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Abstract

Deep learning excels at capturing complex data
representations, yet quantifying the discrimi-
native quality of these representations remains
challenging. While unsupervised metrics often
assess pairwise sample similarity, classifica-
tion tasks fundamentally require class-level
discrimination. To bridge this gap, we propose a
novel loss function that evaluates representation
discriminability via the Euclidean distance
between the learned similarity matrix and the
true class adjacency matrix. We identify random
consistency—an inherent bias in Euclidean
distance metrics—as a key obstacle to reliable
evaluation, affecting both fairness and discrimi-
nation. To address this, we derive the expected
Euclidean distance under uniformly distributed
label permutations and introduce its closed-form
solution, the Pure Square Euclidean Distance
(PSED), which provably eliminates random
consistency. Theoretically, we demonstrate that
PSED satisfies heterogeneity and unbiasedness
guarantees, and establish its generalization bound
via the exponential Orlicz norm, confirming its
statistical learnability. Empirically, our method
surpasses conventional loss functions across
multiple benchmarks, achieving significant
improvements in accuracy, F1 score, and
class-structure differentiation. (Code is published
in https://github.com/FeijiangLi/ICML2025-
PSED)
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1. Introduction
The representation power (Goodfellow et al., 2016; Ghande-
harioun et al., 2024) of deep learning refers to its ability to
automatically learn and extract features from data through
multi-layer neural networks, eliminating the need for man-
ually designed features. Owing to this powerful capability,
deep learning has been widely applied across various fields,
including machine vision (Chen et al., 2020; Kondratyuk
et al., 2024; Dosovitskiy et al., 2021), time-series signal
analysis (Xu et al., 2022; Bian et al., 2024; Crabbé et al.,
2024), and many others.

The strategies for enhancing network representation ability
can be grouped into four categories. First, structural opti-
mization improves feature extraction through multi-scale
learning (He et al., 2016; Lin et al., 2017) or self-attention
mechanisms (Vaswani et al., 2017). Second, data enhance-
ment boosts model robustness through data augmentation
and generative modeling, improving generalization (Good-
fellow et al., 2014). Third, training process optimization
prevents overfitting and enhances stability via multi-task
learning and regularization (Srivastava et al., 2014; Ioffe &
Szegedy, 2015; Ng, 2004). Finally, loss function optimiza-
tion aims to guide effective learning by designing suitable
loss functions (Rangapuram et al., 2018). Intuitively, evalu-
ating the quality of sample similarity at the representation
layer in a loss function can be an effective approach.

Recently, an unsupervised measure, dinfor(K), was pro-
posed to quantify the informativeness of similarity matri-
ces (Brockmeier et al., 2017). It computes the distance
between a similarity matrix K and a set of non-informative
matrices. Let Na be the set of non informative matrices
Na = {(1− a)I + aJ, 0 ≤ a ≤ 1}, I is the identity matrix,
J is the full one matrix. The similarity matrix described
by Na represent scenarios where different samples exhibit
uniform similarity. The measure dinfor(K) is defined as:

dinfor(K) = min
0≤a≤1

∥K−Na∥2F , (1)

=
1

n2
∥K∥2F −

1

n− 1
(nK

2 − 2K+ 1),

where K = 1
n21

TK1, n is the number of sample, and
∥ · ∥2F is the Frobenius norm (the square root of the sum of
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squared elements of the matrix). This measure effectively
captures the information embedded in K and can guide K
to assign different similarity values to each pair of samples.
However, the underlying assumption in classification tasks
is that samples from the same class should exhibit higher
similarity compared to those from different classes. The
pairwise-based evaluation dinfor(K) overlooks the broader
class-level distinctions necessary for effective classification.

To evaluate the discriminative ability of the classification
model, an intuitive measure and a novel loss function is the
Square Euclidean Distance (SED), which compares K to
the true adjacency matrix YYT,

dSED(K) = ∥K− YYT ∥2F , (2)

where Y is the one-hot encoding of the true label Y , Y ∈
{0, 1}n×k is the one-hot encoding of the true label vector,
k is the number of classes. However, SED is biased toward
certain non-informative matrices, restricting its capacity to
establish meaningful similarity relationships.

Consistency metrics measure the agreement between two
random variables, while random consistency(RC) refers to
spurious agreement arising purely from randomness (Wang
et al., 2023). A canonical manifestation of RC occurs when
examinees achieve measurable test scores solely via random
response patterns. The mechanisms by which RC harms the
learning process include evaluation distortion, optimization
misguidance, and generalization barriers. Failure to deduct
the RC baseline may lead to overestimating the model’s
actual consistency performance (e.g., an original consis-
tency score of 0.6 vs. a random baseline of 0.2 means
the true effective consistency should be 0.4). When loss
functions include RC without proper correction, they can
induce optimization bias, causing algorithms to spuriously
improve consistency metrics by overfitting to noise (Wang
et al., 2020a) or data bias (Li et al., 2024; Vinh et al., 2010)
instead of learning genuine data patterns. These would con-
sequently impair the model’s generalization ability. The
Pure Consistency Measure (PCM) framework (Wang et al.,
2020a;b) addresses RC in metrics like accuracy (Wang et al.,
2023) and the Gini index (Wang et al., 2024), mitigating
decision and multi-value bias. In clustering, mitigating
RC reduces cluster number bias (Vinh et al., 2010), and in
causal learning, PHSIC (Li et al., 2024) reduces bias related
to dimensionality and sample size.

To address RC in SED, we propose a novel Pure Square Eu-
clidean Distance (PSED) under the Pure Consistency Mea-
sure framework. PSED refines SED by incorporating the
expected distances of adjacency matrices generated through
label permutations as a baseline. This measure can address
the shortcomings of dinfor(K) and dSED(K).

Theoretical analysis of our approach highlights two main
advantages: improved heterogeneity and unbiasedness in

similarity matrix selection, ensuring more reliable represen-
tations of hidden layers. Furthermore, we provide a learning
bound for PSED based on a statistical norm, offering theoret-
ical guarantees on the method’s generalization performance.
In summary, the main contributions are as follows:

• A loss function for measuring the ability of the repre-
sentation layer is proposed, and an explicit solution for
the loss function in the version of eliminating random
consistency is given.

• Through theoretical analysis, the advantages of this
metric in heterogeneity and unbiasedness have been
demonstrated, and a generalization bound has been
provided for the generalization performance of the loss
function in fully connected layer network structures.

• A fully connected network classification model based
on this loss function was proposed, and the effective-
ness of the algorithm was verified through extensive
experiments.

The proofs and some experiment results are in Appendix.

2. Related Work
The main contents involved are loss function and general-
ization bound, and we will review these two aspects.

2.1. Loss Function in Deep Learning

Loss functions in deep learning measure the discrepancy
between model predictions and actual values, guiding the
optimization of model parameters. Common loss functions
include Mean Squared Error (MSE) for regression tasks (Le-
Cun et al., 2015), Cross-Entropy for classification (Hin-
ton et al., 2012), Hinge loss for binary classification with
SVMs (Cortes & Vapnik, 1995), Huber loss combining
MSE and absolute error for robust regression (Huber, 1964),
Kullback-Leibler Divergence for comparing probability dis-
tributions in generative models (Kingma & Welling, 2014),
and Contrastive loss for evaluating sample similarity in met-
ric learning tasks like face verification (Chopra et al., 2005).
Selecting the appropriate loss function is crucial, and cus-
tom ones may be necessary for specific tasks. In this paper,
we propose a metric to measure the quality of similarity
matrices as a loss function to guide deep learning.

2.2. Learn ability

The generalization error represents the gap between the
training error and the test error, with this bound captur-
ing the factors influencing the test error. Existing tradi-
tional theories based on VC dimension and Rademacher
complexity are insufficient to explain the performance of
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deep learning (Vapnik & Chervonenkis, 1971; Bartlett &
Mendelson, 2002). While numerous norm-based bounds
have been proposed (Neyshabur et al., 2015; 2018; Bartlett
et al., 2017; Golowich et al., 2018; Arora et al., 2018), we
choose an exponential Orlicz norm-based concentration in-
equality (Vershynin, 2018). This choice is motivated by
the fact that this norm characterizes the concentration be-
havior of the network parameters, rather than merely the
range of parameter values considered by traditional norms.
Furthermore, exponential Orlicz norm-based inequalities
encompass traditional norm-based inequalities, as for vari-
ables with bounded values, their exponential Orlicz norms
must also be bounded.

3. Definition and Analytic Solution
Given a hypothesis function space F , the task of classifi-
cation is to learn a function h(X) ∈ F that maps from
the feature space X ∈ X ⊆ Rd to the discrete label space
Y ∈ Y . To measure the representation ability of the func-
tion, we seek the Euclidean distance between the adjacency
matrix of the true labels and the similarity matrix calculated
by h(X). We provide an analytical solution as follows:

dSED(K,Y) = ∥K− YYT ∥2F (3)

= ∥K∥2F +

k∑
i=1

m2
i − 2

k∑
i=1

1Tmi
K[i][i]1mi

where 1mi
is single column all 1 vectors of lengthmi, mi is

the number of objects of i class and K[i][i] is the sub kernel
matrix of objects in class i.

Since dSED is a consistency measure, previous work (Wang
et al., 2020a;b) has shown that random consistency exists in
consistency measures. To mitigate random consistency in
Formula 28, we adopt the pure consistency framework.

For two random variables Z1, Z2, the framework of pure
consistency measure (PCM) refers to eliminate random con-
sistency from consistency measure (Wang et al., 2020a;b):

PCM(Z1, Z2) = CM(Z1, Z2)−RCM(Z1, Z2), (4)

where CM(Z1, Z2) represents the degree of consistency
between random variables Z1 and Z2 and RCM(Z1, Z2)
represents the degree of consistency generated by chance.

Then we provide the definition of Pure Square Euclidean
Distance (PSED) in the framework of random consistency:
Definition 3.1. The PSED is defined as:

dPSED(K) = dSED(K,Y)− EY′(dSED(K,Y′)) (5)

= ∥K− YYT ∥2F − EY′(∥K− Y′Y′T ∥2F ),

where Y′ denotes the one-hot encoded label matrix gener-
ated by the permutation of the true label vector Y and EY′

is the expectation over the uniform distribution of Y′.

According to the definition of PSED, EY′(dSED(K,Y′))
requires the computation of all possible cases that follow
the same distribution as the true label Y , involving a to-
tal of n!

m1!m2!···mk!
terms. As a result, its computational

complexity is relatively high. To improve computational
efficiency, an analytical solution for EY′(dSED(K,Y′)) has
been proposed:

Theorem 3.2. Let inr be the set of all r-tuples drawn without
replacement from the set {1, · · · , n}. The analytic solution
of the expectation of EY′(dSED(K,Y′)) is:

EY′(dSED(K,Y′)) (6)

= ∥K∥2F +

k∑
r=1

m2
r − 2

( n∑
i=1

Kii +

k∑
r=1

|imr
2 |
|in2 |

n∑
i,j;i ̸=j

Kij

)
,

where | · | denotes the size of set.

Based on Formula 29 , Formula 5 and Theorem 38, the
analytic solution of PSED is:

dPSED(K) = (7)

2

( n∑
i=1

Kii +

k∑
r=1

|imr
2 |
|in2 |

n∑
i,j;i ̸=j

Kij −
k∑
r=1

1mr
K[r][r]1mr

)
,

where Kij is the value of the i-th row and j-th column of
matrix K. From the analytical expression, it is evident that
the smaller the value of the expression, the closer the matrix
K is to K[r][r]. This shows that in this case, the structure of
K is closer to the class structure.

Next, we provide an analytical solution for PSED with
a computational complexity of O(kn2 + (1 − k)n +∑k
i=1m

2
i ). Compared to the computational complexity of

n!
m1!m2!···mk!

×O(2kn2 +2n2) in Formula 5, the analytical
solution significantly accelerates the computation speed of
the expectation of PSED, ensuring that PSED can serve as
an efficient computational objective function.

