Demystifying and Generalizing BinaryConnect

Tim Dockhorn * Yaoliang Yu Eyyiib Sari
University of Waterloo University of Waterloo Huawei Noah’s Ark Lab
Mahdi Zolnouri Vahid Partovi Nia
Huawei Noah’s Ark Lab Huawei Noah’s Ark Lab
Abstract

BinaryConnect (BC) and its many variations have become the de facto standard for
neural network quantization. However, our understanding of the inner workings
of BC is still quite limited. We attempt to close this gap in four different aspects:
(a) we show that existing quantization algorithms, including post-training quan-
tization, are surprisingly similar to each other; (b) we argue for proximal maps
as a natural family of quantizers that is both easy to design and analyze; (c) we
refine the observation that BC is a special case of dual averaging, which itself is a
special case of the generalized conditional gradient algorithm; (d) consequently, we
propose ProxConnect (PC) as a generalization of BC and we prove its convergence
properties by exploiting the established connections. We conduct experiments on
CIFAR-10 and ImageNet, and verify that PC achieves competitive performance.

1 Introduction

Scaling up to extremely large datasets and models has been a main ingredient for the success of
deep learning. Indeed, with the availability of big data, more computing power, convenient software,
and a bag of training tricks as well as algorithmic innovations, the size of models that we routinely
train in order to achieve state-of-the-art performance has exploded, e.g., to billions of parameters in
recent language models [9]. However, high memory usage and computational cost at inference time
has made it difficult to deploy these models in real-time or on resource-limited devices [28]. The
environmental impact of training and deploying these large models has also been recognized [40].
A common approach to tackle these problems is to compress a large model through quantization,
i.e., replacing high-precision parameters with lower-precision ones. For example, we may constrain
a subset of the weights to be binary [1, 5, 11, 29, 33, 37, 45] or ternary [26, 53]. Quantization can
drastically decrease the carbon footprint of training and inference of neural networks, however, it
may come at the cost of increased bias [21].

One of the main methods to obtain quantized neural networks is to encourage quantized parameters
during gradient training using explicit or implicit regularization techniques, however, other methods
are possible [16—-18, 20, 25, 32, 51]. Besides the memory benefits, the structure of the quantization
can speed up inference using, for example, faster matrix-vector products [18, 23]. Training and
inference can be made even more efficient by also quantizing the activations [37] or gradients
[52]. Impressive performance has been achieved with quantized networks, for example, on object
detection [44] and natural language processing [43] tasks. The theoretical underpinnings of quantized
neural networks, such as when and why their performance remains reasonably well, have been
actively studied [3, 13, 22, 41, 46].

*Work done during an internship at Huawei Noah’s Ark Lab. Correspondence to
tim.dockhorn@uwaterloo.ca.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

BinaryConnect [BC, 11] and its many variations [10, 37, 53] are considered the gold standard for
neural network quantization. Compared to plain (stochastic) gradient descent, BC does not evaluate
the gradient at the current iterate but rather at a (close-by) quantization point using the Straight
Through Estimator [6]. Despite its empirical success, BC has largely remained a “training trick” [1]
and a rigorous understanding of its inner workings has yet to be found, with some preliminary steps
taken in Li et al. [27] for the convex setting and in Yin et al. [45] for a particular quantization set. As
pointed out in Bai et al. [5], BC only evaluates gradients at the finite set of quantization points, and
therefore does not exploit the rich information carried in the continuous weights network. Bai et al.
[5] also observed that BC is formally equivalent to the dual averaging algorithm [31, 42], while some
similarity to the mirror descent algorithm was found in Ajanthan et al. [1].

The main goal of this work is to significantly improve our understanding of BC, by connecting it with
well-established theory and algorithms. In doing so we not only simplify and improve existing results
but also obtain novel generalizations. We summarize our main contributions in more details:

* In Section 2, we show that existing gradient-based quantization algorithms are surprisingly similar
to each other: the only high-level difference is at what points we evaluate the gradient and perform
the update.

* In Section 3, we present a principled theory for constructing proximal quantizers. Our results unify
previous efforts, remove tedious calculations, and bring theoretical convenience. We illustrate
our theory by effortlessly designing a new quantizer that can be computed in one-pass, works
for different quantization sets (binary or multi-bit), and includes previous attempts as special
cases [5, 11, 45, 53].

* In Section 4, we significantly extend the observation of Bai et al. [5] that the updates of BC are the
same as the dual averaging algorithm [31, 42]: BC is a nonconvex counterpart of dual averaging,
and more importantly, dual averaging itself is simply the generalized conditional gradient algorithm
applied to a smoothened dual problem. The latter fact, even in the convex case, does not appear to
be widely recognized to the best of our knowledge.

* In Section 5, making use of the above established results, we propose ProxConnect (PC) as a family
of algorithms that generalizes BC and we prove its convergence properties for both the convex and
the nonconvex setting. We rigorously justify the diverging parameter in proximal quantizers and
resolve a discrepancy between theory and practice in the literature [1, 5, 45].

* In Section 6, we verify that PC outperforms BC and ProxQuant [5] on CIFAR-10 for both fine-
tuning pretrained models as well as end-to-end training. On the more challenging ImageNet dataset,
PC yields competitive performance despite of minimal hyperparameter tuning.

2 Background

We consider the usual (expected) objective £(w) = El(w, &), where & represents random sampling.

For instance, {(w) = L Y% | /;(w) where £ is uniform over n training samples (or minibatches

thereof), w are the weights of a neural network and ¢; may be the cross-entropy loss (of the i-th
training sample). We denote a sample (sub)gradient of ¢ at w and &€ as V{(w) = V{(w,) so

that EV/(w) = V{(w). Throughout, we use the starred notation w* for continuous weights and
reserve w for (semi)discrete ones.

We are interested in solving the following (nonconvex) problem:

glelg L(w), (1)

where @ C R< is a discrete, nonconvex quantization set. For instance, on certain low-resource
devices it may be useful or even mandatory to employ binary weights, i.e., @ = {£1}%. Importantly,
our goal is to compete against the non-quantized, continuous weights network (i.e. Q = R?). In
other words, we do not necessarily aim to solve (the hard, combinatorial) problem (1) globally and
optimally. Instead, we want to find discrete weights w € () that remain satisfactory when compared
to the non-quantized continuous weights. This is how we circumvent the difficulty in (1) and more
importantly how the structure of ¢ could come into aid. If £ is reasonably smooth, a close-by quantized
weight of a locally, or even globally, optimal continuous weight will likely yield similar performance.

