comprehensive view of the cityscape, from the towering skyscrapers to the smaller structures nestled among 
them. The image encapsulates the essence of Hong Kong's urban landscape, a blend of modernity and natural 
beauty.

Figure 4: Comparison of brief caption generated by BLIP (Li et al., 2022) and detailed caption
from ShareGPT4V (Chen et al., 2024b). The detailed caption contains rich semantic information of
images, which facilitates deep visual token learning by LLM.

visual tokens. Therefore, this attention configuration significantly enhances the efficacy of LLM in
understanding and learning from visual tokens.

Detailed Caption Data. To improve LLM’s understanding of visual tokens, we propose to use
detailed caption data for pre-training. As shown in Fig. 4, compared to brief captions, the detailed
captions contain a greater wealth of semantic information about image details, thus providing better
guidance for LLM to learn visual tokens more effectively.

Training Objectives. To improve the large language model’s ability to learn visual tokens, we intro-
duce two specific objectives: Visual Token Reconstruction (VTR) and Detailed Caption Generation
(DCG). In the prompt visual token generation step, we randomly replace some of the original visual
tokens Tv = {v1, v2, ..., vn} with tokens from our prompt token pool, thus obtaining the prompt
visual tokens T̂v . Then we concatenate the prompt visual tokens T̂v with the instruction text tokens
Tt = {t1, t2, ..., tm} and feed them into an LLM to generate a response of length L, the probability
of generating the contextual response Tr={ri}Li=1 can be calculated:

p(Tr|T̂v, Tt) =

L∏
i=1

p(ri|T̂v, Tt,<i, Tr,<i). (3)

After receiving the response Tr, we split the first 576 tokens Trv to compute the visual token recon-
struction loss LVTR and the remaining tokens Trt to compute the detailed caption generation loss
LDCG.

The visual token reconstruction loss is calculated as follows:
LVTR =

∑
i∈Θ

∥T i
rv − T i

v∥ (4)

where Θ represents the index set of replaced visual tokens. Meanwhile, we maximize the likelihood
of text tokens Trt by employing the auto-regressive language modeling objective:

LDCG =
∑
i

log p
(
ti | T̂v, t1, · · · , ti−1

)
(5)

The overall training loss is the combination of LVTR and LDCG:
L = αLVTR + LDCG (6)

where α is a loss weight used to balance the influence of different losses.
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Method LLM Res. Pretrain Finetune VQAv2 GQA VizWiz SciQA-I TextVQA

BLIP-2 Vicuna-13B 2242 129M – 65.0 41.0 19.6 61.0 42.5
InstructBLIP Vicuna-7B 2242 129M 1.2M – 49.2 34.5 60.5 50.1
InstructBLIP Vicuna-13B 2242 129M 1.2M – 49.5 33.4 63.1 50.7
Shikra Vicuna-13B 2242 600K 5.5M 77.4∗ – – – –
IDEFICS-9B LLaMA-7B 2242 353M 1M 50.9 38.4 35.5 – 25.9
IDEFICS-80B LLaMA-65B 2242 353M 1M 60.0 45.2 36.0 – 30.9
Qwen-VL Qwen-7B 4482 1.4B† 50M 78.8∗ 59.3∗ 35.2 67.1 63.8
Qwen-VL-Chat Qwen-7B 4482 1.4B∗ 50M 78.2∗ 57.5∗ 38.9 68.2 61.5
LLaVA-1.5-7B Vicuna-7B 3362 558K 665K 78.5∗ 62.0∗ 50.0 66.8 58.2
LLaVA-1.5-13B Vicuna-13B 3362 558K 665K 80.0∗ 63.3∗ 53.6 71.6 61.3

Croc-7B Vicuna-7B 3362 558K+1.5M 665K 80.5∗ 64.2∗ 50.0 70.1 60.4
Croc-13B Vicuna-13B 3362 558K+1.5M 665K 80.7∗ 64.0∗ 57.1 72.7 60.8

Table 1: Comparison with SoTA methods on academic task oriented datasets. We mark the best performance
bold and the second best underlined. Croc achieves the best performance on 4/5 benchmarks. ∗ The training
images/annotations of the datasets are observed during training.

