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ABSTRACT

Uncovering and comparing the dynamical mechanisms that support neural pro-
cessing remains a key challenge in the analysis of biological and artificial neural
systems. However, measures of representational (dis)similarity in neural systems
often assume that neural responses are static in time. Here, we show that stochas-
tic shape distances (SSDs; Duong et al., 2023), which were developed to compare
noisy neural responses to static inputs and lack an explicit notion of temporal
structure, are well equipped to compare noisy dynamics. In two examples, we
use SSDs, which interpolate between comparing mean trajectories and second-
order fluctuations about mean trajectories, to disentangle recurrent versus external
contributions to noisy dynamics.

1 INTRODUCTION

Biological and artificial neural networks represent external stimuli and actions in high-dimensional
feature spaces. While different neural systems utilize distinct feature spaces, the geometry of repre-
sentations in these spaces can be similar across systems (Dwivedi & Roig, 2019; Chung & Abbott,
2021), hinting that underlying computational principles may be shared.

Numerous distance measures between neural representations have been utilized, including: Repre-
sentational Similarity Analysis (RSA, Kriegeskorte et al., 2008), Centered Kernel Alignment (CKA,
Kornblith et al., 2019), Procrustes shape distance (Williams et al., 2021), and individual matching
of neurons (Li et al., 2015; Khosla & Williams, 2023). Nearly all of these methods consider neural
responses that are static and non-stochastic. That is, neural systems are idealized as a deterministic
functions f : S 7→ RN that map from a stimulus space S to N -dimensional feature space (where N
is the number of neurons in the system).

But many biological and artificial neural systems are neither deterministic nor static. In many brain
regions, the mean neural response is often smaller than variance across trials (Goris et al., 2014),
and shared trial-to-trial fluctuations (so called “noise correlations”) are thought to be a crucial deter-
minant of a circuit’s signalling capacity (Averbeck et al., 2006). Moreover, neural responses unfold
dynamically over time, with rich interplay of feedforward and recurrent interactions (Vyas et al.,
2020). Of course, many artificial network models also contain components that are recurrent (e.g.
RNNs) or stochastic (e.g. variational autoencoders).

Ignoring the stochastic and dynamical aspects of neural circuits may be a justified simplification in
certain settings, but it is easy to imagine situations where traditional representation (dis)similarity
measures are blind to important details. These deficiencies were separately addressed in two recent
works by Duong et al. (2023) and Ostrow et al. (2023). The former proposed stochastic shape
distances (SSDs) to geometrically quantify differences in trial-to-trial noise across networks without
addressing recurrent dynamics. The latter utilized Koopman operator theory to develop Dynamical
Similarity Analysis (DSA), which aims to quantify similarity in dynamical elements of flow fields
without an explicit focus on noise statistics.

Here, we investigate the extent to which these two principles—stochasticity and recurrent
dynamics—are interrelated in the context of quantifying representational similarity. The relation
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Figure 1: Demonstration that stochastic shape distances disambiguate recurrent flow fields. (A) Simulations of
three systems with identical trial-average behavior but distinct recurrent dynamics. See main text and Appendix
A.1 for details. (B) Pairwise SSD distances between the three systems in panel A, using eq. (1) with α = 0
(top), α = 1 (middle), and α = 2 (bottom).

between the two has already been remarked upon in the broader literature. A recent paper by Galgali
et al. (2023) demonstrates how stochastic deviations from an average dynamical trajectory (“resid-
ual dynamics”) can be used to infer a dynamical flow field under certain conditions. It is also well
understood that driving a deterministic system with noise (or some other “persistently exciting” sig-
nal) is necessary to infer its governing dynamics (Åström & Torsten, 1965; Mareels, 1984; Green &
Moore, 1986). We show that SSDs, which lack any explicit notion of dynamics, can nonetheless be
used to quantify differences arising from recurrent neural interactions.

2 RESULTS

We focus on SSDs that account for the mean and covariance of neural responses and ignore higher-
order moments.1 Specifically, consider network A with mean responses {µ(A)

1 , . . . ,µ
(A)
M } and

covariances {Σ(A)
1 , . . . ,Σ

(A)
M } in an N -dimensional feature space across M conditions or “land-

marks.” The Wasserstein α-SSD between A and a similarly defined network B is:

d2α(A,B) = min
Q∈O(N)

M∑
m=1

{
α∥µ(A)

m −Qµ(B)
m ∥22 + (2− α)B2(Σ(A)

m ,QΣ(B)
m QT)

}
(1)

where B(·, ·) is the Bures distance between positive semidefinite matrices, O(N) is the set of or-
thogonal matrices, and 0 ≤ α ≤ 2 determines the relative weight placed on differences between the
means or covariances of the neural responses. In the original conception of SSDs, each landmark
corresponds to a different network input—i.e., m is an index over stimulus variables, such as natural
images fed into a deep network. Below we will use m to index over timebins or dynamic behavioral
states. Equation (1) is described in more detail in section 2.4 of Duong et al. (2023).