Tremendous progress has been made on quantizing and compressing neural networks. While it is not
possible to discuss all related work, below we recall a few families of gradient-based quantization
algorithms that directly motivate our work; more methods can be found in recent surveys [15, 36].

BinaryConnect (BC). Courbariaux et al. [11] considered binary networks where () = {:I:l}d and
proposed the BinaryConnect algorithm:

Wi = wi =, Ve(P(w))), 2
where P is a projector that quantizes the continuous weights w; either deterministically (by taking
the sign) or stochastically. Note that the (sample) gradient is evaluated at the quantized weights

w; = P(w;), while its continuous output, after scaled by the step size 7, is added to the continuous
weights w. For later comparison, it is useful to break the BC update into the following two pieces:

w, =P(w), Wi =w; — 5 Vi(w). 3)
Other choices of P [1, 45] and) [44, 53] in this framework have also been experimented with.
ProxQuant (PQ). Bai et al. [5] applied the usual proximal gradient to solve (1):

Wiyl = P(Wt — ntﬁé(wt)), (4)

which can be similarly decomposed into:

Wi = P(W:)a W:—i—l = W; — nteﬂ(wt) (5)
Thus, the only high-level difference between BC and PQ is that the former updates the continuous
weights w; while the latter updates the quantized weights w;. This seemingly minor difference turns

out to cause drastically different behaviors of the two algorithms. For example, choosing P to be the
Euclidean projection to) works well for BinaryConnect but not at all for ProxQuant.

Reversing BinaryConnect. The above comparison naturally suggests a reversed variant of BC:

wy = P(wy}), Wi = wy — 1, VIwy), (6)
which amounts to switching the continuous and quantized weights in the BC update. Similar to
PQ, the choice of P is critical in this setup. To the best of our knowledge, this variant has not been

formally studied before. Reversing BinaryConnect may not be intuitive, however, it serves as a
starting point for a more general method (see Section 5).

Post-Training Quantization. Lastly, we can also rewrite the naive post-training quantization scheme
in a similar form:

wi=P(wi), wi, =w; —nVi(wy), @)
where we simply train the continuous network as usual and then quantize at the end. Note that the
quantized weights w; do not affect the update of the continuous weights wy.

3 What Makes a Good Quantizer?

As we have seen in Section 2, the choice of the quantizer P turns out to be a crucial element for
solving (1). Indeed, if P = P is the projector onto the discrete quantization set), then BC (and
ProxQuant) only evaluate the gradient of ¢ at (the finite set of) points in (). As a result, the methods
will not be able to exploit the rich information carried in the continuous weights network, which
can lead to non-convergence [Fig. 1b, 5]. Since then, many semi-discrete quantizers, that turn
continuous weights into more and more discrete ones, have been proposed [1, 5, 33, 45]. In this
section, we present a principled way to construct quantizers that unifies previous efforts, removes
tedious calculations, and also brings theoretical convenience when it comes down to analyzing the
convergence of the algorithms in Section 2.

Our construction is based on the proximal map P*: R? = R? of a (closed) function r:

Pl (w*) = argmin g [|w — w*[[3 + r(w), ®)
where p > 0 is a smoothing parameter. The proximal map is well-defined as long as the function r is
lower bounded by a quadratic function, in particular, when r is bounded from below. If r is proper
and (closed) convex, then the minimizer on the right-hand side of (8) is uniquely attained, while for
general (nonconvex) functions the proximal map may be multi-valued (hence the notation =). If
r = 1¢ is the indicator function (see (15) below), then P# reduces to the familiar projector P¢ (for
any). Remarkably, a complete characterization of such maps on the real line is available:

Theorem 3.1 ([Proposition 3, 48]). A (possibly multi-valued) map P: R =% R is a proximal map
(of some function r) iff it is (nonempty) compact-valued, monotone and has a closed graph. The
underlying function r is unique (up to addition of constants) iff P is convex-valued, while r is convex
iff P is nonexpansive (i.e. 1-Lipschitz continuous).

The sufficient and necessary conditions of Theorem 3.1 allow one to design proximal maps P directly,
without needing to know the underlying function r at all (even though it is possible to integrate a
version of r from P). The point is that, as far as quantization algorithms are concerned, having P is
enough, and hence one is excused from the tedious calculations in deriving P from r as is typical in
existing works.

For example, the (univariate) mirror maps constructed in Ajanthan et al. [Theorem 1, 1], such as
tanh, are proximal maps according to Theorem 3.1: In our notation, the (Mirror Descent) updates
of Ajanthan et al. [1] are the same as (3) with P = (VQJ)_1 for some mirror map ®. Since P is
taken to be strictly convex in Ajanthan et al. [1], it is easy to verify that P satisfies all conditions
of Theorem 3.1.2

The next result allows us to employ stochastic quantizers, where in each iteration we randomly choose
one of P; to quantize the weights®. We may also apply different quantizers to different layers of a
neural network.

Theorem 3.2. Let P; : R? = R i = [k], be proximal maps. Then, the averaged map

P .= Zle o;P;, where a; > 0, Zle o; =1, 9)
is also a proximal map. Similarly, the product map
=(wj,...,w}) — (Pl(wf),...,Pk(wZ)) (10)

P:=Py xPgyx- - xPp, w

is a proximal map (from R to R%*),

(The proof of Theorem 3.2 and all other omitted proofs can be found in Appendix A.)

Example 3.3. Let () be a quantization set (e.g. @ = {—1,0, 1}). Clearly, the identity map id and
the projector P are proximal maps. Therefore, their convex combination P# = %7 w>0,is
also a proximal map, which is exactly the quantizer used in Yin et al. [45].

Lastly, we mention that it is intuitively desirable to have P* — Pg when p increases indefinitely,
so that the quantizer eventually settles on bona fide discrete values in (). This is easily achieved
by letting minimizers of the underlying function r, or the (possibly larger set of) fixed points of P*,
approach (). We give one such construction by exploiting Theorem 3.1 and Theorem 3.2.