Method LLM Res. Pretrain Finetune POPE MME MMB MMB-CN SEED LLaVA-W MM-Vet

BLIP-2 Vicuna-13B 2242 129M – 85.3 1293.8 – – 46.4 38.1 22.4
InstructBLIP Vicuna-7B 2242 129M 1.2M 86.1 – 36.0 23.7 53.4 60.9 26.2
InstructBLIP Vicuna-13B 2242 129M 1.2M 78.9 1212.8 – – – 58.2 25.6
Shikra Vicuna-13B 2242 600K 5.5M – – 58.8 – – – –
IDEFICS-9B LLaMA-7B 2242 353M 1M 81.9 – 48.2 25.2 – – –
IDEFICS-80B LLaMA-65B 2242 353M 1M 66.0 – 54.5 38.1 – – –
Qwen-VL Qwen-7B 4482 1.4B 50M – – 38.2 7.4 56.3 – –
Qwen-VL-Chat Qwen-7B 4482 1.4B 50M – 1487.5 60.6 56.7 58.2 – –
LLaVA-1.5-7B Vicuna-7B 3362 558K 665K 85.9 1510.7 64.3 58.3 58.6 63.4 30.5
LLaVA-1.5-13B Vicuna-13B 3362 558K 665K 85.9 1531.3 67.7 63.6 61.6 70.7 35.4

Croc-7B Vicuna-7B 3362 558K+1.5M 665K 86.9 1526.4 67.6 59.7 64.1 71.9 34.9
Croc-13B Vicuna-13B 3362 558K+1.5M 665K 87.8 1591.4 69.9 62.9 64.2 74.7 36.2

Table 2: Comparison with SoTA methods on benchmarks for instruction-following LMMs. We mark the best
performance bold and the second best underlined. Croc achieves the best performance on 6/7 benchmarks.

3.3 TRAINING PIPELINE

The overall training pipeline of our Croc model is shown in Fig. 2. Building upon LLaVA-1.5, the
Croc undergoes a two-stage pre-training procedure followed by instruction tuning.

Stage 1: Cross-Modal Alignment. Following LLaVA-1.5, we first pretrain the projection layer
with the identical 558K pretraining dataset used in LLaVA-1.5 to align image features to the LLM
embedding space. During training, we keep both the visual encoder and the LLM weights frozen.

Stage 1.5: Cross-Modal Comprehension. Building on the cross-modal alignment stage, we intro-
duce the cross-modal comprehension phase as a subsequent pre-training stage. To facilitate compre-
hensive learning of visual tokens by the LLM, we pretrain the projection layer as well as the LLM
in this stage. We select 1.2M detailed image-text pairs from the ShareGPT4V (Chen et al., 2024b)
dataset, as the detailed captions (as shown in Fig. 4) can enhance the visual token learning of the
LLM. To prevent the degradation of the inherent capabilities of LLM, we also incorporate 300K
pure text data. Please refer to the appendix for more details.

Stage 2: Instruction Tuning. Following LLaVA-1.5, we freeze the visual encoder weights and
update both the pre-trained weights of the projection layer and LLM to improve its visual question
answering capabilities. We employ the identical 665K instruction dataset used in LLaVA-1.5.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS AND EVALUATION BENCHMARKS

Following LLaVA-1.5, we utilize CLIP ViT-L/14@336px (Radford et al., 2021) as the visual en-
coder and the Vicuna (Chiang et al., 2023) 7b/13B model as the LLM. During the cross-modal
alignment stage, the learning rate for the projection layer is set to 1e − 3. In the cross-modal com-
prehension stage, the learning rates are adjusted to 2e − 5 for both the LLM and projection layer
and 1.5e− 4 for the prompt token pool and prediction layer. The random mask ratio γ is set as 75%
and the size of the prompt token pool is set to 2, 048. In the instruction tuning stage, we adopt the

6
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Method LLM Res. Pretrain Finetune MMStar DocVQA AI2D RealWorldQA

