
Under review for the Training Agents with Foundation Models Workshop at RLC 2024

Language Model-In-The-Loop: Data Optimal Ap-
proach to Recommend Actions in Text Games

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) have demonstrated superior performance in lan-
guage understanding benchmarks. A recent use case for LLMs involves training
decision-making agents over textual information. The existing approach leverages
LLM’s linguistic priors for action candidate recommendations in text games, i.e., to
operate without environment-provided actions. However, adapting LLMs to specific
games/tasks requires a massive amount of annotated human gameplay. Moreover,
in the existing approach, the language model was kept frozen during an agent’s
training process, which limits learning from in-game knowledge about the world.
Hence, we explore strategies to adapt the language model for candidate recommen-
dation with in-game transition in an online learning fashion to mitigate reliance on
human-annotated gameplays, which are costly to acquire. In this paper, we pro-
pose in-game transition selection methods to adapt the LLM in the loop, reducing
the dependency on using human-annotated gameplays while improving performance
and convergence. Our method demonstrates a 53% relative improvement in aver-
age game score over the previous state-of-the-art model, achieving more than twice
the convergence rate in a full-annotated dataset setting. Furthermore, even with
only 10% of human annotation, we surpassed the 100% state-of-the-art performance
benchmark.

1 Introduction

Large Language Models (LLMs) (Devlin et al., 2019a; Radford et al., 2018b; Ouyang et al., 2022)
trained on large corpora of unstructured text corpora are the state-of-the-art models in several Nat-
ural Language Understanding (NLU) benchmarks. Bender & Koller (2020) argue in their position
paper that the models mainly trained from static benchmarks rely on the form rather than under-
standing the meaning. Also, there has been a recent interest in interactive training of large language
models in situated learning environments. Bisk et al. (2020); McClelland et al. (2020) point out the
necessity for LMs to have enhanced language understanding and meaning through interacting with
the physical world. Also, Lake & Murphy (2021) argues that LMs fall short in their communicative
usage, requiring reasoning over intents despite their success in static datasets.

Training decision-making agents over textual information for playing text-based games (Hausknecht
et al., 2020; Côté et al., 2018) has been a recent use case for LLM. While decision-making has been
the front of text-game playing, such games introduce novel challenges for language understanding
and domain adaptation for LLMs. Jerchio (Hausknecht et al., 2020) is a collection of text-based
games; a sample gameplay from “Zork1” is illustrated as in Figure 1. An agent receives a textual
observation about its environment that it has to understand and reason over the possible actions
to pick one and proceed. The Zork1 game has a vocabulary size of 697 and has approximately
6974 ∼ 200 billion potential 4-word actions. Such a setup allows for qualitatively understanding the
LLM’s abilities to understand, reason, and adapt to novel situations.

1



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

Figure 1: Sample gameplay from the Zork1
game in Jericho using LM for action recom-
mendation: LM recommends action candi-
dates based on observations from the environ-
ment. The RL agent selects an action from
the candidates.

To handle combinatorially large action space,
CALM (Yao et al., 2020) introduced a dataset with
a corpus of human gameplay on similar games called
ClubFloyd to finetune the GPT-2 to generate can-
didate actions. Then, these actions are used by
the decision-making agent called the Deep Rein-
forcement Relevance Network (DRRN) (He et al.,
2016) on the Jericho benchmark (Hausknecht et al.,
2020)–a suite of text-based games–. After the initial
adaptation to the human-annotated corpus, the lan-
guage model remains frozen throughout the learning
within the game. Further, they observed that the
performance of the text-based games in the Jericho
benchmark is proportional to the size of the anno-
tated human gameplay corpus; such reliance adds to
the cost and makes it hard to transfer this approach
to other problem settings.

On the one hand, there is a need to mitigate the re-
liance on human-annotated transitions to scale ap-
plications of LLMs. On the other hand, in-game
transitions remain unutilized for training the LLM. Although one can use the transitions to train
the model, the solution requires a comprehensive analysis of what such an LM-in-the-loop training
entails.

Toward that goal, we study different strategies to adapt an LM in an online fashion. We use a buffer
to store in-game transitions during training to collect several data points along the timesteps. The
reason for this buffer is to enable batched updates and reduce the stochasticity of the LM updates.
We employ diverse sampling techniques to sample data from the buffer to adapt the language model.
Further, we analyze such a setup along three main dimensions: (1) Performance, (2) Convergence
rate, and (3) Reliance on human-annotated transitions.