3.1 General Piecewise Linear Quantizers

Let Q; = {qj’k}z,j: 1 (with g;1 < -+ < gj5,) be the quantization set for the j-th weight group?

wi € RY. Let pjpy1 = W#, k € [bj — 1], be the middle points. We introduce two
parameters p, o > 0 and define
horizontal shifts: 4y = PjkV (g5 —p), qj,:k =Dj k1 A (g6 +), (11)
vertical shifts: p;k+1 = qjk \Y (pj7k+1 — Q), pzk+1 = Qj k+1 A\ (pj7k+1 + Q), (12)

with ¢;; = ¢;1 and q;'bj = gjb,;. Then, we define L¢ as the piece-wise linear map (that simply
connects the points by straight lines):
e = +
9jks i, < w” < qjy,
Pj k1= Dk
pj,k+1—q;fk
q.j,k+1*pj—,k+1

Lﬁ(u)*) ={ Grt (w* — q]—fk)) if Q;:k <w* < pjry1 (13)

+ . —
Pj ki1 + ("U* - pj,k+1) lfpj,kJrl <w* < 4 k+1

-)
95, k1~ Pj k41

>The above reasoning hinges on ® being univariate. More generally, if a multivariate mirror map ® is
1-strongly convex (as is typical in Mirror Descent), then it follows from Moreau [Corollaire 10.c, 30] that
P = (V®) ™!, being a nonexpansion, is again a proximal map (of some convex function).

3This form of stochasticity still leads to determinisitc networks, and is therefore conceptually different from
probabilistic (quantized) networks [35, 39].

“In this section, time subscripts are not needed. Instead, we use subscripts to indicate weight groups.

”Lﬁ(w*) q5 77L§(w*> a3

1 p 1 B 1 aF 1
_‘/17271 _‘_/@571
a
(@p=0,0=0.2. (b)yp=0=0.2. ©p=0.20=0.

Figure 1: Different instantiations of the proximal map Lg in (13) for @ = {-1,0,1}.

for all w* € wj. At the middle points, L4(p; x+1) may take any value within the two limits.
Following the commonly used weight clipping in BC [11], we may set Lg(w*) = q;,1 forw* < g;,1
and L¢(w*) = g;, for w* > g; 1, , however, other choices may also work well. The proximal map
L¢ of an example ternary component is visualized in Figure 1 for different choices of p and o.

The (horizontal) parameter p controls the discretization vicinity within which a continuous weight
will be pulled exactly into the discrete set (), while the (vertical) parameter o controls the slope
(i.e. expansiveness) of each piece. It follows at once from Theorem 3.1 that L¢ is indeed a proximal
map. In particular, setting p = 0 (hence continuous weights are only discretized in the limit) and
0= ﬁ we recover Example 3.3 (assuming w.l.o.g. that ¢; 11 — ¢;,x = 1). On the other hand,
setting p = p leads to a generalization of the (binary) quantizer in Bai et al. [5], which keeps the slope
to the constant 1 (while introducing jumps at middle points) and happens to be the proximal map
of the distance function to @); [5]. Of course, setting p = ¢ = 0 yields the identity map and allows
us to skip quantizing certain weights (as is common practice), while letting p, o — oo recovers the

projector Pq, .

Needless to say, we may adapt the quantization set (); and the parameters o and p for different weight
groups, creating a multitude of quantization schemes. By Theorem 3.2, the overall operator remains
a proximal map.

4 Demystifying BinaryConnect (BC)

Bai et al. [5] observed that the updates of BC are formally the same as the dual averaging (DA)
algorithm [31, 42], even though the latter algorithm was originally proposed and analyzed only for
convex problems. A lesser known fact is that (regularized) dual averaging itself is a special case of the
generalized conditional gradient (GCG) algorithm. In this section, we first present the aforementioned
fact, refine the observation of Bai et al. [5], and set up the stage for generalizing BC.

4.1 Generalized Conditional Gradient is Primal-Dual

We first present the generalized conditional gradient (GCG) algorithm [8, 49] and point out its ability
to solve simultaneously the primal and dual problems.

Let us consider the following “regularized” problem:
min f(w) = (w) +r(w), (14)
weRd

where r is a general (nonconvex) regularizer. Setting r to the indicator function of @, i.e.,

() = o (w) = {o, ifweQ

0o, otherwise ’
reduces (14) to the original problem (1). As we will see, incorporating an arbitrary r does not add any
complication but will allow us to immediately generalize BC.

15)

Introducing the Fenchel conjugate function £* (resp. r*) of £ (resp. r):
£*(w*) == sup,, (w,w*)—{(w), (16)

which is always (closed) convex even when /¢ itself is nonconvex, we state the Fenchel-Rockafellar
dual problem [38]:

g, C), 0

which, unlike the original problem (14), is always a convex problem.

We apply the generalized conditional gradient algorithm [8, 49] to solving the dual problem® (17):
Given wy, we linearize the function r* and solve

z; = |argmin £*(—w™) + (W*, w;) | = =V (wy), wy = Vr*(w)), (18)
where we used the fact that (V/*)~1 = V¢**. Then, we take the convex combination
wi = (1= X)w; + Nz, where)\, € [0,1]. (19)
The following theorem extends Bach [Proposition 4.2, 4] and Yu [Theorem 4.6, 47] to any \;:

Theorem 4.1. Suppose r* is L-smooth (i.e. Vr* is L-Lipschitz continuous), then for any w:

t t
7=0 7=0

where w; = Vr*(w}), m = Hizl(l —Ar),and mp == 1. A(w,wy) = r*™(w) — r**(wy) —
(w — wy, wy) is the Bregman divergence induced by the convex function r**.

While the convergence of w; to the minimum of (17) is well-known (see e.g. Yu et al. [49]), the
above result also implies that a properly averaged iterate w; also converges to the minimum of the
dual problem of (17):

Corollary 4.2. Let w; := Zi:o At w,, where Ay = ;\T—*/Ht and H; = Zi:o i—* Then, we
have for any w:

(1 —)\Q)A(W, Wo

) L : * *
+ 5 ZO)\TAtﬂ'”WT - zTH%' (21)

Assuming {z*} is bounded (e.g. when £** is Lipschitz continuous), the right-hand side of (21) dimin-

. _ t
ishes if Ay — O and), \; = oo. Setting \; = H% recovers ergodic averaging w, = tJ%l YoroWr

for which the right-hand side of (21) diminishes at the rate® O(log t/t); see Appendix A.2 for details.
Thus, GCG solves problem (17) and its dual simultaneously.