BLIP-2 Vicuna-13B 2242 129M – – – – –
InstructBLIP Vicuna-7B 2242 129M 1.2M – – – –
InstructBLIP Vicuna-13B 2242 129M 1.2M – – – –
Shikra Vicuna-13B 2242 600K 5.5M – – – –
IDEFICS-9B LLaMA-7B 2242 353M 1M 21.6 – 42.2 42.1
IDEFICS-80B LLaMA-65B 2242 353M 1M 26.1 – 54.8 49
Qwen-VL Qwen-7B 4482 1.4B 50M 32.5 65.1 57.7 37.8
Qwen-VL-Chat Qwen-7B 4482 1.4B 50M 37.5 62.6 62.3 49.3
LLaVA-1.5-7B Vicuna-7B 3362 558K 665K 30.3 28.1 55.5 54.8
LLaVA-1.5-13B Vicuna-13B 3362 558K 665K 32.8 30.3 60.8 55.3

Croc-7B Vicuna-7B 3362 558K+1.5M 665K 37.7 32.5 59.3 56.3
Croc-13B Vicuna-13B 3362 558K+1.5M 665K 37.9 33.2 59.5 57.1

Table 3: Comparison with SoTA methods on multimodal understanding benchmarks. We mark the best per-
formance bold and the second best underlined.

Figure 5: Qualitative Comparison of LLaVA-1.5-7B and Croc-7B. Benefiting from our proposed cross-modal
comprehension stage, the Croc model exhibits enhanced visual comprehension and reasoning capabilities.
Moreover, it can generate enriched image descriptions.

learning rate of 2e−5 for LLM and the projection layer. We employ AdamW (Loshchilov & Hutter,
2019) as the optimizer, initialized with a weight decay of 0.2. The parameters β1 and β2 are set to
0.9 and 0.98, respectively. We train Croc on 8× NVIDIA A100 (80G) GPUs.

To prove the effectiveness of the Croc model, we evaluate our models across various benchmarks, in-
cluding 1) General Visual Question Answering: GQA (Hudson & Manning, 2019), VQAv2 (Goyal
et al., 2017b), VizWiz (Gurari et al., 2018), LLaVA-Bench (In-the-Wild) (Liu et al., 2024b), MM-
Vet (Yu et al., 2024), RealWorldQA; 2) OCR-Related Question Answering: TextVQA (Singh et al.,
2019), DocVQA (Mathew et al., 2021); 3) Illusion Benchmarks: POPE (Li et al., 2023c); 4)
Comprehensive Reasoning Benchmarks: MMBench (Liu et al., 2024c), MME (Yin et al., 2023),
MMStar (Chen et al., 2024a), MM-Vet (Yu et al., 2024); 5) Science Visual Question Answering:
SciQA (Lu et al., 2022), AI2D (Kembhavi et al., 2016);

4.2 QUANTITATIVE ANALYSIS

In Tab. 1, we present a detailed comparison between our model and previous state-of-the-art meth-
ods across various benchmarks tailored for academic tasks. Croc outperforms existing models on
4/5 benchmarks. Specifically, compared to LLaVA-1.5-7B, Croc-7B demonstrates performance im-
provements of 2.0%, 2.2%, 3.3%, and 2.2% on VQAv2, GQA, SciQA-I, and TextVQA. Similarly,
Croc-13B shows improvements of 0.7%, 0.7%, 3.5%, and 1.1% over LLaVA-1.5-13B on VQAv2,
GQA, VisWiz, and SciQA-I. Additionally, we compare Croc with baselines on instruction-following
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(a) Loss curves with different token pool sizes (b) Utilization rate of pool tokens

Figure 6: (a) Visualization of the pre-training loss curves for different prompt token pool sizes. Setting the
pool size to 1 means that only one learnable token is used to replace all masked visual tokens. (b) The prompt
token utilization rate with different matching algorithms. All experiments are based on the Croc-7B model.

Pool Size GQA TextVQA MMB SEED MMStar

1 62.3 56.6 65.1 61.3 34.8
576 63.8 58.4 66.2 62.5 33.8

2048 64.2 60.4 67.6 64.1 37.7
4096 63.9 58.8 66.5 63.1 34.7

(a) Ablation on prompt token pool size.

Mask Ratio GQA TextVQA MMB SEED MMStar

0.00 63.1 45.9 66.1 62.0 33.3
0.50 63.8 59.2 67.6 62.6 34.6
0.75 64.2 60.4 67.6 64.1 37.7
0.90 63.0 58.2 65.6 62.2 34.3

(b) Ablation on mask ratio.
Method GQA TextVQA MMB SEED MMStar

Nearest Neighbors 63.1 58.9 66.5 62.5 35.0
Hungarian Matching 64.2 60.4 67.6 64.1 37.7

(c) Ablation on matching algorithm.