The main contributions of this work are summarized as follows:

• Proposed a framework for adapting language models for action suggestions through in-game-
generated transitions.

• Explored different approaches to adapting the language model with in-game transitions.

• Adapting LM using state feature-based transitions selection provided more significant per-
formance gains and faster convergence over the state-of-the-art performance benchmark.

• LM-in-the-Loop reduces the emphasis on human-annotated transitions and enables acceler-
ated convergence.

2 Related Work

Text Games: Jericho (Hausknecht et al., 2020) is a popular learning environment that supports 32
human-written interactive fiction games. These games are designed to be difficult for human players,
serving as a more realistic training ground to evaluate language understanding agents. Compared
with frameworks like TextWorld (Côté et al., 2018), these games have significantly more linguistic
variety and larger action space. Jericho environment provides a smaller list of candidate actions
that can be used to train reinforcement learning (RL) agents. Approaches like DRRN (He et al.,
2016), TDQN (Hausknecht et al., 2020), and KGA2C (Ammanabrolu & Hausknecht, 2020) have
used handicap to operate on small action space and learn only through in-game rewards. Towards
using large LMs, environment-provided actions are replaced with LM-generated actions like with
GPT-2 (Yao et al., 2020), or BERT (Singh et al., 2021).

2



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

Transformers in RL: Transformer architectures are now being increasingly used in reinforcement
learning (RL); Chen et al. (2021); Janner et al. (2021) use smaller transformer architectures on
Atari games that earlier used convolutional networks as policy networks in offline settings. Further
adaptations to make the architectures lightweight to enable online training was proposed in Xu et al.
(2020); Parisotto et al. (2019); Ouyang et al. (2022); Reid et al. (2022); Tarasov et al. (2022); Ahn
et al. (2022). Yao et al. (2020) explore using the semantic prior in GPT-2 for candidate action
recommendation in text games. Further, Tuyls et al. (2022); Li et al. (2022) train LMs to remember
optimal trajectories to move to novel game regions swiftly.

Data Efficiency: LLMs (Devlin et al., 2019b; Brown et al., 2020) are pre-trained with a tremen-
dous amount of unstructured text data from the web using a generic language modeling objective.
Adapting the models to downstream tasks(Khashabi et al., 2020; Rajpurkar et al., 2016; Zhang
et al., 2015; Maas et al., 2011), however, is greatly affected by the quality of supervision and the
dataset size. As reliance on annotated data makes their application hard to scale, techniques like
data augmentation Feng et al. (2021), using distilled models Radford et al. (2018a), and learning
from toyish data Wu et al. (2022) have been explored as alternatives. In contrast, our approach
aims to reduce the need for human annotations to adapt LM in an interactive learning setup.

3 Background

3.1 Text Games

In text-based games, at each step, t, a learning agent interacts with the game environment by
generating a textual action at ∈ At that is relevant to the textual observation ot. The agent
receives a scalar reward rt = Rt (ot, at). The agent maximizes the expected cumulative rewards
(r0, r1, r2, . . . rN ), until the end of an N -step-long episode.

3.2 DRRN and Advantage Function

A popular deep RL method used in text-based games is the Deep Reinforcement Relevance Network
(DRRN) (He et al., 2016). The observation (o) and actions (a) are first encoded using separate
recurrent neural network encoders (such as a GRU (Chung et al., 2014)) fo and fa, respectively. A
decoder g then combines the representations to obtain the Q-value using a network parameterized
by Φ:

QΦ(o, a) = g(fo(o), fa(a)). (1)

The DRRN learns to estimate the Q-value through iteratively updating Φ with experience sampled
from a prioritized experience replay buffer with the temporal difference (TD) loss:

LTD(Φ) =
(

r + γ max
a′∈A

QΦ(o′, a′) − QΦ(o, a)
)2

, (2)

where r and o′ are the reward and the observation received after taking action a upon observing o,
and γ represents the discount factor.

Advantage function: An estimate how good an action, a, is when chosen in a state, o, is obtained
by subtracting the value of the state (V (o))—a weighted average of the Q-values— from the Q(o, a)
of that particular action in that state.