4. Properties Analysis
In this section, we mainly analyze the advantages of PSED
compared to dinfor and SED.
Property 1. (Homogeneity of dinfor) Suppose there are
n2 elements, let K and K′ be two square matrices that are
generated by arranging the n2 elements in different ways.
Then we have dinfor(K) = dinfor(K

′).
Property 2. (Heterogeneity of dPSED) Suppose there are
n2−n elements, let the diagonal positions of K and K′ be 1
and their other positions are assigned by the n2−n elements
in different ways. Then if dSED(K) ≤ dSED(K′), we have
that dPSED(K) < dPSED(K

′).

Properties 1 and 2 can be easily derived from the definition
of dinfor and Theorem 38, respectively. These properties
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Figure 1. Comparison with dinfor .

0.0031623 0.031623 0.31623 3.1623 31.6228

Gaussian bandwidth

0

5

10

S
E

D

0.00

8.49 8.44 8.36 8.06
6.93

3.83

1.10
3.53 4.16 4.23

(a) The bias of SED in the imbalanced scene

0.0031623 0.031623 0.31623 3.1623 31.6228

Gaussian bandwidth

-5

0

P
S

E
D

-5.66

-0.00 -0.01 -0.05 -0.15 -0.60

-2.08

-4.01

-0.68
-0.07 -0.01

(b) The unbias of PSED in the imbalanced scene

Figure 2. Comparison with SED.

demonstrate that, compared to dinfor, PSED can effectively
distinguish matrices with different internal structures.

We also verify the above properties in Figure 1 by provid-
ing three sets of adjacency matrices. Each set consists of
matrices with identical proportions of zeros and ones but
differing in their internal structural arrangements, as shown
by ({3, 4, 5}, {6, 7, 8}, {9, 10, 11}). The identical dinfor
value for each set indicates that dinfor cannot distinguish
matrices with different internal structures. In contrast, from
Figure 1(b), the 4, 6, 8, 10 matrices are closer to the first true
adjacency matrix and exhibit lower PSED values. This phe-
nomenon demonstrates the discrimination ability of PSED.
Property 3. (Bias of dSED) For the matrices I and J, when∑k

i=1m
2
i >

n2+n
2 , we have dSED(I) > dSED(J); other-

wise, dSED(I) < dSED(J).
Property 4. (Unbias of dPSED) For any matrix A in Na =
{(1− a)I + aJ, 0 ≤ a ≤ 1}, where I is the identity matrix
and J is the full one matrix. We have dPSED(A) = 0.

From the above two properties, we conclude that SED is bi-
ased towards the non-informative matrices I and J, whereas
PSED assigns the same score to the non-informative simi-

larity matrices.

We also verify the above properties in Figure 2 with provid-
ing some Gaussian kernel matrices with different parame-
ters. Figure 2 depicts SED and PSED values between the
target matrix (the first one) and the kernel matrices. From
Figure 2(a), we observe that SED is bias to the identity ma-
trix. From Figure 2(b), both the second diagonal and the
last full one matrix obtain the highest score. This signifies
that PSED is unbias to any non informative matrix. The
above advantages ensure that PSED is more appropriate to
measure the quality of similarity matrix.

5. Learn ability of dPSED Loss
In machine learning, the underlying probability distribution
ofX ×Y is usually unknown. Only a collection of empirical
data Sn = {(x1, y1), ..., (xn, yn)} is available. Based on
these empirical data, the dPSED is estimated by:

d̂PSED(K̂) = 2

( n∑
i=1

K̂ii +

k∑
r=1

|imr
2 |
|in2 |

n∑
i,j;i ̸=j

K̂ij (8)

−
k∑
r=1

1mrK̂[r][r]1mr

)
,

where K̂ij = Ker(h(xi), h(xj)) is a kernel function, h ∈
H is the hypothesis function that outputs the embedding
representation vector, K̂[r][r] is the sub kernel matrix of
class r and mr is the number of objects of r class.

By minimizing the empirical d̂PSED, a currently optimal
classifier can be obtained. The generalization ability of
this classifier can be characterized by the quality of the
convergence of empirical loss to the true one. Due to the
randomness of samples, the convergence is analyzed in
terms of probability. Formally, let ϵ > 0, the convergence
analysis aims to find upper bound δ(ϵ) on the probability of
deviation inequalities:

P(|dPSED(K)− d̂PSED(K̂)| ≥ ϵ) ≤ δ(ϵ), (9)

where Kij = EXi,XjKer(h(Xi), h(Xj)) is the expecta-
tion of the kernel function.

The probability upper bound quantifies how quickly and
accurately an empirical measure approaches the true mea-
sure as the sample size increases. Additionally, it provides
insights into how the model structure and complexity affect
the convergence performance. To establish the general-
ization ability bound, we employ the exponential Orlicz
norm-based concentration inequality.
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5.1. Exponential Orlicz Norm-based Concentration
Inequality

Concentration inequalities (Boucheron et al., 2013) provide
bounds on the probability that a random variable deviates
from its mean or median. These inequalities are powerful
for understanding the behavior of random processes, particu-
larly in machine learning, where they help analyze a model’s
generalization ability and stability. Traditional inequalities,
such as Markov’s inequality, often yield loose bounds. By
utilizing the bounded difference property, tighter inequali-
ties, such as McDiarmid’s or Hoeffding’s inequalities, can
be derived. Recently, an inequality based on the exponential
Orlicz norm has been proposed (Escande, 2024).

5.1.1. EXPONENTIAL ORLICZ NORM

For q ≥ 1, the q-exponential Orlicz norm of a random
variable X on the probability space (X, µ) is defined as:

∥X∥ψq
= inf
c>0
{E [exp (|X/c|q)] ≤ 2}. (10)

When q = 1 and q = 2, the norm are corresponds to
sub-exponential and exponential Orlicz norms, respectively.
When X ∈ Rd is a random vector, its ψq norm is defined by
∥X∥ψq = supv∈Sd−1 ∥⟨X, v⟩∥ψq , where Sd−1 is the unit
ball in Rd space. Next, we list three properties:
Property 5. Let X and Y be random variables, we have,

∥X + Y ∥ψ1 ≤ 2(∥X∥ψ1 + ∥Y ∥ψ1). (11)

Property 6. Let Xi, i = 1, .., L be random variables, we
have, ∥∥∥∥ L∏

i=1

Xi

∥∥∥∥
ψ1

≤
L∏
i=1

∥∥Xi

∥∥
ψL
. (12)

Property 7. Let X ∈ Rd be random vector, we have,∥∥∥X∥1∥∥ψq
≤
√
d∥X∥ψq . (13)

5.1.2. CONCENTRATION INEQUALITY

The inequality based on ∥X∥ψq
offers sharper bounds

and provides a generalization performance bound of order
O(1/n), where n is the sample size.

Theorem 5.1. (Escande, 2024) Let f : Xn → R
and B ∈ Xn such that p = P(Xn /∈ B) ≤ 3/4.
For any two samples with only one different observa-
tion: Sn = {x1, ...,xk−1,xk, ...,xn} and Sn,k =
{x1, ...,xk−1,x

′
k, ...,xn}, assume there exist a pseudo met-

ric b : X × X → R+ with ∥b∥ψ1
< +∞ such that:

|f(Sn)− f(Sn,k)| ≤ b(xk, x′k).

Then with probability at least 1 − 2(ρ + δ), where δ > 0,
we have,

|f(X1, ...,Xn)− E [f | (X1, ...,Xn) ∈ B] |

≤ 4n∥b∥ψ1

√
p+ e∥b∥ψ1

(
2

√
n log

(
1

δ

)
+ log

(
1

δ

))
.

Theorem 5.1 states that if one sample among the n objects
is modified, the change in the function value over all n
objects is bounded by the magnitude of the change in the
individual sample. Consequently, the deviation between the
function value and its expectation can be characterized by
the exponential Orlicz norm of the change magnitude.

5.2. Network Structure

This paper considers fully connected layer networks to ob-
tain representation vectors. Given L weight matrices W =
(W 1, ...,WL) and L activation functions (σ1, ...,σL),
where σi : Rdi−1 → Rdi and di is the output dimension of
i-th layer. The fully connected network hW,L is:

hW,L(x) := σL(WLσL−1(WL−1 · · ·σ1(W 1x))),
(14)

where σ is the nonlinear activation function. The common
used activation functions, coordinate-wise ReLU and sig-
moid function, are ρi-Lipschitz continuous (Bartlett et al.,
2017). The ρi-Lipschitz continuous requires that for all z,
z′ in its domain, the following inequality holds:

∥σi(z)− σi(z
′)∥p ≤ ρi∥z − z′∥p, (15)

where ∥ · ∥p is the p-norm. This ensures that the function
does not change too rapidly, with ρi serving as the Lipschitz
constant that bounds the growth.

With the Lipschitz continuity, the output variation of a fully
connected network can be bounded by the sample perturba-
tion. For two observations xk and x′k, their output satisfies:

∥hW,i(xk)− hW,i(x′k)∥p ≤ ∥xk − x′
k∥p

i−1∏
j=1

ρj∥Wj∥p.

(16)

The reason is that based on the Lipschitz continuity, for two
observations xk and x′k, we have:

∥hW,i(xk)− hW,i(x′k)∥p (17)
= ∥σi(WihW,i−1(xk))− σi(WihW,i−1(x′k))∥p (18)
≤ ρi∥WihW,i−1(xk)−WihW,i−1(x′

k)∥p (19)
≤ ρi∥Wi∥p∥hW,i−1(xk)− hW,i−1(x′k)∥p (20)

where the last inequality is based on the Cauchy Schwartz in-
equality. Further, by successive application of this property,
we can obtain Eq. (16).
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5.3. Generalization Bound for dPSED Loss

Based Theorem 5.1, our bound is:

Theorem 5.2. When the hypothesis function is the fully con-
nected layer networks and K is the RBF kernelK(xi, xj) =
exp

(
− γ(xi−xj)2

)
. Let B ∈ Xn such that p = P(Xn /∈

B) ≤ 3/4, for δ > 0, Then with probability at least
1− 2(ρ+ δ), we have,∣∣dPSED(K)− d̂PSED(K̂)|X ∈ B)

∣∣
≤ ∥b∥ψ1

(
4
√
p+ e

(
2

√
1

n
log

(
1

δ

)
+

1

n
log

(
1

δ

)))
,

where,

∥b∥ψ1 =
(
2 + 4C(n− 1) + 4max{mr}kr=1

)
(21)

2γM
√
d
∥∥diam(x)

∥∥
ψL

L−1∏
l=1

ρl
√
dl
∥∥W l

∥∥
ψL
,

C =
∑k
r=1

|imr
2 |
|in2 |

and M = 2maxx∈X ∥x∥.

From Theorem 5.2, we can conclude that, for the fully con-
nected network, the generalization bound is related to the
following terms:

∥∥diam(x)
∥∥
ψL

is the exponential Orlicz
norms of the input domain diameter; dj is the number of
nodes in each layer of the network, and d is the input di-
mensional; ρl is the Lipschitz constant of l-th activation
function;

∥∥W l

∥∥
ψL

is the exponential Orlicz norms of l-th
weight vector; n is the number of training instances. From
Theorem 5.2, the smaller the exponential Orlicz norms of
the input domain diameter and the network parameter vector,
the fewer the network nodes and the more the samples, the
smaller the model’s generalization error.

6. Methodology
This paper presents a deep learning framework designed to
learn discriminative feature representations through a novel
loss function that serves as a universal similarity matrix qual-
ity measure, applicable across diverse learning paradigms
including deep network training, metric learning, and ker-
nel methods. To demonstrate its versatility, we implement
the approach on three fundamental architectures: fully con-
nected networks (whose schematic diagram is shown in
Figure 3), Vision Transformers (ViT), and Convolutional
Neural Networks (CNN), with experimental details for ViT
and CNN provided in the Appendix.

The framework operates by first transforming input data into
latent embeddings, computing pairwise similarity matrices
in the feature space, then optimizing network parameters
through backpropagation using our proposed debiased dis-
tance metric that effectively evaluates representation qual-
ity while overcoming limitations of conventional similarity

Figure 3. The framework of the proposed method on fully con-
nected networks.

measures. This generalized formulation maintains theo-
retical rigor while enabling practical applications across
multiple deep learning architectures.