2.1 DISTINGUISHING SYSTEMS WITH THE SAME TRIAL-AVERAGE TRAJECTORIES

We begin by showing that eq. (1) can be used “off-the-shelf” to distinguish between different re-
current dynamics that give rise to the same trial-average trajectories. To demonstrate, we ran sim-
ulations of three network dynamics following the construction by Galgali et al. (2023) and later
leveraged by Ostrow et al. (2023). In these simulations, the recurrent dynamics are distinct–the first
system is bistable, the second implements line attractor dynamics, and the third implements point
attractor dynamics. However, the time varying input drive is tuned to render the trial-average re-
sponses identical. Figure 1A shows simulated dynamics under two conditions (yellow vs. blue),

1An alternative SSD based on energy distance (instead of Wasserstein distance) may be used to investigate
differences in higher-order moments (see Duong et al., 2023). But we leave this possibility to future work.
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corresponding to a binary decision outcome (see Galgali et al., 2023, for context). The top panels
show single-trial dynamics (semi-transparent trajectories) and the trial-average. The bottom panels
illustrate the trial-average (dots) and the marginal, across-trial covariance (ellipses) at individual
time points. Full simulation details are provided in Appendix A.

It is clear from inspection that the three systems can be distinguished from their covariances, but
not their trial averages. To confirm, we computed SSDs using eq. (1) treating timebins in distinct
conditions as “landmarks.” Concretely, we have M = CT landmarks where T is the number of
timebins in a trial and C = 2 is the number of conditions (blue vs. yellow trajectories). The SSD
with α = 2 fails to distinguish the three cases, as expected (Figure 1B, mean-only distance). In
contrast, the SSD with α = 0 or α = 1 successfully distinguishes the three systems (Figure 1B,
mean + covariance and covariance-only distance). This reproduces one of the main capabilities of
DSA (Fig. 3 in Ostrow et al., 2023). Indeed, we qualitatively reproduce their finding that the line
and point attractor systems are most similar (i.e. lower distance relative to the bistable system).

2.2 WHY ACROSS-TRIAL COVARIANCE CAN DISTINGUISH RECURRENT DYNAMICS

Figure 1 shows a simple example where the shape of trial-to-trial “noise” can capture differences in
recurrent dynamics, even when input-driven dynamics are tuned to make firing rate trajectories as
similar as possible. In this section, we provide a theoretical explanation for this result which holds
for any stochastic differential equation that takes the form:

dx(t) = f(x(t))dt+ u(t)dt+ g(x(t))dw(t), (2)

where x(t) is an N -dimensional vector of neural activities at time t, f is a sufficiently regular (e.g.,
Lipschitz continuous) function governing time-invariant recurrent dynamics, u : R 7→ RN defines
a deterministic time-varying input drive to the system, g : RN 7→ RN×N is a sufficiently regular
function that defines the noise structure, and w(t) is an N -dimensional standard Brownian motion.
The stochastic process {x(t)} defines a family of distributions on RN parameterized by t. Define
the first two moments (mean and covariance) of these distributions as:

m(t) := E[x(t)], and P (t) := E
[
(x(t)−m(t))(x(t)−m(t))T

]
. (3)

We drop the dependence on t below for brevity. Using standard methods from stochastic calculus
(see e.g. Särkkä & Solin, 2019), one can show that m(t) and P (t) evolve according to the differen-
tial equations

dm

dt
= E[f(x)] + u,

dP

dt
= E[f(x)(x−m)T] + E[(x−m)f(x)T] +

1

2
E[g(x)g(x)T].

These differential equations provide a concrete explanation for the success of SSDs in Figure 1.
Specifically, we see that the evolution of the mean trajectory m(t) depends on the input drive u(t),
whereas the evolution of the covariance matrix P (t) does not explicitly depend on u(t). These
equations suggest that SSDs (with α = 2) are a useful metric for isolating differences in recurrent
dynamics, while deterministic shape distances (α = 0) are useful for comparing the joint effect of
recurrent dynamics and input drive. We caution, however, that this does not guarantee that SSDs
will always distinguish between networks with different nonlinear recurrent interactions.