Attention Mechianism GQA TextVQA MMB SEED MMStar

Unidirectional Attention 63.4 58.7 66.6 62.5 35.2
Mixed Attention 64.2 60.4 67.6 64.1 37.7

(d) Ablation on attention mechanism.

Caption Type GQA TextVQA MMB SEED MMStar

Brief Caption 62.5 57.1 66.4 62.9 36.1
Detailed Caption 64.2 60.4 67.6 64.1 37.7

(e) Experiment results without detailed captions.

Stage1 Stage1.5 GQA TextVQA MMB SEED MMStar

% ! 63.2 57.7 64.7 62.1 33.1
! ! 64.2 60.4 67.6 64.1 37.7

(f) Experiment results without Stage 1.

Table 4: Ablation experiments results. All the experiments are based on the Croc-7B model.

benchmarks. As shown in Tab. 2, Croc achieves superior performance on 6/7 datasets. Notably, com-
pared to LLaVA-1.5-7B, Croc-7B exhibits significant performance gains of 1.0%, 15.7, 3.3%, 1.4%,
5.5%, 8.5%, and 4.4% on POPE, MME, MMB, MMB-CN, SEED, LLaVA-W, and MM-Vet. Fur-
thermore, we evaluate Croc’s performance on the multimodal understanding benchmarks in Tab 3.
Croc-7B obtains significant improvements of 7.4%, 4.4%, 3.8%, and 1.5% over LLaVA-1.5-7B on
MMStar, DocVQA, AI2D, and RealWorldQA, respectively. These performance improvements are
primarily attributed to the proposed novel cross-modal comprehension pretraining stage, which sig-
nificantly enhances the LLM’s capability to integrate and understand visual tokens.

4.3 QUALITATIVE ANALYSIS

Attributable to the cross-modal comprehension stage, our proposed Croc model adeptly captures
fine-grained semantic information from images, significantly enhancing its visual understanding
and reasoning capabilities. In the first example shown in Fig. 5, unlike LLaVA-1.5, our model
captures more detailed information from images, such as specific vehicle models like Audi and
lower shooting angles. As illustrated in the second example of Fig. 5, our Croc model efficiently
identifies and describes detailed semantic information, such as the “parachute” under the aircraft.

4.4 ABLATION STUDY

Prompt Token Pool Size. The prompt token pool is designed to replace part of the original visual
tokens with the most relevant prompt tokens. As shown in Fig. 6a, the larger the number of tokens
in the pool, the easier it is to generate detail captions, resulting in a lower training loss (LDCG). The
decrease in training loss is saturated when the pool size is 2,048. When the pool size is 1, 75% of
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Method Data LV FR LDCG GQA SciQA-I TextVQA POPE MME MMB MMB-CN SEED MMStar

LLaVA-1.5-7B % % % 62.0 66.8 58.2 85.9 1510.7 64.3 58.3 58.6 33.3
LLaVA-1.5-7B⋇ ! % % 62.3 68.2 57.0 86.1 1450.7 62.0 53.9 60.9 33.0

Croc-7B ! ! % 62.5 68.8 56.1 87.1 1458.5 64.3 57.6 60.4 33.9
Croc-7B ! % ! 63.3 70.5 58.5 86.9 1513.8 65.9 58.0 62.6 33.6
Croc-7B ! ! ! 64.2 70.1 60.4 86.9 1526.4 67.6 59.7 64.1 37.7

Table 5: Ablation experimental results on the additional 1.5M pre-training data and different pre-training
objectives. ⋇ Results of LLaVA-1.5 we reproduced by adding additional 1.5M pre-training data to the cross-
modal alignment stage.

Visual Tokens Textual Tokens Visual Tokens Textual Tokens

Figure 7: Average of attention scores of language response tokens to visual tokens and language instruction
tokens. Here, the same question “Please describe in detail what is in the picture.” is used for 200 randomly
selected images.

the image tokens are directly dropped and the training is too difficult, resulting in poor performance
in Tab. 4a. We observe that increasing the token pool from 1 to 2,048 tokens improves performance.
However, expanding the pool further to 4,096 tokens degrades performance because the visual token
reconstruction task is too easy to improve the detailed caption generation task.