Presentation layer (PL)

The model consists of three layers, each containing a fully
connected layer, a ReLU activation layer, and a Dropout
regularization layer. The fully connected layer performs
a linear transformation of the previous layer’s activations
through the weight matrix W, producing new feature rep-
resentations. The ReLU activation introduces nonlinearity,
enhancing the model’s ability to capture complex patterns.
The Dropout layer randomly drops neurons to prevent over-
fitting. Subsequently, the similarity matrix is computed by
taking the inner product of the hidden layer activations. Fi-
nally, the processed features are optimized using the PSED
loss function, with backpropagation applied to minimize the
prediction error. The relevant formula is as follows:

Zl = W l−1Zl−1, (22)

Zl = ReLU(Zl) = max(0,Zl), (23)

Zl = Dropout(Zl), (24)

K = Zl(Zl)T , (25)

where W l−1 represent the parameters of the (l − 1)th fully
connected layer.

Classification layer (CL)

The prediction labels Ŷ are generated through additional
fully connected layers:

Ỹ = Wl+1Zl, Ŷ = softmax(Ỹ ). (26)

To quantify the discrepancy between the predicted probabil-
ity distribution and the true distribution, the cross-entropy
(CE) loss function is used. The CE is defined as:

CE = −
n∑
i=1

k∑
j=1

Yij log Ỹij , (27)

where n is the number of samples, k is the number of classes,
Ỹij is the predicted probability that sample i belongs to
class j and Yij is the true label. The loss value is minimized
using the back propagation algorithm, which optimizes the
parameters of the final fully connected layer.
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7. Experiment
In this section, we compare our proposed method with three
common loss functions on 20 benchmark datasets and 5
image datasets. And we compare the methods based on CE,
SED, 1-dinfor(K), and PSED loss functions at the presen-
tation layer. Additionally, we conduct analysis experiments
to further demonstrate the advantages of our method.

7.1. Experimental on Benchmark Dataset

7.1.1. PERFORMANCE ANALYSIS

In this section, we report the average accuracy and F-
measure of four methods on benchmark datasets with 10
partitions and 3 model layers. Table 1 shows the results,
with each row representing a dataset and columns divided
by evaluation metric. The highest value in each section is
bolded. If our method significantly outperforms the others, a
black dot will be placed next to the method (for significance
testing, please refer to the Appendix). As indicated by the
table, the PSED-based loss function demonstrates superior
performance in terms of average convergence accuracy and
F-measure, with values surpassing those of other methods
on most datasets.

7.1.2. SIGNIFICANCE TEST

To demonstrate the superiority of CE-PSED, we first con-
duct a Friedman test to confirm significant differences
among the methods, followed by a Nemenyi post-hoc test to
identify specific pairs with differences (details for layers 5
and 8 are in the Appendix). Figure 4 shows the CD diagram
for 3-layer models, where the x-axis represents the average
rank and the CD line indicates the critical difference from
the Nemenyi test. Methods marked with a red star indicate
the best performance, while those not connected by a red
line show significant performance differences. As shown
in Figure 4, the CE-PSED-based method has a significantly
lower average rank. Not only does CE-PSED achieve the
best performance, indicated by the red star, but it is also not
connected by a red line to any other method. This indicates
that its accuracy and F-measures are superior to those of
other algorithms across multiple datasets.

Additionally, a further significance test was conducted to val-
idate the enhanced performance of CE-PSED, with method-
ological details available in (Wang et al., 2023; Li et al.,
2019). Figure 5 presents the significance test results for
all datasets, where each bar chart illustrates the difference
between the number of times the algorithm’s significance
wins and losses. As shown in Figure 5, the PSED-based
method significantly outperforms the other methods.

(a) Accuracy (Benchmark) (b) F-measure (Benchmark)

(c) Accuracy (Image) (d) F-measure (Image)

Figure 4. CD diagrams w.r.t. Accuracy and F-measure.
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(b) model layers:5

-13
-9

-45

67

-29

-20
-24

73

Accuracy F-measure

-40

-20

0

20

40

60

T
h

e
 g

a
p

 o
f 

s
ig

n
if

ic
a

n
t 

w
in

 a
n

d
 s

ig
n

if
ic

a
n

t 
lo

s
e

(c) model layers:8

Figure 5. Significance test w.r.t. Accuracy and F-measure.

7.1.3. CONVERGENCE ANALYSIS

The Figure 6 (a) and (b) shows the performance of the four
methods over the training epoch in the benchmark datasets
with the highest and lowest degree of imbalance (see ap-
pendix for other dataset results), where the points on each
line represent the average accuracy of the corresponding
period. The results show that the CE-PSED method ex-
hibits significant performance advantages in most datasets
and training epochs, and can quickly converge, which fully
demonstrates its robustness and effectiveness on datasets.

7.1.4. NETWORK LAYER ANALYSIS

To verify the effectiveness of the CE-PSED method at dif-
ferent network layers, this study set the model layers to 5
and 8, respectively, and selected one dataset for presentation
(see Appendix for other datasets). Tables 3 presents the
F-measure values of four methods at different levels. The
results show that as the number of network layers increased,
the F-measure values of other methods significantly de-
creased, while the F-measure value of the CE-PSED method
decrease less and remain the highest. This indicates that
other models experience feature representation collapse as
the number of layers increases, that is, the model tends to
classify samples into the same category, while the CE-PSED
method performs well at different layers, effectively avoid-
ing feature collapse and ensuring that the model maintains
good feature learning and classification capabilities.
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Table 1. Accuracy and F-measure based on different loss functions on the benchmark datasets when model layers is 3.
Data Accuracy F-measure

CE CE-SED CE-inform CE-PSED CE CE-SED CE-inform CE-PSED

1 0.6796±0.1049 0.8900±0.0104 0.7869±0.0878 0.9118±0.0001 0.6840±0.0995• 0.8727±0.0034 0.7703±0.0716 0.8965±0.0001
2 0.7662±0.0000• 0.7702±0.0001• 0.7920±0.0001 0.8049±0.0002 0.6758±0.0001 • 0.6865±0.0007• 0.7490±0.0006 • 0.7806±0.0004
3 0.7558±0.0002 0.7667±0.0005 0.7662±0.0006 0.7723±0.0007 0.7486±0.0002 0.7602±0.0005 0.7623±0.0006 0.7686±0.0007
4 0.9219±0.0006 0.9219±0.0003 0.6535±0.0000 • 0.9278±0.0002 0.9200±0.0007 0.9204±0.0004 0.5204±0.0004 • 0.9264±0.0002
5 0.8313±0.0003 0.8362±0.0003 0.6707±0.0000 • 0.8423±0.0005 0.8306±0.0003 0.8354±0.0003 0.5393±0.0000• 0.8424±0.0005
6 0.8662±0.0003 0.8700±0.0002 0.6767±0.0015 • 0.8707±0.0003 0.8661±0.0003 0.8698±0.0002 0.5760±0.0062 • 0.8706±0.0003
7 0.5552±0.0004 • 0.5646±0.0008• 0.5686±0.0004• 0.5993±0.0004 0.5475±0.0005• 0.5556±0.0008• 0.5470±0.0006• 0.5903±0.0004
8 0.9157±0.0002 0.8841±0.0002 • 0.4441±0.0017• 0.9165±0.0001 0.9157±0.0002• 0.8840±0.0002• 0.3738±0.0027 0.9166±0.0001
9 0.6864±0.0002• 0.6175±0.0011 • 0.4775±0.0022• 0.7389±0.0003 0.6759±0.0003• 0.5811±0.0015• 0.3598±0.0034 • 0.7382±0.0002

10 0.9212±0.0001 0.9191±0.0001 • 0.8489±0.0000 • 0.9347±0.0001 0.9200±0.0001 0.9184±0.0001 • 0.7795±0.0000 • 0.9334±0.0001
11 0.9711±0.0000 0.9711±0.0000 0.9711±0.0000 0.9607±0.0000 0.9568±0.0000 0.9568±0.0000 0.9568±0.0000 0.9603±0.0000
12 0.7783±0.0229 0.7986±0.0132 0.6535±0.0207 • 0.8469±0.0015 0.7420±0.0482 0.7762±0.0269 0.5789±0.0449• 0.8430±0.0017
13 0.9763±0.0000 • 0.9760±0.0000 • 0.9474±0.0000 • 0.9838±0.0000 0.9753±0.0000 • 0.9754±0.0000 • 0.9218±0.0000• 0.9835±0.0000
14 0.9831±0.0000• 0.9831±0.0000• 0.9484±0.0000 • 0.9899±0.0000 0.9825±0.0000 • 0.9825±0.0000 • 0.9232±0.0000• 0.9898±0.0000
15 0.6711±0.0002• 0.6830±0.0003 0.6113±0.0003 • 0.6930±0.0001 0.6710±0.0002• 0.6831±0.0003 0.6089±0.0004 • 0.6927±0.0001
16 0.9403±0.0001 0.9397±0.0001 0.9628±0.0001 0.9495±0.0003 0.9130±0.0004 0.9118±0.0003 0.9552±0.0003 0.9299±0.0009
17 0.9266±0.0000• 0.9185±0.0001• 0.9217±0.0000 • 0.9732±0.0000 0.9266±0.0000• 0.9185±0.0001• 0.9217±0.0000• 0.9732±0.0000
18 1.0000±0.0000 1.0000±0.0000 0.9832±0.0000 • 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9832±0.0000• 1.0000±0.0000
19 0.9532±0.0000• 0.9510±0.0000• 0.9033±0.0000• 0.9956±0.0000 0.9526±0.0000• 0.9505±0.0001• 0.8924±0.0000 • 0.9955±0.0000
20 0.8453±0.0000 0.8445±0.0000 0.8436±0.0000• 0.8454±0.0000 0.8399±0.0000 • 0.8390±0.0000 0.8381±0.0000 0.8625±0.0000

Table 2. Accuracy and F-measure based on different loss functions on the image datasets when model layers is 3.
Data Accuracy F-measure

CE CE-SED CE-inform CE-PSED CE CE-SED CE-inform CE-PSED

Mpeg 0.6438±0.0001• 0.6538±0.0004 • 0.2098±0.0006 • 0.7338±0.0002 0.6342±0.0001• 0.6426±0.0004• 0.1549±0.0004 • 0.7244±0.0003
Mnist 0.9039±0.0000 0.9046±0.0000 0.8423±0.0001 • 0.9062±0.0000 0.9037±0.0000 0.9044±0.0000 0.8409±0.0001• 0.9061±0.0000

Pendigits 0.7761±0.0009• 0.9611±0.0000• 0.7889±0.0010• 0.9908±0.0000 0.7684±0.0011• 0.9610±0.0000• 0.7808±0.0013• 0.9908±0.0000
Caltech-101 0.3561±0.0001• 0.2778±0.0002• 0.2758±0.0001 • 0.5005±0.0001 0.2814±0.0001• 0.1786±0.0003 • 0.1754±0.0002 • 0.4708±0.0001
ImageNet 0.9701±0.0000 • 0.9699±0.0000• 0.9753±0.0000 0.9762±0.0000 0.9703±0.0000• 0.9701±0.0000• 0.9754±0.0000 0.9762±0.0000

Table 3. Comparison of F-measure at different depths on Yeast
Method Layer 3 Layer 5 Layer 8

CE 0.5475 0.1539 0.1662
CE-SED 0.5556 0.1734 0.1740

CE-inform 0.5470 0.1620 0.1646
CE-PSED 0.5903 0.4951 0.4116

7.1.5. ANALYSIS OF DISCERNMENT ABILITY

To evaluate the discriminative ability of the four methods,
we analyze the feature representations of the last hidden
layer of the model. Figure 16 illustrates the t-SNE visu-
alization of these feature representations for each method
on the Pendigits dataset (see Appendix for results on other
datasets). The figure demonstrates that the PSED-based
method effectively separates classes. Additionally, we com-
pute the Euclidean distances and information entropies be-
tween the similarity matrices and YYT across all benchmark
and image datasets. For the Pendigits dataset, the Euclidean
distances for CE, CE-SED, CE-inform, and CE-PSED are
1055.0093, 1055.0093, 1042.0280, and 919.8159, respec-
tively, while the corresponding information entropies are

837.9047, 837.9047, 837.8022, and 837.8456 (see Appendix
for additional results). These findings further validate the
superior performance of CE-PSED in feature representation
and class discrimination.