To further elucidate the relationship between the covariance trajectories and the recurrent dynamics,
it is instructive to consider the linear setting with additive noise—i.e., when f(x) = Ax and g(x) =√
2L for N ×N matrices A and L. In this case, the evolution of the covariance P (t) is governed

by the linear differential equation:

dP

dt
= AP + PAT +LLT.

In particular, it is clear that the evolution of the covariance matrix depends only on the recurrent
dynamics matrix A and noise matrix LLT, not the time-varying input drive u(t).

2.3 DISTINGUISHING SYSTEMS WITHOUT TRIAL STRUCTURE

As neuroscientists study more complex and naturalistic behaviors, it has become increasingly com-
mon for experimental setups to have less trial to trial structure (Williams & Linderman, 2021). How
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Figure 2: SSDs capture differences between recurrent dynamics in high-dimensional nonlinear RNNs without
trial structure. (A) An animal runs around a circular track. The 2D position and velocity of the animal at time
t are l(t) and v(t). (B) We trained 3 classes of RNNs with noisy hidden units to estimate the position of the
animal at time t with varying levels of velocity and position noise. (CD) Sample trajectories of the true position
l(t) and velocity v(t). (E) Distance matrices show that SSD with α = 0 captures the block structure corre-
sponding to 3 types of trained networks (with BatchNorm) while SSD with α = 2 fails. (F) Multidimensional
scaling (MDS) plots of the distance matrices show that differences in the covariance structures cluster the 3
networks, while the distances of the mean responses do not. (GH) When BatchNorm is not applied, both the
SSD with α = 0 and SSD with α = 2 capture differences between the networks.

can we disentangle recurrent neural dynamics between networks in such setups? As an example,
suppose we have recordings from place cells in two mice while they are freely exploring an environ-
ment. Since the two mice will traverse unique trajectories, comparing time-aligned representations
may not be a relevant measure for disentangling recurrent interactions. Instead, a more natural
approach is to compare representations conditioned on position.

We trained 3 classes of RNNs with 64 hidden units to estimate the position l(t) of an animal on
a circular track (Figure 2A). Each RNN received noise corrupted inputs (l(t) + ϵlwl(t),v(t) +
ϵvwv(t)), where v(t) is the velocity of the animal and wl(t), wv(t) are standard Gaussian random
vectors (Figure 2B). The first (second, third) class of RNNs was trained with ϵl = 0 (ϵl = 0.5,
ϵl = 1) and ϵv = 1 (ϵv = 0.5, ϵv = 0). Intuitively, since the first class receives noiseless position
inputs, the RNN should simply output its position inputs (position networks). On the other hand,
the third class has access to noiseless velocity inputs, so the RNN should integrate these inputs to
estimate the position (velocity networks). Finally, we expect the second class learns an intermediate
strategy (mixed networks). Therefore, we expect that the 3 classes of RNNs will have distinct
recurrent interactions that can be distinguished by comparing their conditional responses.

For each class, we trained the model with and without BatchNorm in their hidden-to-output layer.
Since BatchNorm normalizes hidden state activations in each batch, we expect the networks trained
with BatchNorm to have near zero trial averages at each time point. Therefore using BatchNorm is
akin to adversarial examples in Fig. 1 where the trial averages are forced to be similar across models.
Hence we expect SSD with α = 2 to fail distinguishing between 3 classes of RNNs.

To confirm these intuitions, we computed SSDs between the networks using eq. (1) by treating the
true position as “landmarks.” Specifically, we partitioned the ground truth position l(t) into M bins
and treated each bin as a landmark. We then computed the mean and covariance of a networks
response conditioned on each landmark and compared their SSDs. Consistent with our intuition,
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we observed that for BatchNorm RNNs, the SSD with α = 2 fails to distinguish the position,
velocity, and mixed networks. While the SSD with α = 0 successfully distinguishes the 3 classes of
RNNs. This is expressed by the clustering of network types in the MDS embedding of the RNNs in
Figure 2E and by the block structure of the SSD matrices in Figure 2F.

Conversely, we observed that for RNNs trained without BatchNorm, SSD with both α = 0 and
α = 2 distinguishes between different classes of RNNs (Figure 2G). This suggests that both trial
averages and noise correlations contain information about the recurrent strategies used by the net-
works. Details of the RNN training are provided in Appendix A.2.