Visual Token Mask Ratio. The mask ratio of visual tokens directly affects the difficulty of the
visual token reconstruction task, and thus significantly affects the effectiveness of pretraining. In
Table. 4b, we report the results of experiments with different mask ratios. Similar to the observa-
tions with MAE (He et al., 2022), we find that using a 75% masking ratio yields optimal results in
several downstream benchmarks. Lower ratios, e.g., 0%, make the pretraining task too easy, while
higher ratios, e.g., 90%, make the reconstruction task too difficult. Both extremes lead to reduced
pretraining effectiveness.

Nearest Neighbors v.s. Hungarian Matching. To improve the utilization rate of the tokens in the
prompt token pool, we utilize Hungarian Matching to replace 75% of visual tokens with the most
relevant prompt tokens. In Fig. 6b, we present a comparative analysis of token utilization using
both Nearest Neighbors and Hungarian Matching. Due to the Hungarian Matching algorithm’s
stringent requirement to select distinct prompt tokens, there has been a significant improvement
in the overall utilization of prompt tokens. This enhancement of utilization substantially improves
the representational capabilities of the model (Zhu et al., 2024). Therefore, as shown in Tab. 4c,
employing the Hungarian Matching algorithm, in contrast to the Nearest Neighbors algorithm, yields
substantial performance enhancements across all evaluated benchmarks.

Unidirectional Attention v.s. Mixed Attention. To verify the impact of the mixed attention mech-
anism, we conduct experiments to compare mixed attention with unidirectional attention used in
LLaVA-1.5. As shown in Tab. 4d, our proposed mixed attention mechanism achieves significant
performance improvement on all the benchmarks. To further explore the influence of different at-
tention mechanisms, we compare the average attention scores of response tokens to visual tokens
and language instruction tokens in Fig. 7. Here, the same question “Please describe in detail what
is in the picture.” is used for 200 randomly selected images. The Croc-7B model exhibits signifi-
cantly higher attention scores for visual tokens compared to the LLaVA-1.5-7B model, as indicated
by the brighter region in the visual token part of the heatmap. This suggests that Croc-7B puts more
emphasis on understanding and attending to the image content when generating responses.
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Method Pretrain Finetune VQAv2 GQA VisWiz SciQAI POPE MMB MMB-CN SEED LLaVA-W MM-Vet

VILA-7B 50M 1M 79.9 62.3 57.8 68.2 85.5 68.9 61.7 61.1 69.7 34.9
Croc-7B 558K+1.5M 802K 80.1 63.5 55.2 72.3 86.9 69.1 60.5 63.0 73.3 36.8
VILA-13B 50M 1M 80.8 63.3 60.6 73.7 84.2 70.3 64.3 62.8 73.0 38.8
Croc-13B 558K+1.5M 802K 80.9 64.0 57.8 74.1 87.0 71.0 65.3 64.6 80.5 39.2

Table 6: Performance comparisons between VILA v.s. Croc.

Brief Caption v.s. Detailed Caption. To investigate the impact of detailed captions on our pro-
posed cross-modal comprehension stage, we employ the BLIP model to generate brief captions for
the 1.2M images from the ShareGPT4V dataset. As shown in Tab. 4e, the use of detailed captions
achieves a significant performance improvement. This is mainly because the detailed caption con-
tains rich semantic details of images (as shown in Fig. 4), facilitating visual token reconstruction by
LLM.

Ablation on Stage, Data, and Objective. In Tab. 4f, we present the performance results without
the cross-modal alignment pretraining stage. The misalignment between the features of the LLM
and the visual encoder significantly increases the difficulty of the visual token reconstruction task.
Consequently, the performance of the model on all the benchmarks is reduced considerably.