7.2. Experimental on the Image Dataset

We also evaluate the proposed method on five additional
image datasets to further validate its effectiveness. These
experiments adhere to the same settings as the baseline
dataset, differing only in the feature extraction methods (see
Appendix for details), ensuring consistency and comparabil-
ity of the results. As shown in Table 2 and Figures 6(c) and
(d), the results clearly demonstrate that the CE-PSED-based
method outperforms other methods in both performance and
efficiency in recognizing category structures. Specifically,
the CE-PSED method excels in multiple key performance
metrics, including classification accuracy and F-measure.
Additionally, it exhibits a particularly strong capability in re-
vealing structural differences between categories, a critical
aspect of image recognition and classification tasks.
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Figure 6. Accuracy curves when model layers is 3.
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(b) CE-SED
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(c) CE-inform
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(d) CE-PSED

Figure 7. The t-SNE of Pendigits.

8. Conclusion
This paper introduces a novel Pure Square Euclidean Dis-
tance (PSED) metric within the framework of pure random
consistency and provides a corresponding analytical solu-
tion. The unbiasedness and heterogeneity of PSED are
rigorously validated through both theoretical analysis and
simulation experiments. Additionally, the study investigates
the learnability of PSED in fully connected neural network
structures and establishes its performance. Furthermore,
we propose a deep network model that utilizes PSED as
the loss function, demonstrating superior performance and
effectively mitigating collapse. In the future, we plan to
analyze the optimization convergence properties of PSED
and develop further learning models that optimize PSED.
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Appendix

9. Proof
9.1. Proof of the analytical solution of SED

The Square Euclidean Distance (SED) is defined as:

dSED(K) = ∥K− YYT ∥2F , (28)

where Y is the real label vector, Y ∈ {0, 1}n×k is the one-hot encoding of the true label vector, n is the number of instances,
k is the number of classes and ∥ · ∥2F is the Frobenius norm, which represents the square of the sum of squared elements of
the matrix.

And we provide an analytical solution for SED:

dSED(K,Y) = ∥K− YYT ∥2F (29)

= ∥K∥2F +

k∑
i=1

m2
i − 2

k∑
i=1

1Tmi
K[i][i]1mi

where 1mi
is single column all 1 vectors of length mi, K[i][i] is the sub kernel matrix of class i and mi is the number of

objects of i class.

Proof For multi-class classification tasks, let n be the total number of samples, k be the number of categories,
m1,m2, · · · ,mk be the number of samples in each category, such that m1 + m2 + · · · + mk = n. The true label
matrix Y can be represented as:

Y =


1m1×1, 0m1×1, · · · 0m1×1

0m2×1, 1m2×1, · · · 0m2×1

...
...

...
...

0mk×1, 0mk×1, · · · 1mk×1


T

n×k

, (30)

where 1m1×1 and 0m1×1 are single column all 1 vectors and all 0 vectors of length m1, respectively.

The adjacency matrix generated by Y is:

YYT =


Jm1×m1

0m1×m2
· · · 0m1×mk

0m2×m1
Jm2×m2

· · · 0m2×mk

...
...

...
...

0mk×m1
0mk×m2

· · · Jmk×mk


n×n

, (31)

where J and 0 are the full one matrix and the full zero matrix, respectively. According to the category of samples, we block
the similarity matrix as follows:

K =


K[1][1] K[1][2] · · · K[1][k]

K[2][1] K[2][2] · · · K[2][k]

...
...

...
...

K[k][1] K[k][2] · · · K[k][k]


n×n

. (32)

where K[i][j] represents the similarity matrix between class mi and class mj .

For 1 ≤ i = j ≤ k,

∥K[i][i] − YYTmi×mi
∥2F (33)

=∥K[i][i]∥2F − 2⟨K[i][i], Jmi×mi
⟩+ ∥Jmi×mi

∥2F
=∥K[i][i]∥2F − 21Tmi

K[i][i]1mi
+m2

i .
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Similarly, for 1 ≤ i ̸= j ≤ k,

∥K[i][j] − YYTmi×mj
∥2F (34)

=∥K[i][j] − 0mi×mj
∥2F

=∥K[i][j]∥2F . (35)

Then by performing some simple elementary operations, we obtain:

dSED(K,Y) = ∥K− YYT ∥2F (36)

= ∥K∥2F +

k∑
i=1

m2
i − 2

k∑
i=1

1Tmi
K[i][i]1mi

□

9.2. Proof of Theorem 3.2

To provide a proof for Theorem 3.2, we first give a lemma.

Lemma 9.1. Let A = {a1, a2 · · · an} be a set of n elements. Select m elements from A, calculate the sum of the products of
any r elements selected from these m elements as S1 and compare it with the sum of the products of any r elements selected
from A as S2. Since they are only related to the number of items, the relationship between S1

S2
is:

S1

S2
=

∑|inm|
l=1

∑|imr |
v=1

∏
i∈(imr )v

ai∑|inr |
l=1

∏
i∈(inr )l

ai
=
|inm| × |imr |
|inr |

(37)

where (inm)l represent the l-th set of m elements taken from n and | · | denotes the size of set.

Proof

Theorem 3.2 Let inr be the set of all r-tuples drawn without replacement from the set {1, · · · , n}. The analytic solution of
the expectation of EY′(dSED(K,Y′)) is:

EY′(dSED(K,Y′)) (38)

= ∥K∥2F +

k∑
i=1

m2
i − 2

( n∑
i=1

Kii +

k∑
r=1

|imr
2 |
|in2 |

n∑
i,j;i ̸=j

Kij

)
.

Step 1: Convert the expectation about all permutation Y ′ into the mean about the m1-tuples, m2-tuples,· · · , mk-
tuples.

According to the definition of PSED:

dPSED(K) = dSED(K,Y)− EY′(dSED(K,Y′)) (39)

= ∥K− YYT ∥2F − EY′(∥K− Y′Y′T ∥2F ),

and the analytic solution of dSED:

dSED(K,Y) = ∥K− YYT ∥2F (40)

= ∥K∥2F +

k∑
i=1

m2
i − 2

k∑
i=1

1Tmi
K[i][i]1mi

we have,

EY′(dSED(K,Y′)) (41)

= ∥K∥2F +

k∑
i=1

m2
i − 2

k∑
i=1

EY′(1Tmi
K′

[i][i]1mi
)
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where K′
[i][i] is the sub-block matrices of K′.

The matrix K′ is the permutation similarity matrix after switching the positions of the samples according to Y′. Since
Y′ consists of all possible labels that maintain the distribution ratio m1 : m2 : · · · : mk, with the labels being uniformly
distributed, the expectation can be expressed as:

k∑
r=1

EY′(1Tmi
K′

[r][r]1mi
) (42)

=

∑|inm1
|

l=1

∑
i,j∈(inm1

)l
Kij

|inm1
|

+

∑|in−m1
m2

|
l=1

∑
i,j∈(i

n−m1
m2

)l
Kij

|inm1
| × |in−m1

m2 |
+ · · ·+

∑|i
n−m1−···−mk−1
mk

|
l=1

∑
i,j∈(i

n−m1−···−mk−1
mk

)l
Kij

|inm1
| × |in−m1

m2 | × · · · × |in−m1−···−mk−1
mk |

where l ∈ {1, 2, .., |inm·
|}, (inm1

)l ∪ (in−m1
m2

)l ∪ · · · ∪ (i
n−m1−···−mk−1
mk )l = {1, · · · , n}, (inm1

)l ∩ (in−m1
m2

)l ∩ · · · ∩
(i
n−m1−···−mk−1
mk )l = ∅, n−m1−· · ·−mj−1 in (i

n−m1−···−mj−1
mj )l represents the set {1, 2, · · · , n}\{(inm1

)l∪ (in−m1
m2

)l∪
· · · ∪ (i

n−m1−···−mj−2
mj−1 )l}, and Kij is the value of the i-th row and j-th column of matrix K.

Step 2: Convert the mean about tuples into the mean of elements in K.

Based on the observation, Formula 42 can be further computed using Lemma 9.1. In the lemma, when r = 1:

S1

S2
=

∑|inm|
l=1

∑|im1 |
v=1;i∈(im1 )v

aiai∑|in1 |
l=1;i∈(in1 )l

aiai
=
|inm| × |im1 |
|in1 |

(43)

and when r = 2,

S1

S2
=

∑|inm|
l=1

∑|im2 |
v=1;i,j∈(im2 )v

aiaj∑|in2 |
l=1;i∈(in2 )l

aiaj
=
|inm| × |im2 |
|in2 |

. (44)

Therefore, we compute Formula 42 by separately considering the diagonal and off-diagonal elements.

When i = j:

k∑
r=1

EY′(1Tmi
K′

[r][r]1mi
)i=j =

|inm1
| ×m1

|inm1
| × n

n∑
i=1

Kii +
|inm1
| × |in−m1

m2
| ×m2

|inm1
| × |in−m1

m2 | × n

n∑
i=1

Kii + · · · (45)

+
|inm1
| × |in−m1

m2
| × · · · × |in−m1−···−mk−1

mk | ×mk

|inm1
| × |in−m1

m2 | × · · · × |in−m1−···−mk−1
mk | × n

n∑
i=1

Kii

=
m1

n

n∑
i=1

Kii +
m2

n

n∑
i=1

Kii + · · ·+
mk

n

n∑
i=1

Kii

=

n∑
i=1

Kii
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When i ̸= j:

k∑
r=1

EY′(1Tmi
K′

[r][r]1mi
)i̸=j =

|inm1
| × |im1

2 |
|inm1
| × |in2 |

n∑
i,j;i ̸=j

Kij +
|inm1
| × |in−m1

m2
| × |im2

2 |
|inm1
| × |in−m1

m2 | × |in2 |

n∑
i,j;i̸=j

Kij + · · · (46)

+
|inm1
| × |in−m1

m2
| × · · · × |in−m1−···−mk−1

mk | × |imk
2 |

|inm1
| × |in−m1

m2 | × · · · × |in−m1−···−mk−1
mk | × |in2 |

n∑
i,j;i ̸=j

Kij

=
|im1
2 |
|in2 |

n∑
i,j;i ̸=j

Kij +
|im2
2 |
|in2 |

n∑
i,j;i ̸=j

Kij + · · ·+
|imk
2 |
|in2 |

n∑
i,j;i ̸=j

Kij

=

k∑
r=1

|imr
2 |
|in2 |

n∑
i,j;i ̸=j

Kij

Combining Formulas 45 and 46, we obtain:

k∑
r=1

EY′(1Tmi
K′

[r][r]1mi
) =

n∑
i=1

Kii +

k∑
r=1

|imr
2 |
|in2 |

n∑
i,j;i ̸=j

Kij (47)

So, we obtain an analytical solution of EY′(dSED(K,Y
′)):

EY′(dSED(K,Y′)) (48)

= ∥K∥2F +

k∑
i=1

m2
i − 2

( n∑
i=1

Kii +

k∑
r=1

|imr
2 |
|in2 |

n∑
i,j;i ̸=j

Kij

)
.

Based on Formula 39, 40, 41 and 48, the analytic solution of PSED is:

dPSED(K) = (49)

2

( n∑
i=1

Kii +

k∑
r=1

|imr
2 |
|in2 |

n∑
i,j;i ̸=j

Kij −
k∑
i=1

1miK[i][i]1mi

)
□

9.3. Proof of the computational efficiency of PSED

We provide the definition of PSED and the computational efficiency of analytical solutions.