A(o, a) = QΦ(o, a) − V ψ(o) (3)

Q-Value estimates the expected reward after a specific action was played, whereas Vψ(o) is the
parameterized estimate of the expected reward from being in o before an action was selected.

3



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

3.3 LLM for Action Recommendation

Consider a dataset D of N transitions of human gameplay across different games organized in
context-action pairs as ((ot−1, at−1, ot), at). For example, a sample could be like, “[CLS]. . . to the
north is a restaurant where the mayor ate often. to the east is the mayor’s home.
[SEP] northeast[SEP] . . . you are carrying nothing. you are still on the streets.
. . . [SEP] northeast”. [SEP] and [CLS] are special tokens specific to LM-training. Yao et al.
(2020) uses the ClubFloyd dataset to adapt a pre-trained GPT-2 model with a causal language
modeling task. The motivation is to enable the linguistic prior of GPT-2 to adapt to the games
and provide better action recommendations to the DRRN.

4 Methodology

4.1 LM-in-the-Loop to recommend Actions

The game-playing agent takes sequence of actions according to the game’s rules in the Jericho
environment. The environment has two scenarios—with and without handicap—which correspond to
whether the actions can be generated from within the possible actions suggested by the environment
or without any limitations by the environment respectively. The with handicap setup evaluates the
agent exclusively on planning with the actions provided. In contrast, the without handicap requires
the agent, in addition to understanding the observation, to generate acceptable candidates.

In CALM (Yao et al., 2020), the LLM is kept constant throughout the gameplay. We use a sim-
ilar setup for action recommendation as in CALM, where a trained GPT-2 LM is adapted with
the Clubfloyd dataset to recommend actions to the DRRN agent. We explore the feasibility,
prospects, and challenges that entail training LM-in-the-loop post-finetuning with human game-
plays in ClubFloyd adaptation as in Table 1. Towards that, in addition to training the DRRN agent
with TD-learning (Equation 2), we collect the transitions (ot, at, ot+1, rt+1) throughout the game
episode, eTD, and populate them in D+ and D− based on a heuristic that depends on—reward,
return, and the game states.

First, with LM parameterized by θ and generating action candidates, we train DRRN for nRL

consecutive episodes. After nRL episodes, we sample dLM sized dataset from D+, and D− with
probabilities p+ and 1 − p+ respectively for 2000 gradient steps at finetuned after every k game
steps. To train LM, we use a weighted cross-entropy loss:

LLM (θ) = −E(at,ot)∼(D+,D−) log Pθ(at | ot) · h (·) (4)

Then, we plug in back the in-game trained LM to recommend actions for the DRRN agent. The
maximum buffer size of D+, D−, p+, dLM , and nRL are all game-specific hyperparameters. The
h (·) is defined as a function of reward rt, or action-advantage, A(ot, at), or assumed 1 uniformly
∀(o, a) ∈ O ×A. We evaluate different approaches based on the sampling of transitions, and the loss
function (L), used for training the language model. Approaches for LM-in-the-Loop based on the
construction of D, and sampling are:

Uncategorized Transitions (UT): In this setting the transitions stored in the buffer are not
categorized by any special heuristic function. We simplify this approach by maintaining a single
buffer, D and samples are drawn randomly from the buffer D. This is a weaker baseline than other
heuristics for selecting useful transitions based on their importance.

Uncategorized Transitions - Linear weighted Advantage (UTLA) : In this, the transition
data is kept in a single buffer D similar to in the UT setting. To finetune the language model using
the weighted cross-entropy loss (Equation 4), we use the weighted advantage function (Equation 3).

4



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

Figure 2: Training LM-in-the-Loop post-human-annotated dataset adaptation: RL agent (DRRN)
picks the action the language model recommends (at T ), GPT-2. The context pairs are stored in the
replay buffers and categorized according to some heuristics. Then, the Language model is updated
with in-game transitions after k learning steps in the game. Finally, the updated language model
(T + k) actions are recommended.

This variant, UTLA, allows for negative weights [−∞, +∞] with h(·) as follows:

h(ot, at) = 1 + β · A(ot, at), (5)

where, β ∈ R+ is a hyperparameter.

Uncategorized Transitions - Exponential weighted Advantage (UTEA) : The procedure
is very similar to UTLA. However, in UTEA we use exponential weighted advantage function which
is strictly non-negative [1, +∞] using h(·) function:

h(ot, at) = eβ·A(ot,at), (6)

where, β ∈ R+ is a hyperparameter.