42 BC CDA C GCG

We are now in a position to reveal the relationships among BinaryConnect (BC), (regularized) dual
averaging (DA) and the generalized conditional gradient (GCG). Since Theorem 4.1 requires r* to
be L-smooth, in the event that it is not we resort to a smooth approximation known as the Moreau
envelope [30]:

AL (W*) = min in* —z"||% + r*(z"), (22)
where the minimizer is (by definition) exactly P (w*). It is well-known that .} is (1/u)-smooth
and (/)" = r* + £ - ||3 [30]. We then apply GCG to the approximate dual problem:

mind C(—w™*) + M) (w™), (23)

w*eR

whose own Fenchel-Rockfellar dual is:

min £ (w) + (A1) (w)| = min £ (w) + r**(w) + %Hw”% (24)
weRd wERd

SGCG is usually applied to solving the primal problem (14) directly. Our choice of the dual problem here is
to facilitate later comparison with dual averaging and BinaryConnect.

8The log factor can be removed by setting, for example, \; = %th instead.

The updates of GCG applied to the approximate problem (23) are thus:

wy = VAL (w)) = P,l*/*“(wr /1) (see Proposition A.2 for derivation) (25)
wi = (1=)W + N\zy, where zf = V{7 (wy), (26)

which is exactly the updates of (regularized) dual averaging [42] for convex problems where’ r** = r
and ** = (. Nesterov [31] motivated dual averaging by the natural desire of non-decreasing step
sizes, whereas conventional subgradient algorithms “counter-intuitively” assign smaller step sizes to
more recent iterates instead. Based on our explanation, we conclude this is possible because dual
averaging solves an (approximate) smoothened dual problem, hence we can afford to use a constant
(rather than a diminishing/decreasing) step size.

Defining 7y := HZ:1(1 —Xg) fort > 1,7 :=1,7_1 := (1 — \g) "}, and setting w; = w} /m;_1,
we have:

wy =PI awi i), Wiy = wi = 22V (wy). 27)

Let us now reparameterize

M ::& > At:dﬁand%=1+2i:1nr, (28)

Tt

for ¢ > 1. If we also allow u = p; to change adaptively from iteration to iteration (as in dual
averaging), in particular, if y; = m;_1, we obtain the familiar update:

wi = PUIT W), why = w — VO (wy). (29)
For nonconvex problems, we may replace r** and £** with their nonconvex counterparts r and ¢,

respectively. We remark that r** (resp. £**) is the largest convex function that is (pointwise) majorized

by r (resp. £). In particular, with r = ¢ and P, - P¢ (for any p) we recover the BinaryConnect
update (3). While the parameter x4 plays no role when r is an indicator function, we emphasize that for

general r we should use the quantizer P, /T , where importantly 1/7;_1 — oo hence the quantizer
converges to minimizers of r asymptotically. Neglecting this crucial detail may lead to suboptimality
as is demonstrated in the following example:

Example 4.3. Bai et al. [5] constructed the following intriguing example:

1
((w) = Lw?, Q= {£1}, P}/"(w) = sign(w) !t“ for |w| <1, (30)

m

and they showed non-convergence of the algorithm w < w — nV£(P; /u (w)), where i is a fixed
constant. If we use P} /™1 with some diverging 1/m;_1 instead, the resulting BinaryConnect, with
diminishing 7, or ergodic averaging, would actually converge to 0 (since P, fm-1 sign).

5 ProxConnect (PC): A Generalization of BinaryConnect

We are now ready to generalize BC by combining the results from Section 3 and Section 4. Replacing
the convex envelopes, £** and r**, with their nonconvex counterparts and replacing deterministic
gradients with stochastic gradients (as well as the change-of-variable w; — w), we obtain from (29)
a family of algorithms which we term ProxConnect (PC):

wW; = Prl/ﬂ’”l(wf), Wi =W — ntﬁé(wt), (31

where the quantizer P, /- may be designed directly by following Section 3. We have already seen

in Section 4 that BC belongs to PC by choosing Prl/ ™1 = Pg, (in which case m;_1 plays no role).

The analysis in Section 4, initially tailored to convex functions, immediately generalizes to the
nonconvex algorithm PC (for nonconvex ¢, nonconvex r, and stochastic gradients V/):

"That is, if we set \; = 1/t and allow for time-dependent z1; = t; see Xiao [Algorithm 1, 42].

Theorem 5.1. Fix any w, the iterates in (31) satisfy:

Y nrl{we—w, V(W) +r(wr) —r(w)] < Agi(w) +ZA wr), (32)

where A (w) == r (W) — rr(wry1) — (W — wr41, Wi,) is the Bregman divergence induced by

the (possibly nonconvex) function r(w) := r(w) + 3||w][3.

The summand on the left-hand side of (32) is related to the duality gap in Yu et al. [49], which is a
natural measure of stationarity for the nonconvex problem (14). Indeed, it reduces to the familiar
ones when convexity is present:

Corollary 5.2. For convex ¢ and any w, the iterates in (31) satisfy:

_min Blf(we)— f(w)] < =t EALW-AMEY Adw)] G3)

If r is also convex, then

_min | B[f(wr)—f(w)] < st B[Acaw)+ Y BIVawlE], G4
and
B[f(w)~f(W)] < s B[A W)+ Y EVe(w,)[3], (35)
where w; = Sz

The right-hand sides of (34) and (35) diminish iff 7 — 0 and), 7: = oo (assuming boundedness of
the stochastic gradient). We note some trade-off in choosing the step size n,: both the numerator and
denominator of the right-hand sides of (34) and (35) are increasing w.r.t. 7. The same conclusion
can be drawn for (33) and (32), where A, also depends on 7, (through the accumulated magnitude
of w},). A detailed analysis may need to take specific properties of r or P into account [45].

ProxQuant vs ProxConnect. It is worthwhile to point out one important difference between Prox-
Quant and ProxConnect: Bai et al. [5] proved convergence (to some notion of stationarity) of
ProxQuant for a fixed quantizer (see Bai et al. [Theorem 5.1, 5]), i.e., P¥ for a fixed p, but their
experiments relied on incrementing p so that their quantizer approaches the projector Pg. This
creates some discrepancy between theory and practice. The same comment also applies to [1]. In
contrast, ProxConnect is derived from a rigorous theory that automatically justifies a diverging u. In
particular, choosing a constant step size 7, = 79 would lead to 1/m;_1 o t, matching the current
practice that is now justifiable if r is strongly convex; see Appendix A.3.1 for details.