In Tab. 5, we present a series of comprehensive ablation studies to elucidate the influence of pre-
training data and different training objectives. Initially, we augment the 558K pertaining data of
LLaVA-1.5 with the additional 1.5M data and apply the same training method as LLaVA-1.5. This
augmentation leads to performance improvements in only 4/9 datasets, while the others exhibit de-
clines. This phenomenon can be attributed to the significant alteration in the distribution of the orig-
inal 558K pretraining dataset caused by the introduction of the additional data. Building upon this
foundation, we incorporated a visual token reconstruction task, which facilitated the establishment
of more effective integration between the LLM and visual tokens. This integration led to improved
performance across 5/9 datasets. Additionally, benefiting from the detailed description captions, we
observe performance improvements in 8/9 datasets after implementing the detailed caption genera-
tion task. Finally, by combining visual token reconstruction and detailed caption generation tasks,
the detailed caption further enriches the LLM’s understanding of visual features, resulting in signif-
icant performance enhancements in our model.

VILA v.s. Croc. As VILA incorporates an additional one million instruction data, we construct
an 802K dataset for the instruction tuning stage to facilitate a more equitable comparison. Specif-
ically, we expand the identical 665K instruction data used in LLaVA-1.5 to 802K by sampling an
additional 142K instances from publicly accessible datasets. Please refer to the appendix for more
details. As shown in Tab. 6, although our model only utilizes 1/25 of the pre-training data compared
to VILA, Croc-7B achieves significant performance improvements in 8/10 of the benchmarks. Sim-
ilarly, Croc-13B also achieves significant performance improvements in 9/10 of the benchmarks.
These performance improvements demonstrate that our proposed cross-modal comprehension pre-
training stage can facilitate the learning of visual tokens by LLMs, thereby substantially improving
the visual comprehension and reasoning capacities of LMMs.

5 CONCLUSION

In this paper, we introduce a novel pretraining paradigm for LMMs to enhance the visual compre-
hension capabilities of LLMs. Our approach incorporates a new cross-modal comprehension stage
designed to bridge the gap between the visual and textual domains. Specifically, we develop a dy-
namically learnable prompt token pool and apply the Hungarian algorithm to replace a portion of
the original visual tokens with the most relevant prompt tokens. To further improve the model’s un-
derstanding, we propose a mixed attention mechanism that combines bidirectional visual attention
with unidirectional textual attention, enabling a more comprehensive interpretation of visual tokens.
Additionally, we incorporate a detailed caption generation task, utilizing rich descriptions to im-
prove the LLM’s grasp of visual semantic information. Experimental results show that our method
achieves state-of-the-art performance across multiple vision-language benchmarks. We hope that
our work offers valuable insights for advancing large multimodal models.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 HYPERPARAMETERS

In Tab. 7, we present all the training hyperparameters used in different training stages. We use
greedy decoding for evaluation to ensure reproducibility.

Hyperparameter Stage 1 Stage 1.5 Stage 2

batch size 256 128 128
lr 1e-3 1.5e-4/2e-5 2e-5
lr schedule cosine decay cosine decay cosine decay
lr warmup ratio 0.03 0.03 0.03
weight decay 0 0 0
epoch 1 1 1
optimizer AdamW AdamW AdamW
DeepSpeed stage 2 3 3

Table 7: Hyperparameters used in different training stages.

A.1.2 DATASETS

In the cross-modal comprehension stage, to prevent the degradation of the inherent capabilities of
LLM, we also incorporate 300K pure text data. Fig. 8a shows the composition of a dataset consisting
of text-only data. This data includes 123K, 52K, 30K, 25K, 20K, 25K, 15K, and 10K samples
from MathInstruct (Yue et al., 2023), Standford Alpaca (Taori et al., 2023), BELLE (BELLEGroup,
2023), OpenPlatypus (Lee et al., 2023), CodeAlpaca (Chaudhary, 2023), Firefly1, Webqa (Chang
et al., 2022), Dolly (Conover et al., 2023).

(a) Our collected 300K pure text data. (b) Our collected 802K instruction data.

Figure 8: Visualization of the proportion of different data in our collected 300K pure text data and
802K instruction data.