Reward Trajectories (RT): The reward from transitions, rt, is used to categorize positive and
negative trajectories. When rt > 0 all transitions up until the earlier non-zero reward are considered
positive and added to D+. Further, we explore utilizing the return, reward, and advantage function
of actions to re-weight LLM using the h (·) function over UT setting as above. We describe them
as follows:

State Features (SF): In this, the transitions are labeled as useful or not based on whether an
action at resulted in reward increase or if the agent’s location changed. i.e., moved from one room
to another. The location information received is an artifact of the game framework. Further, we
vary p+ to maximize the transitions that encourage exploration to eventually result in improved
performance in the game. Here, h (·) is fixed as 1 uniformly ∀(o, a) ∈ O × A.

5 Experiments

We perform comprehensive experiments with LM-in-the-loop setup to study the following questions:

1. Does including the language model in the training loop improve performance?

2. Should the transitions be categorized for improved learning?

3. Does LM-in-the-Loop mitigate the reliance on human gameplay transitions?

5



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

5.1 Task Adaptation Dataset

ClubFloyd dataset (Yao et al., 2020) is a collection of crawled data from the ClubFloyd website.
The dataset comprises gameplay from experienced players; however, they may not be familiar with
the particular games, so the actions are not optimal. This dataset includes 426 transcripts covering
590 unique games; and contains 223, 527 pairs of context and in the form of ((ot−1, at−1, ot), at).

5.2 Benchmark and the Metric

Jericho (Hausknecht et al., 2020) is a learning environment that supports human-written interactive
fiction games as described in Figure 1. We chose 10 games based on the diversity in the challenges
faced in each game, such as large action space, solution length, and reward sparsity as mentioned in
Hausknecht et al. (2020). We use the average of the last 100-episodes’ score with standard error for
individual games as our metric for evaluation.

In addition, we report the average normalized (avg. norm) score against the maximum score possible
in each game, which estimates the human-machine gap in text-based games. Finally, we also report
the relative performance percentage difference between the baseline and the best approach mentioned
as ∆% in Table 1 to capture the improvement as the scores’ range in each game differs.

5.3 Model Details

Language model (GPT-2) is first finetuned on the ClubFloyd dataset. Given the context,
(ot−1, at−1, ot), the finetuned GPT-2 proposes action candidates for DRRN to choose. Following
that, every action candidate and context is encoded with a GRU. Then, a decoder combines the rep-
resentations to estimate the Q-value using a multilayer Perceptron (MLP) and updates the DRRN
agent parameter Φ. During the training process of the DRRN agents, the context-action pairs are
stored in the replay buffers. After k steps, we sample dLM sized dataset from D+, and D− with
probabilities p+ and 1 − p+ respectively and update the language model with in-game transitions.
Then, the updated language model is used to propose the action candidates.

The buffer size is 100K for replay buffers that use the First-In-First-Out (FIFO) strategy to replace
samples. To train, dLM samples are sampled uniformly randomly from the two buffers D+ and D−.
However, the probability of choosing the buffers is defined by p+ and p− (1 − p+), respectively. The
number of gradient steps for LM training is fixed at 2000 across the setups. And, across games we
experiment with the hyperparameter p+ ∈ [0, 1] in 0.1 increment, and the value for LM finetuning
frequency k ∈ [2k, 5k, 10k, 20k]. The results tabled are estimated from 5 runs.

6 Results

We follow the questions enumerated in §5 to analyze the effect of in-game learning of language
models for action recommendations.

6.1 Effect on Performance

To understand the effect on performance with LM-in-the-Loop, we follow the experimental setup in
§5.3 to evaluate the Jericho benchmark. Table 1 compares the different methods detailed in §4.1
with reproduced norm score of CALM as the baseline. We see that categorizing the transitions
using state features (SF) scored the highest in all tasks, suggesting that LM-in-the-Loop enables
improved performance. The improvement in the average norm score was approximately 4% over the
baseline. , which translates to about ≈ 53% more average improvement over the scores obtained by
the baseline model. We refer to Appendix A for the learning graph for individual games for 5 seeds.