2.4 WHY CONDITIONAL COVARIANCE CAN DISTINGUISH RECURRENT DYNAMICS WITHOUT
TRIAL STRUCTURE

Figure 2 shows that we can leverage conditional covariance structure to distinguish recurrent inter-
actions in a network when there isn’t explicit trial structure. To better understand this, let z(t) be a
stochastic process that encodes the behaviorally relevant variables (e.g., position or velocity). Here
we assume z(t) is scalar valued, but the set-up readily extends to the case of a vector-valued process.
Consider the following stochastic differential equation modulated by z(t):

dx(t) = f(x(t))dt+ u(z(t))dt+ g(x(t))dw(t),

where u : R 7→ RN is the function that maps the behavioral variable to the dynamics and all other
variables are as in eq. (2). The covariance P (t) evolves according to the differential equation:

dP

dt
= E

[
(f(x) + u(z))(x−m)T

]
+ E

[
(x−m)(f(x) + u(z))T

]
+

1

2
E
[
g(x)g(x)T

]
,

which now includes an explicit dependence on the time-varying input to the system u(z(t)) because
z(t) itself is a stochastic process that is not independent of x(t). One way to obtain an equation that
does not include the input to the system is by conditioning on the process z = {z(t) ≥ 0}:

m(t, z) := E[x(t)|z], and P (t, z) := E
[
(x(t)−m(t, z))(x(t)−m(t, z))T|z

]
.

In this case, the explicit dependence on the input u(z(t)) drops out of the evolution equation:
dP (z)

dt
= E[f(x)(x−m(z))T|z] + E[(x−m(z))f(x)T|z] + 1

2
E[g(x)g(x)T|z],

which suggests that conditioning on z is useful for isolating the recurrent contribution to the dy-
namics. In the above, we have conditioned on the entire process z, so comparing two networks’
responses requires that the behavioral processes have similar trajectories. However, if we further
assume that the pair (x, z) is a stationary process—i.e., the joint distribution of (x(t), z(t)) does
not depend on time t—then the conditional mean and covariance, defined by m(z) := E[x|z] and
P (z) := E

[
(x−m(z))(x−m(z))T|z

]
, do not depend on time t and can be used to compare

representations from networks with different trajectories as in the previous section.

3 DISCUSSION

We have shown that SSDs can be used to disentangle noisy dynamic systems with different recurrent
interactions. As shown by Ostrow et al. (2023), we find that the mean trajectories of networks with
different recurrent interactions can be quite similar due to external inputs to the system. However,
we find that comparing stochastic fluctuations about the mean trajectories can distinguish between
systems with differing recurrent interactions, as demonstrated by (Galgali et al., 2023). By using the
full parametric form of SSDs (with α interpolating between 0 and 2), we can obtain a richer notion
of the similarities and differences, quantified in terms of metrics, in recurrent interactions between
networks with noisy dynamics.

There are many important directions for future investigation. For example, the SSDs used in this
work only capture first and second-order moments, which is optimal when comparing Gaussian
processes; however, they are not guaranteed to capture differences between non-Gaussian processes.
Another important avenue to explore is the relationship between SSDs measures of (dis)similarity
discussed here and DSA measures introduced by Ostrow et al. (2023). SSDs are metrics designed
to capture similarities in geometric structure, whereas DSA has been shown to capture similarities
in topological structure. Teasing apart these details is critical to enriching our understanding of the
dynamics at play in neural systems.
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A EXPERIMENTAL DETAILS

A.1 THREE NETWORK DYNAMICS

We modeled three network dynamics—a bistable switch, a line attractor, and a point attractor—that
were analyzed in (Galgali et al., 2023) and then in (Ostrow et al., 2023). To simulate the trajectories,
we used the code from the Jupyter notebook developed by Ostrow et al. (2023), which can be found
within the following Github repository: https://github.com/mitchellostrow/DSA. To
compute the SSDs, we used the code from the following Github repository: https://github.
com/ahwillia/netrep. The dynamics and simulation details are described below.