For the definition of PSED, that is Formula 39, computational efficiency is divided into two parts, the first part is divided into
three sub parts :(1) Y × YT : O(2kn2); (2) K − YYT : O(n2); (3) ∥K − YYT ∥2F : O(n2). EY′(dSED(K,Y′)) requires
the calculation of all cases that follow the same distribution as the true label Y , involving a total of n!

m1!m2!···mk!
terms, so

the computational efficiency of the second term is n!
m1!m2!···mk!

× (O(2kn2) + O(n2) + O(n2)). Therefore, the overall
computational efficiency defined by PSED is ( n!

m1!m2!···mk!
+ 1)×O(2kn2 + 2n2).

For the analytic solution of PSED, computational efficiency is divided into three parts: (1)
∑n
i=1 Kii : O(n); (2)∑k

r=1

∑n
i,j;i ̸=jKij : O(k(n2 − n)); (3)

∑k
i=1 1mi

K[i][i]1mi
: O(

∑k
i=1m

2
i ). So, the overall computational efficiency of

the analytical solution of PSED is O(kn2 + (1− k)n+
∑k
i=1m

2
i ).

Due to the existence of inequalities:

(a+ b+ c)2 ≥ a2 + b2 + c2 (50)

Therefore, O(kn2 +(1− k)n+
∑k
i=1m

2
i ) < O(2kn2 +2n2) and ( n!

m1!m2!···mk!
+1) is large, the computational efficiency

of the analytical solution of PSED is significantly higher than that of the PSED definition. In other words, the analytical
solution of PSED has more effective computational efficiency.
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9.4. Proof of properties 3 and 4

Property 3 (Bias of dSED) For the matrices I and J, when
∑k
i=1m

2
i >

n2+n
2 , we have dSED(I) > dSED(J); otherwise,

dSED(I) < dSED(J). Proof According to the analytic solution of dSED:

dSED(K,Y) = ∥K− YYT ∥2F (51)

= ∥K∥2F +

k∑
i=1

m2
i − 2

k∑
i=1

1Tmi
K[i][i]1mi

When K = J, we have:

dSED(J) (52)

= ∥J∥2F − 2

k∑
i=1

1Tmi
Jmi×mi

1mi
+

k∑
i=1

m2
i

= n2 −
k∑
i=1

m2
i .

When K = I, we have:

dSED(I) (53)

= ∥I∥2F − 2

k∑
i=1

1Tmi
Imi×mi1mi +

k∑
i=1

m2
i

=

k∑
i=1

m2
i − n.

Then, we have:

dSED(I)− dSED(J) (54)

=

k∑
i=1

m2
i − n− (n2 −

k∑
i=1

m2
i )

= 2

k∑
i=1

m2
i − n− n2.

Thus, we obtain the conclusion. □

Property 4 (Unbiased of dPSED) For any matrix A in Na = {(1− a)I + aJ, 0 ≤ a ≤ 1}, where I is the identity matrix
and J is the full one matrix. We have dPSED(A) = 0.

Proof In fact, A is the matrix with the diagonal is 1 and the other elements are a. For Y and Y′, their sub block matrices are
the same, that is: A[i][i] = A′

[i][i] = ((1− a)I + aJ)mi×mi
. Combining with the analytic solution of dSED, we have that

dSED(A,Y) = dSED(A,Y′) = EY′(dSED(A,Y′)). Thus, we have dPSED(A) = 0

9.5. Proof of Theorem 5.2

Proof. To use the concentration bound in Theorem 5.2, we firstly need to investigate the change in the loss when a single
object is modified. Secondly, we need give the exponential Orlicz norm bound of the loss change. The definitions and
properties of the sub Gaussian norm used in the proof are provided at the end of this section.

For the first step, without loss of generality, we assume that the changed sample belongs to the first category. In this case,
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we have,

|d̂PSED(K̂(Sn))− d̂PSED(K̂(Sn,k))| (55)

=
∣∣2(K̂kk − K̂k′k′) + 4C

( ∑
j:j ̸=k

K̂kj −
∑
j:j ̸=k

K̂k′j

)
− 4(K̂k[1]1m1

− K̂k′[1]1m1
)
∣∣ (56)

≤
∣∣2(K̂kk − K̂k′k′)

∣∣+ 4C
∣∣( ∑

j:j ̸=k

K̂kj −
∑
j:j ̸=k

K̂k′j

)∣∣+ 4
∣∣(K̂k[1]1m1

− K̂k′[1]1m1
)
∣∣ (57)

where C =
∑k
r=1 |i

mr
2 |/|in2 |.

From Lemma 13 in (Greenfeld & Shalit, 2020), we know that assume K(z, y) = exp
(
− γ(z − y)2

)
, as is the case with

RBF kernels, and suppose ∥x∥ ≤ M
2 for all x ∈ y. Then K(·, ·) is γM -Lipschitz for all x ∈X . Therefore, we have,

|K̂kk − K̂k′k′ | (58)
= |K(h(xk), h(xk))−K(h(xk), h(x′k)) +K(h(xk), h(x′k))−K(h(x′k), h(x

′
k))| (59)

≤ 2|K(h(xk), h(xk))−K(h(xk), h(x′
k))| (60)

≤ 2γM∥h(xk)− h(x′k))∥2 ≤ 2γM∥h(xk)− h(x′k))∥1 (61)

≤ 2γM∥xk − x′
k∥1

L−1∏
l=1

ρl∥W l∥1 (62)

By a combination of Eq. (58) and the triangle inequality, for the second term and third term of Eq. (55), respectively, we
have: ∣∣( ∑

j:j ̸=k

K̂kj −
∑
j:j ̸=k

K̂k′j

)∣∣ ≤ 2γM(n− 1)∥xk − x′k∥1
L−1∏
l=1

ρl∥W l∥1, (63)

∣∣(K̂k[1]1m1
− K̂k′[1]1m1

)
∣∣ ≤ 2γMm1∥xk − x′k∥1

L−1∏
l=1

ρl∥W l∥1. (64)

For the second step, sequentially by Property 6 and 7, we have,∥∥∥xk − x′k∥1
L−1∏
l=1

ρl∥W l∥1
∥∥
ψ1

(65)

≤
∥∥∥xk − x′k∥1

∥∥
ψL

L−1∏
l=1

ρl
∥∥∥W l∥1

∥∥
ψL

(66)

≤
√
d
∥∥xk − x′k

∥∥
ψL

L−1∏
l=1

ρl
√
dl
∥∥W l

∥∥
ψL

(67)

≤
√
d
∥∥diam(x)

∥∥
ψL

L−1∏
l=1

ρl
√
dl
∥∥W l

∥∥
ψL
, (68)

where the last inequality is according to the definition of ψq norm.

Above all, we have,

|d̂PSED(K̂(Sn))− d̂PSED(K̂(Sn,k))| (69)

≤ (2 + 4C(n− 1) + 4m1)2γM
∥∥∥xk − x′k∥1

L−1∏
l=1

ρl∥W l∥1
∥∥
ψ1

(70)

≤ (2 + 4C(n− 1) + 4m1)2γM
√
d
∥∥diam(x)

∥∥
ψL

L−1∏
l=1

ρl
√
dl
∥∥W l

∥∥
ψL
. (71)
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Thus, we obtain the final result.

9.5.1. PROOFS OF PROPERTIES

A random variable with a finite ∥X∥ψq
admits a tail satisfying (Vershynin, 2018),

P (|x| ≥ t) ≤ 2 exp

(
− tq

∥X∥qψq

)
. (72)

From this tail, we can observe that the smaller the ∥X∥ψq
norm, the more concentrated the distribution of variables.

Theorem 9.2. (Young’s Inequality) Let a1, ..., aL ≥ 0, p1, ..., pL > 1,
∑L
i=1

1
pi

= 1, there are Young’s Inequality,

L∏
i=1

ai ≤
L∑
i=1

apii
pi
,

the equality holds when ap11 = ... = apii = ... = apLL .

Proof of Property 5

Proof. Suppose ∥X∥ψ2
= c1/2 and ∥Y ∥ψ2

= c2/2, then by definition,

E
[
exp

∣∣∣∣2Xc1
∣∣∣∣] ≤ 2, E

[
exp

∣∣∣∣2Yc2
∣∣∣∣] ≤ 2. (73)

We have,

E exp

(∣∣∣∣X + Y

c1 + c2

∣∣∣∣) (74)

≤ E exp

(∣∣∣∣ X

c1 + c2

∣∣∣∣+ ∣∣∣∣ Y

c1 + c2

∣∣∣∣) (75)

≤ E exp

(∣∣∣∣Xc1
∣∣∣∣+ ∣∣∣∣Yc2

∣∣∣∣) (76)

≤ E
[
exp

∣∣∣∣Xc1
∣∣∣∣ exp ∣∣∣∣Yc2

∣∣∣∣] (77)

≤ 1

2
E
[
exp

∣∣∣∣2Xc1
∣∣∣∣+ exp

∣∣∣∣2Yc2
∣∣∣∣] ≤ 2, (78)

where the first inequality is based on the triangle inequality and the last inequality is based on the Young’s inequality.

Proof of Property 6

Proof. We assume that ∥Xi∥ψL
= ci, then,

E
[
exp

∣∣∣∣Xi

ci

∣∣∣∣L] ≤ 2.

19



Stabilizing Sample Similarity in Representation via Mitigating Random Consistency

There exists that,

E exp

( L∏
i=1

∣∣∣∣Xi

ci

∣∣∣∣) ≤ E exp

 L∑
i=1

∣∣Xi

ci

∣∣L
L


= E

 L∏
i=1

exp

(∣∣Xi

ci

∣∣L
L

)
≤ 1

L
E

[
L∑
i=1

∣∣∣∣Xi

ci

∣∣∣∣L
]

≤ 2,

where the first and the second inequalities are based on Young’s inequality.

Proof of Property 7

Proof. There exists,

E
[
exp

∣∣∣∣∥X∥1c

∣∣∣∣q] = E

[
exp

∣∣∣∣∣
∑d
i=1 |X

i|
c

∣∣∣∣∣
q]

(79)

= E

[
exp

∣∣∣∣∣
〈
X, 1√

d
1d×1

〉
c√
d

∣∣∣∣∣
q]
, (80)

where 1d×1 is a column vector of which elements are all 1. We assume that ∥∥X∥1∥ψq
= c. Then by definition, we obtain,∥∥∥∥〈X,

1√
d
1d×1

〉∥∥∥∥
ψq

=
c√
d
. (81)

Because 1√
d
1d×1 ∈ Sd−1, we have that

c√
d
≤ sup
v∈Sd−1

∥⟨X, v⟩∥ψq
. (82)

10. The algorithm process diagram of the method
The specific algorithm process of the method used in this paper is shown in Algorithm 1, where RL is the representation
layer and CL is the classification layer.

Algorithm 1 Model Construction
INPUT: The training sample features and labels of features: Xtrain, Ytrain.
The maximum number of iterations epo.
OUTPUT: The model parameters θRL, θCL.

1: Initialize model parameters and learning rate: WRL, WCL, η.
2: for epoch=1:epo do
3: (Ztrain)← RL(Xtrain;WRL).
4: Calculate the loss of PSED and perform back propagation and update parameters WRL.
5: (Ỹ )← CL(Ztrain;WCL).
6: Calculate the loss of CE and perform back propagation and update parameters WCL.
7: end for
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11. Experiment
11.0.1. THE DATASETS AND MODEL STRUCTURE PARAMETERS

We provide a detailed description of the dataset and download links. For more detailed information, please refer to Tables 4
and 5. Among them, the imbalance ratio refers to the ratio between the most common and rare categories in the dataset. The
description of the image dataset is as follows:

• MPEG Dataset: The Moving Picture Experts Group (MPEG) dataset includes video sequences designed for testing
video encoding and transmission algorithms. The dataset consists of videos captured under various scenarios and
conditions, making it ideal for evaluating the performance of video encoding techniques. We show some images of the
dataset as shown in Figure 8 (a).

• MNIST Dataset: The Modified National Institute of Standards and Technology (MNIST) dataset is widely used for
digit recognition tasks. It contains 60,000 training samples and 10,000 testing samples, each represented by a 28x28
grayscale image of digits from 0 to 9.