However, the improvement with SF is, in a way, a loose upper bound to in-game learning with LM-
in-the-Loop, as special techniques to reweight the transitions (UTLA, and UTEA), or reward-based
categorization RT only improved the avg. norm score by ≈ 0.6%. On the other hand, the avg. norm

6



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

Games CALM1 UT2 UTLA
3 UT4EA RT5 SF6 ∆(%)(6−1) Max

Score

Zork1 30.7[4.8] 32.6[4.4] 30.4[8.5] 35.6[5.7] 30.7[3.8] 38.0[1.7] 23% 350
Inhumane 24.8[2.7] 21.9[5.24] 28.9[11] 27.3[3.1] 29.1[12.7] 43.4[3.8] 75% 90
Detective 290.9[2.7] 288.5[1.5] 289.3[0.2] 288.3[1.3] 285.1[5.6] 288.5[1.5] 0% 360
Zork3 0.3[0.09] 0.3[0.14] 0.4[0.1] 0.6[0.1] 0.6[0.1] 0.7[0.2] 133% 7
Omniquest 6.7[0.3] 6.0[0.6] 6.6[0.9] 6.6[1] 6.0[0.79] 7.8[1.7] 16% 50
Library 11.2[1.3] 9.3[1.1] 9.5[1] 10.3[0.2] 10.3[1.8] 12.1[0.7] 8% 30
Balances 9.3[0.2] 9.6[0.1] 9.6[0.2] 9.5[0.2] 9.7[0.2] 9.7[0.1] 4% 51
Ludicorp 10.4[0.7] 11.4[2.6] 12.5[1.1] 11.9[2.6] 11.3[3.1] 15.1[0.8] 45% 150
Dragon 0.1[0.06] 0.1[0.1] 0.3[0.3] 0.3[0.3] 0.1[0.12] 0.3[0.2] 200% 25
Ztuu 3.8[0.18] 4.4[0.0] 4.5[0.2] 4.4[0.1] 4.3[0.1] 4.5[0.1] 18% 100

Norm Score 20.1% 19.1% 20.6% 20.9% 20.7 % 24.0% 52.37% 100%

Table 1: From the results, it can be consistently seen that LM-in-the-Loop provides a performance
improvement over CALM. Especially, categorizing the transitions with state features (SF) scored
the highest with ∼ 53% improvement over the scores obtained by the baseline model.

score with Uncategorized Transitions (UT) dropped to 19.2% which is ∼ 1% below the baseline
performance. The difference in performance between UT, and SF with the baseline suggests that
LM-in-the-loop for action recommendation is helpful but requires careful selection of transitions for
training the language model.

In Figure 3, we compare the % of steps in-game learning methods took on average to achieve k%
of the CALM model’s best performance across the games. We see that LM-in-the-Loop techniques
enabled at least 2× on average acceleration in convergence. Although alternatives like reward-based
categorization and reweighted techniques only provided meager improvements over the baseline
(Table 1), they still show accelerated coverage with 40% to reach the baseline score.

6.2 Effect of Weight Adjusted LM Loss

Figure 3: We see that LM-in-the-Loop techniques
only need half of the steps to achieve the best
of CALM. Using state feature-based categoriza-
tion (SF) achieves better acceleration and perfor-
mance over the rest.

Categorization of transitions, although possible
in most games, often requires game-specific func-
tions to identify what a good and a bad transi-
tion is. However, a generalized technique would
be to use a notion of the usefulness of transi-
tions that do not require game-specific mecha-
nisms. We explore reweighted cross-entropy loss
as in Equation 4 with variations of the h(·) func-
tions from being uniformly distributed as 1 over
(o, a) ∈ O × A to using advantage function with
two variations as in Equation 6 and Equation 5.
While UT uses vanilla cross-entropy loss to train
the LM on transitions sampled from buffer D,
UTEA and UTLA adjusts the experience accord-
ing to the advantage, A(o, a), of the actions cho-
sen in those observations.

We use causal language modeling to train the
GPT-2 LM to discourage the LM from generating
a helpful action in a state and discourage the not
useful. As A(o, a) ∈ [−∞, +∞], it is important
to understand how it affects the language model. A negative advantage for a′ in o′ should discourage
the LM from suggesting a′ in o′. UTEA re-scales the LM-loss with h(·) ∈ [0, 1), while UTLA works

7



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

similar to Unlikelihood training as proposed in Welleck et al. (2019) by maintaining the same scale as
A(o, a). However, from the results, we see that the differences in reweighting did not tangibly affect
the performance as seen in Table 1 (Columns UTEA and UTLA). However, there is an accelerated
convergence as shown in the Figure 3. Even with 40% of interactions, it reached the baseline
approach-CALM performance.