Connection to Existing Algorithms. Besides the obvious BC, ProxConnect generalizes many other
quantization algorithms. As it turns out, many of these algorithms can also be realized using our
proposed proximal quantizer L2 from Section 3; see Table 1 for a sample summary.

reverseProxConnect. In Section 2, we discussed the idea of reversing BinaryConnect. As Prox-
Connect generalizes BC, we also present reverseProxConnect (rPC) as a generalization of reversing
BinaryConnect:

Wt—P

DTN WE), Wiy = we = VE(w)), (36)
In contrast to reversing BinnaryConnect, rPC is not completely without merit: it evaluates the gradient
at the continuous weights w} and hence is able to exploit a richer landscape of the loss. Even when
stuck at a fixed discrete weight w;, rPC may still accumulate sizable updates (as long as the step
size and the gradient remain sufficiently large) to allow it to eventually jump out of w,: note that the
continuous weights wy still get updated. Finally, for constant step size n and 7, we note that fixed
points of rPC, when existent, satisfy:

w* = PY™(w*) — nVl(w*) <= w* = (id + V) ™! (id +7 {%D_l (w*) 37

:B(vwﬂ(ﬂ, (38)

771—77

Table 1: A sample summary of existing quantization algorithms. The PC column indicates if the
method is a special case of our proposed ProxConnect algorithm. The L2-column indicates if the
method uses a quantizer which is a special case of our general quantizer L% introduced in Section 3.
If so, the p, p-column states how p and ¢ were chosen (in practice): increasing ~, fixed to 0, or
fixed to co. Other than ProxQuant-Ternary, all methods can compute their quantizers in a single
neural network pass. f: TrainedTernary methods might use a quantizer different than L¢ to improve
performance.

Method PC One-pass Learnable parameters L2 p, o
ProxQuant-Binary-L; [S] X v X VARV
ProxQuant-Ternary [5] X X X X -
BinaryConnect [11] v v X v 00,00
BinaryRelax [45] v v X v 0,
BinaryWeight [37] v v v X -
MirrorDescentView [1] v v X X -
TrainedTernary® [53] v v/ v/ v/ 00,00
TernaryWeight [26] v v v X -
ProxConnect (ours) - v v VA

where for simplicity we assumed deterministic gradients V/ and r to be convex such that P, ™=

(id+0r/m) 1. The operator B is known as the backward-backward update (as opposed to the forward-
backward update in ProxQuant), and it is known that when 7 — 0 slowly, backward-backward updates
converge to a stationary point [34]. Thus, despite of our current limited understanding of rPC, there
is some reason (and empirical evidence as shown in Section 6) to believe it might still be interesting.

Importance of GCG framework: Deriving PC from the GCG framework may let us transfer recent
advances on GCG [7, 14, 50] to neural network quantization. Furthermore, it is the cornerstone in
justifying the widely-adopted diverging smoothing parameter.

6 Experiments

6.1 Classification on CIFAR-10

We perform image classification on CIFAR-10 [24] using ResNet20 and ResNet56 [19], comparing
BinaryConnect [11] with ProxQuant [5] and (reverse)ProxConnect using our proposed proximal
operator Lg. For fair comparison, we set p = ¢ in L? as this resembles the quantizer (for binary
quantization) used in the original ProxQuant algorithm. Similar to Bai et al. [5], we increase the
parameter p (or equivalently o) linearly: p; = (1 + ¢/B) po. In contrast to Bai et al. [5], however,
we increase p after every gradient step rather than after every epoch as this is more in line with
our analysis. We treat py as a hyperparameter for which we conduct a small grid search. We
consider binary (Q = {—1,1}), ternary (Q = {—1,0, 1}) and quaternary (Q = {—1,-0.3,0.3,1})
quantization. Details for all CIFAR-10 experiments can be found in Appendix B.1.

Fine-Tuning Pretrained Models. In this experiment, all quantization algorithms are initialized with
a pretrained ResNet. The test accuracies of the pretrained ResNet20 and ResNet56 are 92.01 and
93.01, respectively. Table 2 shows the final test accuracies for the different models. For ProxQuant
and (reverse)ProxConnect we respectively picked the best py values; results for all pg values can
be found in Appendix B.1.7. (Reverse)ProxConnect outperforms the other two methods on all six
settings.

End-To-End Training. To save computational costs, it is important that quantization algorithms
also perform well when they are not initialized with pretrained full-precision model. We therefore
compare the four methods for randomly initialized models; see Table 3 for the results. ProxConnect
outperforms all other methods on all six tasks. Interestingly, ProxQuant and reverseProxConnect
perform considerably worse for all six tasks when compared to fine-tuning. The performance drop
of BinaryConnect and ProxConnect when compared to fine-tuning is only significant for ternary

Table 2: Fine-tuning pretrained ResNets. Final test accuracy: mean and standard deviation in 3 runs.

Model Quantization BC [11] PQ [5] rPC (ours) PC (ours)
Binary 90.31 (0.00) 89.94 (0.10) 89.98 (0.17) 90.31 (0.21)
ResNet20 Ternary 74.95 (0.16) 91.46 (0.06) 91.47 (0.19) 91.37 (0.18)
Quaternary 91.43 (0.07) 91.43(0.21) 91.43(0.06) 91.81(0.14)
Binary 92.22 (0.12) 92.33(0.06) 92.47(0.29) 92.65 (0.16)
ResNet56 Ternary 74.68 (1.4) 93.07 (0.02) 92.84 (0.11) 93.25(0.12)
Quaternary 93.20 (0.06) 92.82(0.16) 92.91 (0.26) 93.42 (0.12)

Table 3: End-to-end training of ResNets. Final test accuracy: mean and standard deviation in 3 runs.