• Pendigits Dataset: The Pendigits dataset is dedicated to handwritten digit recognition. It includes over 10,000 32x32
grayscale images of handwritten digits (0-9), with separate training and testing sets.

• Caltech-101 Dataset: A widely used object recognition dataset, Caltech-101 contains approximately 9,000 images
across 101 object categories, including animals, vehicles, food, and furniture. The dataset features images taken in
diverse real-world settings, offering a robust benchmark for image classification tasks. We show some images of the
dataset as shown in Figure 8 (b).

• ImageNet Dataset: ImageNet is a comprehensive image recognition database with over 14 million labeled images
spanning more than 20,000 distinct classes. It is extensively used for evaluating the performance of image classification
models. We show some images of the dataset as shown in Figure 8 (c).

(a) MPEG Dataset (b) Caltech-101 Dataset (c) Image Net Dataset

Figure 8. Example pictures of image datasets.

To ensure consistency in the evaluation, each dataset is randomly divided into training, validation, and testing sets in a 5:2:3
ratio. This hierarchical approach ensures that the performance evaluation of the model at different stages of training is not
affected by randomness. To investigate the impact of model architecture on performance, we evaluated configurations with
3, 5, and 8 layers. This change allows us to compare in detail how model complexity affects performance under different
loss functions. The training process uses the Adam optimizer, which is widely favored for its efficiency in adjusting learning
rates. The learning rate of each dataset has been fine tuned to achieve optimal convergence performance. Training for up to
60 epochs provides ample time for model learning and reduces the risk of overfitting. We also customized hidden layers and
regularization parameters for each dataset. This customization takes into account the unique characteristics and complexity
of each dataset, ensuring that the model architecture is best suited for optimal performance. The batch size is set to 16. For
feature extraction, ImageNet employs the self-supervised learning model MOCO V3 (Chen et al., 2021), while all other
datasets utilize VGG (Fernandez-Delgado et al., 2014).
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Table 4. Description of the Datasets
ID Name Object Dimension Class Imbalanced Ratio

1 Wine Quality 734 11 2 12.85:1
2 Blood Transfusion Service Center 748 4 2 3.20:1
3 Energy Efficiency 768 9 2 1.87:1
4 Tic-Tac-Toe Endgame 957 9 2 1.88:1
5 Oocytes-Merluccius-Nucleus-4d 1022 41 2 2.03:1
6 QSAR Biodegradation 1055 41 2 1.96:1
7 Yeast 1484 8 10 92.60:1
8 Semeion Handwritten Digit 1593 156 10 1.05:1
9 Steel Plates Faults 1941 27 7 12.24:1
10 Cardiotocography 1950 21 2 5.61:1
11 Ozone Level Detection 2536 72 2 33.74:1
12 SkillCraft1 Master Table 3343 21 2 1.03:1
13 Gender Gap in Spanish WP 3355 21 2 17.95:1
14 Waveform Database Generator 3679 21 2 18.26:1
15 Abalone 4177 8 2 2.16:1
16 Page Blocks Classification 5242 10 2 14.93:1
17 Ringnorm 7400 20 2 1.02:1
18 Mushroom 8124 21 2 1.07:1
19 Nursery 12960 8 4 13.09:1
20 Adult 32561 14 2 3.15:1
21 Mpeg 1400 6000 70 1.00:1
22 Mnist 6996 784 10 1.25:1
23 Pendigits 7494 16 10 1.08:1
24 Caltech-101 8641 256 101 19.46:1
25 ImageNet 13000 256 10 1.00:1

Table 5. Addresses of Datasets
ID Data Address

1 https://archive.ics.uci.edu/dataset/186/wine+quality
2 https://archive.ics.uci.edu/dataset/176/blood+transfusion+service+center
3 https://archive.ics.uci.edu/dataset/242/energy+efficiency
4 https://archive.ics.uci.edu/dataset/101/tic+tac+toe+endgame
5 https://gitlab.citius.gal/jorge.suarez/fishovary/-/tree/4e434ce0c6fa93b7d2afe67a4c941a178613fa85
6 https://archive.ics.uci.edu/dataset/254/qsar+biodegradation
7 https://archive.ics.uci.edu/dataset/110/yeast
8 https://archive.ics.uci.edu/dataset/178/semeion+handwritten+digit
9 https://archive.ics.uci.edu/dataset/198/steel+plates+faults
10 https://archive.ics.uci.edu/dataset/193/cardiotocography
11 https://archive.ics.uci.edu/dataset/172/ozone+level+detection
12 https://archive.ics.uci.edu/dataset/272/skillcraft1+master+table+dataset
13 https://archive.ics.uci.edu/dataset/852/gender+gap+in+spanish+wp
14 https://archive.ics.uci.edu/dataset/107/waveform+database+generator+version+1
15 https://archive.ics.uci.edu/dataset/1/abalone
16 https://archive.ics.uci.edu/dataset/78/page+blocks+classification
17 https://www.cs.toronto.edu/ delve/data/ringnorm/desc.html
18 https://archive.ics.uci.edu/dataset/73/mushroom
19 https://archive.ics.uci.edu/dataset/76/nursery
20 https://archive.ics.uci.edu/dataset/2/adult
21 https://dabi.temple.edu/external/shape/MPEG7/dataset.html
22 https://tensorflow.google.cn/datasets/catalog/mnist
23 https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/literature/PenDigits/
24 https://tensorflow.google.cn/datasets/catalog/caltech101
25 https://paperswithcode.com/sota/image-clustering-on-imagenet-10
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11.0.2. THE EVALUATING MEASURE

In this analysis, we evaluate the model using two key performance metrics: accuracy and F-measure, which are defined as
follows:

Accuracy =
1

n

n∑
i=1

I(Yi = Ŷi), (83)

F-measure =
2Precision× Recall
Precision + Recall

, (84)

where

Precision =

∑n
i=1

∑k
j=1 I(Ŷij = 1, Yij = 1)∑n

i=1

∑k
j=1 I(Ŷij = 1)

, (85)

Recall =

∑n
i=1

∑k
j=1 I(Ŷij = 1, Yij = 1)∑n

i=1

∑k
j=1 I(Yij = 1)

, (86)

Ŷij is the predicted label for sample i and class j, Yij is the true label for sample i and class j, and C is the number of class.
Additionally, I is the indicator function, which takes a value of 1 when the condition inside the parentheses is true, and 0
otherwise.

11.1. Experimental

11.1.1. COMPARISON OF CLASSIFICATION PERFORMANCE

To assess whether there are statistically significant differences between the proposed method and other approaches, we first
conduct a one-sided t-test. The null hypothesis H0 assumes the proposed method is inferior to other methods, while the
alternative hypothesis H1 posits that the proposed method outperforms the others. The significance level for the test is set to
0.05. If the p-value is below this threshold, H0 is rejected, indicating that the proposed method demonstrates statistically
significant superiority. As shown in Tables 6 and 7, if our method outperforms others significantly, a black dot will be added
next to the method. As shown in the tables, the PSED-based loss function demonstrates superior performance in terms of
average convergence accuracy and F-measure, with values surpassing other methods on most datasets.

11.1.2. SIGNIFICANCE TEST

To investigate whether the proposed algorithm exhibits significant performance differences compared to baseline methods,
we apply the Friedman test. This non-parametric test evaluates the rankings of multiple related samples across multiple
datasets, enabling us to determine whether significant differences exist among the four methods being compared. The null
hypothesis (H0) assumes no significant differences among the methods, while the alternative hypothesis (H1) suggests that
at least two of the methods differ significantly. A p-value threshold of 0.05 is used in this analysis. If the p-value is below this
threshold, H0 is rejected, indicating that significant differences exist among at least two of the algorithms. Upon obtaining a
significant result from the Friedman test, we perform the Nemenyi post-hoc test to identify which specific pairs of algorithms
differ significantly. The Nemenyi test calculates the critical difference (CD) value, which is subsequently visualized in a CD
diagram. This diagram offers a clear representation of the average ranks of each algorithm, with horizontal bars denoting
significant differences between algorithm pairs.

(a) Accuracy(Benchmark) (b) F-measure(Benchmark) (c) Accuracy(Image) (d) F-measure(Image)

Figure 9. CD diagrams w.r.t. Accuracy and F-measure when model layer is 5.
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Table 6. Accuracy and F-measure based on different loss functions when model layers is 5.
Data Accuracy F-measure

CE CE-SED CE-inform CE-PSED CE CE-SED CE-inform CE-PSED

1 0.9222±0.0009 0.9267±0.0000 0.8421±0.0731 0.9276±0.0000 0.8907±0.0002 0.8923±0.0000 0.8045±0.0779 0.8928±0.0000
2 0.6929±0.0297• 0.7076±0.0267• 0.7591±0.0003• 0.7769±0.0003 0.5950±0.0316• 0.6027±0.0318 0.6605±0.0000 • 0.7124±0.0021
3 0.6506±0.0000 • 0.6489±0.0000 • 0.6182±0.0094 • 0.7667±0.0005 0.5168±0.0003• 0.5126±0.0000 • 0.4932±0.0151 • 0.7631±0.0005
4 0.6038±0.0128• 0.6531±0.0000 • 0.6451±0.0012• 0.7920±0.0001 0.4830±0.0132 • 0.5164±0.0000• 0.5208±0.0001 • 0.7820±0.0001
5 0.6616±0.0002 0.6694±0.0000 0.6713±0.0000 0.7837±0.0004 0.5416±0.0006 0.5447±0.0005 0.5455±0.0005 0.7732±0.0003
6 0.6741±0.0002• 0.6334±0.0109• 0.6625±0.0000• 0.8770±0.0003 0.5611±0.0029• 0.5013±0.0144 • 0.5291±0.0001 • 0.8769±0.0003
7 0.2830±0.0040 • 0.2910±0.0020 • 0.2944±0.0008 • 0.5231±0.0014 0.1539±0.0030• 0.1734±0.0018• 0.1620±0.0008• 0.4951±0.0016
8 0.2372±0.0041 • 0.2701±0.0016 • 0.2969±0.0040• 0.8749±0.0003 0.1605±0.0051• 0.1771±0.0011• 0.2100±0.0048• 0.8747±0.0004
9 0.4153±0.0023 • 0.4348±0.0046 • 0.4544±0.0028• 0.6487±0.0002 0.2891±0.0031• 0.3183±0.0046• 0.3355±0.0042• 0.6185±0.0004

10 0.8489±0.0000• 0.8489±0.0000• 0.8489±0.0000• 0.9246±0.0002 0.7795±0.0000• 0.7795±0.0000• 0.7795±0.0000• 0.9237±0.0002
11 0.9711±0.0000 0.9711±0.0000 0.9711±0.0000 0.9699±0.0000 0.9568±0.0000 0.9568±0.0000 0.9568±0.0000 0.9616±0.0000
12 0.9480±0.0000 0.9512±0.0001 0.9484±0.0000 0.9513±0.0000 0.9480±0.0000 0.9512±0.0001 0.9484±0.0000 0.9513±0.0000
13 0.9474±0.0000• 0.9474±0.0000• 0.9474±0.0000• 0.9809±0.0000 0.9218±0.0000 • 0.9218±0.0000 • 0.9218±0.0000 • 0.9807±0.0000
14 0.9484±0.0000• 0.9484±0.0000• 0.9484±0.0000• 0.9862±0.0000 0.9232±0.0000• 0.9232±0.0000 • 0.9232±0.0000 • 0.9862±0.0000
15 0.5803±0.0006• 0.5897±0.0006• 0.5889±0.0002• 0.6930±0.0001 0.5537±0.0053• 0.5815±0.0015 • 0.5821±0.0006 • 0.6931±0.0001
16 0.9519±0.0003• 0.9445±0.0002• 0.9479±0.0002 • 0.9870±0.0000 0.9334±0.0010• 0.9200±0.0007• 0.9266±0.0008• 0.9869±0.0000
17 0.9479±0.0001• 0.9456±0.0001 • 0.9459±0.0002• 0.9726±0.0000 0.9479±0.0001• 0.9456±0.0001• 0.9459±0.0002• 0.9726±0.0000
18 0.9884±0.0000• 0.9885±0.0000 • 0.9872±0.0000• 1.0000±0.0000 0.9884±0.0000• 0.9885±0.0000• 0.9872±0.0000• 1.0000±0.0000
19 0.9049±0.0000• 0.9061±0.0000• 0.9064±0.0000• 0.9810±0.0000 0.8942±0.0000• 0.8951±0.0000• 0.8956±0.0000 • 0.9809±0.0000
20 0.8442±0.0000• 0.8445±0.0000 0.8451±0.0000 0.8477±0.0000 0.8389±0.0000• 0.8391±0.0000 0.8399±0.0000 0.8417±0.0000
21 0.0721±0.0002• 0.0552±0.0003 • 0.0624±0.0006• 0.6283±0.0001 0.0344±0.0001• 0.0268±0.0001• 0.0294±0.0003• 0.6148±0.0002
22 0.7236±0.0031 • 0.7255±0.0023• 0.7222±0.0030• 0.8963±0.0000 0.7099±0.0046• 0.7044±0.0029• 0.7033±0.0043• 0.8962±0.0000
23 0.6603±0.0053• 0.6281±0.0059• 0.6374±0.0052• 0.9777±0.0000 0.6441±0.0067• 0.6023±0.0090• 0.6120±0.0078• 0.9777±0.0000
24 0.2413±0.0001• 0.2359±0.0000 • 0.2421±0.0000• 0.4453±0.0001 0.1324±0.0001• 0.1279±0.0001• 0.1307±0.0001 • 0.4107±0.0001
25 0.9713±0.0000 • 0.9727±0.0000• 0.9712±0.0000• 0.9770±0.0000 0.9714±0.0000• 0.9728±0.0000• 0.9713±0.0000 • 0.9770±0.0000