To facilitate a more equitable comparison with VILA, we construct an 802K instruction dataset
categorized into General, OCR, Chart, Math, Text-only, and Other. Fig. 8b illustrates the distribu-
tion of data across various categories. Specifically, the General dataset comprises 158K, 86K, 83K,
82.5K, 11K, 11K, and 9K samples sourced from LLaVA-Instruct (Liu et al., 2024b), VG (Krishna
et al., 2017), VQAv2 (Goyal et al., 2017a), A-OKVQA (Schwenk et al., 2022), ShareGPT4V (Chen
et al., 2024b), LAION-GPT4V 2, and OKVQA (Marino et al., 2019). The OCR dataset includes
80K, 23K, 5K, 3K, and 2K samples from OCRVQA (Mishra et al., 2019), SynDog-EN (Kim et al.,
2022), ST-VQA (Biten et al., 2019), IAM (Cheng et al., 2022), and InfoVQA (Mathew et al., 2022).
Chart data is drawn from 10K, 18K, and 28K samples taken from DocVQA (Mathew et al., 2021),

1https://github.com/yangjianxin1/Firefly
2https://huggingface.co/datasets/laion/gpt4v-dataset
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Prompt: <image>\nThere seems to be someone walking on the road in the 
picture. Could you help me guess how fast this person is walking?

LLaVA-1.5-7B: Based on the image, it is difficult to accurately determine 
the speed of the person walking on the road. However, since the person is 
described as a "pedestrian" and the image shows a white arrow on the road, 
it is likely that the person is walking at a moderate pace, possibly at a casual 
or leisurely pace. The presence of the arrow on the road suggests that the 
area might be designated for pedestrian traffic, which could also influence 
the walking speed.

Croc-7B: It is not possible to accurately determine the speed of the person 
walking in the picture, as there is no visual information about their movement 
or the time it takes for them to cross the street. The image only shows a 
white pedestrian crossing symbol  on the road,  which is  a  stat ic 
representation of a person walking.

Example: Visual Understanding & Reasoning

Prompt: <image>\nWhat's interesting about this picture?

LLaVA-1.5-7B: The interesting aspect of this picture is that it 
features two bears, one large and one small, standing next to each 
other. The large bear is positioned on the left side of the image, while 
the smaller bear is on the right side. The image is presented in a split-
screen format, with the two bears occupying different sections of the 
frame. This composition creates a visually striking contrast between 
the two bears, emphasizing their size difference and capturing the 
viewer's attention

Croc-7B: The interesting aspect of this picture is that there are two 
bears, one big and one small, at the top of the picture, corresponding 
to the word 'Bears'; at the bottom of the picture, there are also two 
bears, one big and one small, but their ears seem to be missing, 
corresponding to the word 'B'.

Figure 9: Qualitative comparison on visual understanding & reasoning.

ChartQA (Masry et al., 2023), and DVQA (Kafle et al., 2018). To enhance the model logical ca-
pacity, we respective sample 5K data from Geomverse (Kazemi et al., 2023), Clevr (Johnson et al.,
2017), IconQA (Lu et al., 2021b), RAVEN (Huang et al., 2023), Metamath (Yu et al., 2023) and
append additional 3K, 1K, and 1K data from Goat (Liu & Low, 2023), Inter-GPS (Lu et al., 2021a),
and LIMA (Zhou et al., 2024). Besides, we append 40K pure text from ShareGPT 3 to prevent the
degradation of the inherent capabilities of LLM and append 72K, 48K, and 2.5K other data from
GQA (Hudson & Manning, 2019) and RefCOCO (Kazemzadeh et al., 2014), AI2D (Kembhavi et al.,
2016).

A.2 MORE QUALITATIVE RESULTS

We present additional qualitative comparisons on visual understanding & reasoning (Fig. 9), image
captioning (Fig. 10), and OCR (Fig. 11) tasks, respectively. Benefiting from our proposed cross-
modal comprehension stage, the Croc model exhibits enhanced visual comprehension and reasoning
capabilities. Meanwhile, it can accurately generate semantic image descriptions and demonstrate
robust OCR capabilities.

A.3 LIMITATION DISCUSSION

In this work, we have focused solely on image token reconstruction, which limits the scope to static
images. However, for comprehensive video understanding, it is essential to consider both spatial and
temporal token reconstruction. This would allow us to capture the dynamic changes that occur across
frames and enhance the model’s ability to process and interpret video sequences more effectively.
Expanding our approach to include spatial-temporal token reconstruction is a necessary step for
future improvements in video analysis.

A.4 ETHIC DISCUSSION

Even though large multimodal models represent a major technological advancement with broad ap-
plications, their development and deployment bring significant ethical responsibilities. To ensure
that the proposed Croc model benefits society while minimizing potential harm, it is essential to
address key concerns such as bias, privacy, misinformation, environmental impact, intellectual prop-
erty, accountability, and human oversight. These challenges are not unique to Croc but are pressing
issues faced by the entire AI research and development community.