Model Quantization BC[11] PQ [5] rPC (ours) PC (ours)
Binary 87.51 (0.21) 81.59(0.75) 81.82(0.32) 89.92 (0.65)
ResNet20 Ternary 27.10 (0.21) 4798 (1.30) 47.17(1.94) 84.09 (0.16)
Quaternary 89.91 (0.09) 85.29 (0.09) 85.05(0.27) 90.17 (0.14)
Binary 89.79 (0.45) 86.13(1.71) 86.25(1.50) 91.26 (0.59)
ResNet56 Ternary 30.31 (7.79) 50.54 (3.68) 42.95(1.57) 84.36 (0.75)
Quaternary 90.69 (0.57) 87.81 (1.60) 87.30 (1.02) 91.70 (0.14)

quantization. We found that ProxQuant and reverseProxConnect can be quite sensitive to the choice
of pg, whereas ProxConnect is stable in this regard; see Appendix B.1.7.

6.2 Classification on ImageNet

We perform a small study on ImageNet [12] using ResNet18 [19]. As can be seen in Table 4, BC
performs slightly better for fine-tuning whereas PC performs slightly better for end-to-end training.
This is not an exhaustive study, but rather a first indication that PC can yield competitive performance
on large scale datasets. For more details on the experiments see Appendix B.2.

Table 4: Fine-tuning (left) and end-to-end training (right). Final test accuracy: mean and standard
deviation over three runs.

BC[I1] PC (ours) BC[I1] PC (ours)
po =2e—2 pg=4de—2 po = 2.5e—=3 pg = de—3
65.84 (0.04) 65.44(0.13) 65.70(0.04) 63.79(0.12) 63.89 (0.14) 63.67 (0.12)

7 Conclusion

Capitalizing on a principled approach for designing quantizers and a surprising connection between
BinaryConnect and the generalized conditional gradient (GCG) algorithm, we proposed ProxConnect
as a unification and generalization of existing neural network quantization algorithms. Our analysis
refines prior convergence guarantees and our experiments confirm the competitiveness of ProxConnect.
In future work, we plan to apply ProxConnect to training other models such as transformers. The
connection with GCG also opens the possibility for further acceleration.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their constructive comments as well as the area chair and the
senior area chair for overseeing the review process. YY thanks NSERC for funding support. We
thank Jingjing Wang for some early discussions.

10

References

[1] Thalaiyasingam Ajanthan, Kartik Gupta, Philip Torr, Richard Hartley, and Puneet Dokania.
Mirror Descent View for Neural Network Quantization. In International Conference on Artificial
Intelligence and Statistics, 2021.

[2] Milad Alizadeh, Javier Ferndndez-Marqués, Nicholas D. Lane, and Yarin Gal. An Empirical
study of Binary Neural Networks’ Optimisation. In International Conference on Learning
Representations, 2019.

[3] Alexander G. Anderson and Cory P. Berg. The High-Dimensional Geometry of Binary Neural
Networks. In International Conference on Learning Representations, 2018.

[4] Francis Bach. Duality Between Subgradient and Conditional Gradient Methods. SIAM Journal
on Optimization, 25(1):115-129, 2015.

[5] Yu Bai, Yu-Xiang Wang, and Edo Liberty. ProxQuant: Quantized Neural Networks via Proximal
Operators. In International Conference on Learning Representations, 2018.

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation. arXiv:1308.3432, 2013.

[7] Leonard Berrada, Andrew Zisserman, and M. Pawan Kumar. Deep Frank—Wolfe For Neural
Network Optimization. In International Conference on Learning Representations, 2019.

[8] Kristian Bredies and Dirk A. Lorenz. Iterated Hard Shrinkage for Minimization Problems with
Sparsity Constraints. SIAM Journal on Scientific Computing, 30(2):657-683, 2008.

[9] Tom Brown and et al. Language Models are Few-Shot Learners. In Advances in Neural
Information Processing Systems, pages 1877-1901, 2020.

[10] Shangyu Chen, Wenya Wang, and Sinno Jialin Pan. MetaQuant: Learning to Quantize by
Learning to Penetrate Non-differentiable Quantization. In Advances in Neural Information
Processing Systems, 2019.

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training Deep
Neural Networks with binary weights during propagations. In Advances in Neural Information
Processing Systems, volume 28, pages 3123-3131, 2015.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 248-255, 2009.

[13] Yukun Ding, Jinglan Liu, Jinjun Xiong, and Yiyu Shi. On the Universal Approximability and
Complexity Bounds of Quantized ReLLU Neural Networks. In International Conference on
Learning Representations, 2019.

[14] Pavel Dvurechensky, Petr Ostroukhov, Kamil Safin, Shimrit Shtern, and Mathias Staudigl.
Self-Concordant Analysis of Frank—Wolfe Algorithms. In International Conference on Machine
Learning, 2020.

[15] Yunhui Guo. A Survey on Methods and Theories of Quantized Neural Networks.
arXiv:1808.04752, 2018.

[16] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep Learning
with Limited Numerical Precision. In International Conference on Machine Learning, 2015.

[17] Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu, and Chang Xu. Training Binary
Neural Networks through Learning with Noisy Supervision. In International Conference on
Machine Learning, 2020.

[18] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. EIE: Efficient Inference Engine on Compressed Deep Neural Network. ACM SIGARCH
Computer Architecture News, 44(3):243-254, 2016.