(a) Accuracy(Benchmark) (b) F-measure(Benchmark) (c) Accuracy(Image) (d) F-measure(Image)

Figure 10. CD diagrams w.r.t. Accuracy and F-measure when model layer is 8.

11.1.3. CONVERGENCE ANALYSIS

The Figure 11 to 13 show the performance of the four methods over the training epoch in all benchmark datasets and image
datasets, where the points on each line represent the average accuracy of the corresponding period. The results show that
the CE-PSED method exhibits significant performance advantages in most datasets and training epochs, and can quickly
converge, which fully demonstrates its robustness and effectiveness on different datasets.

11.1.4. NETWORK LAYER ANALYSIS

To verify the effectiveness of the CE-PSED method at different network layers, this study set the model layers to 5 and 8,
respectively. Tables 6 and 7 show the accuracy and F-measure values of four methods at different levels. The results show
that as the number of network layers increased, the F-measure values of other methods significantly decreased, while the
F-measure value of the CE-PSED method decrease less and remain the highest. This indicates that other models experience
feature representation collapse as the number of layers increases, that is, the features tend to be the same, while the CE-PSED
method performs well at different layers, effectively avoiding feature collapse and ensuring that the model maintains good
feature learning and classification capabilities in deep structures.

11.1.5. ANALYSIS OF DISCERNMENT ABILITY

To insight the discernment ability of the four methods, we analyze the feature representations of the last hidden layer of the
model. Table 8 to Table 10 present the Euclidean distances and information entropies between the similarity matrices and
YYT matrix for all dataset when model layers are 3, 5,and 8, where each row is a dataset, and the columns are divided
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Table 7. Accuracy and F-measure based on different loss functions when model layers is 8.
Data Accuracy F-measure

CE CE-SED CE-inform CE-PSED CE CE-SED CE-inform CE-PSED

1 0.9249±0.0012 0.8421±0.0731 0.9267±0.0001 0.9276±0.0000 0.8921±0.0003 0.8045±0.0780 0.8930±0.0000 0.8928±0.0000
2 0.6871±0.0345 0.7538±0.0004 0.6827±0.0415• 0.7689±0.0002 0.5953±0.0342 0.6557±0.0000 0.5886±0.0439 • 0.6798±0.0011
3 0.6455±0.0000 • 0.6147±0.0089• 0.5892±0.0159• 0.7580±0.0007 0.5119±0.0005• 0.4804±0.0114• 0.4452±0.0194 • 0.7575±0.0006
4 0.6240±0.0097• 0.6184±0.0092• 0.6528±0.0000 • 0.7743±0.0020 0.4937±0.0109 • 0.4867±0.0120• 0.5156±0.0000• 0.7597±0.0023
5 0.6655±0.0022• 0.6704±0.0000 • 0.6707±0.0000 • 0.7704±0.0005 0.5441±0.0000• 0.5402±0.0000 • 0.5393±0.0000 • 0.7587±0.0006
6 0.6625±0.0000• 0.6621±0.0000• 0.6606±0.0000 • 0.8681±0.0004 0.5280±0.0000 • 0.5300±0.0000• 0.5295±0.0000 • 0.8682±0.0004
7 0.2971±0.0005 • 0.3038±0.0007• 0.2848±0.0037 • 0.4303±0.0010 0.1662±0.0006• 0.1740±0.0012 • 0.1646±0.0031• 0.3900±0.0011
8 0.1410±0.0030 • 0.1586±0.0035 • 0.1546±0.0015 • 0.7498±0.0056 0.0589±0.0027 • 0.0679±0.0024• 0.0718±0.0007 • 0.7478±0.0060
9 0.3672±0.0018 • 0.3542±0.0021• 0.3719±0.0015 • 0.5736±0.0007 0.2213±0.0035 • 0.2245±0.0020 • 0.2396±0.0030 • 0.5302±0.0010
10 0.8489±0.0000• 0.8489±0.0000 • 0.8489±0.0000• 0.9224±0.0002 0.7795±0.0000• 0.7795±0.0000 • 0.7795±0.0000• 0.9237±0.0001
11 0.9711±0.0000 0.9711±0.0000 0.9711±0.0000 0.9707±0.0000 0.9568±0.0000 0.9568±0.0000 0.9568±0.0000 0.9576±0.0000
12 0.9497±0.0000 0.9517±0.0000 0.9482±0.0000 • 0.9534±0.0000 0.9496±0.0000 0.9517±0.0000 0.9481±0.0000 • 0.9534±0.0000
13 0.9474±0.0000• 0.9474±0.0000• 0.9474±0.0000• 0.9808±0.0000 0.9218±0.0000• 0.9218±0.0000 • 0.9218±0.0000 • 0.9808±0.0000
14 0.9484±0.0000• 0.9484±0.0000• 0.9484±0.0000 • 0.9868±0.0000 0.9232±0.0000• 0.9232±0.0000• 0.9232±0.0000 • 0.9867±0.0000
15 0.5381±0.0006 • 0.5527±0.0007• 0.5409±0.0004 • 0.6880±0.0000 0.4252±0.0064• 0.4785±0.0075• 0.4450±0.0059• 0.6875±0.0001
16 0.9371±0.0000• 0.9395±0.0000 • 0.9371±0.0000• 0.9864±0.0000 0.9066±0.0000• 0.9113±0.0000 • 0.9066±0.0000• 0.9864±0.0000
17 0.9470±0.0002 • 0.9518±0.0001• 0.9466±0.0001• 0.9708±0.0000 0.9470±0.0002 • 0.9517±0.0001• 0.9466±0.0001• 0.9708±0.0000
18 0.9895±0.0000• 0.9880±0.0001• 0.9909±0.0000• 1.0000±0.0000 0.9895±0.0000• 0.9880±0.0001• 0.9909±0.0000• 1.0000±0.0000
19 0.8203±0.0039• 0.8102±0.0080• 0.8296±0.0070• 0.9664±0.0003 0.8075±0.0042• 0.7964±0.0092• 0.8165±0.0081 • 0.9661±0.0003
20 0.8442±0.0000• 0.8421±0.0000• 0.8432±0.0000• 0.8485±0.0000 0.8389±0.0000• 0.8368±0.0000• 0.8379±0.0000 0.8421±0.0000
21 0.0319±0.0001• 0.0271±0.0001 • 0.0276±0.0001• 0.4207±0.0033 0.0080±0.0000• 0.0062±0.0000• 0.0081±0.0000• 0.3996±0.0039
22 0.4637±0.0171• 0.4853±0.0082• 0.4446±0.0045• 0.8485±0.0004 0.4112±0.0216• 0.4318±0.0114• 0.3897±0.0047• 0.8484±0.0004
23 0.4541±0.0106 • 0.5035±0.0072• 0.4074±0.0160• 0.9519±0.0005 0.4194±0.0144 • 0.4706±0.0103• 0.3646±0.0207• 0.9518±0.0005
24 0.1803±0.0023• 0.1522±0.0026• 0.1514±0.0021• 0.3499±0.0008 0.1030±0.0007 • 0.0947±0.0012• 0.0901±0.0008• 0.3108±0.0009
25 0.9205±0.0035• 0.9156±0.0048• 0.9509±0.0004 • 0.9717±0.0000 0.9167±0.0043• 0.9108±0.0063• 0.9509±0.0004 • 0.9717±0.0000

into two parts based on different evaluation measures. The lowest value of each part in each row is underlined. Euclidean
distances (dED) and information entropies (dIE) are defined:

dED(A,B) =

√√√√ n∑
i=1

n∑
i=1

(aij − bij)2, (87)

dIE(A) =
k∑
r=1

(

mr∑
i=1

mr∑
j=1

pij log(pij)), (88)

where aij and bij are the elements in the i-th row and j-th column of matrices A and B,respectively and pij is the probability
value of the i-th row and j-th column element in matrix A[r][r]. Figure 14 to 17 presents the t-SNE of the similarity matrices
of the feature representations for each method. As shown in the tables and figures, the CE-PSED method demonstrates
superior performance in feature representation and class discrimination.

11.1.6. COMPARISON WITH BASELINE METHODS

In this section, we present a comparative analysis of the CE-PSED-based method against several existing baseline approaches
across five image datasets, as summarized in Table 11. The results demonstrate that the CE-PSED-based method consistently
achieves superior accuracy compared to the baseline methods, highlighting its effectiveness in diverse scenarios.

11.1.7. COMPARISON OF DIFFERENT NETWORK STRUCTURES

In addition, we use loss functions to train more complex networks. The experimental results and detailed parameter
configuration are as follows. In this study, we conducted experiments using hardware configurations including Intel (R)
Core (TM) i7-14700F CPU, 16GB RAM, and NVIDIA GeForce RTX 4060 GPU. The experiment was conducted on the
Windows operating system, with Python 3.10 as the programming language and PyTorch 2.4 library for model development
and training.

For training the Visual Transformer (ViT) (Dosovitskiy et al., 2020) model, we use a stochastic gradient descent (SGD)
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Figure 11. Accuracy curves based on different loss functions when model layers is 3.

optimizer with a learning rate set to 0.001. The batch size was set to 64, and the model was trained for a total of 100 iteration
cycles. The dataset is divided into training and testing subsets in a ratio of 7:3. Similarly, the ConvNeXt (Liu et al., 2022)
model was trained using the AdamW optimizer with a learning rate set to 0.004. The model also uses a batch size of 64
and is trained over 100 iteration cycles. Consistent with the ViT model, the dataset is divided into training and testing sets,
maintaining the same 7:3 ratio.

The performance evaluation of both models is conducted using accuracy and F-measure as the main measures. As shown in
the table 12, the analysis of the results indicates that our proposed method has made significant improvements compared to
existing methods. This demonstrates the effectiveness of our method.

11.1.8. COMPARISON OF RUNTIME FOR DIFFERENT LOSS FUNCTIONS

We conduct a runtime comparison, as shown in the table 13. For the first 20 benchmark datasets, the table presents the total
time consumption (in seconds) for both training and testing. For image datasets, the recorded values represent the training
and prediction time (in seconds) on the fully connected network shown in Figure 3, after feature extraction using either
MoCo v3 or VGG. From the table 13, it can be observed that our method does not significantly increase computational time.
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Table 8. Euclidean distance and information entropy between similarity matrix and YYT based on different loss functions when model
layers is 3.