3https://huggingface.co/datasets/RyokoAI/ShareGPT52K
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Prompt: <image>\nDescribe this image.

LLaVA-1.5-7B: The image features a group of four young women 
dressed in costumes, posing together for a picture. They are all 
wearing hats, with one of the women wearing a pink hat. The women 
are standing close to each other, with one on the left, one in the 
middle, and two on the right side of the frame.Each woman is carrying 
a handbag, with one handbag located on the left side of the group, 
another on the right side, and the third one in the middle. The group 
appears to be enjoying their time together, possibly at a costume 
party or event.

Croc-7B: The image features a group of four women dressed in 
costumes, posing together for a picture. They are all wearing different 
outfits, with one woman wearing a pirate costume, another in a fairy 
costume, and the other two in dresses. The women are standing close 
to each other, with one woman on the left side, another in the center, 
and the other two on the right side of the group.There are also a few 
other people in the background, but they are not the main focus of the 
image. Additionally, there are two handbags visible in the scene, one 
near the leftmost woman and the other near the woman in the center.

Example: Image Captioning

Prompt: <image>\nPlease describe the content of this image in detail.

LLaVA-1.5-7B: The image features a neon sign that reads "rooms" 
in a bright orange color. The sign is hanging from a ceiling, possibly 
in a hotel or motel setting. The sign is positioned in the middle of 
the scene, with the word "rooms" being clearly visible. The orange 
color of the sign stands out against the background, making it easy 
to read and notice.

Croc-7B: The image presents a scene dominated by a neon sign that 
boldly announces "ROOMS". The sign, glowing with a vibrant orange 
hue, is affixed to a blue wall, creating a striking contrast. The sign 
itself is rectangular, that frames the orange text. It's suspended 
from the wall by two blue wires, one on each side, giving the 
impression that it's floating in mid-air. The sign is slightly tilted to 
the left, adding a touch of dynamism to the otherwise static scene. 
The background is a dark blue, which further accentuates the neon 
sign and the blue wall. The overall composition of the image suggests 
it might be a sign for a hotel or a similar establishment.

Figure 10: Qualitative comparison on image captioning.

Prompt: <image>\nWhat's on the cake in the picture?

LLaVA-1.5-7B: The cake in the picture has a blue bow on top, and it is 
decorated with chocolate frosting.

Croc-7B: The cake in the picture has a blue bow and the words "Happy 
Birthday Jennie" written on it.

Prompt: <image>\nWhat are the numbers on the locomotive?

LLaVA-1.5-7B: The numbers on the locomotive are 3P2-720.

Croc-7B: The numbers on the locomotive are 3P2T-7229.

Example: OCR

Prompt:  <image>\nPlease identify the words in the picture.

LLaVA-1.5-7B: Bay Fair Mall.

Croc-7B: The words in the picture are: BAYFAIR center, Macy’s, 
TARGET, KOHL’S, OLD NAVY, PANDA EXPRESS (Located in Food 
Court), BED BATH & BEYOND

Prompt: <image>\n Please identify the words in the picture.

LLaVA-1.5-7B: To our pastor, in infinite wisdom, the Lord surely knew, 
that we would need a pastor, as faithful as you, a love of God's word 
and a heart for his flock. You give of yourself, you stand on the rock, 
we stand with you. We appreciate you.

Croc-7B: The words in the picture are:To Our Pastor,In infinite 
wisdom,The lord surely knew,That we would need A pastor,As faithful 
as you,A love of god’s word,& A heart for his flock,You give of 
yourself,& you stand on the rock,WE,Appreciate You.

Figure 11: Qualitative comparison on OCR.

17


	Introduction
	Related Work
	Methodology
	Preliminaries of LLaVA and LLaVA-1.5
	Cross-Modal Comprehension
	Training Pipeline

	Experiments
	Implementation Details and Evaluation Benchmarks
	Quantitative Analysis
	Qualitative Analysis
	Ablation Study

	Conclusion
	Appendix
	Implementation Details
	Hyperparameters
	Datasets

	More Qualitative Results
	Limitation Discussion
	Ethic Discussion