11

http://proceedings.mlr.press/v130/ajanthan21a.html
https://openreview.net/forum?id=rJfUCoR5KX
https://openreview.net/forum?id=rJfUCoR5KX
https://openreview.net/forum?id=B1IDRdeCW
https://openreview.net/forum?id=B1IDRdeCW
https://epubs.siam.org/doi/10.1137/130941961
https://openreview.net/forum?id=HyzMyhCcK7
https://openreview.net/forum?id=HyzMyhCcK7
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://openreview.net/forum?id=SyVU6s05K7
https://openreview.net/forum?id=SyVU6s05K7
https://epubs.siam.org/doi/abs/10.1137/060663556?casa_token=wjCnu6wHsGgAAAAA:LkV29KvtwgTVSYLLXTrDvYBEH4EPLeEnTIwGV-PosjkLhfzKhHN2ES5RHKYgx55u-ssPD2siRoI
https://epubs.siam.org/doi/abs/10.1137/060663556?casa_token=wjCnu6wHsGgAAAAA:LkV29KvtwgTVSYLLXTrDvYBEH4EPLeEnTIwGV-PosjkLhfzKhHN2ES5RHKYgx55u-ssPD2siRoI
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2019/hash/f8e59f4b2fe7c5705bf878bbd494ccdf-Abstract.html
https://papers.nips.cc/paper/2019/hash/f8e59f4b2fe7c5705bf878bbd494ccdf-Abstract.html
https://papers.nips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://papers.nips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://ieeexplore.ieee.org/abstract/document/5206848?casa_token=fZ2imNaTVtsAAAAA:QO463k21ssqVG9gq4yTJPc93iK3myY1Fwf6VavZq5QGpyJcEDV5yx6BFUBAxAFv4Eudg4eH3ew
https://ieeexplore.ieee.org/abstract/document/5206848?casa_token=fZ2imNaTVtsAAAAA:QO463k21ssqVG9gq4yTJPc93iK3myY1Fwf6VavZq5QGpyJcEDV5yx6BFUBAxAFv4Eudg4eH3ew
https://openreview.net/forum?id=SJe9rh0cFX
https://openreview.net/forum?id=SJe9rh0cFX
http://proceedings.mlr.press/v119/dvurechensky20a.html
https://arxiv.org/abs/1808.04752
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v119/han20d.html
http://proceedings.mlr.press/v119/han20d.html
https://dl.acm.org/doi/abs/10.1145/3007787.3001163?casa_token=b6SLWMfPV40AAAAA:wjUw9RwjMCjd3nXxtft5dQCffkQ7XjfsDxxUSAvUb5hrXmB2Sfr1RuYK28YoWdldLVFJURNZ71_VAA

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[20] Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, and
Roeland Nusselder. Latent Weights Do Not Exist: Rethinking Binarized Neural Network
Optimization. In Advances in Neural Information Processing Systems, 2019.

[21] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. Characteris-
ing Bias in Compressed Models. arXiv:2010.03058, 2020.

[22] Lu Hou, Ruiliang Zhang, and James T. Kwok. Analysis of Quantized Models. In International
Conference on Learning Representations, 2019.

[23] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized Neural Networks: Training Neural Networks with Low Precision Weights and Activations.
Journal of Machine Learning Research, 18(1):6869-6898, 2017.

[24] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images, 2009. The MIT
License.

[25] Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely Low Bit Neural
Network: Squeeze the Last Bit Out With ADMM. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[26] Fengfu Li, Bo Zhang, and Bin Liu. Ternary Weight Networks. arXiv:1605.04711, 2016.

[27] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training
Quantized Nets: A Deeper Understanding. In Advances in Neural Information Processing
Systems, 2017.

[28] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, and Song Han. MCUNet: Tiny Deep Learning
on IoT Devices. Advances in Neural Information Processing Systems, 2020.

[29] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural
networks with real-to-binary convolutions. In International Conference on Learning Represen-
tations, 2020.

[30] Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
Mathématique de France, 93:273-299, 1965.

[31] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Program-
ming, 120(1):221-259, 2009.

[32] E. Park, J. Ahn, and S. Yoo. Weighted-Entropy-Based Quantization for Deep Neural Networks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 7197-7205,
2017.

[33] Vahid Partovi Nia and Mouloud Belbahri. Binary Quantizer. Journal of Computational Vision
and Imaging Systems, 4(1):3, 2018.

[34] Gregory B Passty. Ergodic Convergence to a Zero of the Sum of Monotone Operators in Hilbert
Space. Journal of Mathematical Analysis and Applications, 72(2):383-390, 1979.

[35] Jorn WT Peters and Max Welling. Probabilistic Binary Neural Networks. arXiv:1809.03368,
2018.

[36] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary
Neural Networks: A Survey. Pattern Recognition, 105:107281, 2020.

[37] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Ima-
geNet Classification Using Binary Convolutional Neural Networks. In European Conference on
Computer Vision, 2016.

[38] R. Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis. Springer, 1998.

12

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://papers.nips.cc/paper/2019/hash/9ca8c9b0996bbf05ae7753d34667a6fd-Abstract.html
https://papers.nips.cc/paper/2019/hash/9ca8c9b0996bbf05ae7753d34667a6fd-Abstract.html
https://arxiv.org/abs/2010.03058
https://arxiv.org/abs/2010.03058
https://openreview.net/forum?id=ryM_IoAqYX
https://jmlr.org/papers/v18/16-456.html
https://jmlr.org/papers/v18/16-456.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://ojs.aaai.org/index.php/AAAI/article/view/11713
https://ojs.aaai.org/index.php/AAAI/article/view/11713
https://arxiv.org/abs/1605.04711
https://papers.nips.cc/paper/2017/hash/1c303b0eed3133200cf715285011b4e4-Abstract.html
https://papers.nips.cc/paper/2017/hash/1c303b0eed3133200cf715285011b4e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://openreview.net/forum?id=BJg4NgBKvH
https://openreview.net/forum?id=BJg4NgBKvH
http://www.numdam.org/item/?id=BSMF_1965__93__273_0
https://link.springer.com/article/10.1007/s10107-007-0149-x
https://ieeexplore.ieee.org/document/8100244
https://openjournals.uwaterloo.ca/index.php/vsl/article/view/334
https://www.sciencedirect.com/science/article/pii/0022247X79902348
https://www.sciencedirect.com/science/article/pii/0022247X79902348
https://arxiv.org/abs/1809.03368
https://www.sciencedirect.com/science/article/pii/S0031320320300856?casa_token=FlLWznLCMXoAAAAA:K5kZjb_9IOI9u4e_t1YNfaOxW_OeNeTDCyYqasMa9Pm-SE5mQPJcVumUQwangEAnlq9zKW8fxzU
https://www.sciencedirect.com/science/article/pii/S0031320320300856?casa_token=FlLWznLCMXoAAAAA:K5kZjb_9IOI9u4e_t1YNfaOxW_OeNeTDCyYqasMa9Pm-SE5mQPJcVumUQwangEAnlq9zKW8fxzU
https://link.springer.com/chapter/10.1007%2F978-3-319-46493-0_32
https://link.springer.com/chapter/10.1007%2F978-3-319-46493-0_32
https://link.springer.com/book/10.1007/978-3-642-02431-3

[39] Oran Shayer, Dan Levi, and Ethan Fetaya. Learning Discrete Weights Using the Local Repa-
rameterization Trick. In International Conference on Learning Representations, 2018.

[40] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy Considerations
for Deep Learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3645-3650, 2019.

