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ABSTRACT

Multimodal learning is a fundamental challenge in artificial intelligence, with ap-
plications spanning computer vision, speech recognition, and natural language
processing. This paper presents the pioneering incorporation of Spiking Neural
Networks (SNNs) into the Vision-and-Language domain, introducing MLP-Mixer
as a unified backbone and adapting mixture of experts approach to effectively fuse
different modalities. The Mixer is directly trained using surrogate gradients and
has small timesteps. We propose a SNN specific adversarial training technique,
combined with the mixture of experts framework, leads to improvements in ad-
versarial robustness. We hope these findings will shed light on future research
in the field of Multimodal Spiking Neural Network and adversarial robustness of
Multimodal Learning.

1 INTRODUCTION

Recently, MixerTolstikhin et al. (2021) based models has witnessed rapid development in computer
vision(CV)Trockman & Kolter (2022), time seriesChen et al. (2023) and natural language process-
ing(NLP)Fusco et al. (2023) domain as a basic backbone.The broad applicability of mixers mainly
comes from the lack of inductive biasTouvron et al. (2021) and Transformer-like global information
extraction capability. Although the mixers is more computation efficient than Transformers because
there’s only MLPs instead of self-attention with O(N2d) computation complexity in mixers, the
computation cost is still very high.

The Spiking Neural Networks(SNN)Maass (1997) utilize discrete and event-based information pro-
cessing neurons embedded into modern Neural Network as underlying computation mechanism to
save computation costs.SNN has been demonstrated effective in CNN backbonesFeng et al. (2023)
and TransformersZhou et al. (2022) Li et al. (2022b) with strong prior, but the role of spiking neuron
for backbones with less prior information still remains largely unexplored.

In this work, we propose Spiking Mixer model with dedicate encoding method and computation
blocks for both vision tasks and language processing tasks.For CV tasks, we view images as high di-
mensional words with short sentence length while for language processing, we use the inherent order
of words as temporal input.To effectively capture different input we use MLP to encode images into
patches as Dosovitskiy et al. (2021) and for NLP tasks Fusco et al. (2023)empirical demonstrate the
effectiveness of min-Hash in encoding sub-word inputs after standard tokenizers for mixers. Inspired
by the recent RWKV modelPeng et al. (2023) we propose to use bio-plausible multi-compartmental
neuron model to further improve the accuracy. The feedback loops inside multicompartment model
combined with timeshift enhance the temporal connection between consecutive time-steps like in
RWKV Peng et al. (2023). We use generalized LIF model with learnable threshold directly trained
with surrogate gradient based methods.We find without strong inductive bias, SNN can consistently
improve the accuracy, computation costs and robustness of original model. To summarize, our con-
tributions in this paper are as follows:

• A Spiking Mixer model is proposed for both vision and NLP tasks and shows improved
accuracy, robustness and computation costs.

• A generalized LIF model and RWKV-like is proposed to improve the model accuracy and
save computation cost.
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2 RELATED WORKS

Our model is the temporal extension of Mixers, For the development of Mixers, Google in Tolstikhin
et al. (2021) probed into the necessity of using computation-extensive attention mechanism and use
the ‘Patch Mixing’ and ‘Channel Mixing’ Operator for vision task. Later they use similar blocks in
Chen et al. (2023) for time-series predictions. a-MLP in Liu et al. (2021) use attention for spatial
mixer and achieve good performance in vision and language.Rajagopal & Nirmala (2021); Touvron
et al. (2021); Trockman & Kolter (2022) use different variant of spatial mixer and can achieve better
performance on smaller datasets.Li et al. (2023b) use factorized TS-Mixer for multivariate timeseries
forecasting. There’re also some attempts to design Mixers targeting NLP tasks, for instance, P-NLP
Fusco et al. (2023) use minhash and MLP-Mixer for lightweight text classification.Hyper-Mixer
Mai et al. (2023) use dynamic-generated token mixing. TCA-Mixer Liu et al. (2023) use a variant
of attention with Mixer for NLP tasks.