A.1.1 NONLINEAR BISTABLE SWITCH

The bistable switch is described by the 2-dimensional system of nonlinear stochastic differential
equations with additive (degenerate) noise

dx(t) = [f(x(t)) + 1νi]dt+ σdw(t),

where f(x1, x2) := (ax3
1 + bx1, cx2), 1 = (1, 1) is the vector of ones, νcond is a conditioned

dependent constant input-drive that is applied to both coordinates, w(t) is a 2-dimensional standard
Brownian motion and a, b, c, σ are constants. The parameters a, b, c are randomly sampled at the
outset as follows: a ∼ Unif(−5,−3), b ∼ Unif(4, 7), c ∼ Unif(−4,−2). Depending on the
condition, νcond is set to −0.1 or 0.1 and drives the system to one of the stable fixed points. The
noise coefficient σ is 5. The system is simulated using the Euler-Maruyama method:

xn+1 = xn + f(xn)∆t+ 1νi∆t+ σ∆wn

with step size ∆t = 0.01 and ∆wn are i.i.d. with ∆wn,i ∼ N (0,∆t) for i = 1, 2.

A.1.2 LINEAR LINE ATTRACTOR AND POINT ATTRACTOR

The line attractor and point attractor are 2-dimensional linear stochastic differential equations of the
form

dx(t) = [Ax(t) + u(t)]dt+ σdw(t),

where w is a 2-dimensional standard Brownian motion and σ is as in the previous example. For the
linear attractor, the recurrent dynamics matrix is A = V ΛV −1, where Λ = diag(−1, 0) and

V =

[
1 1
1 0

]
.

For the point attractor, the recurrent dynamics matrix is A = diag(−0.5,−1). As in previous
example, each linear system is simulated using the Euler-Maruyama method with In each case, the
input drive u(t) is adversarially chosen to minimize the difference between the mean trajectory of
the linear system with the mean trajectory of the nonlinear bistable switch. In particular, let x̄BS

n
denote a conditional mean trajectory of the bistable switch (i.e., conditioned on u = 1 or u = −1)
and let x̄n denote the corresponding condition mean trajectory of the linear system. Then the input
drive for the linear system un and the mean trajectory for the linear system can be recursively
defined by x̄0 = x̄BS

0 and

un =
x̄BS
n+1 − x̄n

∆t
−Ax̄n, x̄n+1 = x̄n + [Ax̄n + un]∆t.

A.2 RNN

The synthetic dataset was simulated to model the behavior of a mouse running around a circular
track. The task is motivated by neuroscience findings on the existence of a ring attractor in the
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representations of entorhinal neurons and RNN models trained to track the position of animals (Low
et al., 2021). To generate the position and velocity of the fictitious animal in time, we first sampled a
parameter θt from a Brownian motion for 600 time steps with a drift of 0.2. The 2D position at each
time step was calculated according to lt = (cos θt, sin θt). The 2D velocity was then computed as
the discrete differential of the position vt = lt − lt−1. Each RNN has 4 inputs and 2 outputs and
is tasked to estimate the position of the animal denoted by l̂t. Therefore we minimize the following
loss function L(ϕ) =

∑
t,i ∥lt,i − l̂t,i∥22 where t corresponds to the time point t and i denotes the

trial i. Each network has 64 hidden units and follows the classical rate network dynamics:

ht+1 = σ(Whht +Wi(lt + ϵlt,vt + ϵvt )
T + ϵht ), l̂t = Woht, ϕ = {Wh,Wi,Wo}

where ϵlt, ϵ
v
t , ϵ

h
t are i.i.d. noise terms added to the position input, velocity input, and hidden units

respectively. The standard deviation of these noise terms determines how much the network can rely
on each of the two input terms. For 5 velocity networks, we set the noise standard deviation of the
position and velocity inputs to 1 and 0 respectively. We do the opposite for 5 position networks.
For 5 mixed networks with injected noise with standard deviation 0.5 to both position and velocity
inputs. The hidden noise standard deviation is always set to 0.1.

For each class of RNNs (position, velocity, and mixed) we trained two separate models, with and
without BatchNorm in their hidden-to-output layers.

ht ←
ht − E[hbatch

t ]√
Var(hbatch

t )
, l̂t = Woht

Since BatchNorm normalizes hidden state activations to have zero mean, it intuitively mimics an
adversarial training strategy for limiting the information of the trial averages.

To train the networks, we generated batches of size 64 and ran 1000 iterations of backprop through
time using SGD optimizer with a learning rate of 0.05. All the experiments were done using
Pytorch on CPU and every RNN takes about 3 minutes to train.

8


	Introduction
	Results
	Distinguishing systems with the same trial-average trajectories
	Why across-trial covariance can distinguish recurrent dynamics
	Distinguishing systems without trial structure
	Why conditional covariance can distinguish recurrent dynamics without trial structure

	Discussion
	Experimental details
	Three network dynamics
	Nonlinear bistable switch
	Linear line attractor and point attractor

	RNN