6.3 Emphasis on Human Annotations

Games CALM1 CALM 2 SF3 ∆(%)
100% 10% 10% (3−2)

Zork1 30.7[4.8] 29[3.4] 35.1[2.3] 21%
Inhumane 24.8[2.7] 15.7[14.7] 27.5[6.8] 75%
Detective 290.9[2.7] 289.5[0.2] 289.6[0.2] 0%
Zork3 0.3[0.09] 0.6[0] 0.7[0.3] 16%
Omniquest 6.7[0.3] 5.9[0.8] 6.0[1] 1%
Library 11.2[1.3] 10.5[1.5] 10.2[1.8] (2)%
Balances 9.3[0.2] 6.6[3.5] 8.6[1.6] 30%
Ludicorp 10.4[0.7] 10.2[0.4] 13.7[0.4] 34%
Dragon 0.1[0.06] 0.1[0.06] 0.3[0.2] 200%
Ztuu 3.8[0.18] 3.6[0.1] 4.1[0.1] 13%

Norm 20.1% 18.5% 21.8 % 39.0%

Table 2: Using State Features (SF) achieved an average
norm score of 21.8% with 10%, which was more than
even with CALM using 100% baseline.

CALM model—the baseline— uses all of
the ∼ 223K transitions in the ClubFloyd
dataset to adapt the GPT-2 model for ac-
tion recommendation. However, using in-
game transitions for LM-in-the-loop train-
ing provides the LM with game-specific in-
formation. The requirement for adapting
GPT-2 with human-annotated transitions
should be minimal. The existing approach
shows that performance decreased signifi-
cantly when adaptation was done with 10%
of the ClubFloyd dataset. The reproduced
results of CALM with 10% of adaptation
data show the average norm score as 18.5%
across the games in Table 2. Using State
features (SF) with 10% of the adaptation
date achieved an average norm score of
21.8%, more than even using 100% of the
adaptation data with CALM. Although there was a small decline in the performance of the detec-
tive game, it was insignificant because it was still within the standard error. These results suggest
empirically that we can reduce the burden of collecting human-played or human-annotated data by
doing in-game learning.

7 Conclusion

In this work, we proposed frameworks for selecting in-game transitions to adjust the LLM to reduce
the reliance on human-annotated gameplays while enhancing performance and convergence. We used
various sampling strategies to adapt an LM in an online setting by utilizing a buffer to store in-game
transitions. The results indicate that categorizing the transitions using state features yielded the
best performance across all tasks, demonstrating the effectiveness of LM-in-the-Loop. Furthermore,
in-game training accelerates the convergence in most games. Moreover, our findings suggest that LM-
in-the-loop training can alleviate the burden of collecting human game plays. In conclusion, adapting
a language model using in-game trajectories showed improved performance, faster convergence, and
more sample efficiency.

Limitations

The paper analyzes the possibility and challenges in LM-in-the-Loop training of the GPT-2 model
for action recommendation in text-based games. The claims in the work can be further supported
with experiments on different LLMs. Similarly, the generalization experiments could have added
more support to the lack of evidence with additional games. However, these are compute-intensive
experiments, and the claims are largely made in consideration of the limitations in the setup.

8



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea

Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can, not as i say: Grounding language in robotic affordances, 2022. URL https:
//arxiv.org/abs/2204.01691.

Prithviraj Ammanabrolu and Matthew Hausknecht. Graph constrained reinforcement learning for
natural language action spaces. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=B1x6w0EtwH.

Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form, and understand-
ing in the age of data. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 5185–5198, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.463. URL https://aclanthology.org/2020.acl-main.463.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.
Software available from wandb.com.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai,
Mirella Lapata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, and
Joseph Turian. Experience grounds language. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 8718–8735, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.703. URL
https://aclanthology.org/2020.emnlp-main.703.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Had-
sell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, vol-
ume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
a7APmM4B9d.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning,
December 2014, 2014.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew J. Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler.
Textworld: A learning environment for text-based games, 2018. URL http://arxiv.org/abs/
1806.11532.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,

9

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://openreview.net/forum?id=B1x6w0EtwH
https://aclanthology.org/2020.acl-main.463
https://www.wandb.com/
https://aclanthology.org/2020.emnlp-main.703
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=a7APmM4B9d
http://arxiv.org/abs/1806.11532
http://arxiv.org/abs/1806.11532


Under review for the Training Agents with Foundation Models Workshop at RLC 2024

and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
4171–4186. Association for Computational Linguistics, 2019a. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
4171–4186. Association for Computational Linguistics, 2019b. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mita-
mura, and Eduard Hovy. A survey of data augmentation approaches for nlp. arXiv preprint
arXiv:2105.03075, 2021.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Inter-
active fiction games: A colossal adventure. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 34(05):7903–7910, Apr. 2020. doi: 10.1609/aaai.v34i05.6297. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/6297.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1621–
1630, Berlin, Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/
v1/P16-1153. URL https://aclanthology.org/P16-1153.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 1273–1286.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
099fe6b0b444c23836c4a5d07346082b-Paper.pdf.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient text
classification. In Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers, pp. 427–431, Valencia, Spain, April 2017.
Association for Computational Linguistics. URL https://aclanthology.org/E17-2068.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark,
and Hannaneh Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA sys-
tem. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1896–
1907, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.171. URL https://aclanthology.org/2020.findings-emnlp.171.

Brenden M. Lake and Gregory L. Murphy. Word meaning in minds and machines. Psychological
review, 2021.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An
Huang, Ekin Akyürek, Anima Anandkumar, Jacob Andreas, Igor Mordatch, Antonio Torralba,
and Yuke Zhu. Pre-trained language models for interactive decision-making. arXiv, 2022.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://
www.aclweb.org/anthology/P11-1015.

10

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://ojs.aaai.org/index.php/AAAI/article/view/6297
https://aclanthology.org/P16-1153
https://proceedings.neurips.cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://aclanthology.org/E17-2068
https://aclanthology.org/2020.findings-emnlp.171
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015


Under review for the Training Agents with Foundation Models Workshop at RLC 2024

James L McClelland, Felix Hill, Maja Rudolph, Jason Baldridge, and Hinrich Schütze. Placing
language in an integrated understanding system: Next steps toward human-level performance in
neural language models. Proceedings of the National Academy of Sciences, 117(42):25966–25974,
2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022. URL https://openreview.net/forum?id=TG8KACxEON.

Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Çaglar Gülçehre, Siddhant M.
Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, Matthew M.
Botvinick, Nicolas Heess, and Raia Hadsell. Stabilizing transformers for reinforcement learning.
CoRR, abs/1910.06764, 2019. URL http://arxiv.org/abs/1910.06764.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language un-
derstanding by generative pre-training, 2018a.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2018b. URL https://d4mucfpksywv.cloudfront.
net/better-language-models/language-models.pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2383–2392, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/
D16-1264.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning? CoRR, abs/2201.12122, 2022. URL https://arxiv.org/abs/2201.12122.

Ishika Singh, Gargi Singh, and Ashutosh Modi. Pre-trained language models as prior knowledge for
playing text-based games. CoRR, abs/2107.08408, 2021. URL https://arxiv.org/abs/2107.
08408.

Denis Tarasov, Vladislav Kurenkov, and Sergey Kolesnikov. Prompts and pre-trained language mod-
els for offline reinforcement learning. In ICLR 2022 Workshop on Generalizable Policy Learning
in Physical World, 2022. URL https://openreview.net/forum?id=Spf4TE6NkWq.

Jens Tuyls, Shunyu Yao, Sham M. Kakade, and Karthik R Narasimhan. Multi-stage episodic control
for strategic exploration in text games. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=Ek7PSN7Y77z.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-
vain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pp. 38–45, Online, October
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL
https://aclanthology.org/2020.emnlp-demos.6.

Yuhuai Wu, Felix Li, and Percy Liang. Insights into pre-training via simpler synthetic tasks. arXiv
preprint arXiv:2206.10139, 2022.