2.0.1 SNN BEYOND VISION TASKS OR CNN BACKBONE.

For the SNN parts, researchers try to extend spiking neural network to beyond Convolutional Neural
Network backbone or beyond vision tasks.Some very recent worksZhou et al. (2022) Zhou et al.
(2023) use LIF neurons and delete the SoftMax for SNN-compatible Transformer.Che et al. (2023)
propose to use neural architecture search(NAS) for efficient spiking transformer. Li et al. (2022a)
views the input image patches as temporal input and use horizontal and vertical LIF groups for
different division of patches, but their implementation is in a SNN-DNN hybrid fashion and is not
fully compatible with neuromorphic chips.Li et al. (2023a) is another spiking mixer model but their
dedicate model is only optimized for vision tasks and the effective extension method for NLP tasks
remains unknown. Yao et al. (2021)exploit the spatial-temporal attention mechanism inside specific
neuron design methods and Cai et al. (2023) consider temporal attention of SNN. Lv et al. (2023)
use conversion-based method and trained a convolutional SNN for NLP tasks and shows potential
of spike tokenizer and robustness of SNN in NLP tasks.Zhu et al. (2023) is the first large scale
directly trained SNN model for NLP tasks, they use token-shift and binary embedding as well as
modified RWKV operation for effectively training large models. However, their model is not fully-
SNN compatible with the computation of RWKV in real-value and cannot be directly applied to
modern neuromorphic chips.

In this work, we successfully use the gernalized LIF as a building block and extend spiking neural
network to the Mixer backbone. Our model is directly trained using surrogate gradients and can be
applied ti multiple different tasks.We empirical prove the efficiency and potential of this architecture
to beyond vision tasks.

3 THE PROPOSED SPIKING MIXER FRAMEWORK

The proposed Spiking Mixer model is composed of temporal-token mixing block and channel mix-
ing block. In standard RWKV based Transformer models, the standard attention is firstly replaced
by the temporal shift of key and value. Linear attention is then applied with temporal-specific weight
across timestep and a receptance field is applied. Inspired by RWKV, we view the max sentence of
length N or the patched image sequence as a temporal-feature input with size T * F, where T is the
Temporal dimension size and F is the spatial feature size. For the case of NLP tasks, T is equal
to the sequence length N and F is set to 1. While for the case of images, for static dataset like
CIFAR-10, the input is repeated for T times to simulate temporal data input and for neuromorphic
dataset, the temporal dimension correspond to sampled frames. In this case T is identical to the
temporal dimension of the images and the feature dimension is correspond to the actual feature size.
We empirically found the direct mixing of vision datasets in temporal-token dimension will degrade
the performance because image data is sensitive to the inverse of temporal dimension, so in practice
we apply temporal-wise fully connected layer instead of standard Linear layer.

The generalized LIF model is formulated as:

cm
dv

dt
= gm · v + vTMm×mv + I

o = h(
∑

w,v∈Neuroni

w · v − vth)
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Figure 1: The high-level schematic of Spiking-Mixer model, which contains Time-feature mixing
block and channel mixing block. For compatibility with neuromorpjic chips, a multicompartment
LIF model is attached after each linear layer.Inspired by RWKV, we add a token shift operator for
mixing channel information in nearby timesteps.

where cm is the conductance vector, v is the membrane potential, the M is the inter-compartment
term representing the relationship between different compartments.M can be divide into intra-
neuron parts with the shape of block diagonal and inter-neuron parts.I is the input vector to neuron.
w is the importance for different compartment within the same neuron, h is the spike function. For
traditional LIF based SNN,the M and w term vanished, and the input is

∑
wijzi where zi is the

output from the prvious layer.

For the most generalized form of using m neuron as a group, each neuron has n compartment, and
there’s connection between inter-neuron compartments and intra-neuron compartments, so there’s at
most m spikes per timestep, the problem is difficult.In this paper we consider the case of per neuron
group has only one neuron, and each neuron has two compartments, the input of two compartments
are formulated as

I1 =
∑

wijzi

I2 =
∑

−βOi

where Oi is output from the first compartment.

For the weighted addition of different timesteps, we use generalized LIF shares a similar idea
as in Zhang et al. (2023) . Because in standard RWKV, the weight in different timesteps are
encoded like position embedding, so for the case without receptance field, we can approximate
such multiple loops with the linear combination of the weight of single-loop feedback general-
ized neuron, we empirically find such implementation is more efficient compared to use one feed
back layer. [tb]Pseudo-code for the Spiking Mixer[language=python] def spikingmixerblock(x) :
shortcut = xx = norm(x)x = tokenshift(x)x = proj(x)x = multicomp(x)returnx +
shortcutdefmulticomp(x) : initu1, u2, tau1, tau2, vth, TfortinT : ift > 0 : u2 = tau1 ∗
u2 + o(t − 1)u1 = tau2 ∗ (u1 + u2) ∗ (1 − s(u1 + u2 − vth)) + x(t)o = s(u1 − vth) For the
temporal shift to provide a mixing of channel information in nearby timesteps, we apply standard
padding in Pytorch Library as nn.ZeroPad2d((0,0,1,-1)).