Data dED dIE

CE CE-SED CE-inform CE-PSED CE CE-SED CE-inform CE-PSED

1 76.1735 76.1735 77.5304 76.5485 37.0368 37.0368 37.0385 37.0500
2 118.0135 118.0135 116.3866 106.0565 35.9276 35.9276 35.9308 35.8186
3 123.2038 123.2038 129.5480 110.1027 35.4940 35.4940 35.5365 35.2933
4 162.3454 162.3454 159.9709 149.7737 37.2954 37.2954 37.3005 37.2043
5 173.1156 173.1156 175.2450 154.3241 37.9086 37.9086 37.8876 37.7090
6 166.4008 166.4008 169.8654 135.0187 38.0959 38.0959 38.1075 37.9415
7 329.6840 329.6840 332.4945 260.9751 608.8749 608.8749 608.8462 607.8717
8 257.0381 257.0381 248.1448 243.9900 541.0715 541.0715 539.5068 542.3536
9 399.3402 399.3402 390.1124 313.9013 359.1309 359.1309 359.0130 358.5208

10 254.0633 254.0633 247.5812 209.8767 44.2149 44.2149 44.2136 44.0434
11 189.9269 189.9269 187.7281 180.3647 47.2859 47.2859 47.2887 47.2785
12 279.1663 279.1663 286.4833 276.5521 46.8595 46.8595 46.8014 46.8092
13 311.5175 311.5175 309.4672 205.7426 49.3400 49.3400 49.3379 49.2880
14 336.9726 336.9726 335.6694 219.6362 50.0835 50.0835 50.0865 50.0487
15 466.5055 466.5055 465.5321 444.3993 45.1351 45.1351 45.0850 45.2805
16 338.2421 338.2421 381.2186 295.4883 52.8144 52.8144 52.8225 52.8146
17 895.9040 895.9040 845.0391 442.9792 53.2286 53.2286 53.2484 53.2705
18 517.6101 517.6101 511.4658 223.7286 54.0381 54.0381 54.0401 54.0677
19 1734.1428 1734.1428 1674.9242 1809.1698 201.6555 201.6555 201.6630 201.5141
20 4301.6353 4301.6353 4233.9531 4129.7095 66.0202 66.0202 65.9704 65.9258
21 233.7108 233.7108 239.6036 222.7377 820.5886 820.5886 823.8793 825.4946
22 1055.0093 1055.0093 1042.0280 919.8159 837.9047 837.9047 837.8022 837.8456
23 1187.5291 1187.5291 1180.5438 1043.7703 851.2291 851.2291 851.2600 850.7767
24 1381.6508 1381.6508 1406.4387 1391.6364 29363.1641 29363.1641 29390.8047 29438.4980
25 1755.2109 1755.2109 1602.9089 1572.4526 962.3068 962.3068 962.1885 962.1676

Table 9. Euclidean distance and information entropy between similarity matrix and YYT based on different loss functions when model
layers is 5.

Data dED dIE

CE CE-SED CE-inform CE-PSED CE CE-SED CE-inform CE-PSED

1 79.6850 78.5153 78.1867 78.6162 37.0328 37.0405 37.0459 37.0448
2 121.9238 124.8685 125.6604 113.0838 35.9199 35.9311 35.9453 35.9171
3 139.6086 139.7598 139.5939 112.8470 35.5393 35.5488 35.5446 35.4087
4 176.6676 177.8770 173.6018 142.6622 37.3264 37.2951 37.3265 37.2480
5 184.9006 180.9771 184.6760 152.6356 37.9203 37.9225 37.9254 37.7662
6 181.3291 186.9172 183.1280 141.9453 38.1332 38.1379 38.1374 37.9251
7 351.0292 350.8264 353.8266 270.3388 608.8852 609.0336 608.8508 607.8669
8 287.1577 311.6756 321.5478 264.3753 541.0257 541.8483 542.0345 542.2803
9 451.0792 447.5596 432.1057 332.7613 359.3900 359.3643 359.3124 358.7696
10 272.9623 273.0852 270.0412 203.4734 44.2175 44.2134 44.2204 44.1212
11 184.7525 186.9483 185.5223 201.9718 47.2881 47.2837 47.2859 47.2416
12 269.4701 295.2358 286.0780 272.2967 46.8527 46.8941 46.8962 46.8753
13 314.9090 308.2535 310.5731 216.3729 49.3310 49.3399 49.3396 49.2533
14 338.2912 337.2207 335.4204 214.1152 50.0805 50.0874 50.0830 50.0418
15 484.8264 475.2573 476.4166 452.1942 45.3697 45.3445 45.2689 45.1519
16 370.6945 354.5944 505.9410 297.0087 52.8071 52.8160 52.8222 52.8105
17 829.2169 910.4088 802.9050 461.3801 53.2784 53.2987 53.2917 53.2539
18 486.7239 527.8088 569.7032 245.3424 54.0134 54.0535 53.9989 54.0640
19 1907.5442 1875.5889 1901.7069 2104.1467 201.6993 201.6781 201.6916 201.6814
20 4519.4912 4370.4189 4409.1572 4183.5938 66.0612 66.0230 66.0429 65.9723
21 284.0164 279.8763 263.6331 238.7444 826.9400 827.9311 825.7845 825.6633
22 1183.8347 1212.5712 1279.2507 1003.7283 838.1042 838.2512 837.7303 837.8041
23 1321.9459 1382.4373 1364.1901 1143.9182 851.9315 852.3873 852.1819 852.2212
24 1596.7644 1618.1927 1563.8016 1454.6886 29456.8047 29419.6973 29415.5566 29453.1133
25 2040.1495 2058.1721 2063.2100 1792.5488 962.3513 962.1644 962.4064 962.1599
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Figure 12. Accuracy curves based on different loss functions when model layers is 5.
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Figure 13. Accuracy curves based on different loss functions when model layers is 8.
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Table 10. Euclidean distance and information entropy between similarity matrix and YYT based on different loss functions when model
layers is 8.

Data dED dIE

CE CE-SED CE-inform CE-PSED CE CE-SED CE-inform CE-PSED

1 78.5572 77.6711 77.5050 76.6356 37.0452 37.0489 37.0449 37.0509
2 123.3103 124.2150 124.3540 119.5258 35.9527 35.9524 35.9383 35.9547
3 143.4134 142.9109 142.7595 125.0313 35.5476 35.5408 35.5183 35.5139
4 177.0358 175.9595 177.6065 144.1926 37.3276 37.3231 37.2873 37.1813
5 184.6225 186.0866 187.0768 158.6200 37.9243 37.9152 37.9159 37.8397
6 192.7056 191.0630 194.8601 147.8844 38.1393 38.1397 38.1393 37.6394
7 351.8983 354.9803 352.5111 307.3115 609.0768 609.0687 609.1129 608.3528
8 397.7230 347.8330 399.9164 256.9694 542.7438 542.2402 542.5559 541.8681
9 460.3625 464.0630 466.8538 362.0203 359.4289 359.3731 359.4217 358.4846
10 273.0928 272.3560 276.0269 206.4414 44.2209 44.2218 44.2104 44.0273
11 184.6531 188.8407 187.7007 182.5056 47.2881 47.2871 47.2887 47.2832
12 368.6120 332.2215 391.8640 298.4601 46.9220 46.9126 46.9306 46.8262
13 312.4539 312.4441 311.5305 185.7752 49.3347 49.3400 49.3412 49.3174
14 335.2605 333.6607 335.5419 203.2962 50.0845 50.0865 50.0830 50.0606
15 510.7383 517.9683 500.6602 469.6039 45.4402 45.4203 45.4393 45.3898
16 516.2045 515.2233 500.0887 297.2825 52.8287 52.8268 52.8293 52.7993
17 941.3668 688.6042 876.5587 484.4434 53.2947 53.2633 53.2934 53.2362
18 655.9843 511.2377 670.1942 416.2432 54.0622 54.0526 54.0665 54.0659
19 2047.2732 2357.8250 1974.6055 2180.1816 201.6154 201.7070 201.6311 201.6664
20 4545.1484 4479.0952 4472.4590 4337.5742 66.0634 66.0526 66.0532 65.9778
21 313.1884 294.9319 302.1780 243.5456 829.1549 820.5233 825.6597 815.4856
22 1374.4672 1269.7419 1305.0961 1149.5310 836.5143 836.2145 838.1793 837.6033
23 1461.3339 1477.7767 1404.8453 1165.8860 852.1779 851.9873 852.3888 852.2087
24 2053.9851 1847.4176 1824.1750 1530.5894 29493.0820 29490.4590 29429.0820 29470.7949
25 2384.8987 2204.3345 2293.9170 1886.0833 961.9738 962.0734 962.1173 961.9856
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Figure 14. The t-SNE of Mpeg.
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(d) CE-PSED

Figure 15. The t-SNE of Mnist.
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(d) CE-PSED

Figure 16. The t-SNE of Caltech-101.
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Figure 17. The t-SNE of ImageNet.

Table 11. Comparison with baseline methods in Accuracy

Data Baseline Citation Accuracy CE-PSED

Mpeg (Bai et al., 2009) 0.5200
0.7338

(Grigorescu & Petkov, 2003) 0.5000

Mnist(6996 pcs) (Ren et al., 2016) 0.7946

0.9062
(He & Sun, 2015) 0.8073

(Goodfellow et al., 2013) 0.8257
(Hinton et al., 1999) 0.8768

Mnist(70000 pcs) (Byerly et al., 2021) 0.9987

Pendigits (McConville et al., 2021) 0.8850

0.9908
(Li et al., 2021) 0.8227

(Toth & Oberhauser, 2020) 0.9550
(Cai & Chen, 2015) 0.8155

(van der Maaten & Hinton, 2008) 0.8930

Caltech-101 (Bansal et al., 2021) 0.4500

0.5005
(Bansal et al., 2021) 0.4400

(Chen & Guestrin, 2016) 0.5000
(Irle & Kauschke, 2011) 0.5000

ImageNet (Chen et al., 2023) 0.9094

0.9762
(Yu et al., 2022) 0.9100

(Wortsman et al., 2022) 0.9098
(Pham et al., 2021) 0.9020
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Table 12. Performance Comparison between Network Structures

Model Dataset Accuracy F-measure

Original PSED Original PSED

ConvNeXt

Mpeg 0.8238 0.8310 0.8170 0.8280

Mnist 0.9904 0.9925 0.9900 0.9930

Pendigits 0.9708 0.9832 0.9699 0.9826

Caltech-101 0.6429 0.6536 0.6100 0.6230

ImageNet 0.9651 0.9687 0.9650 0.9695

ViT

Mpeg 0.6820 0.7095 0.5515 0.6811

Mnist 0.8590 0.9290 0.8550 0.9277

Pendigits 0.9568 0.9711 0.9512 0.9700

Caltech-101 0.7393 0.8500 0.6034 0.7866

ImageNet 0.9964 0.9968 0.9952 0.9973

Table 13. Comparison of runtime (seconds) for different loss functions
Dataset CE CE-SED CE-inform CE-PSED
1 2.34 3.07 3.49 6.03
2 2.35 3.07 3.44 8.94
3 2.44 3.93 3.57 9.14
4 2.88 8.70 4.47 11.13
5 3.23 9.41 4.83 12.02
6 3.33 9.65 5.03 6.46
7 6.44 13.33 12.58 8.96
8 12.81 10.06 27.73 12.09
9 13.75 7.62 18.54 11.58
10 13.72 7.62 8.96 9.31
11 10.30 10.25 11.59 11.81
12 9.99 12.97 15.32 15.93
13 9.98 12.94 14.90 15.39
14 10.93 14.20 16.35 27.15
15 8.29 10.76 12.74 13.26
16 15.52 30.26 33.69 24.15
17 22.06 28.64 33.89 35.15
18 34.30 31.46 37.09 38.56
19 38.57 49.95 63.52 68.38
20 96.47 126.55 149.74 155.72
Mpeg 8.18 9.94 16.36 18.43
Mnist 27.39 35.20 51.52 55.51
Pendigits 22.40 29.61 45.99 50.55
Caltech-101 32.00 42.59 70.91 80.32
ImageNet 46.86 58.76 86.41 96.38
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