11

https://openreview.net/forum?id=TG8KACxEON
http://arxiv.org/abs/1910.06764
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://arxiv.org/abs/2201.12122
https://arxiv.org/abs/2107.08408
https://arxiv.org/abs/2107.08408
https://openreview.net/forum?id=Spf4TE6NkWq
https://openreview.net/forum?id=Ek7PSN7Y77z
https://aclanthology.org/2020.emnlp-demos.6


Under review for the Training Agents with Foundation Models Workshop at RLC 2024

Yunqiu Xu, Ling Chen, Meng Fang, Yang Wang, and Chengqi Zhang. Deep reinforcement learning
with transformers for text adventure games. In 2020 IEEE Conference on Games (CoG), pp.
65–72, 2020. doi: 10.1109/CoG47356.2020.9231622.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep CALM and explore:
Language models for action generation in text-based games. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 8736–8754, Online, Novem-
ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.704.
URL https://aclanthology.org/2020.emnlp-main.704.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

A Appendix

A.1 Language Model and Reinforcement Learning Setup

We use a GPT-2-Base (Radford et al., 2018b) model with 12-layers, 768-hidden units, and 12- atten-
tion heads with 117M parameters pre-trained on the WebText corpus. This model’s implementation
and pre-trained weights are obtained from (Wolf et al., 2020, Huggingface).

We train for 3 epochs on the ClubFloyd dataset following (Yao et al., 2020) to minimize the cross-
entropy loss, as shown in Table 3. We use AdamW to optimize the model’s weights to minimize the
loss, with the learning rate as 2×10−6 and Adam epsilon as 1×10−9. We use a linear schedule with
a warmup of 0.1 for the learning rate. Finally, we clip gradients with a maximum gradient norm of
1. Following Yao et al. (2020)’s finetuning process, we exclude using Jericho-related transcripts by
setting the flag as 1. We used random seeds to select the dataset to avoid bias when selecting data
for the LM training.

Model Metric Final Score
100% Train Loss 1.49

Val Loss 2.65
Train Acc 0.30
Val Acc 0.14

10% Train Loss 1.42
Val Loss 3.04
Train Acc 0.30
Val Acc 0.09

Table 3: Pre-trained GPT-2 Language
Model training details on different data
percentage variants trained for 3 epochs.

We train on 10 interactive fiction games from the Jeri-
cho benchmark (Hausknecht et al., 2020). The states are
observations concatenated with items in the player’s pos-
session and their current location description provided by
the game engine using commands inventory and look. A
single game episode runs for 100 environment steps at
max or gets terminated before the game is over or won.
We use the look and inventory commands to add loca-
tion and inventory descriptions to observations, following
Hausknecht et al. (2020).

We train DRRN asynchronously on 8 parallel instances of
the game environment for 100, 000 steps for each game.
At each step, the Q-value is estimated using the DRRN
agent, and the action is selected based on the soft-exploration policy. Action’s admissibility is
predicted based on the textual response of the game. Then, inadmissible are filtered out using a
FastText model (Joulin et al., 2017). The agent is optimized using Adam optimizer with a 10−5

learning rate. We sample transitions of batch size 64 from priority buffer with a priority fraction of
0.5. The discount factor in determining the importance of the future reward is 0.9. The size of the
embedding dimension is 128, and the hidden dimension is 128. Finally, the gradient is clipped with
a maximum gradient norm of 5. We train 5 separate runs for each game and report the average
score. We use the average of the last 100 episode scores to calculate the final score.

A.2 Learning Plots

12

https://aclanthology.org/2020.emnlp-main.704
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf


Under review for the Training Agents with Foundation Models Workshop at RLC 2024

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(a) Zork 1

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(b) Inhumane

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(c) Detective

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(d) Zork3

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(e) Omniquest

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(f) Library

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(g) Balances

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(h) Ludicorp

13



Under review for the Training Agents with Foundation Models Workshop at RLC 2024

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(i) Dragon

CALM
Reward Based (RB)
Uncategorized Trajectories (UT)
State Features (SF)

(j) Ztuu

Figure 4: Comparison of learning dynamics of the different LM-in-the-Loop techniques with the
baseline CALM agent across the selected 10 games in Jericho for 5 seeds.

A.3 Software Details

We used PyTorch for the code implementation and Huggingface to load pre-trained language models.
We used Weights & Biases (Biewald, 2020) for experiment tracking and visualizations to develop
insights for this paper. Finally, the seaborn package is used to generate plots.

14