Benefit from the mechanism of Spiking Neural Network, the computation of mixing can be paral-
lelized and can benefit from the RNN-like sequential readout. The Spiking Mixer is trained directly
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Figure 2: The demonstration of RWKV-like parallel training and serial read out during inference

based on straight-through estimator with learnable threshold and can be formulated as :
∂o

∂u
≈ h(u) =

1

a
sign(|u− Vth| <

a

2
)

4 EXPERIMENTS

We conduct experiments both for image classification tasks and natural language processing tasks.

4.1 EVALUATION SETUP

4.2 IMAGE CLASSIFICATION TASKS

For Image classification tasks, we consider both the static datasets and neuromorphic datasets. For
static datasets, we evaluate the acurracy result of CIFAR-10, CIFAR100 and ImageNet-64. Static
input data is repeated identical to the number of training TimeSteps and the final output is averaged
to get the final result. For neuromorphic dataset, we consider the DVS-CIFAR10Li et al. (2017)
dataset. DVS-CIFAR10, is another neuromorphic dataset and is very easy to overfit, and is a more
challenging dataset. The ImageNet-64, For these tasks, we use the model architecture similar to
the base-Mixer model with hidden dimension of 768 and pretrain on ImageNet-1k dataset. The
TimeSteps of these tasks is set to 4 and for dvs-cifar10 the TimeStep is set to 10.

4.3 TEXT CLASSIFICATION TASKS

For text tasks, we use classification tasks in standard GLUEWang et al. (2018) and three more
challenging tasks, the imdbMaas et al. (2011) dataset, the sst-5 datasetSocher et al. (2013) for fine-
grained sentimental classification with 5 different classes and MTOP dataset.The MTOP datasetLi
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Model Param(M) Cifar-10 IMN-64 DVS-Cifar-10 TimeStep
Mixer 10.2 Yellow 11.2 Black 4

Mixer(128) 0.75 74.2 87.3 96.5 4
Mixer(512) 4.18 74.2 52.24 96.5 4
Mixer(768) 8.44 74.2 52.01 96.5 4

Spiking Mixer(128) 0.75 79.85 42.33 96.5 4
Spiking Mixer(512) 4.18 86.59 64.54 96.5 4
Spiking Mixer(768) 8.44 87.66 67.00 96.5 4

Table 1: Classification accuracy results on six different datasets.

Model SST-2 SST-5 MTOP IMDB Subj MR Avg
SpikeGPT(45M)[1] 80.39 37.69 - - 69.23 88.45 68.94

SpikeGPT(216M)[1] 82.45 38.91 - - 68.11 89.10 69.64
S-TextCNN-direct[2] 75.73 23.08 - - 51.55 53.30 50.91

S-TextCNN-Finetune+convert[2] 80.91 41.63 - - 90.6 75.45 72.14
pNLP-Mixer[3] 72.88 39.31 79.0 88.1 97.3 93.4 89.58
Spiking Mixer 75.0 39.4 82.6 90.9 97.4 93.9 90.85

Spiking Mixer(+TimeShift) 76.45 39.63 83.4 92.2 97.7 93.9 91.1
Spiking Mixer(+MultiComp) 77.29 39.63 83.6 91.9 72.03 88.86 91.45

Spiking Mixer(+rep) 75.11 39.36 80.3 90.1 97.6 92.5 89.6
[1] from Zhu et al. (2023)
[2] from Lv et al. (2023)

[3] from Fusco et al. (2023)

Table 2: Classification accuracy results on text classification datasets.

et al. (2020) contains six languages,English, Spanish, French, German, Hindi, and Thai, all trans-
lated from English. The MTOP is a token classification task and the accuracy is the number of
instance with all tokens being classified to the correct label in all instances. All tasks except the
MTOP is trained using Mixer with hidden dimension of 256 and for MTOP we use the model with
hidden dimension of 512. The Timestep of these models is identical to the input sequence length.

4.4 IMPLEMENTATION DETAILS

For the image classification tasks. We train from scratch using ImageNet-64Chrabaszcz et al. (2017)
and finetune for small scale datasets. The ImageNet-64 is a down sampled version(64×64) of
ImageNet-1k with the same image numbers as ImageNet-1k, it’s more challenging and more noisy.
It contains 1.28 million training data and 50,000 testing data. For the training of ImageNet-64,
we follow the training recipe of DeiT and use a batch size of 96. The learning rate is set to 5e-3
with weight decay of 5e-2, momentum of 0.9. We train for 300 epochs with learning rate warm-up
for 5 epochs, after warm-up we use cosine learning rate scheduler.Standard data augmentation like
random crop, random erase, horizontal flipping, mixup, label-smoothing is used.

During the finetuning of small sized datasets, for the static datasets, standard preprocessing like
random crop and flip, normalize is used and we resize the dataset to 64× 64.For neuromorphic
datasets, the event stream is integrate to frames with 10ms resolution and downsampled to 64× 64.