[41] Yanzhi Wang, Zheng Zhan, Liang Zhao, Jian Tang, Siyue Wang, Jiayu Li, Bo Yuan, Wujie Wen,
and Xue Lin. Universal Approximation Property and Equivalence of Stochastic Computing-
Based Neural Networks and Binary Neural Networks. In Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence, 2019.

[42] Lin Xiao. Dual Averaging Methods for Regularized Stochastic Learning and Online Optimiza-
tion. Journal of Machine Learning Research, 11:2543-2596, 2010.

[43] Chen Xu, Jiangiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, and Hongbin
Zha. Alternating Multi-bit Quantization for Recurrent Neural Networks. In International
Conference on Learning Representations, 2018.

[44] P Yin, S Zhang, YY Qi, and J Xin. Quantization and Training of Low Bit-Width Convolutional
Neural Networks for Object Detection. Journal of Computational Mathematics, 37(3), 2019.

[45] Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong Qi, and Jack Xin.
BinaryRelax: A Relaxation Approach for Training Deep Neural Networks with Quantized
Weights. SIAM Journal on Imaging Sciences, 11(4):2205-2223, 2018.

[46] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J. Osher, Yingyong Qi, and Jack Xin.
Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets. In
International Conference on Learning Representations, 2019.

[47] Yaoliang Yu. Fast Gradient Methods for Structured Sparsity. PhD thesis, University of Alberta,
2013.

[48] Yaoliang Yu, Xun Zheng, Micol Marchetti-Bowick, and Eric Xing. Minimizing Nonconvex
Non-Separable Functions. In Artificial Intelligence and Statistics, 2015.

[49] Yaoliang Yu, Xinhua Zhang, and Dale Schuurmans. Generalized Conditional Gradient for
Structured Sparse Estimation. Journal of Machine Learning Research, 18:1-46, 2017.

[50] Mingrui Zhang, Lin Chen, Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Quantized
Frank—Wolfe: Faster Optimization, Lower Communication, and Projection Free. In Interna-
tional Conference on Artificial Intelligence and Statistics, 2020.

[51] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental Network Quan-
tization: Towards Lossless CNNs with Low-precision Weights. In International Conference on
Learning Representations, 2017.

[52] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-
Net: Training low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.
arXiv:1606.06160, 2016.

[53] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained Ternary Quantization. In
International Conference on Learning Representations, 2018.

13

https://openreview.net/forum?id=BySRH6CpW
https://openreview.net/forum?id=BySRH6CpW
https://www.aclweb.org/anthology/P19-1355/
https://www.aclweb.org/anthology/P19-1355/
https://ojs.aaai.org//index.php/AAAI/article/view/4475
https://ojs.aaai.org//index.php/AAAI/article/view/4475
https://jmlr.csail.mit.edu/papers/v11/xiao10a.html
https://jmlr.csail.mit.edu/papers/v11/xiao10a.html
https://openreview.net/forum?id=S19dR9x0b
https://par.nsf.gov/biblio/10112553
https://par.nsf.gov/biblio/10112553
https://epubs.siam.org/doi/abs/10.1137/18M1166134
https://epubs.siam.org/doi/abs/10.1137/18M1166134
https://openreview.net/forum?id=Skh4jRcKQ
https://cs.uwaterloo.ca/~y328yu/mypapers/thesis_long.pdf
http://proceedings.mlr.press/v38/yu15.html
http://proceedings.mlr.press/v38/yu15.html
https://www.jmlr.org/papers/v18/14-348.html
https://www.jmlr.org/papers/v18/14-348.html
http://proceedings.mlr.press/v108/zhang20g.html
http://proceedings.mlr.press/v108/zhang20g.html
https://openreview.net/forum?id=HyQJ-mclg
https://openreview.net/forum?id=HyQJ-mclg
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160
https://openreview.net/forum?id=S1_pAu9xl

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] As discussed, the goal of our paper
is to improve the understanding of BinaryConenct [11] and obtain novel generalizations.
We therefore focus more on theory than empirical results. As a result, we only did
extensive experiments on one dataset (CIFAR-10) with one architecture (ResNet20/56).
As discussed in Section 6.2, our experiments on ImageNet are not exhaustive; both
due to environmental reasons as well as limited availability of compute. In the future,
we aim to do more exhaustive testing of ProxConnect (different architectures and
problems), while keeping in mind the carbon footprint that comes with it.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
the first paragraph of Section 1: quantization leads to decreased carbon footprint for
training and inference (positive societal impact), however, it may come at the cost of
increased bias (negative societal impact).

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are provided
in the Appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? We will provide
the code once it has been approved by our internal process. We only ran experiments
on publicly available datasets.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6, Appendix B.1 and Appendix B.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All experiments are over three random seeds; we provide
mean and standard deviation for all results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] The amount of compute in the
exploration stage of our project was insignificant compared to the experiments reported
in this work. See Appendix B.1.6 and Appendix B.8 for the total amount of compute
we used for the experiments reported in this work.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.1
and Section 6.2.

(b) Did you mention the license of the assets? [Yes] Yes, the license of CIFAR-10 (MIT

license) is included in the bibliography entry. The ImageNet dataset is “is available for
free to researchers for non-commercial use”.

(c) Did you include any new assets either in the supplemental material or as a URL?
We will provide the code once it has been approved by our internal process.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

14

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

15

	Introduction
	Background
	What Makes a Good Quantizer?
	General Piecewise Linear Quantizers

	Demystifying BinaryConnect (BC)
	Generalized Conditional Gradient is Primal-Dual
	BC is a subset of DA is a subset of GCG

	ProxConnect (PC): A Generalization of BinaryConnect
	Experiments
	Classification on CIFAR-10
	Classification on ImageNet

	Conclusion
	Proofs
	Proofs for Section 3
	Proofs for Section 4
	Proofs for Section 5
	Discussion of Theorem A.3

	Implementation and Experiment Details
	CIFAR-10
	Model and Quantization Details
	Data Augmentation
	Pretrained Full Precision Model Setup
	Fine-Tuning Setup
	End-To-End Setup
	Compute and Resources
	Additional Results

	ImageNet
	Model and Quantization Details
	Data Augmentation
	Pretrained Full Precision Model Setup
	Fine-Tuning Setup
	End-To-End Setup
	Compute and Resources