For the text classification, we modified the model structure by using a bert tokenizer, a min hash
based mapping block as well as a bloomcounter to extract word representation like inFusco et al.
(2023), the hash length of min-hash is set to 64, the depth of Mixer is set to 2, the sentence is padded
to the length of 1024.
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Figure 3: The adversial robustness of Spiking Mixer

4.5 EXPERIMENT RESULT

From table 1, we can find that the Mixer based model performs consistently better than CNN based
methods. And counter intuitively, the spiking version of MLP-Mixers will performs better than their
ANN counterparts, as pNLP-Mixer and Spiking Mixer. That’s partly because Spiking Mixer inher-
ently capture much contextual information with membrane potential as a special gate. By applying
TimeShift as in RWKV model or applying multi-compartment neurons, the spiking mixer model
will further improve its performance. Another very important finding is when changeing the input
representation from the original representation of simply repeating the input to view the sentence
to temporal sequence, the performance of the model will not degrade very much but significantly
improve the inference cost and enable token-level serial readout to further boost the performance of
inference.

4.6 ABLATION STUDY

We compare the effect of using different forms of neurons compared to using the generalized LIF
and directly train on small scale Image classification tasks. As can e seen from the chart below, the
multi compartment setting greatly improve the expressiveness compared to the simple LIF based
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models.We study the reason for such improved expressiveness by visualizing the feature map in
some of the layers in the total Mixer, as shown in the graph.

4.7 ANALYSIS

5 CONCLUSION

We demonstrate for the first time of using Spiking Neural Network based Mixer model for both
vision and NLP tasks. Compare to existing works in Clancey (2021) for NLP tasks, our model is
directly trained and is much lighter with comparable results. Our model is also pure SNN imple-
mentation compared to the Clancey (2021), and our model is much lighter with similar performance.
As for Clancey (2021), our model has similar performance with their model but our model can be
further extend to NLP tasks. For the vision model, using generalized LIF SNN, our model can suc-
cessfully scale to large model size, and for NLP tasks, our model can be directly trained end-to-end
without severe accuracy degradation with the help of RWKV like temporal-sentense encoding, time-
shift and feedback. We also demonstrate the efficiency of sentence generation of our Spiking Mixer,
which is particular important for inference. We hope this work will spark future research on SNN
based NLP or the research of other domains.

computation cost between traditional LIF and proposed Lif

and computation cost between original representation and chnaged representation

The adverserial robustness of spiking neural networks

the spike based multimodal attack methodology

the regularization based linfrobusttrainingmethod

the actual computation benefits of snn
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A APPENDIX

derivation of θ-related norm for adversarial robustness of SNN:

ml(t) = λ(ml(t− − sl(t)rl(t)

when sl(t) = 1rl(t) = ml(t); elserl(t) = 0

rl(t)sl(t) ≥ θsl(t)

the equal holds when doing the soft reset

ml(t)− λml(t− 1) = λ(W lsl−1(t)− sl(t)rl(t)

λml(t)− λ2ml(t− 2) = λ2(W lsl−1(t)− sl(t− 1)rl(t− 1))

ml(T ) = W l
T∑

i=1

λT+1−isl−1(i)−
T∑

i=1

λT+1−isl(i)rl(i)

h(t) :=

T∑
i=1

λt+1−is(i)

sl(t) =
hl(t)− hl(t− 1)

λ

ηl = sup
s̸=0,s∈χN−1

∥W ls∥∞ ≥ 0

µl = − sup
s̸=0,s∈χN−1

∥ −W ls∥∞ ≤ 0

µlt ≤ W lhl−1(t)−
t∑

i=1

λt+1−isl(i)rl(i) ≤ W lhl−1(t)−l (t) ≤ ηl(t)

W lhl−1(t)− ηlt

θ
≤ hl(t) ≤ W lhl−1(t)− µlt

θ

sl(t)− s̃l(t) =
1

λ
[hl(t)− hl(t− 1)− x̃l(t) + x̃l(t− 1)] ≤ 2t

ηl − µl

λθ
+

1

θ
W l(sl−1(t)− s̃l−1(t)
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sl(t)− s̃l(t) ≤ 1

1

θ
W l(sl−1(t)− s̃l−1(t)) ≤ ηl − µl

θ

sl(t)− s̃l(t) +
1

θ
W l(sl−1(t)− s̃l−1(t)) ≤ 1 +

ηl − µl

θ

|sl(t)− s̃l(t)|2 − 1

θ2
|sl−1(t)− s̃l−1(t)|2 ≤ 2t

λ
[
ηl − µl

θ
+ (

ηl − µl

θ
)2]
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